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Abstract
We analyze ecological systems that are influenced by random environmental fluctu-
ations. We first provide general conditions which ensure that the species coexist and
the system converges to a unique invariant probability measure (stationary distribu-
tion). Since it is usually impossible to characterize this invariant probability measure
analytically, we develop a powerful method for numerically approximating invariant
probability measures. This allows us to shed light upon how the various parameters
of the ecosystem impact the stationary distribution. We analyze different types of
environmental fluctuations. At first we study ecosystems modeled by stochastic dif-
ferential equations. In the second setting we look at piecewise deterministic Markov
processes. These are processes where one follows a system of differential equations
for a random time, after which the environmental state changes, and one follows a
different set of differential equations—this procedure then gets repeated indefinitely.
Finally, we look at stochastic differential equations with switching, which take into
account both the white noise fluctuations and the random environmental switches. As
applications of our theoretical and numerical analysis, we look at competitive Lotka–
Volterra, Beddington–DeAngelis predator–prey, and rock–paper–scissors dynamics.
We highlight new biological insights by analyzing the stationary distributions of the
ecosystems and by seeing how various types of environmental fluctuations influence
the long term fate of populations.
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1 Introduction

One of the fundamental questions in population biology is understanding under what
conditions interacting species coexist. It is well documented that one has to look care-
fully at the interplay between biotic interactions and environmental fluctuations when
trying to determine criteria for coexistence or extinction. Sometimes biotic effects can
result in species going extinct. However, if one adds the effects of the environment,
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extinction might be reversed into coexistence. These phenomena have been seen in
competitive settings as well as in settings where prey share common predators (Ches-
son andWarner 1981; Abrams et al. 1998; Holt 1977). In other instances, deterministic
systems that coexist become extinct once one takes into account environmental fluctu-
ations (Holt et al. 1994). One successful way of analyzing the interplay between biotic
interactions and environmental noise is by modelling the populations as discrete or
continuous-time Markov processes. The problem of coexistence or extinction then
becomes equivalent to studying the asymptotic behaviour of these Markov processes.

Throughout the years, the way ecologists think of environmental stochasticity has
changed from seeing it as something that obfuscates the real patterns, and is therefore a
nuisance, to viewing it as amechanism that can createmany new interesting behaviours
(Boettiger 2018). There are many different ways of modeling random environmental
fluctuations. It is quite common for continuous time dynamics to focus on white noise
fluctuations and tomodel the dynamics by a system of stochastic differential equations
(SDE). For some systems, the randomness might not be best modelled by SDE (Turelli
1977)—different situations will require different types of environmental stochasticity.

A natural way of analyzing the coexistence of species is looking at the average per-
capita growth rate of a population when rare. Intuitively, if this growth rate is positive,
the respective population increases when rare and can invade, while if it is negative
the population decreases and goes extinct. If there are two populations, coexistence is
ensured as long as each population can invade when it is rare and the other population
is stationary (Turelli 1977; Chesson and Ellner 1989; Evans et al. 2015). This criterion
breaks down when one has more than two interacting populations (Schreiber et al.
2011).

There is a general theory of permanence for deterministic models (Hofbauer 1981;
Hutson 1984; Hofbauer and So 1989; Hofbauer and Sigmund 1998; Smith and Thieme
2011). It can be shown that a sufficient condition for persistence is the existence of a
fixed set of weights associatedwith the interacting populations, such that this weighted
combination of the populations’s invasion rates is positive for any invariant measure
supported by the boundary (i.e. associated to a sub-collection of populations)—see
Hofbauer (1981). This coexistence theory has been generalized to stochastic difference
equations (Schreiber et al. 2011; Benaïm and Schreiber 2019; Hening et al. 2021a),
stochastic differential equations (Schreiber et al. 2011; Hening and Nguyen 2018a;
Hening et al. 2021a), and recently to general Markov processes (Benaim 2018). The
theory is not as well developed for ecosystems that involve both a continuous and a
discrete component or ecosystems systems exhibiting multiple timescales. We close
this gap by providing a number of new persistence results.

One natural class of processes that model the joint dynamics of the environment
and the species densities is that of piecewise deterministicMarkov processes (PDMP).
The basic intuition behind PDMP is that due to different environmental conditions
the functional way species interact can change. Tyson and Lutscher (2016) show
that the predation behavior can vary with the environmental conditions and therefore
change predator–prey cycles. Another example is that of plankton ecosystems where
changing environmental conditions can facilitate coexistence (Hutchinson 1961; Li
andChesson 2016; Litchman andKlausmeier 2001). Since the environment is random,
its changes (or switches) cannot be predicted in a deterministic way. For a PDMP, the
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process follows a deterministic system of differential equations for a random time,
after which the environment changes, and the process switches to a different set of
ordinary differential equations (ODE), and follows the dynamics given by this ODE
for a random time. The procedure then gets repeated indefinitely.

A second class of processes we analyze is the one given by stochastic differential
equations with switching (SSDE). These processes involve a discrete component that
keeps track of the environment and which changes at random times. In a fixed environ-
mental state the system is modelled by stochastic differential equations. This way we
can capture the more realistic behaviour of two types of environmental fluctuations:

• major changes of the environment (daily or seasonal changes),
• fluctuations within each environment.

We provide an in depth analysis in the deterministic/SDE/PDMP/SSDE settings
for three ecological models. The first model is the classical Lotka–Volterra compe-
tition system with two species. The second model is a predator–prey system with
Beddington–DeAngelis functional response. The third model is a system with rock–
paper–scissors dynamics. For these three examples we look at the difference between
the ODE, SDE, PDMP and SSDE frameworks.

Even though there are nowpowerful analytical results to studywhen species coexist,
almost nothing is known about the stationary distribution of coexisting species. We
make progress in this direction by developing a rigorous method of approximating the
invariant probability measures of SDE, PDMP and SSDE. We prove rigorously that
the approximations converge to the correct invariant probability measure. These new
approximation methods are significantly more accurate than the usual Monte Carlo
results.Wemake use of them in order to shed light onwhat the equilibrium distribution
of species looks like.

The paper is organized as follows. In Sects. 2, 3 and 4 we present persistence
results for the frameworks of SDE, PDMP and SSDE. We describe our numerical
methods for computing invariant probability measures in Sect. 5. Section 6 provides
an in depth analysis of a two-species Lotka–Volterra competition system. A predator–
prey system with Beddington–DeAngelis functional response is explored in Sect. 7.
Results for three species competing according to rock–paper–scissors dynamics appear
in Sect. 8. Finally, Sect. 9 is concerned with a discussion of our results.

2 Stochastic differential equations

Consider the general nonlinear systems of the form

d Xi (t) = Xi (t) fi (X(t))dt + Xi (t)gi (X(t))d Ei (t), i = 1, . . . , n (2.1)

where E(t) = (E1(t), . . . , En(t))T = ��B(t) � is a n × n matrix such that
��� = � = (σi j )n×n and B(t) = (B1(t), . . . , Bn(t)) is a vector of independent
standard Brownian motions. The system (2.1) describes the dynamics of n interacting
populations whose densities at time t ≥ 0 are given by X(t) := (X1(t), . . . , Xn(t)).
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We will denote by Py(·) = P( · | X(0) = y) and Ey[·] = E[ · | X(0) = y] the
probability and expected value given that the process starts at X(0) = y.

The drift term of our system Xi (t) fi (X(t)) is due to the deterministic dynamics
(abiotic and biotic factors) while the diffusion term Xi (t)gi (X(t))d Ei (t) is due to
the effects of random environmental fluctuations. If the population densities at some
point in time are x then fi (x) is the per capita growth rate of the i th population/species
if there are no environmental fluctuations. The matrix �T � captures the covariance
structure of the environmental fluctuations.

Remark 2.1 We note that just adding a stochastic fluctuating term to a deterministic
model has some short comings because it does not usually give a mechanism for how
different species are influencedby the environment. Instead, following the fundamental
work by Turelli (1977) we see the SDE models as “approximations for more realistic,
but often analytically intractable, models”. In particular, SDE can be seen as scaling
limits, or approximations, of stochastic difference equations.

The random environmental fluctuations make it impossible, under natural assump-
tions, for (2.1) to have non-trivial fixed points.Whenever fi (x0) = 0, if gi (x0) �= 0 the
diffusion term will push X away from x0. This is one reason why fixed points are not
usually useful concepts when studying ecosystems that are exposed to environmental
fluctuations. If X(0) = x ∈ R

n,◦
+ := (0,∞)n we say the population Xi goes extinct if

for all x ∈ R
n,◦
+

Px

{
lim

t→∞ Xi (t) = 0
}

= 1.

A natural definition of persistence in a stochastic environment is the one given by
Chesson (1982): the species X1, . . . , Xn persist in probability if for any ε > 0, there
exists δ > 0 such that for any X(0) = y ∈ R

n,◦
+ we have with probability 1 that

lim inf
t→∞ Py

{
X j (t) > δ, j = 1, . . . , n

} ≥ 1 − ε.

This definition says that with high probability the species stay away from the extinction
set ∂R

n,◦
+ := R

n+\R
n,◦
+ . For any η > 0 let

Sη := {x,∈ R
n,◦
+ : min

i
xi ≤ η}

be the subset ofR
n,◦
+ where at least one species is within η of extinction. For any t ∈ N

define the normalized occupation measure

	t (B) := 1

t

∫ t

0
1{X(s) ∈ (B)} ds

where 1 is the indicator function and B is any Borel subset of R
n,◦
+ . We note that

	t is a random probability measure and 	t (B) tells us the proportion of time the
system spends in B up to time t . We sayX(t) is almost surely stochastically persistent
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(Benaïm and Schreiber 2019) if for all ε > 0 there exists η(ε) = η > 0 such that for
all x ∈ R

n,◦
+

lim inf
t→∞ 	t (R

n,◦
+ \Sη) > 1 − ε, X(0) = x.

In this paper we are concerned with a stronger version of persistence, which does
not only tell us that the species stay away from extinction, but that they also converge
to some type of random equilibrium.

The probability measure π is an invariant probability measure if, whenever one
starts the process with initial conditions distributed according to π , then for any time
t ≥ 0 the distribution of X(t) is given by π . In other words, π is the random equiv-
alent of a fixed point, or more generally, an attractor. A community of species which
has an invariant probability measure π has, loosely speaking, a random equilibrium
characterized by π .

The process X is said to be strongly stochastically persistent if it has a unique
invariant probability measure π∗ on R

n,◦
+ and

lim
t→∞ ‖PX(t, x, ·) − π∗(·)‖TV = 0, x ∈ R

n,◦
+ (2.2)

where ‖·, ·‖TV is the total variation norm and PX(t, x, A) = P(X(t) ∈ A | X(0) = x)
is the transition probability of (X(t))t≥0. We note that strong stochastic persistence
implies persistence in probability and almost sure stochastic persistence (Hening and
Nguyen 2018a; Benaïm and Schreiber 2019).

Building a theory of stochastic persistence therefore boils down to finding condi-
tions which imply the existence of a unique invariant probability measure π∗ which
lives on the persistence set R

n,◦
+ . We need a few more concepts in order to present

this theory. Let ConvM denote the set of invariant measures of X(t) whose support
is contained in ∂R

n+. The set of extreme points of ConvM, denoted by M, is the set
of ergodic invariant measures with support on the boundary ∂R

n+. If a measure lives
on the boundary ∂R

n+ it describes a strict subcommunity of species (at least one of the
n species is absent/extinct) that are at a random equilibrium.

If μ ∈ M is an invariant measure and X spends a lot of time close to its support,
supp (μ), then it will get attracted or repelled in the i th direction according to the
Lyapunov exponent (or invasion rate)

λi (μ) =
∫

∂Rn+

(
fi (x) − σi i g2

i (x)

2

)
μ(dx). (2.3)

Biological interpretation Intuitively, λi (μ) tells us what happens if we introduce
species i at a very low density into the subcommunity whose equilibrium is described
by μ. If λi (μ) > 0 species i tends to persist while if λi (μ) < 0 species i tends to go
extinct. The quantity λi (μ) averages the log growth rate of the dynamics of species i
around the random equilibrium given by μ.

The following theorem (Schreiber et al. 2011; Hening and Nguyen 2018a; Benaim
2018; Hening et al. 2021a) gives a powerful criterion for persistence.
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Theorem 2.1 If for any μ ∈ Conv(M),

max
i=1,...,n

λi (μ) > 0,

and the technical assumptions from “Appendix A.1” hold, then the system is strongly
stochastically persistent: there exists a unique invariant measure μ∗ with support on
R

n,◦
+ , and X converges to μ∗ in total variation

lim
t→∞

∥∥P(t, x, ·) − μ∗(·)∥∥T V = 0, x ∈ R
n,◦
+ .

