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evaluations for the elderly [2–6]. Such top-down approaches are
of limited use for surveillance, for example, because they do not
embrace diverse spectra of gait characteristics. For instance, the
fuzzy finite state machine [7] needs to incorporate expert
opinions and judgments for specifying relevant states. Further
transitions between states are governed by fuzzy logics [8].

Recently, data collecting technologies have drastically evolved
with recent advances in microelectromechanical systems
(MEMS), such as low-cost, lightweight, easy-to-use inertial
measurement units (IMU), such as accelerometer and
gyroscope sensors [9]. These sensors nowadays are integrated
with mobile devices, which enable us to collect gait time series
data outside of gait laboratory; see figures of human wearing
sensors in Refs. 10, 11. However, the capacity of precisely
differentiating many subjects’ gait signatures and seeing a
person’s multiscale gait dynamics in full is not yet available in
literature.

In this article, we develop computing and data-driven
algorithms suitable for addressing two questions. 1) How to
find and embrace large and diverse spectra of gait
characteristics for identification purpose? 2) How to discover
and recreate a person’s gait dynamics in full?

The first theme of our data-driven developments is to compute
and find many principle directions or vectors that implicitly
capture many important aspects of above structural
dependency-based heterogeneity across many people. We
consider one manifestation of structural dependency through
temporal patterns via a very simple and coarse coding scheme,
called Principle System-State Analysis (PSSA). This dependency
manifestation of coarse scale pattern is indeed very versatile for
classifying among all subjects. We conjecture that this kind of
dependency manifestation is potentially close to how our brains
learn gait signatures.

As a complex system, the intelligence of musculoskeletal
system is embraced by its multiscale heterogeneity [12]. It is
well known that any real “rhythmic” biomechanics is far from
being completely deterministic and it naturally embraces
stochastic structures across all rhythmic cycles as well [13].
Here, it is worth emphasizing the evidently visible, but
inexplicable stochasticity. Because this stochasticity is chiefly
constrained by deterministic structures, it is not completely
random. Therefore, extracting stochastic structures of gait
dynamics is at least as equally important as extracting the
deterministic counterparts.

For explicitly extracting such multiscale deterministic and
stochastic information contents, we turn to and focus on the
system’s fundamental structural dependency among all observed
gait time series. It is clear that such structural dependency is lost
to a great degree in the so-called resultant acceleration signal [14,
15]:

Ares[t] �
�����������������
X2[t] + Y2[t] + Z2[t]√

,

This fact is evident through our motivating Lempel-Ziv
complexity experiments (see details in the next section).
Results from such experiments imply how to build a symbolic

coding scheme to retain structural dependency of multiple time
series.

Based on such motivation, our second theme of data-driven
computing paradigm is developed as an unsupervised learning-
based multilayer coding scheme, called Local-first and Global-
second (L1G2) coding scheme.We apply L1G2 to build a 2D code
sequence pertaining to the [Left-foot + Right-foot] system. We
also develop a landmark partition algorithm to dissect such a 2D
code sequence into rhythmic cycles consisting of visible
biomechanical states. Such rhythmic patterns confirm that this
subsystem indeed dictates the contents of a rhythmic cycle, its
period, and most importantly its evolving process. That is, the
entire musculoskeletal system should function by coupling others
subsystems upon [Left-foot + Right-foot] system.

To further show L1G2 effectively capturing multiscale gait
dynamics, via graphic display, we simply stack all resultant color-
coded rhythmic cycles aligned with the landmarks into a 3D
cylinder. This rotatable 3D cylinder coherently reveals multiscale
deterministic and stochastic rhythmic patterns as multiscale
structural dependency across all rhythmic cycles. Such a 3D
cylinder is the very foundation of further researches of gait-
mimicking. It is also good for clinical diagnosis, and can be used
as a “passtensor” for cybersecurity.

Two known gait time series databases are analyzed as the real
data experiments: 1) MAREA database [10] with four sensors and
2) HuGaDB database [16] with six sensors. Both databases are
created on healthy subject’s gait when subjects wear with multiple
sensors performing various activities on different kinds of
surfaces. The sampling rate in MAREA is 128 Hz, and is less
in HuGaDB. That is, the time series in these databases contains
patterns of centisecond (10 minisecond) scale.

We focus only on accelerometer in this article. It picks up
accelerations of linear motions of body parts, where the sensors
are fixed, upon X−, Y−, and Z−axial orientations. The 3-dim
measurements are referencing to the coordinate system of human
body: anterior-posterior (forward vs. backward), superior-
inferior (vertical up vs. down along gravity direction), and left-
right [17]. Our developments can easily accommodate gyroscope-
based time series. InMAREA database, each subject wore a 3-axes
Shimmer3 (Shimmer Research, Dublin, Ireland) accelerometer
(±8 g). In HUGA database, the information of accelerometer is
described in the article [18].

2. REVELATIONS OF STRUCTURAL
DEPENDENCY

To set the stage for our computational developments for
exploring an individual’s gait dynamics in full, we give an
overview of the two contrasting manifestations of structural
dependency contained in multidimensional gait time series.
First by looking at an approximate 3 s recording of 12
dimensional time series of a MEARA subject’s walking on
indoor flat ground, as shown in Figure 1, we see that each
sensor’s triplet directional time series exhibit diverse scales of
relational patterns, which evolve within each visible cycle, and
recurrently appear across evident rhythmic cycles. Second, when
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we compare such patterns across different sensors, we also
discover various scales of recurrent pattern-to-pattern
correspondences. Such pattern-to-pattern correspondences are
especially evident between panel (A) of left-foot and panel (C) of
right-foot of Figure 1 across the evident cycles. Pattern-to-
pattern correspondences between panel (B) of waist and either
one of left-foot or right-foot are also apparent, but not between
panel (D) of wrist with the rest of panels. These visible temporal-
oriented relational patterns within cycles and complex pattern-
to-pattern correspondences across cycles constitute multiscale
structural dependency of gait dynamics contained in the 12
dimensional time series. This is the chief concern in this article.

In computational theory of computer science, the concept of
Kolmogorov complexity is used in evaluating and exploring
hidden structural patterns embraced within symbolic or digital
time series. Its conceptual shortest universal computer program
for regenerating a time series at hand is recognized to embrace all
deterministic and stochastic structures. Unfortunately,
Kolmogorov complexity cannot be calculated in general. We
use Lempel-Ziv complexity to give an approximate measure by
only using “copy” and “insert” two operations. This complexity
can be efficiently computed, see Ref. 18. So, Lempel-Ziv is used in
our complexity experiments. Before our complexity experiment,
all the continuous time series must be categorized and
transformed into a finite and discrete state sequence.

As shown in each panel of Figure 1, each triplet time series of
(X,Y ,Z) directions of an accelerometer reveal varying
mechanism-specific gait dynamic patterns. Thus, we make use
of this data transformation requirement to naturally link the
concept of structural dependency among time series to system-
states of its dynamics. The idea of system-state can be seen as
follows. We develop two temposensitive digital-coding schemes
upon gait time series along the temporal axis. The first scheme is to
perform digital coding upon each of the triplet directional time
series individually and then couple the three digital code sequences
into one sequence of vectors. The second scheme is to apply

hierarchical clustering algorithm on the temporal (column) axis
of a data matrix representing the triplet time series with three rows.
Based on the resultant clustering tree, a composition of clusters is
chosen. A cluster of 3D vectors can be regarded as a symbolic code
for a system state. Hence, the specific mechanism pertaining to an
accelerometer along the temporal axis is represented by a 1D
symbolic code sequence. Color-coded examples of such code
sequences are given in Figure 4. The computing cost of the first
approach is much less than that of second approach. But, unlike the
second approach, the first approach can only capture relatively
coarse structural dependency.