Furthermore, the rate of convergence is exponential.

Biological interpretation If each subcommunity of species that persists, and is charac-
terized by an invariant probability measure μ ∈ Conv(M), can be invaded by at least
one species that is not part of the subcommunity, then the full community of n species
persists. When the process gets close to the extinction boundary, the species which
are close to extinction will grow/decay exponentially fast according to their invasion
rates. Since at least one invasion rate is positive, the process gets pushed away from
the boundary and make extinction impossible.

2.1 Single species ecosystems

Suppose the species is governed by

d X(t) = X(t) f (X(t))dt + g(X(t))d B(t)

Then, if the Lyapunov exponent is positive, i.e.

f (0) − g2(0)

2
> 0

by Theorem 2.1 the species persists and converges to a unique invariant probability
measure μ∗.

3 Piecewise deterministic Markov processes

As before, we look at a system of n unstructured interacting populations, let
Xi (t) denote the density of the i th population at time t ≥ 0, and set X(t) =
(X1(t), . . . , Xn(t)). Suppose (r(t)) is a continuous-time process taking values in the
finite state spaceN = {1, . . . , n0}.ThisMarkov chain keeps track of the environment,
so if r(t) = i ∈ N this means that at time t the dynamics takes place in environment
i . Once one knows in which environment the system is, the dynamics are given by a
system of ODE. The PDMP can therefore be written

d Xi (t) = Xi (t) fi (X(t), r(t))dt, i = 1, . . . , n, (3.1)
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where fi now depends on both the species densities and the environmental state r(t).
In order to have a well-defined system one has to specify the switching-mechanism,
e.g. the dynamics of the process (r(t)). We assume that the switching intensity of r(t)
depends on the state of X(t) as follows

P{r(t + �) = j | r(t) = i,X(s), r(s), s ≤ t} = qi j (X(t))� + o(�) if i �= j and
P{r(t + �) = i | r(t) = i,X(s), r(s), s ≤ t} = 1 + qii (X(t))� + o(�).

(3.2)

where qii (x) := −∑ j �=i qi j (x). We assume that qi j (x) is a bounded continuous
function for each i, j ∈ N and the matrix Q(x) = (qi j (x))n0×n0 is irreducible. It is
well-known that a process (X(t), r(t)) satisfying (3.1) and (3.2) is a strong Markov
process (Davis 1984).

The simplest case would be to assume that the transition matrix Q(x) =
(qi j (x))n0×n0 = (qi j )n0×n0 is independent of the densities of the species. In this case
the jump times will be exponentially distributed and independent of the process X.
Nevertheless, it is useful from an ecological standpoint to allow the state of the environ-
ment r(t) to be influenced by the populationX. This is because there can be feedbacks
between the environment and the species living in it. One example would be ecosys-
tem engineers like beavers or oysters—these change the structure of the environment
and thereby create a population–environment feedback (Jones et al. 1994; Cuddington
et al. 2009; Moore et al. 2016). Another example would be a fire-vegetation feedback
(Staver and Levin 2012).

Piecewise deterministic Markov processes have been used recently by Benaïm and
Lobry (2016) and Hening and Nguyen (2020) to prove how competitive exclusion can
be reversed into coexistence. The authors look at a twodimensional competitiveLotka–
Volterra system in a fluctuating environment. They show that the random switching
between two environments that are both favorable to the same species, e.g. the favored
species persists and the unfavored species goes extinct, can lead to the extinction of
this favored species and the persistence of the unfavored species, to the coexistence of
the two competing species, or to bistability, where depending on the initial condition
one species persists and the other goes extinct.

In Hening and Strickler (2019) the authors look at a system that switches between
two deterministic classical Lotka–Volterra predator–prey systems—the assumption is
that there are no intraspecific competition terms for the prey or predator species. Even
though for each deterministic predator–prey system the predator and the prey densities
form closed periodic orbits, it is shown that the switching makes the system leave any
compact set.Moreover, in the switched system, the predator and prey densities oscillate
between 0 and ∞.

The above examples show how PDMP can exhibit dynamics that are radically
different from those of each fixed environment.

3.1 Mathematical framework

The quantity Px,r (A) will denote the probability of event A if (X(0), r(0)) = (x, k).
Call μ an invariant measure for the process X if μ(·, ·) is a measure such that for any
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k ∈ N μ(·, k) is a Borel probability measure on R
n+ and, if one starts the process

with initial conditions distributed according to μ(·, ·), then for any time t ≥ 0 the
distribution of (X(t), r(t)) is given by μ(·, ·).

Let ConvM denote the set of invariant measures of (X(t), r(t)) whose support is
contained in ∂R

n+ × N . The set of extreme points of ConvM, denoted by M, is the
set of ergodic invariant measures with support on the boundary ∂R

n+ × N .
If μ ∈ M is an invariant measure and X spends a lot of time close to its support,

supp (μ), then it will get attracted or repelled in the i th direction according to the
Lyapunov exponent (or invasion rate)

λi (μ) =
∑
k∈N

∫

∂Rn+
fi (x, k)μ(dx, k). (3.3)

Biological interpretation The invasion rate λi (μ) is the average per-capita growth
rate of species i when it is introduced at a low density into the subcommunity of
species characterized by the invariant probability measure μ. The averaging is done
by weighing the different growth rates fi (x, k) according to the measure μ. Note that
fi (x, k) is the growth rate when the densities of the n species are x and the environment
is in state k. According to equation (3.3) the averaging has to be done over species
densities as well as the different environments.

The following theorem tells us when there the system exhibits coexistence—see
Benaïm and Lobry (2016), Benaim (2018), Hening and Strickler (2019) and Hening
and Nguyen (2020) for proofs in particular settings.

Theorem 3.1 If for any μ ∈ Conv(M),

max
i=1,...,n

λi (μ) > 0,

i.e. μ is a repeller, then the system is strongly stochastically persistent, i.e. for any
ε > 0, there exists a δ > 0 such that

lim inf
t→∞ Px,r {Xi (t) ≥ δ, i = 1, . . . , n} ≥ 1 − ε, x ∈ R

n,◦
+ , r ∈ N . (3.4)

Under additional irreducibility conditions (see “AppendixA.2”), there exists a unique
invariant measure μ∗ with support on R

n,◦
+ ×N , andX converges to μ∗ in the following

sense

lim
t→∞

∥∥P(t, (x, r), ·) − μ∗(·)∥∥T V = 0, (x, r) ∈ R
n,◦
+ × N

where ‖·, ·‖TV is the total variation norm and P(t, (x, r), ·) is the transition probability
of (X(t), r(t))t≥0. Furthermore, the rate of convergence is exponential.
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3.2 Single species systems

Consider a single species whose dynamics is given by

d X

dt
(t) = X(t) f (X(t), r(t)).

Since the matrix q(0) is irreducible, the associated Markov chain has a stationary
distribution ν := (ν1, . . . , νn0)—this is the Markov chain we get if we start with
X(0) = 0. Note that the extinction set is {0} × N . The only invariant probability
measure supported on this set is μ0 := δ0 × ν. As a result of Theorem 3.1, if

λ(μ0) =
n0∑

k=1

νk f (0, k) > 0

and some irreducibility conditions hold (see “Appendix A.2” or Benaïm et al. (2018),
Benaim (2018)) then there is a unique invariant probability measure μ∗ and X(t)
converges in total variation to μ∗.

Biological interpretation If the species persists in both environments then it will
persist with the environmental switching. If the species does not persist in any envi-
ronment, then it will also not persist with the environmental switching. However, it is
possible to have source and sink environments and still have persistence in the fluctuat-
ing system. Suppose there are only two environments, and that f (0, 1) < 0, f (0, 2) >

0. Then, {0} is an attractor for f (x, 1) and the species cannot persist in environment
1. Similarly, {0} is not an attractor for f (x, 2) and the species persists in environment
2. However, as long as ν1 f (0, 1) + ν2 f (0, 2) > 0, or equivalently

ν1

ν2
<

∣∣∣∣
f (0, 2)

f (0, 1)

∣∣∣∣

persistence is possible. If the fraction of time spent in the sink environment over the
fraction of the time spent in the source environment is smaller than the fraction of the
per capita growth rates at 0 in the source and sink environments, then the system with
switching is persistent.

4 Stochastic differential equations with switching

In this section we analyze ecological systems that can be modelled by stochastic
differential equations with switching (SSDE). These processes are similar to PDMP.
The difference is that now, instead of switching between systems ofODE, one switches
between systems of SDE. One gets

d Xi (t) = Xi (t) fi (X(t), r(t))dt + Xi gi (X(t), r(t))d Ei , i = 1, . . . , n (4.1)
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where E(t) = (E1(t), . . . , En(t))T = ��B(t) for an n × n matrix � such that
��� = � = (σi j )n×n ,B(t) = (B1(t), . . . , Bn(t)) is a vector of independent standard
Brownian motions and. The process r(t) keeps track of the environment state and
lives in N = {1, . . . , n0}. The switching intensity of the discrete process r(t) will be
modelled by

P{r(t + �) = j | r(t) = i,X(s), r(s), s ≤ t} = qi j (X(t))� + o(�) if i �= j and
P{r(t + �) = i | r(t) = i,X(s), r(s), s ≤ t} = 1 + qii (X(t))� + o(�).

(4.2)

One assumes, as in the PDMP setting, that q(·) is a bounded function which depends
continuously on x. Furthermore, we assume that q(x) is irreducible for all x ∈ R

n+.
General properties for these processes have been studied thoroughly (Yin and Zhu
2009; Zhu and Yin 2009; Nguyen et al. 2017). However, there are few results regard-
ing the persistence of ecological systems modelled by SSDE. We present below the
framework and a powerful persistence result.

4.1 Mathematical framework

The quantity Px,r (A) will denote the probability of event A if (X(0), r(0)) = (x, k).
Call μ an invariant measure for the process X if μ(·, ·) is a measure such that for any
k ∈ N μ(·, k) is a Borel probability measure on R

n+ and, if one starts the process
with initial conditions distributed according to μ(·, ·), then for any time t ≥ 0 the
distribution of (X(t), r(t)) is given by μ(·, ·).

Let ConvM denote the set of invariant measures of (X(t), r(t)) whose support is
contained in ∂R

n+ × N . The set of extreme points of ConvM, denoted by M, is the
set of ergodic invariant measures with support on the boundary ∂R

n+ × N .
If μ ∈ M is an invariant measure and X spends a lot of time close to its support,

supp (μ), then it will get attracted or repelled in the i th direction according to the
Lyapunov exponent (or invasion rate)

λi (μ) =
∑
k∈N

∫

∂Rn+

(
fi (x, k) − σi i g2

i (x, k)

2

)
μ(dx, k). (4.3)

We note that if we let gi = 0 in (4.3) we get the expression (3.3) that holds for PDMP.
If we have only one switching state, n0 = 1, (4.3) to the SDE setting from (2.3). In
this sense

Using the methods of Benaim (2018) or generalizing Hening and Nguyen (2018a)
one can prove the following persistence result.

Theorem 4.1 If for any μ ∈ Conv(M),

max
i=1,...,n

λi (μ) > 0,
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then the system is strongly stochastically persistent, i.e. for any ε > 0, there exists a
δ > 0 such that

lim inf
t→∞ Px,r {Xi (t) ≥ δ, i = 1, . . . , n} ≥ 1 − ε, x ∈ R

n,◦
+ , r ∈ N . (4.4)

Under additional irreducibility conditions, there exists a unique invariant measure μ∗
with support on R

n,◦
+ × N , and X converges to μ∗ in the total variation

lim
t→∞

∥∥P(t, (x, r), ·) − μ∗(·)∥∥T V = 0, (x, r) ∈ R
n,◦
+ × N .

Furthermore, the rate of convergence is exponential.

4.2 Single species systems

Consider a single species whose dynamics is given by

d X(t) = X(t) f (X(t), r(t))dt + X(t)g(X(t), r(t))d B(t).

As argued in the PDMP example, the matrix q(0) is irreducible, so the associated
Markov chain has a stationary distribution ν0 := (ν01 , . . . , ν

0
n0). Once again, the only

invariant probability measure living one the extinction set (or boundary) is μ0 :=
δ0 × ν0. As a result of Theorem 4.1, if

λ(μ0) =
n0∑

k=1

ν0k

(
f (0, k) − g2(0, k)

2

)
> 0 (4.5)

and some weak irreducibility conditions hold (Benaim 2018) then the species persists,
there is a unique invariant probabilitymeasureμ∗, and X(t) converges in total variation
to μ∗.