We compare these two coding schemes in a set of Lempel-Ziv
complexity experiments based on a short temporal segment
[0, 300]. Results of such experiments are summarized in
Figure 2; also see Supplementary Figures 10, 11 for more
details. The top three panels of Figure 2, respectively, give the
three directional symbolic code sequences. Each code sequence
has three states and a value of Lempel-Ziv complexity. By
coupling these three code sequences along the temporal axis,
as shown in panel (D), the resultant code sequence with 27 state is
seen nearly without any recognizable recurrent patterns. It has a
complexity value 1,017. In comparison, the second scheme with
27 clusters results into code sequence, as shown in the panel (E),
which shows very evident recurrent and rhythmic patterns with a
complexity value 571. Furthermore, even if only 10 clusters are
used to form the set of states, as seen in the bottom panel (F), the
resultant code sequence is as evidently rhythmic as the one with
27 states in (E). With such rhythmic patterns in view, it is not
surprising that its Lempel-Ziv complexity value is even lower.
Evidently, it captures the rhythmic dynamics well. Such
experimental results confirm the presence of structural
dependency among the three directional gait time series, and
at the same time imply that the second coding scheme is a way of
extracting detailed dependency patterns in gait dynamics.
Nonetheless, the first coding scheme has its own merit in
identifying among many subjects as seen in the next section.

FIGURE 1 |Gait time series data of subject #5 from four sensors: (A) left foot, (B)waist, (C) right foot, and (D)wrist. X−dimension is red color-coded, Y−dimension
is green, and Z−dimension is blue.
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3. PRINCIPLE OF SYSTEM-STATE
ANALYSIS (PSSA)

A simple way of having a glimpse of structural dependency
among sensor-direction specific D dimensional gait time series
is to transform and couple them into a D-dimensional digital
vector trajectory. Here, D is equal to 12 for four sensors used in
MAREA database and 18 in for six sensors used in HuGaDB
database. This digital trajectory is to exhibit rough manifestations
of rhythmic cycles. So, we manage to have a representation with
relative small algorithmic complexity about the gait dynamics.
This idea is simple and intuitive. Here, we develop data-driven
computations via a coarse coding scheme to realize this concept.
By doing so, we get away from the necessity of man-made system-
states and requirements of their transition rules. The simple
computational results are capable of identifying many subjects

simultaneously on a single platform. Thus, we speculate such a
simple algorithm is potentially what our brain actually performs
in recognizing friends and relatives’ gait signatures. To this aim,
we propose an algorithm, called the Principle of System-State
Analysis (PSSA), that attempts a single-layer coarse structural
dependency among many individuals’ D dimensional gait time
series simultaneously.

3.1. PSSA Algorithm
For the purpose of identification, we expect to identify an
individual by only glimpsing his/her short time of walking.
Each individual’s specific gait time series is subdivided into
replicates of period in equal length l. We assume that in the
test set, each unlabeled individual would have sample size
exceeding l. The choice of l is supposed to be small while the
signal is strong enough. Here, we set l � 1, 000 time points, which

FIGURE 2 | (A–C) Three-state code sequences for X-,Y-,Z-accelerometer time series, respectively. (D) is a natural combination of X,Y,Z, and the resultant
sequence is coded by 27 (3 × 3 × 3) states. (E,F) are sequences based on our clustering-based way of combination. (E) is coded by 27 states (clusters), the same
number of states as (D), whereas its LZ complexity reduces by half. (F) is a 10-states code sequence that can show the rhythmic pattern clear enough, and its LZ
complexity is as low as that of one-dim time series case.
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lasts about 7.8 s with respect to the sampling rate being set at
128 Hz. Consider that each individual at each time point has a D
dimensional measurements (with the same unit m/s2): three
directional (x-, y-, z-) accelerations from each of accelerometer
sensors. We stack such D dimensional vectors together across all
individuals’ time points into a large data matrix with 12 rows.
After that, the PSSA algorithm is applied, which is
described below.

First, encode each sensor-direction specific 1-dim time series
by using 3-digit alphabets.

Sd(t) �
⎧⎪⎨
⎪⎩

1 Xd(t)≤ α
2 α<Xd(t)≤ β
3 Xd(t)> β

,

where X(t) is the variable at time stamp t and d � 1, 2, . . . ,D
indicating dimension. So, a D-dimensional digital system-state
(vector), say S(t) � (S1(t), . . . ., SD(t))′, is formed at each time
point t. The tuning parameters α and β (α< β) are chosen based on
the quantile of each 1-dim empirical distribution of pooled data
across all involving subjects. Based on the consideration that the
extreme values of each distribution played an important role in
identifying different subjects, we choose α< 0.5< β and α and β are
closer to their extremes 0 and 1, respectively. As a result, the
complexity of resultant digital code time series becomes smaller.