Biological interpretation The stochastic per-capita growth rate at 0 of the switching
system, λ(μ0) is a weighted combination of the stochastic per-capita growth rates at 0

of the system in each fixed environment, f (0, k)− g2(0,k)
2 . Theweights are given by the

fractions of time the process r(t) spends in each environmental state k ∈ {1, . . . , n0}
when one starts the system at extinction (X(0) = 0). Say the species goes extinct for
k ∈ M � {1, . . . , n0}

f (0, k) − g2(0, k)

2
< 0, k ∈ M .

It is still possible to have persistence when

∑
k /∈M

ν0k f (0, k) − g2(0, k)

2
>
∑
k∈M

ν0k

∣∣∣∣ f (0, k) − g2(0, k)

2

∣∣∣∣ .

123



Stationary distributions of persistent ecological systems Page 13 of 53 64

Even if some environments are sinks the species can still persist as long as it spends
enough time in the source environments.

5 Numerical computation of invariant probability measures

The dynamics of populations are random due to the inherent stochastic nature of envi-
ronmental fluctuations. As discussed in the above sections, ecological systems can
be modeled by SDE, SSDE, or PDMP. Recent developments have made it possible
to get robust conditions for the persistence and extinction of these models (Hening
and Nguyen 2018a; Benaim 2018; Benaïm and Schreiber 2019; Hening et al. 2021a).
In certain cases one can show that the populations converge to a unique invariant
probability measure or steady state. If the ecosystem consists of a single species, e.g.
the stochastic dynamics is one-dimensional, there are well known ways in which one
can describe the invariant probability measure of a persistent system. If the dimen-
sion is greater or equal to two, i.e. the system has at least two species or there is
more than one environment (for PDMP and SSDE), one can almost never describe
the invariant probability measure analytically. Characteristics of the steady state dis-
tribution could provide valuable information regarding the distribution of species to
theoretical ecologists. We propose to use a new method introduced in Li (2019) to
numerically approximate invariant probability measures of ecological systems in an
efficient fashion.

5.1 Invariant probability measures of SDE

For simplicity, we use the following SDE to illustrate the numerical method:

d Xi (t) = Xi fi (X(t)) dt + Xi (t)gi (X(t)) d Bi (t), i = 1, . . . , n. (5.1)

where fi , gi : R
n+ → R+ are continuous and (B1, . . . , Bn) is an n-dimensional

Brownian motion. Without loss of generality, we assume that X admits a unique
solution and is strongly stochastically persistent. This implies that X has a unique
invariant probability measure on (0,∞)n . Let f i (x) := xi fi (x) and gi (x) := xi gi (x).

Under natural assumptions the distribution ofX(t)has a probability density function
�(t, x) such that for any measurable set A

P(X(t) ∈ A) =
∫

A
�(t, y) dy.

The time evolution of �(t, x) is described by the Fokker–Planck equation

�t = L�(x) = −
n∑

i=1

∂xi ( f i�) + 1

2

n∑
i, j=1

∂xi x j (Di, j�)

�(0, x) = �0(x)

(5.2)
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where D = (g(x))T �T �g(x) and �0(x) is the probability density function ofX(0). A
invariant probability density function �∗ is a probability density function that satisfies
the stationary Fokker–Planck equation

L�∗ = 0. (5.3)

Note that if a solution �∗ of (5.3) exists, and satisfies �∗ ≥ 0 and
∫
R

n+ �∗(x) dx then it
defines an invariant probability measure π .

There are usually two approaches for numerically finding �∗. The first one is to
solve the Fokker–Planck equation numerically. The main problem is the boundary
condition of the PDE. Since (0,∞)n is an unbounded domain, one will have to set
(0, L)n as the numerical domain for a sufficiently large L , give zero boundary condition
at {xi = L} and a reflecting boundary condition at {xi = 0}. This method will cause
many problems. First, the resultant linear system only has an identically zero solution.
One needs to add a constraint that the integral of the solution is 1, and find the least
square solution instead. Second, the diffusion term inmost ecological models vanishes
at {xi = 0}. This singular boundary condition can cause more error if a reflecting
boundary condition is used. Third, since L has to be very large in practice, this can
easily make the computational cost too high.

A second approach is using Monte Carlo simulations. For this method one collects
N samples ofX(t), and counts the number of samples in each bin of a grid to estimate
the probability density function. In order to get a high accuracy, one needs to use
a very large number N of samples. This approach also suffers from the curse of
dimensionality: if the dimension n is large then one needs N to be unrealistically
larger.

The solution is to use a data-driven method to compute the invariant probability
measure Li (2019). This approachworks for stochastic difference equations, stochastic
differential equations, stochastic differential equations with switching, and piecewise
deterministic Markov processes. The idea is to use a combination of the PDE and
Monte Carlo (MC) methods. One first generates a reference solution using MC. This
reference solution is then used as a replacement of the boundary conditions from the
PDE method. This new method will combine the high accuracy of the PDE method
and the flexibility of MC simulations. We explain how to do this for Eq. (5.1) in a
two-dimensional domain D = [a0, b0] × [a1, b1] ⊂ R

2,◦
+ .

Construct an N × M grid with grid size h = (b0 − a0)/N = (b1 − a1)/M .
Approximate � at the center of each of the N × M boxes Oi, j = [a0 + (i − 1)h, a0 +
ih] × [a1 + ( j − 1)h, a1 + jh]. Denote by �N ,M the numerical solution on D - note
that � can be seen as a vector in R

N M+ . An entry �i, j of � will be an approximation of
the density function � at the center of the box Oi, j . If we discretize the Fokker–Planck
equation with respect to the centers of the boxes we will get a linear constraint

A� = 0
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where A is a matrix. The matrix A is the so-called discretized Fokker-Planck operator.
If D is diagonal, a row of equation A� = 0 reads

− 1

h
( f

i+1, j
1 �i+1, j − f

i+1, j
1 �i+1, j ) − 1

h
( f

i, j+1
2 �i, j+1 − f

i, j−1
2 �i, j−1) + 1

h2 (Di+1, j
1,1 �i+1,i

+ Di−1, j
1,1 �i−1, j + Di, j+1

2,2 �i, j+1 + Di, j−1
2,2 �i, j−1 − 2Di, j

1,1�i, j − 2Di, j
2,2�i, j ) = 0 ,

where f
i, j
1 (resp. f 2, D11, D22) is the value of f 1 (resp. f 2, D11, D22) at the center

of box Oi j .
Step 1: Get a reference solution using MC. Define (X̃n)N

n=1 for n = 1, . . . , T to
be the numerical trajectory of the chain X(nδ) where δ > 0 is the time step of the
MC simulation. Define v = {vi, j }i=M, j=N

i=1, j=1 with vi, j = 1
T h2

∑T
n=1 1Oi, j (X̃n). One can

show that v is an approximate solution to (5.1).
Step 2: Solve the optimization problem:

min‖� − v‖2 (5.4)

subject toA� = 0 . (5.5)

It follows from Theorem B.1 that the optimization problem will reduce the error in
v, because it projects the error term from R

N M to Ker(A), whose dimension is much
smaller. As a result, the norm of the error term can be significantly reduced by this
projection.

Intuitively the algorithm we propose works as follows: First get a low-accuracy
numerical solution using Monte Carlo simulation. Once we have this reference solu-
tion, we solve an optimization problem, which looks for the least squares solution
with respect to the reference solution, under the constraint given by the numerical
discretization scheme.This method is more efficient because it does not need to look
at boundary conditions for PDE.

5.2 Invariant probability measures of SSDE and PDMP

In the previous section we explained how our data-driven method works for SDE. We
next explain how to extend this to PDMP and SSDE. Take the SSDE

d Xi (t) = Xi (t) fi (X(t), r(t))dt + Xi gi (X(t), r(t))d Ei , i = 1, . . . , n (5.6)

introduced in Sect. 4 as an example, where r(t) is an independent continuous time
Markov chain on N = {1, · · · , n0}. Let f i = xi fi and gi = xi gi . One can see
(Yin and Zhu 2009) that the probability density function of the invariant probability
measure of Eq. (5.6), denoted by �∗(k, x), must satisfy
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0 = L�∗(k, x) = −
n∑

i=1

∂xi ( f i (k, x)�∗(k, x)) + 1

2

n∑
i, j=1

∂xi x j (Di, j (k, x)�∗(k, x))

+
n0∑

i=1

�∗(i, x)qik(x) (5.7)

where D = gT �T �g. When computing �∗ numerically, we can still divide the state
space (0,∞)n × N into bins.

We look at a 2d SSDE example. We have a numerical domain D = [a0, b0] ×
[a1, b1] × N . As in the previous subsection, the (i, j)-th box in the grid is denoted
by Oi . j . After constructing an N × M grid on D, a numerical solution � := �M N

has the form � = {�i, j,k}i=N , j=M,k=n0
i=1, j=1,k=1 , where �i, j,k represents the probability density

function � at the center of box Oi, j with state k.
The first step is still to run a long trajectory to get the reference solution v, as

described in the previous subsection. Then we generate a linear constraint A� =
0, where A comes from a discretization of Eq. (5.7). The next step is to solve the
constrained optimization problem

min‖� − v‖2
subject to the constraint

A� = 0.

This gives a numerical invariant probability density function � which will be a good
approximation to the solution of (5.7).

The case of PDMP is more delicate. Although theoretically the data-driven solver
should still work, in practice the invariant probability measure can be too singular
for a numerical scheme to capture its density. If for instance, the probability density
function takes a very high value in one grid, but zero value in its neighbor grid, then
somenumerical artifacts canbeobserved.Our simulation shows thatwhen the invariant
probability measure of the PDMPmodel is not too singular, the data-driven solver can
still successfully reduce the error in the reference solution given by the Monte Carlo
simulation. On the other hand, if the invariant probability measure is very singular,
usually the solution produced by a Monte Carlo simulation is accurate enough. This
happens because theMC simulation result usually gives a clear dichotomy: a small box
will either get enough sample points to keep a satisfactory accuracy, or zero sample
points which imply a zero probability density.

5.3 Block data-driven solver

For higher dimensional problems, it is important to divide the domain into many
subdomains to reduce the scale of the numerical linear algebra problem. This is called
the block data-driven solver. The motivation is that (i) the data-driven Fokker-Planck
solver does not rely on the boundary condition, and (ii) the optimization problem
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“pushes” most error terms to the boundary of the domain. (See our discussion in
Dobson et al. 2019a.) As a result we can solve a similar optimization problem on
each subdomain in parallel, and merge all “local solutions” together. Finally, we need
to deal with the interface error on the boundary of each subdomain. This is done by
(i) letting the subdomains overlap with each other by a few grids, and (ii) redrawing
subdomains such that the new subdomain covers the old subdomain interfaces, and
(iii) running the block data-driven solver again. This approach works for SDE, PDMP,
and SSDE. We refer to Dobson et al. (2019a) for the full details.

5.4 Analysis of the algorithm

We give proofs that our algorithm converges in “Appendix A.3”. According to The-
orem B.1, the numerical error depends on both the grid size and the quality of the
Monte Carlo sampler. The empirical error is better than the theoretical prediction
because the error term concentrates at the domain boundary and can be eliminated by
other approaches, such as the block data-driven solver introduced above.

The quality of the Monte Carlo sampler plays an important role in the data-driven
solver.MonteCarlo sampling from the invariant probabilitymeasureμ∗ usuallymeans
running a numerical trajectory of the SDE (or PDMP, SSDE) for a long time. However,
a numerical trajectory is only an approximation of a true SDE trajectory. The invariant
probabilitymeasure of theMonteCarlo sampler, denotedby μ̂, is usually different from
μ∗. Hence an analysis of the sensitivity of μ∗ against the numerical approximation is
extremely important. In this paper,we adopt the sensitivity analysis algorithmproposed
in Dobson et al. (2019b) to study the sensitivity of the invariant probability measures
in our examples. The idea is to use the extrapolation method to estimate the finite time
error. Then the rate of contraction of the Markov kernel, which can be numerically
computed by using couplings, is used to extend the estimate to infinite time. We refer
readers to “Appendix A.3” for the full details.

6 Lotka–Volterra competitive dynamics

6.1 ODE

The classical Lotka–Volterra competitive system has the form

d X1(t) = X1(t) (�1 − a11X1(t) − a12X2(t)) dt,
d X2(t) = X2(t) (�2 − a22X2(t) − a21X1(t)) dt .

(6.1)

Here �i > 0 is the per-capita growth rate of species i and ai j > 0 is the per-capita
competition rate between species i and j . It is well known that both species persist
when

�i − ai j
� j

a j j
> 0, i �= j, i ∈ {1, 2}.

123



64 Page 18 of 53 A. Hening, Y. Li

6.2 SDE

Suppose there are environmental fluctuations. Then (6.1) becomes

d X1(t) = X1(t) (�1 − a11X1(t) − a12X2(t)) dt + σ1X1(t) d B1(t),
d X2(t) = X2(t) (�2 − a22X2(t) − a21X1(t)) dt + σ2X2(t) d B2(t).

(6.2)

The dynamics for this system is well-known (Kesten and Ogura 1981; Evans et al.
2015; Hening and Nguyen 2018a, b, c). Species i persists when species j �= i is absent
if

λi (δ0) = �i − σ 2
i

2
> 0.

If the above condition holds species i has a unique invariant measure when it evolves
on its own, μi . The conditions for coexistence, in the fixed environment k, are that for
all i, j ∈ {1, 2} with i �= j we have

λi (μ j ) = �i − σ 2
i

2
− ai j

� j − σ 2
j
2

a j j
> 0. (6.3)

6.3 PDMP

Suppose we have two competing species that interact in a habitat where the environ-
ment switches between two possible states. Then

d X1(t) = X1(t) (�1(r(t)) − a11(r(t))X1(t) − a12(r(t))X2(t)) dt,
d X2(t) = X2(t) (�2(r(t)) − a22(r(t))X2(t) − a21(r(t))X1(t)) dt .

(6.4)

Suppose q1, q2 are the switching rates and (ν1, ν2) the stationary distribution of the
Markov chain r(t). If

ν1�i (1) + ν2�i (2) > 0, i = 1, 2

each species can persist on its own. Furthermore, if species i is on its own it has a
unique invariant measure μi on (0,∞) × {1, 2} (Benaim 2018). If pi (1) := �i (1)

a11(1)
�=

�i (2)
a11(2)

:= pi (2) the probability measure μi has a density with respect to Lebesgue
measure, in the sense that

μi (dx, k) = hi (x, k)1[pi (1),pi (2)](x) dx

where 1[pi (1),pi (2)](x) is the indicator of the interval [pi (1), pi (2)] and hi (x, k) can
be found explicitly as a function of the model parameters. The invasion rates can also
be computed by
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λ j (μi ) =
∑

k

∫ ∞

0
hi (x, k)1[pi (1),pi (2)](x) dx .

Theorem 6.1 Suppose both species survive on their own, i.e. ν1�i (1) + ν2�i (2) >

0, i = 1, 2. If λ1(μ2) > 0, λ2(μ1) > 0 the two species persist and the system
converges to a unique stationary distribution μ∗ on (0,∞)2 × {1, 2}.
The work of Benaïm and Lobry (2016), Malrieu and Zitt (2017), Malrieu and Phu
(2016) and Hening and Nguyen (2020) contains the full classification of the dynamics.
Benaïm and Lobry (2016) and Hening and Nguyen (2020) show how competitive
exclusion can become coexistence due to the fluctuations of the environment, even
though in both environments species 1 goes extinct and species 2 persists.

6.4 Numerical examples

Wenumerically analyze the finite time trajectory and the invariant probability measure
for the SDE, PDMP, and SSDE versions of the Lotka–Volterra competition model.

(1) For the SDEmodel, we take two different sets of parameters: l1 = 4, l2 = 2, a11 =
2, a12 = 2, a21 = 0.4, a22 = 1.2 (Parameter 1) and l1 = 2, l2 = 4, a11 =
0.8, a12 = 1.6, a21 = 1, a22 = 5 (Parameter 2). The magnitude of the white
noise fluctuations is σ1 = σ2 = 1. It follows from Eq. (6.3) that two species can
co-exist for both parameter sets, with a stable equilibrium (0.5, 1.5) and (1.5, 0.5)
respectively. Figure 1 Top shows trajectories of Eq. (6.2) with both parameter
sets. Figure 1 Bottom shows two invariant probability density functions of (6.2)
on (0, 2)2 with respect to two parameter sets. The mesh size of our numerical
computation is 800× 800. The reference solution is obtained from a Monte Carlo
simulation with 108 sample points. One can see that the invariant probability
density functions tend to concentrate near the stable equilibrium.

Biological interpretationThewhite noise environmental fluctuations turn the stable
equilibrium of the two species into stationary distributions that concentrate around the
deterministic equilibria. How spread the invariant measure is seems to be related to the
intraspecific competition rates. As expected, the higher the intraspecific competition
rate is for species i , the smaller the spread of the stationary distribution is in direction
i–see Fig. 1. High intraspecific competition makes it harder for the species to leave
the area that is close to the deterministic stable equilibria.

(2) We next consider the PDMP version of the Lotka–Volterra competition model.
The number of environments is taken to be n0 = 2. The model switches between
two parameter sets introduced above. We consider the invariant probability mea-
sure for PDMP with respect to three different speed of switching, slow, medium,
and fast. Rates of random switching are q12 = 2.5, q21 = 4 for slow switching,
q12 = 5, q21 = 8 for medium switching, and q12 = 10, q21 = 16 for fast switch-
ing. Three invariant probability measures are demonstrated in Fig. 2. We can see
that when the switching is slow, two marginal invariant probability measures with
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Fig. 1 Trajectories and invariant probability measures of the Lotka–Volterra SDE model. Top: Trajectories
of X1(t) and X2(t) for both parameter sets. Bottom: Invariant probability measures for both parameter sets

respect to two states are very different. From Fig. 2 Top one can see how tra-
jectories travelling between two stable equilibria with respect to two parameter
sets. One interesting phenomenon is that, with slow switching rates, deterministic
trajectories have enough time to approach to the invariant manifold corresponding
to the largest eigenvalue. (See in particular Fig. 1 top left panel.) This makes the
invariant probability measure very singular. When the switching becomes faster,
a deterministic trajectory can only move a shorter time between switchings. As a
result, two marginal invariant probability measures are more similar to each other,
as seen in Fig. 2Mid and Bottom. The numerical domain is still (0, 2)2 with amesh
size 600× 600. The reference solution is obtained from a Monte Carlo simulation
with 108 sample points.

Biological interpretation If the switching is slow the species spend a long time in
each environment. Because of this they have time to get close the equilibria. This is
in line with the explanation for the paradox of the plankton by Hutchinson (1961).
As switching becomes faster, the dynamics spends less time in a fixed environment,
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Fig. 2 Invariant probability measures of Lotka–Volterra PDMP model. The deterministic system exhibits
coexistence in each environmental state. Top to bottom: Invariant probability measures for three different
sets of switching rates

and the species do not have time to get close to the stable equilibrium from that
environment. The invariant probability function from 2 Middle reflects this fact—it is
less singular than when the switching is slow. However, as we increase the switching
and we go from intermediate switching to fast switching, the stationary distribution
once again becomes more singular. For very fast switching the dynamics approaches
the one given by a mixed deterministic ODE and therefore the mass of the stationary
distribution concentrates around the equilibrium of a mixed ODE.

(3) The PDMP model that jumps between two systems without coexistence can still
admit an invariant probability measure supported in the first quadrant (Hening and
Nguyen 2020). We exhibit such an example in Fig. 3. The parameters are a21 = 1
in state 1 and a12 = 1.6 in state 2. All the other parameters are the same as in the
previous examples. One can check that coexistence is not possible in environment
1 or 2—in one environment species 1 persists and species 2 goes extinct while the
opposite happens in the other environment. We consider the invariant probability
measure for the PDMP for three different switching rates—the same as in the
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Fig. 3 Invariant probability measures for the Lotka–Volterra PDMP model. The deterministic system does
not exhibit coexistence in any of the two environmental states—one species persists in environment 1 and the
other in environment 2. Top to bottom: Invariant probability measures for three different sets of switching
rates

example from Fig. 2. We can see here a similar phenomenon. The two marginal
distributions in the two states get closer to each other as the switching rate becomes
faster. The numerical domain is (0.6, 1.6) × (0, 1) with a mesh size 600 × 600.
The reference solution is obtained from aMonte Carlo simulation with 109 sample
points.

The parameters in Fig. 4 are l1 = 1, l2 = 0.5, a11 = 1, a12 = 0.2, a21 = 1,
and a22 = 0.2 at state 1, l1 = 7.8, l2 = 15.2, a11 = 2, a12 = 0.4, a21 = 4, and
a22 = 0.8 at state 2. The rate of switching is q12 = 1.4 and q21 = 5.0. It is easy to
check that species 1 goes extinct in both environments. However, the PDMPmodel has
coexistence for the specific switching rateswe picked—seeHening andNguyen (2020)
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Fig. 4 Invariant probability measures of the Lotka–Volterra PDMPmodel and SSDEmodel. Species 1 goes
extinct in both deterministic environments. Top: Invariant probability measures of the PDMP model at two
states. Bottom: Invariant probability measures of the SSDE model at two states

for a proof. The invariant probabilitymeasure of the PDMPmodel is presented in Fig. 4
Top. One can see that the invariant probability measure concentrates heavily near the
extinction set andnear a line segment in state 2.Thenumerical domain is (0, 4)×(0, 16)
with a mesh size 500 × 2000. The invariant probability measure is obtained from
a Monte Carlo simulation with 109 sample points. Data-driven PDE solver is not
available for this example because the invariant probability density function is too
singular.

Biological interpretation In contrast to Hutchinson’s explanation (Hutchinson
1961) we see that coexistence is possible for a wide range of switching rates. For
a slow switching regime the invariant distribution in the two environments is more
singular—the species tend to move towards the equilibrium on the x axis in one envi-
ronment and towards the equilibrium on the y axis in the other environment. For fast
switching, even though the time to extinction is much longer, we get once again that,
in contrast to the prediction by Hutchinson (1961), coexistence is possible. In this
case the dynamics of the two species is close to the mixed dynamics from the two
environments.

(4) We look at the SSDE model. Parameters of the deterministic parts are taken to be
the same as before. The strength of the white noise fluctuations is σ1 = σ2 = 0.5 in
both environmental states. Once again, we study the invariant probability measure
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Fig. 5 Top to bottom: Invariant probability measures of the SSDE Lotka–Volterra model for three different
sets of switching rates

under three different switching rates. The rates of random switching are picked
to be q12 = 0.5, q21 = 0.8 for slow switching, q12 = 2.5, q21 = 4 for medium
switching, and q12 = 10, q21 = 16 for fast switching. The numerical result is
shown in Fig. 5. A phenomenon similar to what happened in the previous example
can be observed: the two marginal invariant probability measures move towards
each other when the speed of switching becomes higher. The numerical domain
is (0, 2)2 with a mesh size 600 × 600. The reference solution is obtained from a
Monte Carlo simulation with 108 sample points.

We also compute the invariant probability measure of the SSDEmodel correspond-
ing to the PDMP model from Fig. 4, in which the same species goes extinct in both
environments. All parameters are the same as in the PDMP model. The magnitude of
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Fig. 6 Sensitivity analysis for the Lotka–Volterra model. Note the exponential tails of the coupling time for
the SDE and SSDE models

the noise is σ1 = σ2 = 0.1. In the presence of noise, the concentration close to the
extinction set is more significant.

Biological interpretation In this setting we note that the invariant probability
measure is more spread out—the white noise fluctuations diffuse the equilibrium
distribution of the species. As the switching rates increase, the invariant probability
measures in the two environmental states become more and more similar. Intuitively,
the invariant probability measures converge to the invariant probability measure of an
SDE.

The last step is the sensitivity analysis. We use the Milstein scheme to simulate
SDE and SSDE. Hence the estimator of the mean finite time error is

I = 1

N

N−1∑
i=0

ρ(X̂dt
i,T , X̂2dt

i,T ) .

Parameters in our simulation are dt = 0.001, N = 106. For the SDE model, we only
run simulation using the first parameter set. The time span is T = 3 for SDE, and
T = 2 for SSDE. The estimator I is 0.00511 for SDE, and 0.00497 for SSDE. Then
we run couplingmethod to show the speed of convergence. The exponential tails of the
coupling times are showcased in Fig. 6. We can see that the coupling time distribution
decays exponentially in each case. This gives us an estimate of α ≈ 0.35 for the SDE
and α ≈ 0.29 for the SSDE. Therefore, we have dw(μ∗, μ̂) ≈ 0.00786 for the SDE,
and dw(μ∗, μ̂) ≈ 0.0070 for the SSDE.We conclude that the numerical results for the
approximation of invariant probability measures are reliable for our SDE and SSDE
examples.
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7 Beddington–DeAngelis predator–prey dynamics

7.1 ODE

In 1975 Beddington (1975) and DeAngelis et al. (1975) came up with a new functional
response to better explain some predator–prey interactions. Since then, these models
have been used extensively in ecology. The system is governed by

d X

dt
(t) = X(t)

(
a1 − b1X(t) − c1Y (t)

m1 + m2X(t) + m3Y (t)

)

dY

dt
(t) = Y (t)

(
−a2 − b2Y (t) + c2X(t)

m1 + m2X(t) + m3Y (t)

) (7.1)

The dynamics has been classified in the deterministic setting in a series of papers
(Cantrell and Cosner 2001; Haque 2011; Li and Takeuchi 2011). The following result
by Li and Takeuchi (2011) shows when one has persistence (or permanence).