Second, collect all distinct system-states S(.) and calculate
their corresponding frequency f. There will be at most 3D

possibilities. Sort the distinct states with respect to frequency
from the most frequent to the least (S(1)(.), . . . , S(N)(.))′ with

highest frequency f (1) to the lowest one f (N). Select a set of N*

states with top highest frequency as principle system-states (PSS).
Third, cut the gait time series from the training set into short-

temporal segments in length l, and convert each segment to a
N*-vector of proportion of PSS occurring within the period. That
is to say, we extract N* from each of the segment, which
represents the frequency of the appearance of the principle
system-states.

Finally, anm × N* rectangle matrix ΣPSS is built by stacking all
involving proportion vectors along the row-axis, where m is the
total number of segments, and N* is the number of principle
components. The entry (i, j) of ΣPSS can be explained as the
frequency of the j-th principle state found in the i-th segment.
Apply hierarchical clustering analysis on row and column axes of
ΣPSS, respectively. Find the corresponding “key” PSS for each
individual such that the PSS can be used as a new feature (group)
to exclusively identify the individual from others.

PSSA achieves a huge reduction on temporal dimensionality
from l � 1000 to N*. More importantly, such an N*-dim vector is
in the category of structural data, that is, each component can be
treated as a feature variable. So, any classic machine learning
techniques can come in and work on the structured matrix ΣPSS.

With a chosen pair of tuning parameters α and β (α< 0.5< β),
the complexity of digital coded D-dim time series can be seen via
the curve of proportion of coverage on all involving trajectories as:

r(N*) � ∑
N*

i�1

f (i)

N
,

FIGURE 3 | Identification via heatmap of ΣPSS. Each row indicates a segment of gait time, and rows from the same subject are labeled in the same color; each
column indicates a selected PSS. (A)MAREA database: 10 subjects. The quantiles α � 0.3 and β � 0.7. N*(� 300) principle system-states based on nine dimensions of
gait time series derived from three sensors fixed at the left foot, right foot, and wrist. (B)HuGaDB database: 17 subjects with six sensors tied to left and right thighs, shins,
and feet. The quantiles α � 0.1 and β � 0.9. N*(� 500) principle system-states based on 18 dimensions of gait time series.
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The selection of N* principle system-states (S(1)(.), . . . , S(N*)(.))
can be also based on this curve.

3.2. PSSA on Real Databases
Two examples of coverage proportion curves with respect to N*

principle system-states are given Supplementary Figure 9 for
MAREA database and HUGaDB database.

Both results in the training set are perfectly classified without
any error among all 10 subjects’ replicates in MAREA database,
and 17 subjects’ replicates in HuGaDB database, see Figure 3. By
selecting one significant state’s block or cluster for each

individual, a simple decision tree can achieve perfect
classification result in the test set. That is to say, the principle
states take the shape of feature selection, and they are the keys in
gait identification.

Here, we make a remark on how to scale a big ensemble of
individuals via PSSA. When the ensemble of individuals is big in
size, the PSSA needs a strategy to scale down the computing
loading. That is, if such an ensemble is taken as being
homogeneous, then PSSA will need a large collection of
system-state vectors to cover enough complexity in
identification task. Or the percentages α and β are chosen to

FIGURE 4 | 3D time series superimposed with color coding on temporal period [1, 500]. (A) Left-foot sensor and (B) right-foot sensor. Color coding of the 10
selected clusters are listed on the right hand side. The landmarks are calculated and marked with vertical black line.
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be close their extremes. However, if heterogeneity is naturally
present in any human ensemble, it implies the necessity of
partitioning the whole ensemble into homogeneous
subensembles, and then PSSA is applied respectively. This is a
typical divide-and-conquer strategy. For instance, the database in
Ref. 11 consists of more than 700 individuals. It is sensible to
divide the whole ensemble with respect to available demographic
information.

In summary, our PSSA algorithm apparently is able to identify
a set of system-states as signatures for each individual subject via
relatively easy computations, and then perfectly classify among
these subjects. Such visible signatures are indeed between-subject
characteristics in nature. Because the computing behind such
signatures is so simple, it is postulated why our brain can capture
such signatures seemingly with ease after lengthy observations.

4. AUTHENTICATION VIA STRUCTURAL
DEPENDENCY

Here, if we agree that different sets of triplet time series from
different sensors give rise to different aspects of gait dynamics
pertaining to our musculoskeletal system, then to authentically
recreate gait dynamics is equivalent to compute the multiscale
structural dependency based on all available time series data.

Let the local scale refer to various body components of
musculoskeletal system, such as left-foot, right-foot, waist, and
wrist. Each component contributes a fixed series of nearly
deterministic biomechanical phases. Each biomechanical phase

involves with a specific type of stochasticity: either in lengths or
compositional contents. It is worth noting that such stochastic
structures are somehow constrained by deterministic structures.

Let the global scale refer to how different components of
musculoskeletal system couple and work out gait dynamics. Due
to their dual symmetry, we particularly focus on how left-foot
relationally works with right-foot via an evolving process. The
[Left-foot + Right-foot] subsystem is rather distinct from their
relations to waist as the center of mass with the musculoskeletal
system. That is, within the entire musculoskeletal system, the
[Left-foot + Right-foot] system indeed functionally coordinates
with different subsystems.

4.1. L1G2 and Landmark Partition
Algorithms
We reiterate that left-foot and right-foot play dual roles, on one
hand, and are comparable or even symmetric, on the other hand.
Their two sets of triplet time series are highly associated.We denote
the [Left-foot + Right-foot] as the L + R, for short. Thus, we will
encode L + R system locally first, and then integrate L + R system
with waist or wrist. That is, we make the L + R system a foundation
to grow the integrated musculoskeletal system. For this integrative
task, we develop a rather simple algorithm based “local-first and
global-second (L1G2)” coding scheme in this section.

This L1G2 coding scheme is devised by first applying HC
algorithm onto the stacked version of X−, Y−, and Z−
directional time series from the left-foot and right-foot sensors
to generate a clustering tree. Upon this tree, we pick a 10-cluster

FIGURE 5 | Color-coded rhythmical cycles in L + R system of subject #5 marked with serial biomechanical phases. (A) The coupled color-coding time series on
temporal period [1, 500] (upper curve for the left-foot, and lower curve for the right-foot). The landmarks are marked with vertical black lines. (B) Rhythmic cycle, the third
one in panel (A), is represented by two concentric rings (outer ring for the left-foot, and inner right for the right-foot). The temporal coordinates go clockwise.
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composition to form a set of 10 codewords. Accordingly, left-foot’s
triplet time series are transformed into a 1D symbolic code
sequence, so is the right-foot’s. We then simply couple these
two code sequences into a 2D L + R system-state trajectory.
This choice of 10 codewords is supported by results of
complexity evaluations in our Lempel-Ziv experiments in Figure 2.

Next, we develop a landmark algorithm to partition symbolic
system-state trajectories into rhythmic cycles.

Throughout our experimental explorations across many
subjects, we found that rhythms in the L + R system are
rather stable; although waist and wrist sensors’ system-states
are also rhythmic, their stability is weak. Further computed
landmarks are found to coincide with the beginning of a
system-state in L + R system, which is defined by a codeword
pertaining to either left-foot or right-foot sensors, see Figure 4.
This uncertainty is likely due to some degrees of asymmetry
between left foot and right foot.

4.2. Color-Coded Rhythmic Cycles
We apply the L1G2 algorithm onto the L + R system of subject #5
on temporal period [1, 10, 000]. The local coding scheme is
worked out on a stacked 3 × 20, 000 matrix. The 10 codewords
are color-coded, so that the identified system-states of L + R
system are visible and readable with biomechanical meanings, as
shown in Figure 4.

Each colored code sequence of left-foot and right-foot sensors,
respectively, achieves a dimension reduction: from three to one. By
coupling the two colored code sequences, as shown in Figure 5A,
L1G2 algorithm results in cosine function-like rhythm under L + R
system. The symmetry on both feet is also explicit. We then apply
the landmark computing algorithm on such a 2D coupled colored
code sequence on the temporal period [1, 10, 000] to result 77
rhythmic cycles. The average period length and standard deviation
are calculated as 127.56 ± 2.31.