Theorem 7.1 Suppose one of the following two conditions is satisfied

• c2 > a2m2 and (c2 − a2m2)
(

a1
b1

− c1
b1m3

− a2m3
b2m2

)
> a2m1

• a1m3 > c1 + b1a2m2
3

b2m2
and (c2 − a2m2)

(
a1
b1

− c1
b1m3

− a2m3
b2m2

)
> a2m1. Then the

system (7.1) is permanent, i.e., there exist 0 < � ≤ L such that

min
{
lim inf

t→∞ X(t), lim inf
t→∞ Y (t)

}
≥ �, max

{
lim sup

t→∞
X(t), lim sup

t→∞
Y (t)

}
≤ L.

Moreover, if there is no intraspecific competition for the predators, b2 = 0, then by
Hwang (2003) we have the following result.

Theorem 7.2 The system (7.1) with b2 = 0 has a unique limit cycle if and only if

m2a2
c2

<

(
1 + m1b1

m2a1

)−1

and

c1
m3a1

− c2
m1a1

x∗ + y∗ + m1b1
m2a1

>
x∗ + y∗ + m1b1

m2a1

y∗

where (x∗, y∗) are the positive solutions to

1 − x∗ −
c1

m3a1
y∗

x∗ + y∗ + m1b1
m2a1

= 0,
x∗

x∗ + y∗ + m1b1
m2a1

= m2a2
c2

.
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7.2 SDE

Du et al. (2016) analyze the SDE equivalent of (7.1). If X(t), Y (t) denote the prey and
predator densities, the dynamics follows the SDE

d X(t) = X(t)

(
a1 − b1X(t) − c1Y (t)

m1 + m2X(t) + m3Y (t)

)
dt + αX(t)d B1(t)

dY (t) = Y (t)

(
−a2 − b2Y (t) + c2X(t)

m1 + m2X(t) + m3Y (t)

)
dt + βY (t)d B2(t)

(7.2)

If

λX (δ0) = a1 − α2

2
> 0

species X persists on its own and has a unique stationary distribution μx on (0,∞).
In order to study the coexistence of the two species we have to look at the Lyapunov
exponent

λY (μx ) = −a2 − β2

2
+
∫

(0,∞)

c2x

m1 + m2x
μx (dx) = −a2 − β2

2

+C
∫

(0,∞)

c2xqe−ax

m1 + m2x

where a := 2b1
α2 > 0, q := 2a1

α2 −1 > 0 andC is a normalizing constant. The following
result, which follows from Theorem 2.1 (or Du et al. (2016)), tells us when the species
coexist.

Theorem 7.3 Suppose λX (δ0) = a1 − α2

2 > 0 and

λY (μx ) = −a2 − β2

2
+ C

∫

(0,∞)

c2xqe−ax

m1 + m2x
> 0.

Then both species persist and the process converges exponentially fast to the unique
invariant probability measure μ∗ on R

2,◦
+ .
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7.3 SSDE

We analyze the SSDE version of (7.3). Let X(t), Y (t) denote the prey and predator
densities and assume r(t) is an independent irreducible Markov chain with stationary
distribution ν = (ν1, . . . , νn0). We assume the dynamics is

d X(t) = X(t)

(
a1(r(t)) − b1(r(t))X(t) − c1(r(t))Y (t)

m1(r(t)) + m2(r(t))X(t) + m3(r(t))Y (t)

)
dt

+ α(r(t))X(t)d B1(t)

dY (t) = Y (t)

(
−a2(r(t)) − b2(r(t))Y (t) + c2(r(t))X(t)

m1(r(t)) + m2(r(t))X(t) + m3(r(t))Y (t)

)
dt

+ β(r(t))Y (t)d B2(t)

(7.3)

In this setting species X survives and on its own if

λx (δ0 × ν) =
n0∑

k=1

νi

(
a1(k) − α2(k)

2

)
> 0.

The process (X , r) converges on (0,∞) × N to a probability measure μx,r . The
coexistence of the predator and the prey are then determined by theLyapunov exponent

λy(μ
x,r ) =

n0∑
k=1

νi

(
−a2(k) − β2(k)

2

)
+

n0∑
k=1

∫ ∞

0

c2(k)x

m1(k) + m2(k)x
μx,r (dx, k).

Theorem 7.4 Suppose

λx (δ0 × ν) =
n0∑

k=1

νi

(
a1(k) − α2(k)

2

)
> 0

and

λy(μ
x,r ) =

n0∑
k=1

νi

(
−a2(k) − β2(k)

2

)
+

n0∑
k=1

∫ ∞

0

c2(k)x

m1(k) + m2(k)x
μx,r (dx, k) > 0.

Then both species persist and the process (X(t), Y (t), r(t)) converges exponentially
fast to the unique invariant probability measure μ∗ on R

2,◦
+ × N .

Proof This is an immediate application of Theorem 4.1. ��
We note that this result simplifies the one fromBao and Shao (2016) where the authors
have a more complicated expression λ for the Lyapunov exponent and did not realize
that λ = λy(μ

x,r ).
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Fig. 7 Top: Trajectories of X1(t) and X2(t) for the two parameter sets. Bottom: Invariant probability
measures for the two parameter sets

7.4 Numerical examples

We analyze numerically the Beddington–DeAngelis predator–prey model. Two sets
of parameters are considered. The first set of parameters is a1 = 8, a2 = 1, b1 =
1.1, b2 = 0, c1 = 10, c2 = 4, m1 = 2, m2 = 2, m3 = 0.5. The second set of
parameters is a1 = 3.9, a2 = 1.2, b1 = 0.5, b2 = 0, c1 = 4, c2 = 4, m1 = 2, m2 =
1, m3 = 0.3. It follows from Theorem 7.2 that the deterministic model for each set of
parameters admits a unique limit cycle. The strength of the white noise fluctuations is
chosen to be α = β = 0.35.

(1) Figure 7 Top shows the limit cycles of the Beddington–DeAngelis ODEmodel for
the two sets of parameter we work with. The invariant probability measures for the
SDEmodels are found on a numerical domain (0, 8)2 and shown in Fig. 7 Bottom.
Themesh size of our numerical computation is 1200×1200. The reference solution
is obtained from a Monte Carlo simulation with 108 sample points. We can see
that although the predator does not go extinct, the invariant probability measure
concentrates significantly near the Y -axis.
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Biological interpretation The white noise fluctuations perturb the dynamics of
the two species. The invariant probability measures still look qualitatively like con-
centric closed trajectories. The environmental fluctuations create a very interesting
phenomenon. The densities of the invariant probability measure are highest close to
the y axis. This shows that in this system, the prey can become low and stay low for
a long time, while the predator has a significant density and takes a long time to die
out in the absence of a food source. When the predator population finally decreases,
the prey increases again, which causes after some time the predator to increase. This
cyclewould then get repeated.Our results highlight that even though the theory implies
coexistence, a real systemmight go extinct: spending a long time close to the boundary
will make it more likely to have extinction induced by demographic stochasticity.

(2) Wenext consider thePDMPversion of themodelwhen there are two environmental
states. Parameter sets are the same as in the SDE case. We compute the invariant
probability measure for three different switching rates, from slow to fast. The
switching rates are q12 = q21 = 2.5 for the slow switching rate, q12 = q21 = 5
for the medium switching rate, and q12 = q21 = 10 for the fast switching rate.
We have seen that for each set of parameters we get an ODE that has a limit
cycle. Furthermore, the two limit cycles are different. When the rate of switching
increases, the two marginal invariant probability measures from the two possible
environmental states move closer to each other. This new invariant probability
measure does not seem to concentrate on either of the two limit cycles. The result
is shown in Fig. 8. The numerical domain is still (0, 8)2 with amesh size 800×800.
The reference solution is obtained from aMonte Carlo simulation with 108 sample
points.

Biological interpretation Switching between the two environments creates a coex-
istence situation where the invariant measure is qualitatively similar to the occupation
measure of a limit cycle. However, in this setting the support of the stationary distribu-
tion seems to be bounded away from the extinction set—there is no concentration near
the extinction set. As the switching speed increases the invariant probability measures
from the two environments become closer and closer. The dynamics with fast switch-
ing is close to an ODE system and will have a unique limit cycle that is significantly
larger than the limit cycles from the two separate environments. Environmental fluctu-
ations can significantly change the dynamics and make the species densities oscillate
at greater amplitudes (more than double the amplitudes from each fixed environment).

(3) The third numerical simulation involves the SSDE model. The model parameters
(including the switching rates) are the same as in the PDMP model. In addition,
we take the environmental fluctuation strengths to be α = β = 0.35. Again,
we run the simulation for three different switching rates. The switching rates
are q12 = q21 = 1 for the slow switching rate, q12 = q21 = 2.5 for the medium
switching rate, and q12 = q21 = 10 for the fast switching rate.We get the existence
of a unique invariant probability measure which is absolutely continuous with
respect to Lebesgue measure—see Fig. 9. Again, the probability density function
significantly concentrates near the Y -axis.We cap the heat map at 0.05 to make the
probability density function visible in the area with lower probability density. The
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Fig. 8 Top to bottom: Invariant probabilitymeasures of the PDMPmodel for three different sets of switching
rates

numerical domain is (0, 8)2 with a mesh size 800 × 800. The reference solution
is obtained from a Monte Carlo simulation with 108 sample points.

Biological interpretation The combination of random switching and white noise
make the coexistence measure spread out and concentrate close to the Y axis. As in
the SDE example, this shows that in this setting one might not be entitled to neglect
demographic stochasticity.

The last step is the sensitivity analysis. We use Milstein scheme to simulate SDE
and SSDE. The estimator of the mean finite time error is still

I = 1

N

N−1∑
i=0

ρ(X̂dt
i,T , X̂2dt

i,T ) .

Parameters in our simulation are dt = 0.001 and N = 106. For the SDE model, we
only run simulations using the first parameter set. The time span is T = 5 for SDE,
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Fig. 9 Top to bottom: Invariant probability measures of the SSDEmodel for three different sets of switching
rates

and T = 6 for SSDE. The estimator I is 0.0398 for SDE, and 0.0404 for SSDE. We
next run coupling method to show the speed of convergence. The exponential tails
of coupling times are demonstrated in Fig. 10. We can see that the coupling time
distribution has exponential tails in each case. This gives us an estimate of α ≈ 0.395
for the SDE and α ≈ 0.467 for SSDE. Therefore, we have dw(μ∗, μ̂) ≈ 0.0658 for the
SDE, and dw(μ∗, μ̂) ≈ 0.0758 for the SSDE. These error terms are larger than in the
case of the Lotka–Volterra model, because the coupling time is slower in the presence
of a limit cycle. Two trajectories in the coupled SDE need to chase each other near
the limit cycle in order to get close. Nevertheless, the numerical results still show that
the obtained invariant probability measures are acceptable in both the Lotka–Volterra
and the Beddington–DeAngelis cases.
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Fig. 10 Exponential tails of the coupling time for the SDE and SSDE models

8 Rock–paper–scissors dynamics

It has been observed in nature that certain three species systems can have rock–paper–
scissors dynamics. One such example is the side-blotched lizard Sinervo and Lively
(1996). There are three different types of lizards. The first type is a highly aggressive
lizard that attempts to control a large area and mate with any females within the
area. The second type is a furtive lizard, which wins against the aggressive lizard by
acting like a female. This way the furtive lizard cand mate without being detected in
an aggressive lizard’s territory. The third type is a guarding lizard that watches one
specific female for mating. This prevents the furtive lizard from mating. However, the
guarding lizard is not strong enough to overcome the aggressive lizard.

Interestingly this type of dynamics creates regimes where one species seems to
win, until the species that beats it makes a comeback. This creates subtle technical
problems.