To better visualize the progressing of system-state of L + R
system via coupled colored codes, a rhythmic cycle is specifically
represented by two concentric circles: Outer one for left-foot and
inner one for right-foot, starting from the marked landmark
located at the o’clock position, as shown in Figure 5B.
Biomechanical phases on both feet are annotated. Indeed, the
gait dynamics within a rhythmic cycle is evidently revealed with
deterministic and stochastic structures as characterized as follows:

Deterministic Structures
A. The process of 2D coupling-phases as its state trajectory (with
clockwise temporal coordinates) is nearly deterministic
throughout all computed cycles:

Starting from “landmark” 0 (LF-Kick, RF-Stance2) 0 (LF-
HeelStrike, RF-toToeOff) 0 (LF-HeelStrikeEnd, RF-ToeOff) 0
(LF-Stance1, RF-Swing1) 0 (LF-Stance1, RF-Swing2) 0 (LF-
Stance1, RF-Swing3) 0 (LF-Stance2, RF-Swing4) 0 (LF-Stance2,

FIGURE 6 | 3D cylinder representation of evolution of rhythmical cycles
in L + R system of subject #5. (A)Concentric-ring for a rhythmic cycle from the
middle of [1, 10, 000]. (B) Concentric-ring for a rhythmic cycle from the final
part of [1,10, 000]. (C) 3D cylinder representation of evolution of
rhythmic cycles from the third to the 70th.

Algorithm1: Local-first and Global-second (L1G2) coding

Input:
{(XL(t),YL(t),ZL(t)), 1≤ t≤T} from Left-foot sensor
{(XR(t),YR(t),ZR(t)), 1≤ t≤ T} from Right-foot sensor
(1) Stack two time series and build a 3 × 2T matrix
ML+R[·, 1 : T] � {(XL(t),YL(t),ZL(t)), 1≤ t≤T}
ML+R[·, (T + 1) : 2T] � {(XR(t),YR(t),ZR(t)), 1≤ t≤ T}
(2) Apply HC on the temporal (column) axis of ML+R to obtain H clusters, coded as
{a1 , . . . , aH}, which represent local-system states
(3) Represent 3D time series {(XL(t),YL(t),ZL(t)) and
{(XR(t),YR(t),ZR(t)) as 1D H-digital time sequence {SL(t)}and {SR(t)}, respectively
(4)Couple the two local system-state time series of left-foot and right-foot in a 2D L +
R system-state time series with 2D vector SL+R(t) � (SL(t),SR(t))′ ,
for t � 1, 2, . . . ,T
(5) Integrate encoded waist and encoded L + R system by a 3D (L + R) +W system-
state time series with 3D vector S(L+R)+W(t) � (SL(t),SR(t),SW(t))′
Output: SL+R(t) and S(L+R)+W(t)

Algorithm 2: Landmark partition

Denote a Runibe a temporal segment that one specific state i consecutively repeats
itself
Input: The 2D L + R system-state time series {SL+R(t)}
(1) Calculate variance of the size of Runi
(2) Calculate variance of the recurrence time of Runi
(3) Choose the system-state i*as a “landmark”,
i* � argmini{Var(Size of Runi )
+ Var(recurrence time of Runi )}
(4) Employ the landmark i* to partition the entire system-state trajectory into pieces
of rhythmic cycles
Output: A series of rhythmic cycles
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RF-Kick) 0 (LF-ToeOff, RF-HealStrike) 0 (LF-ToeOff, RF-
HeelStrikeEnd) 0 (LF-Swing1, RF-Stance1) 0 (LF-Swing2,
RF-Stance1) 0 (LF-Swing2, RF-Stance1) 0 (LF-Swing3, RF-
Stance2) 0 (LF-Swing4, RF-Stance2) 0 End at next “landmark”;
B.AToe-off phase of one foot has to happen after the end of heel-
strike phase of the other foot;
C. The end of kick phase as the ending phase of swing process on
one foot coincides with the beginning of “to-Toe-off” phase.

Stochastic Structures
A. Each 2D coupling-phase varies with lengths (seen through the
3D plot of rhythmic cycles from #3 to #70). This is the median-
scale aspect of stochasticity within a rhythmic cycle;
B. The fine-scale stochasticity is seen in the phases of “heel-strike”
of both left foot and right foot. The variations are far from being
completely random;
C. There are some orders involving with a limited number of
colored nodes. The large scale of stochasticity is seen via one or

two distinct colored nodes being inserted between two phases
specifically located at the two concentric circles;
D. There is also evident asymmetry on color coding of stance
between the left foot and right foot.

5. GRAPHIC DISPLAY OF STRUCTURAL
DEPENDENCY IN GAIT DYNAMICS

The explicit deterministic and stochastic structures in
Figure 5B prescribe the structural dependency of gait
dynamics in L + R system. Such a concentric-ring
representation of a rhythmic cycle within L + R system is
indeed very stable. Two more rhythmic cycles: one is from the
middle and another one from the end of the temporal period
[1, 10, 000] among the 77 cycles, are rather similar, as shown in
Figure 6A,B. The great degree of stability of gait dynamics

FIGURE 7 | Integrated gait dynamics of waist and L + R system. (A) Color-coded 3D time series from waist with eight clusters resulted from the local coding
scheme of L1G2 algorithm. (B) Result of L1G2 algorithm represented by three layers of concentric-ring pertaining to the third rhythmic cycle on the temporal period
[1, 10,000]. (C) 3D cylinder representation of evolution of rhythmic cycles from the third to the 70th of this integrated system of three sensors.
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pertaining to the L + R system is also seen through a 3D
cylinder representation in Figure 6A.

Such stability implies remarkable adaptability and precision of
gait dynamics and its underlying structural dependency. The
adaptability is primarily due to the interplay of deterministic and
stochastic structures on the left foot and right foot. The
deterministic structures give rise to a “typical” 2D coupling
phase trajectory, whereas stochastic ones seemingly allow
variations in lengths to happen among many components (or
phases) of the typical cycle with total precision being about 36 ms
(�:4,600/128). Such a precision is possible only when the
deterministic structures are governed strictly by the
biomechanics of human musculoskeletal system.

5.1. Integrating Waist Sensor Into L + R
System
After constructing the rhythmic gait dynamics in L + R system,
we then integrate it with the waist sensor. By applying the L1G2
algorithm on the 3D time series from waist sensor, the resultant
local coding sequence is reported in Figure 7A, whereas the
results derived from the global coding scheme is reported in
Figure 7B for one rhythmic cycle with three layers of concentric
circles. A 3D cylinder from 3rd to 70th rhythmic cycles is built
and reported in Figure 7C. It is clear that 3D time series from
waist sensor is rhythmic. But the rhythm is not symmetric with
respect to dynamics in L + R system. Likewise, the wrist sensor
can be integrated with L + R system as well.

5.2. Passtensors for Individual
Authentications
The applications of coherently computed gait dynamics are rather
wide and diverse. Here, we mention two essential ones in passing
without going into details, and then focus on cybersecurity. The first
comment is that this L1G2 algorithm will allow us to integrate
acceleration sensors with gyroscope sensors. By combining the two

kinds of sensors, the resultant gait dynamic system will be rather
complex, but extremely interesting. The second comment is obvious
that such a 3D representation can be utilized as a platform for
mimicking the entire gait dynamics captured by time series data
derived from the four acceleration sensors. Such a task of building
realistic mimicry of a complex system is technically very challenging,
although it is scientifically very important, for instance in robotics. Up
to now, robots still walk in very unhuman-like fashions. This issue
might be resolved to great extent by incorporating gait dynamics.