8.1 ODE

Pick 0 < β < 1 < α and set

d X1(t) = X1(t)
(
1 − X1(t) − αX2(t) − β X3(t)

)
dt

d X2(t) = X2(t)
(
1 − β X1(t) − X2(t) − αX3(t)

)
dt

d X3(t) = X3(t)
(
1 − αX1(t) − β X2(t) − X3(t)

)
dt

(8.1)

This is the model introduced by May and Leonard (1975). Let � = {x ∈ R
3+ : x1 +

x2 + x3 = 1} be the unit simplex. One can see that (8.1) has five fixed points. The
origin 0 is a source, the canonical basis vectors e1, e2, e3 are saddle points and the
equilibrium that is not on the boundary is given by
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x = e1 + e2 + e3
1 + α + β

Let W S(A) be the stable manifold of the set A and let D = {x ∈ R
3+ : x1 = x2 = x3}

be the diagonal. One can show that

� := W S(e1) ∪ W S(e2) ∪ W S(e3)

is a heteroclinic cycle. We have the following description of the dynamics (Hofbauer
and Sigmund 1998; Benaim 2018):

(1) If α + β < 2 the interior fixed point x is a sink and all trajectories starting in R
3,◦
+

converge to x .
(2) If α + β > 2 the interior point x is a saddle with stable manifold D\{0}. Every

trajectory starting from R
3,◦
+ \D has � as omega limit cycle.

(3) If α + β = 2 the set � is invariant and attracts all nonzero trajectories, � = ∂�

and trajectories starting in �◦\{x} are periodic.

8.2 SDE

Assume the system is given by the stochastic differential equations

d Xi (t) = Xi (t)

⎛
⎝μi −

3∑
j=1

ai j X j (t)

⎞
⎠ dt + σi Xi (t) d Bi (t), Xi (0) = xi ≥ 0

(8.2)

where B1, B2, B3 are independent Brownian motions. The constant μi is the per-
capita growth rate of the the i th species, and ai j > 0 is the coefficient measuring the
competition strength of species j on species i . Set

μi := μi − σ 2
i

2
.

Each species persists on its own, so μi > 0 and there exists a unique invariant proba-
bility measure μ∗

i on (0,∞). The Lyapunov exponents can be computed as

λi (μ
∗
j ) = μi a j j − ai jμ j

a j j
. (8.3)

We assume that species 2 outcompetes species 1, species 3 outcompetes species 2 and
species 1 outcompetes species 3:

λ2(μ
∗
1) > 0, λ3(μ

∗
1) < 0, λ1(μ

∗
2) < 0, λ3(μ

∗
2) > 0, λ1(μ

∗
3) > 0, λ2(μ

∗
3) < 0.
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In order to be in the rock–paper–scissors setting we therefore need

a12
a22

>
μ1

μ2
,

a11
a21

>
μ1

μ2
,

a23
a33

>
μ2

μ3
,

a22
a32

>
μ2

μ3
,

and

a31
a11

>
μ3

μ1
,

a33
a13

>
μ3

μ1
,

The following results quantifywhen one has persistence or extinction for this dynamics
(see Hening et al. (2021b) for complete proofs).

Theorem 8.1 (Persistence) If the product of the Lyapunov exponents (invasion rates)
pushing the process away from the boundary |λ2(μ∗

1)λ3(μ
∗
2)λ1(μ

∗
3)| is strictly greater

than the product of the Lyapunov exponents attracting the process towards the bound-
ary |λ3(μ∗

1)λ1(μ
∗
2)λ2(μ

∗
3)| we get persistence and exponential convergence to an

invariant probability measure μ∗ on R
3,◦
+ .

Theorem 8.2 (Extinction) If the product of the Lyapunov exponents (invasion rates)
pushing the process away from the boundary |λ2(μ∗

1)λ3(μ
∗
2)λ1(μ

∗
3)| is strictly smaller

than the product of the Lyapunov exponents attracting the process towards the bound-
ary |λ3(μ∗

1)λ1(μ
∗
2)λ2(μ

∗
3)| we get extinction, in the sense that there exists α > 0 such

that

Px

(
lim sup

t→∞
dist(X(t), ∂R

3+)

t
< α

)
= 1

for any x ∈ R
3,◦
+

Using (8.3) we get the following corollaries.

Corollary 8.1 If

(μ2a11 − a21μ1)(μ3a22 − a32μ2)(μ1a33 − a13μ3) > |(μ1a22 − a12μ2)(μ2a33
−a23μ3)(μ3a11 − a31μ1)|

then the system persists and converges exponentially fast to the invariant probability
measure μ∗ on R

3,◦
+ .

Corollary 8.2 If

(μ2a11 − a21μ1)(μ3a22 − a32μ2)(μ1a33 − a13μ3) < |(μ1a22 − a12μ2)(μ2a33
−a23μ3)(μ3a11 − a31μ1)|
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then the system goes extinct, i.e. with probability one

X(t) → ∂R
3,◦
+

By Theorem 8.2 we have extinction and convergence to the boundary when

(μ2a11 − a21μ1)(μ3a22 − a32μ2)(μ1a33 − a13μ3) < |(μ1a22 − a12μ2)(μ2a33
−a23μ3)(μ3a11 − a31μ1)|

Theorem 8.3 Let 0 < β < 1 < α and define the process (X1(t), X2(t), X3(t)) by

d X1(t) = X1(t) (μ1 − X1(t) − αX2(t) − β X3(t)) dt + σ1X1(t) d E1(t)

d X2(t) = X2(t) (μ2 − β X1(t) − X2(t) − αX3(t)) dt + σ2X2(t) d E2(t)

d X3(t) = X3(t) (μ3 − αX1(t) − β X2(t) − X3(t)) dt + σ3X3(t) d E3(t).

(8.4)

Suppose furthermore that μ1 = μ2 = μ3 > 0. If 2 > α + β the system persists and
converges exponentially fast to a unique invariant probability measure μ∗ on R

3,◦
+ . If

2 < α + β then the system goes extinct in the sense that X(t) → ∂R
3+.

Proof If 2 > α + β, we have

(μ2a11 − a21μ1)(μ3a22 − a32μ2)(μ1a33 − a13μ3) = μ3
1(1 − β)3

> μ3
1(α − 1)3

= |(μ1a22 − a12μ2)(μ2a33 − a23μ3)(μ3a11 − a31μ1)|
(8.5)

and by Corollary 8.1 there is persistence and exponential convergence to a unique
invariant probability measure. If one has instead that 2 < α + β then Corollary 8.2
implies that with probability one X(t) → ∂R

3+. ��

8.3 PDMP

Suppose the environment is modelled by r(t) and switches between the two states 1
and 2 with the rate matrix

(−τ(1 − p) τ (1 − p)

τ p −τ p

)

for some p ∈ (0, 1) and τ > 0. This means that if we start in environment 1, we wait
for an exponential time with parameter τ(1− p), switch to environment 2, wait for an
independent exponential time with parameter τ p, switch to environment 1 and repeat
this process indefinitely. Let (α1, β1) and (α2, β2) be two parameters such that

α1 + β1 > 2,
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and

α2 + β2 < 2.

In environment 1 there is extinction while in environment 2 there is persistence. We
are interested in the dynamics of the switching process

d X1

dt
(t) = X1(t)(1 − X1(t) − αr(t) X2(t) − βr(t) X3(t))

d X2

dt
(t) = X2(t)(1 − βr(t) X1(t) − X2(t) − αr(t) X3(t))

d X3

dt
(t) = X3(t)(1 − αr(t) X1(t) − βr(t) X2(t) − X3(t))

(8.6)

By Benaim (2018) we have the following theorem.

Theorem 8.4 Let (α1, β1) and (α2, β2) be two parameters such that α1 + β1 > 2 and
α2 + β2 < 2.

1. If

�b := p(2 − α1 + β1) + (1 − p)(2 − α2 + β2) > 0

then for τ small enough there is a unique persistent measure.
2. If �b < 0 we have that X(t) → ∂R

3+ with probability 1.

8.4 SSDE

Let us now look at the SSDE setting. As before, let (α1, β1) and (α2, β2) be two
parameters such that

α1 + β1 > 2,

and

α2 + β2 < 2.

Suppose r(t) is a Markov chain that switches between states 1 and 2 and has a
stationary distribution (ν1, ν2). The dynamics will be

d X1(t) = X1(t)(1 − X1(t) − αr(t) X2(t) − βr(t) X3(t)) dt + σ1(r(t))X1(t)d B1(t)

d X2(t) = X2(t)(1 − βr(t) X1(t) − X2(t) − αr(t) X3(t)) dt + σ2(r(t))X2(t)d B2(t)

d X3(t) = X3(t)(1 − αr(t) X1(t) − βr(t) X2(t) − X3(t)) dt + σ3(r(t))X3(t)d B3(t).

(8.7)
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8.5 Numerical example

In this section we look at the numerical solution of the invariant probability density
function for the rock–paper–scissors model in the SDE and SSDE settings. We use
the dynamics given by (8.2) with parameters μ = 1.5, α = 1.1, β = 0.4 for the SDE
model. The magnitude of the white noise is taken to be σ1 = σ2 = 0.5.

In the SSDE model (8.7) we take μ(2) = 1.5, α(2) = 1.1, β(2) = 0.4 and μ(1) =
1.5, α(1) = 1.3, β(1) = 0.8. The rate of random switching is q12 = q21 = 1. By
Theorem 8.3 the three species can only coexist in environment 2. We see through
simulations that in the SSDE setting all three species persist and converge to a unique
invariant probability measure.

In Fig. 11, we analyze the SDE model on the domain (0, 3)3 with 600× 600× 600
grids. The heat maps of six slices of the invariant probability density function, at
z = 0.25, 0.5, 0.75, 1.0, 1.5, and 2 respectively, are presented in Fig. 11.

Biological interpretation As expected from the deterministic result, we can see
in Fig. 11 that at the stationary distribution the species dynamics looks like a noisy
heteroclinic cycle. The stationary distribution is supported on a compact set and has
high densities close to the boundary. As we increase the density of the third species
z, the support of the stationary distribution decreases—as z goes from 0.25 to 2 the
support of the stationary distribution decreases tenfold.

In Fig. 12, we analyze the SSDE model on the domain (0, 3)3 × {1, 2} with 500×
500× 500× 2 grids. The solutions of three slices of the invariant probability function
at both states, at z = 0.12, 0.48, and 0.72 respectively, are presented in Fig. 12. We
use a 3D plot to show how the solution heavily concentrates close to the extinction
set.

Biological interpretation If the dynamics switches betweenpersistent and extinction
prone rock–paper–scissors systems one can still get overall persistence. Even though
the switching is randomwe expect the same phenomenon to arisewhen the switching is
periodic. This would describe seasonality and annual cycles. In various regions which
exhibit strong seasonal variation, organisms have developed survival mechanisms like
hibernation and migration in order to survive seasons with resource shortages. Our
results show that as long as the bad environment is not too harsh, the species can still
persist.

We remark that it is very difficult to use the traditional method to solve a linear
system with this number of variables. However, our block data-driven solver can sig-
nificantly reduce the computational complexity. We first run aMonte Carlo simulation
with 8×109 samples. Then the big numerical domain is divided into 8000 subdomains
with 30 × 30 × 30 (resp. 25 × 25 × 25 × 2) grids each for the SDE model (resp. the
SSDE model). We then solve 8000 optimization problems in parallel and then use the
“half-block shift” technique proposed in Dobson et al. (2019a) to reduce the interface
error between blocks. The entire computation takes about one hour on a laptop.

Similar as the other two models, we carry out a sensitivity analysis for the Rock–
Paper–Scissor model. The Milstein scheme is used in our simulations of both SDE
and SSDE. As before, the estimator of the mean finite time error equals
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Fig. 11 Invariant probability density function of the SDE rock–paper–scissors model. Parameters are μ =
1.5, α = 1.1, β = 0.4, σ1 = σ2 = 0.5. Top left to bottom right: Invariant probability density function
restricted on planes z = 0.25, 0.5, 0.75, 1.0, 1.5, and 2, respectively

I = 1

N

N−1∑
i=0

ρ(X̂dt
i,T , X̂2dt

i,T ) .

Parameters in our simulation are dt = 0.001 and N = 106. For the SDE model, we
only run simulations using thefirst parameter set. The time span is T = 10 for SDE, and
T = 50 for SSDE. The estimator I is 0.00701 for SDE, and 0.00571 for SSDE. Then
we run coupling method to show the speed of convergence. The exponential tails of
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Fig. 12 Invariant probability density function for the SSDE rock–paper–scissors model. Parameters are
μ1 = μ2 = μ = 1.5, α(1) = 1.3, α(2) = 1.1, β(1) = 0.8, β(2) = 0.4, σ1 = σ2 = 0.5, and q12 = q21 =
1. TopLeft: Trajectories of (X1(t), X2(t), X3(t)) up to T = 100. Top: Invariant probability density function
in both environmental states, restricted to the plane {z = 0.12}. Middle: Invariant probability density
function in both environmental states, restricted to the plane {z = 0.48}. Bottom: Invariant probability
density function in both environmental states, restricted to the plane {z = 0.72}

coupling times are showcased in Fig. 14.We can see that the coupling time distribution
has an exponential tail in each case. This gives us an estimate of α ≈ 0.5543 for SDE
and α ≈ 0.4916 for SSDE. Therefore, we have dw(μ∗, μ̂) ≈ 0.0157 for the SDE, and
dw(μ∗, μ̂) ≈ 0.0112 for the SSDE.

Our results show that the speed of convergence of the rock–paper–scissors model is
very slow, especially in the SSDE setting. This is because a trajectory stays most of the
time near the boundary of the domain, where themagnitude of noise is small. However,
because the vector field does not change as rapidly as in the other two models, the
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Fig. 13 Rock–paper–scissorsmodel. Left: A sample trajectory of the SDEmodel. Right:A sample trajectory
of the SSDE model. Note how in both settings the populations spend long times close to extinction

Fig. 14 Rock–paper–scissors model. One can see the exponential tails of the coupling time for the SDE
and SSDE models

finite time error is well-controlled for T up to 50. As a consequence, the numerical
results still imply that the obtained invariant probability measures are accurate in both
the SDE and SSDE settings.

9 Discussion

We have studied three different classes of models for stochastic population dynamics.
The first one involves the usual framework of stochastic differential equations—this
setting has been used extensively in the literature (Schreiber et al. 2011; Evans et al.
2015; Hening et al. 2018; Hening and Nguyen 2018a; Benaim 2018). The second

123



64 Page 42 of 53 A. Hening, Y. Li

class of models we look at has at its core piecewise deterministic Markov processes
(Davis 1984). Here the environment can switch randomly between a finite number of
environmental states, and each environmental state has its own system of differential
equations for the dynamics. These environmental switches canmodel seasonal or daily
changes and can significantly change the long termdynamics (BenaïmandLobry 2016;
Hening andNguyen2020;Hening andStrickler 2019). The last class ofmodelswe look
at is that of stochastic differential equations with switching (SSDE), which combines
white noise fluctuations in each fixed environment and random switches between a
finite number of environments. The switching dynamics for PDMP and SSDE are
governed by a process r(t) which jumps from one state to another according to

P{r(t + �) = j | r(t) = i,X(s), r(s), s ≤ t} = qi j (X(t))� + o(�) if i �= j and
P{r(t + �) = i | r(t) = i,X(s), r(s), s ≤ t} = 1 + qii (X(t))� + o(�)

(9.1)

where qi j (x) is the transition rate matrix. Our general framework allows eco-
environmental feedback loops (Staver and Levin 2012; Jones et al. 1994; Cuddington
et al. 2009; Moore et al. 2016). The simplest case is when the switching rates are
density independent, qi j (x) = qi j and r(t) becomes an independent Markov chain. In
this special case, one has independent exponentially distributed waiting times in each
environmental state.

Persistence results We give powerful persistence results in all three settings. Our
results show that a multidimensional version of the invasibility criterion (Chesson
1982, 1994, 2018; Chesson and Ellner 1989; Ellner et al. 2019) guarantees coex-
istence: If each subcommunity of species that persists, and is characterized by an
invariant probability measure μ, can be invaded by at least one species that is not
part of the subcommunity, then the full community of n species persists. We compute
the invasion rate of species i into the subcommunity characterized by the invariant
probability measureμ by averaging the per-capita growth rate of i according toμ. For
SDE the averaging is done over the densities of the species. For PDMP and SSDE the
averaging is over species densities as well as over all the environmental states. The
intuition behind this result is the following: if the process gets close to the extinction
boundary, the species which are close to extinction will grow/decay exponentially fast
according to their invasion rates. Since at least one invasion rate is positive, the process
gets pushed away from the boundary and extinction is not possible.

If the ecosystem has only one species we show, in both the PDMP and SSDE set-
tings, that coexistence is possible if the weighted average of the per capita growth rates
at 0 is positive. Theweights are given by the stationary distribution (ν1, . . . , νn0) of the
Markov chain r(t) which governs the dynamics of the environment. This implies that
coexistence is possible even if in some of the environmental states there is extinction
(sinks) as long as, loosely speaking, more time is spent in the environments which
exhibit coexistence (sources).

A key novelty is that we are able to characterize explicitly the ‘random equilibrium
distribution’ of a persistent ecological system.We accomplish this by developing rigor-
ous numerical approximation methods for finding the invariant probability measure,
or stationary distribution, of a stochastic process. This new method is significantly
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more accurate than previous approaches. The numerical methods combined with the
analytic results give us a better understanding of what stochastic coexistence really
looks like.

Quasistationary distributions Our work highlights some important caveats to coex-
istence theory. Sometimes the coexistence criteria are satisfied and the species converge
to a stationary distribution on R

n,◦
+ . However, this stationary distribution might con-

centrate close to the extinction set ∂R
n+. This effect shows that, even though the theory

implies persistence, the species might spend a long time at very low densities and
go extinct due to demographic stochasticity. If this is the case for a specific model,
one should not neglect demographic stochasticity. If a population goes extinct almost
surely in finite time, one can condition it on not going extinct at time t and then seeing
what this conditional distribution looks like as t → ∞ (Steinsaltz and Evans 2004;
Méléard et al. 2012; Kolb et al. 2012; Champagnat and Villemonais 2016; Hening and
Kolb 2019; Hening et al. 2020). This limiting distribution is called the quasistationary
distribution. The invariant probability measures for both the Beddington–DeAngelis
and the rock–paper–scissors models suggest that more realistic approaches should
include the effects of demographic stochasticity and look into numerical and analyti-
cal approaches to finding quasistationary distributions.

We explore 3 different models in the SDE/PDMP/SSDE settings.

(1) Lotka–Volterra Competition.

In his very influential paper Hutchinson (1961) studied the competitive exclusion
principle, which says in its simplest form that two species competing for one resource
cannot coexist, and gave the following possible solution: Changing environmental
conditions prevent species from reaching equilibrium conditions, and this can promote
coexistence. Hutchinson’s explanation was that if only few species would coexist at an
equilibrium but we see many in nature, this would imply that there is no equilibrium.
Fluctuating environmental conditions would favor different species at different times,
so that no species can dominate. A key component of Hutchinson’s explanation was
that the environmental fluctuations need to be on the correct time scale: slow or fast
fluctuations would not work. We show through an example in the SSDE setting that
fast fluctuations between two environments in which species 1 goes extinct, can rescue
this species from extinction and facilitate coexistence.

Our numerical analysis shows in the SDE setting that the white noise environmental
fluctuations turn the stable equilibrium of the two species into stationary distributions
that concentrate around the deterministic equilibria. How spread the invariant measure
is seems to be related to the intraspecific competition rates. We find that the higher the
intraspecific competition rate is for species i , the smaller the spread of the stationary
distribution is in direction i (Fig. 1). High intraspecific competition makes it harder
for the species to leave the region that is close to the deterministic stable equilibria.

In the PDMP setting we find the following behavior. If the switching is slow the
species spend a long time in each environment. Because of this they have time to get
close the equilibria. This is in line with the explanation for the paradox of the plankton
by Hutchinson (1961). As switching becomes faster, the dynamics spends less time in
a fixed environment, and the species do not have time to get close to the stable equi-
librium from that environment. Our numerical simulations (see Fig. 2 Middle) reflect
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this fact. As we increase the switching rate and we go from intermediate switching
to fast switching, the stationary distribution once again becomes more singular. This
is because, as explained above, for very fast switching the dynamics approaches the
one given by a mixed deterministic ODE and therefore the mass of the stationary
distribution concentrates around the equilibrium of this mixed ODE.

(2) Beddington–DeAngelis predator–prey dynamics.

In the deterministic setting, if there is no intraspecific competition among preda-
tors, there are situations when the dynamics has a limit cycle. If one adds white noise
fluctuations one gets interesting behaviour. The level sets of the invariant probability
density look qualitatively like concentric closed trajectories. The density of the invari-
ant probability measure is highest close to the y axis. This shows that in this system,
the prey can become low and stay low for a long time, while the predator has a signif-
icant density and takes a long time to die out in the absence of a food source. When
the predator population finally decreases, the prey increases again, which causes the
predator to increase after some time . This cycle would then get repeated. Our results
highlight that even though the theory implies coexistence, a more realistic system
might go extinct. If one spends a long time close to the boundary this demographic
stochasticity might induce extinction.

In the PDMPmodel, switching between the two environments creates a coexistence
situationwhere the invariantmeasure is qualitatively similar to the occupationmeasure
of a limit cycle. However, in this setting the support of the stationary distribution
seems to be bounded away from the extinction set—there is no concentration near
the extinction set. As the switching speed increases the invariant probability measures
from the two environments become closer and closer. The dynamicswith fast switching
will have a unique limit cycle that is significantly larger than the limit cycles from
the two deterministic environments. This is another example of how environmental
fluctuations significantly change the dynamics bymaking the species densities oscillate
at greater amplitudes (more than double the amplitudes from each fixed environment).

(3) Rock–paper–scissors dynamics.

In the SDE setting the stationary distribution looks like a noisy heteroclinic cycle.
The stationary distribution is supported on a compact set and has high densities close
to the boundary. As we increase the density of the third species z, the support of the
stationary distribution decreases—as z goes from0.25 to 2 the support of the stationary
distribution decreases tenfold.

If the dynamics switches between persistent and extinction prone rock–paper–
scissors systems one can still get overall persistence. Even though the switching is
random, we expect the same phenomenon to arise when the switching is periodic.
This would describe seasonality and annual cycles. In various regions which exhibit
strong seasonal variation, organisms have developed survival mechanisms like hiber-
nation and migration in order to survive seasons with resource shortages. Our results
show that as long as the bad environment is not too harsh, the species can still persist.

Acknowledgements The authors acknowledge support from the NSF through the Grants DMS-1853463
for Alexandru Hening and DMS-1813246 for Yao Li.
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Appendix A: Technical assumptions

A.1 SDE

We need to make some technical assumptions for Theorem 2.1 to hold.

Assumption A.1 The coefficients of (2.1) satisfy the following conditions:

(1) diag(g1(x), . . . , gn(x))���diag(g1(x), . . . , gn(x)) = (gi (x)g j (x)σi j )n×n is a
positive definite matrix for any x ∈ R

n+.
(2) fi (·), gi (·) : R

n+ → R are locally Lipschitz functions for any i = 1, . . . , n.

(3) There exist c = (c1, . . . , cn) ∈ R
n,◦
+ and γb > 0 such that

lim sup
‖x‖→∞

[∑
i ci xi fi (x)
1 + c�x

− 1

2

∑
i, j σi j ci c j xi x j gi (x)g j (x)

(1 + c�x)2

+γb

(
1 +

∑
i

(| fi (x)| + g2
i (x))

)]
< 0. (A.1)

Parts (2) and (3) of Assumption A.1 guarantee the existence and uniqueness of
strong solutions to (2.1). Part (1) ensures that the solution to (2.1) is a non degenerate
diffusion—this means that the noise is truly n dimensional. Condition (3) also implies
the tightness of the family of transition probabilities of the solution to (2.1). Most
common ecological models satisfy condition (A.1). This condition is a requirement
that there is a strong drift towards zero when the population size is large. This usually
holds if the intraspecific competition is strong enough.

• In the logistic model

d X(t) = X(t)[a − bX(t)]dt + σ X(t)d B(t), b > 0

the condition (A.1) is satisfied for any c > 0.
• In the competitive Lotka–Volterra model

d Xi (t) = Xi (t)

⎡
⎣ai −

∑
j

b ji X j (t)

⎤
⎦ dt + Xi (t)gi (X(t))d Ei (t),

with b ji > 0, j, i = 1, . . . , n, if

n∑
i=1

g2
i (x) < K (1 + ‖x‖ +

n∧
i=1

g2
i (x))

then (A.1) is satisfied with c = (1, . . . , 1).
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• In the predator–prey Lotka–Volterra model

{
d X(t) = X(t)[a1 − b1X(t) − d1Y (t)]dt + X(t)g1(X(t), Y (t))d E1(t)

dY (t) = Y (t)[−a2 − b2Y (t) + d2X(t)]dt + Y (t)g2(X(t), Y (t))d E2(t),

with b1, b2 > 0, d1, d2 ≥ 0, a2 ≥ 0, if

2∑
i=1

g2
i (x, y) < K (1 + x + y + g2

1(x, y) ∧ g2
2(x, y)),

then one can show that (A.1) is satisfied with c = (d2, d1).