Now, we turn to cybersecurity, clinical diagnosis, and self-
evaluating individual health statuses. It becomes clear that, based
on our 3D graphic displays of gait dynamics, an individual’s process
of rhythmic cycle is characterized by the evolution of cyclic
deterministic phases with individual specific twists as well as
idiosyncratic stochastic deviations associated with all phases.
Hence, a 3D cylinder indeed becomes a basis for authenticating
this particular individual. For this use, such a 3D cylinder is called
“passtensor.” More specifically speaking, an L + R system’s
deterministic cycle of 2D biomechanical phases: from one
landmark proceeding to the next one, indeed provides a rigid
frame, whereas the stochastic phases’ lengths and presence or
absence of some color codes between adjacent phases provide
the soft frames for the purposes of authentications. This
authentication capacity further illustrated as follows. For
instance, consider the subject #5 in MAREA walked on a
treadmill with slope change: from horizontal (0+) to 5+ during a
recording period. This person’s 3D passtensor corresponding to this
period is shown in Figure 8 with two views from two different
angles. The angle-specific view in Figure 8A reveals visible changes.
Such changes are likely critical patterns for authentication purposes.

Here, we briefly reiterate the practical uses of our 3D cylinder
graphic display of gait dynamics in self-evaluating individual
health statuses. By stacking two temporal segments of gait time series
from two different temporal periods, we can examine the degrees
and aspects of similarity and differences regarding deterministic and
stochastic structures between these two temporal segments. This is

FIGURE 8 | Two angle-views of 3D passtensor constructed from subject #5’s treadmill walking with slope changes in the middle of the temporal period in t. The
slope changes cause very subtle change on (A).
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an effective way of finding out subtle and minute discrepancies to
serve the early warning purposes.

6. CONCLUSION

6.1. Conclusion in System Complexity
Our first theme of data-driven computing paradigm, PSSA, allows
us to include many principle gait states as a collective of key
characteristics for identifying as many people as we want. From
many aspects, this identification approach is indeed very distinct
from identifications based on facial and voice recognitions,
fingerprint, or retina scanning. It is much easier to achieve social
unbiasedness. It is much more difficult to imitate or to fake.

Our second theme of data-driven computing paradigm,
consisting of L1G2 coding and landmark algorithms, enables us
to explicitly manifest multiscale dynamic patterns of gait dynamics.
The graphic displays of single rhythmic cycle and collective 3D
passtensor clearly demonstrate how the deterministic circle of
biomechanical phase couples with stochastic variations sprinkling
between consecutive phases, and offer a whole view of an
individual’s gait dynamics. Such intricate coupling relations
between deterministic and stochastic structures are the backbones
of structural dependency of gait dynamics. They retain essential basis
for mimicking an individual’s gait dynamics in animation. Its
practical uses in clinical diagnosis and cybersecurity are also
evident. In fact, the original motivations of this gait study is
aiming at detecting relative minor changes in gait dynamics for
healthy peoples and gesture tuning for athletes. These two topics
require very detailed structures within personal dynamics.

From a computational science perspective, our PSSA and L1G2
coding algorithms rest on the crucial fact that different time series have
different functions linking to different subsystems of a complex system
of interest, so they should not be treated equally and uniformly. Such a
rationale is a key for revelations ofmultiscale structural dependency. It
is also the key rationale for recreating a system’s authentic dynamics.
Overall, good design of graphic displays definitely paves avenues for
true understanding onto a complex system.

6.2. Conclusion in Security Issue
PSSA is purely developed for individual identification within a
close community, such as a company or agency that needs a high
degree of security, because the data are collected through multiple

sensors placed on body parts. Hence, an individual’s consent has
to be in place first before data collection. Within a close
community or company, PSSA is an effective alternative to
facial recognition, because it does not suffer from problems due
to shading on images or shadowing and cause social biases. And any
individual outside of this community will be identified as outliers. Its
application beyond a close community is still in a stage of theoretical
research. In theory, it might be possible to convert a 3D video
recording data into an accelerometer-based data format. But this
technique is still not yet available. In fact, at the current state of
technologies, any real-world recording via one camera, for
example, CCTV, is unlikely to create an authentic 3D
recording because of missing data.

For individual gait dynamics, our developments are
geared to help individuals to do self-detections for minor
gesture changes when walking or doing activities. Such
analysis and results are highly personal. So, they are
intended to be kept and used only by the owner of data.
Our potential role would be limited to pointing out where
minor changes might have taken place. Even this step is still
under intensive researches.
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