A.2 PDMP

It is well-known that a process (X(t), r(t)) satisfying (3.1) and (3.2) is a Markov
process with generator L acting on functions G : R

n+ ×N �→ R that are continuously
differentiable in x for each k ∈ N as

LG(x, k) =
n∑

i=1

xi fi (x, k)
∂G

∂xi
(x, k) +

∑
l∈N

qkl(x)G(x, l). (A.2)

In order to have awell behaved process (X(t), r(t))wemake the following assump-
tions:

• There is a vector c ∈ R
n,◦
+ such that L(1 + c�x) = ∑

i ci xi f (xi , k) < 0. Then
X(t) eventually enters a compact set and never leaves it. This makes it possible to
reduce the dynamics to compact sets. Most models will satisfy this assumption. If
it is violated one needs a different assumption which implies that X(t) returns fast
to compact subsets of R

n,◦
+ .

• Let γ +(x) denote the orbit set, that is, the set of all points from R
n,◦
+ that are

reachable by some possible trajectory of (3.1) with X(0) = x. Let

� =
⋂

x∈Rn,◦
+

γ +(x)

be the set of all points that are weakly accessible i.e. lie in the intersection of all
the closures of orbit sets. We assume that � �= ∅. This implies that there is at least
one point which can be close to trajectories started from any initial point from
R

n,◦
+ .

• There exists a point x0 ∈ � which satisfies the strong bracket condition [see
Benaïm et al. (2018, Definition 4.3) as well as Benaim (2018) and Benaïm et al.
(2018)]. This condition ensures that the process is not too degenerate and is, in a
sense, well behaved.
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A.3 SSDE

Many of the well-known facts about SDE carry over to SSDE. However, the proofs
can be quite technical when the generator q(x) of the switching process depends on
the density x of the species. We refer the reader to Yin and Zhu (2009) and Nguyen
et al. (2017) for conditions and proofs of the existence and uniqueness of solutions,
the Feller property, recurrence, transience, and ergodicity. In our models, as long as
all the involved coefficients are smooth enough and q(x) is bounded, continuous and
irreducible the only additional ingredients are:

(1) The process returns quickly to compact subsets of the state space. This requires
a boundedness/tightness assumption like (A.1) or the assumptions of Proposition
4.13 from Benaim (2018).

(2) Just like for PDMP, in order to get the existence of a stationary distribution, we
need conditions which ensure some type of irreducibility and non-degeneracy—
see the discussion on PDMP and Benaim (2018).

Appendix B: The numerical scheme

B.1 Convergence of the algorithm

Let us prove the convergence of our algorithm. Let u∗ be the density function of the
invariant probability measure on (0,∞)∞ × N . We let N = {1} for the case of
SDE. Without loss of generality, assume the domain D = [a1, b1] × · · · × [anbn] is
divided into N n bins, with a step size h = (b1 − a1)/N = · · · = (bn − an)/N .
Let u∗ ∈ R

N nn0 be the discrete probability density function of u∗, such that
u∗

i1,··· ,in ,k = u(xi1 , · · · , xin , k), where (xi1 , · · · , xin ) is the coordinate of the cen-
ter of the (i1, · · · , in)-th box in the grid, and 1 ≤ k ≤ n0 is a discrete state. Since
a numerical solver of SDE, SSDE, or PDMP has some error, the invariant probabil-
ity measure of the Monte Carlo sampler is usually different from μ∗. We denote the
invariant probability measure of the Monte Carlo sampler by μ̂, and define the cor-
responding probability density function û and discrete probability distribution û in a
similar way.

The idea of proof is straightforward. The main source of the error terms is v − û,
which is “noisy” enough to be treated as a centralized random vector. The optimization
problem projects the error term e = v− û to a lower dimensional space. If in addition
û is sufficiently close to u∗, then we can control the error of �.

Similar as in Dobson et al. (2019a), we need the following assumptions to prove
the convergence result.

(a) Entries of e = {ei1,··· ,in ,k}1≤i1,··· ,in≤N ,1≤k≤n0 are uncorrelated random variables
with expectation 0 and variance no greater than ζ 2.

(b) The boundary value problem for Eq. (5.3) (or Eq. (5.7) for SSDE) is well-posed
and has a unique solution.

(c) The finite difference scheme for Eq. (5.3) (or Eq. (5.7) for SSDE) is convergent
for a boundary value problem on D × N with L∞ error O(h p).
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The L2 error ‖�∗ − u∗‖ is measured by hn/2
E[‖� − u∗‖], which is the numerical

integration of the error term over the grid. We have the following theorem.

Theorem B.1 Assume (a)–(c) holds. We have

hn/2
E[‖� − u∗‖2] ≤ O(h1/2ζ ) + O(h p) + ‖û − u∗‖2 .

Proof The proof is generalized from Theorem 2.1 of Dobson et al. (2019a). Consider
Eq. (5.3) [resp. (5.7)] on the extended domain D̃ = [a1 − h, b1 + h] × · · · × [an −
h, bn + h] × N with boundary condition

Lw = 0 in D̃, w = u∗ on ∂D̃ (B.1)

By assumption (b), u∗|D̃ solves Eq. (B.1).
Solving this boundary value problem by a finite difference method, we have a linear

system

[
A 0
B C

] [
ulin

u0

]
=
[
0
0

]
,

where the matrix A is same as the linear constraint in the optimization problem (5.4),
and the matrices B and C come from the boundary condition. Therefore, ulin satisfies
the linear constraint Au = 0. In addition, by assumption (c), we have

‖ulin − u∗‖∞ = O(h p) .

Let u be the solution to the optimization problem (5.4). Let P be the projection
matrix to Ker(A). Since u ∈ Ker(A), we have

u − ulin = Pv − ulin − P(v − ulin) = P(v − û) + P (̂u − ulin) .

This implies

E[‖u − ulin‖2] ≤ E[‖P(v − û)‖2] + ‖P (̂u − ulin)‖2 .

The second term has bound

‖P (̂u − ulin)‖ ≤ ‖̂u − ulin‖2 ≤ ‖̂u − u∗‖2 + ‖u∗ − ulin‖2
≤ O(h p)O(N n/2) + ‖û − u∗‖2O(N n/2) .

By assumption (a), e = v − û is a random vector with uncorrelated entries. Note
that the dimension of Ker(A) is d(N ) := N n − (N − 2)n = O(N n−1). Let S be an
orthogonal matrix such that the first d(N ) columns of ST form an orthonormal basis of
Ker(A). Then S is a change-of-coordinate matrix that changes Ker(A) to the subspace
generated by the first d(N ) coordinates.
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Let ST = [s1, · · · , sN n ] and Se = [̂e1, · · · , êN n ]T . The projection gives

Pe =
d(N )∑
i=1

êi si

This implies

E [‖Pe‖2] = E

⎡
⎢⎣
⎛
⎝

d(N )∑
i=1

ê2i

⎞
⎠

1/2
⎤
⎥⎦ ≤

⎛
⎝E

⎡
⎣

d(N )∑
i=1

ê2i

⎤
⎦
⎞
⎠

1/2

because S is an orthonormalmatrix. By assumption (a), the entries of e are uncorrelated
and have expectations 0. This implies

E[̂e2i ] =
N d∑
i=1

S2
j i E[e2j ] ≤ ζ 2

because S is an orthogonal matrix. This gives

E[‖v − û‖2] ≤ √
d(N )ζ .

Finally, the triangle inequality yields

E[‖u − u∗‖2] ≤ E[‖u − ulin‖2] + ‖ulin − u∗‖2 ≤ √
d(N )ζ + O(N n/2h p)

+‖û − u∗‖2O(N n/2) .

Since h = O(N−1) and d(N ) = O(N n−1), the proof is completed by multiplying
both sides by hn/2.

��
We remark that the empirical accuracy ofu ismuch better than the theoretical bound

given in TheoremB.1. This is because the projected error term Pe tends to concentrate
at the boundary of the domain. This can be justified by computing principal angles
between Ker(A) and the subspace spanned by the boundary of the domain. See our
discussion in Dobson et al. (2019a).

B.1.1 Sensitivity analysis

It follows from Theorem B.1 that the sample quality plays a key role in the accuracy
of the data-driven solver. If the difference between μ̂ and μ∗ is too large, the accuracy
of the numerical solution � could be questionable. In other words, it is crucial to know
the sensitivity of the invariant probability measure against the perturbation caused by
the time-discretization when simulating an SDE (or SSDE) numerically.
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Let d be a distance between probability measures. Let Pt and P̂ t be the transition
probability kernel of the SDE (or SSDE) and its numerical scheme, respectively. It
follows from Dobson et al. (2019b) that the sensitivity of μ∗ can be controlled by the
following triangle inequality

d(μ∗, μ̂) ≤ d(μ∗ PT , μ∗ P̂T ) + d(μ∗ P̂T , μ̂P̂T ) ,

where T > 0 is a fixed finite time span. If PT is contracting in the metric space (P, d),
where P is the collection of all probability measures on (0,∞)n × N then

d(μ∗ P̂T , μ̂P̂T ) ≤ αd(μ∗, μ̂)

for some α < 1. If in addition d(μ∗ PT , μ∗ P̂T ) ≤ ε for some ε > 1, we have
d(μ∗, μ̂) ≤ ε(1 − α)−1.

In Dobson et al. (2019b), we let d = dw, where dw is the 1-Wasserstein distance
induced by the metric ρ(x, y) = min{1, |x − y|}. Then we use linear extrapolation
of the truncation error to estimate dw(μ∗ PT , μ∗ P̂T ), and use the coupling method to
compute the rate of contraction α.

Let dt be the time step size of the numerical SDE (or SSDE) solver. Let X̂dt
n be

the state of nth step of the numerical trajectory with a time step dt . Let T = K dt for
some even integer K . The estimator of dw(μ∗ PT , μ∗ P̂T ) is given by

dw(μ∗ PT , μ∗ P̂T ) ≈ c

N

N−1∑
i=0

ρ(X̂dt
i,T , X̂2dt

i,T ) ,

where X̂dt
i,T = X̂dt

K (i+1), and X̂2h
i,T is the terminal value of a “parallel” time-2dt tra-

jectory with length T . In other words, after each time T , we reset X̂2h
0 = X̂ h

iT and
compute X̂2h

n using the same random term as in X̂ h
n , and denote X̂2h

i,T = X̂2h
K/2 after

K/2 steps. The parameter c comes from the linear extrapolation. For example, c = 1
if the numerical scheme has strong convergence with order 1.

The idea is that X̂ h
iT for i = 0, · · · , N are sampled from μ̂. Starting from each

X̂ h
iT , ρ(XT , X̂dt

K ), the distance between true SDE trajectory and its numerical approx-
imation, can be obtained from a linear extrapolation of ρ(X̂dt

i,T , X̂2dt
i,T ). A calculation

shows that

c

N

N−1∑
i=0

ρ(X̂dt
i,T , X̂2dt

i,T )

gives an approximate upper bound of dw(μ∗ PT , μ∗ P̂T ). See our discussion inDobson
et al. (2019b).

The contraction rate d(μ∗ P̂T , μ̂P̂T ) can be approximated by using the coupling
method. It is well known that (Xt ,Yt ) ∈ R

2n is a coupling of Xt ∈ R
n if two marginal

distributions have the same law of Xt . Let (Xt ,Yt ) be a coupling such that ifXt = Yt ,
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then Xs = Ys for all s > t . Let τc = inf t {Xt = Yt } be the coupling time. Then it
follows from the coupling inequality that

dw(μP̂ t , ν P̂ t ) ≤ Pμ,ν[τc > t] .

It is usually very difficult to sharply estimate P[τc > t] using rigorous methods.
Instead, we can run Monte Carlo simulation to obtain the exponential tail of P[τc >

t] numerically. If numerical simulation gives P[τc > t] ≈ e−ct , then the rate of
contraction at time T is approximately α = e−cT . This gives an estimator

dw(μ∗, μ̂) ≈ c

N (1 − e−cT )

N−1∑
i=0

ρ(X̂dt
i,T , X̂2dt

i,T ) .

It remains to comment regarding the suitable construction of the coupling. The
simplest coupling is to run to independent numerical trajectories of X̂dt

n until they
meet. This coupling has very low efficiency. Also it is hard to have trajectories meet
in a continuous space. Instead, we can run two numerical trajectories using either
the same noise terms (synchronous coupling), or reflected noise terms (reflection
coupling), until they are close enough. Then we can compare the probability density
of the next step of the numerical trajectory. Assume the probability density functions
of Xt+1 and Yt+1 are fX and fY respectively. Then with probability

∫

Rn
min{ fX (x), fY (x)}dx ,

we can couple Xt+1 and Yt+1 at step t + 1. We refer to work by Dobson et al. (2019b)
and Li and Wang (2020) for the full details.
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