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Abstract. A probabilistic approach to estimating sample qualities of stochastic differential equations is intro-
duced in this paper. The aim is to provide a quantitative upper bound of the distance between the
invariant probability measure of a stochastic differential equation and that of its numerical approx-
imation. In order to extend estimates of finite time truncation error to infinite time, it is crucial to
know the rate of contraction of the transition kernel of the SDE. We find that suitable numerical
coupling methods can effectively estimate such rate of contraction, which gives the distance between
two invariant probability measures. Our algorithms are tested with several low and high dimensional
numerical examples.
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1. Introduction. Stochastic differential equations (SDEs) are widely used in many sci-
entific fields. Under mild assumptions, an SDE would admit a unique invariant probability
measure, denoted by 7. In many applications, including, but not limited, to Markov chain
Monte Carlo and molecular dynamics, it is important to sample from 7 [1, 31]. This is usually
done by either numerically integrating an SDE over very long trajectories or integrating many
trajectories of the SDE over a finite time [40]. However, a numerical integrator of the SDE
typically has a different invariant probability measure, denoted by @, that depends on the time
discretization [47, 48, 45]. A natural question is, How is & different from n? In other words,
what is the quality of data sampled from a numerical trajectory of the SDE? Essentially, this
is a sensitivity analysis problem of the invariant probability measure. We are interested in the
robustness of 7 against a small change of the infinitesimal generator. This is very different
from classical truncation error analysis, which is carried out for finite time intervals except in
some special cases [30, 11].

Theoretically, it is well known that the distance between m and @ can be controlled if
we have good estimate of (i) the finite time truncation error and (ii) the rate of geometric
ergodicity of the SDE. Estimates of this type can be made by various approaches [37, 38, 8,
5, 6]. Roughly speaking, if the truncation error over a finite time interval [0, 7] is O(e), and
the rate of geometric ergodicity is v (i.e., speed of convergence to 7 is ~ ! for v € (0,1)),
then the difference between m and 7 is O(e(1 —v7)™1). (See our discussion in section 3.1
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for details.) However, these approaches cannot give a quantitative estimate in general, as the
rate of geometric ergodicity v estimated by rigorous approaches is usually very far from being
sharp. Many approaches such as the Lyapunov function method can only rigorously show
that the speed of convergence is ~ v for some v < 1 [39, 19, 20]. Looking into the proof more
carefully, one can easily find that this v has to be extremely close to 1 to make the proof work.
This gives a very large (1 — 7)™ and makes rigorous estimates difficult to use in practice.
To the best of our knowledge, quantitative estimates of convergence rate can only be proved
for a few special cases like stochastic gradient flow and Langevin dynamics [16, 7, 2].

The aim of this paper is to provide some algorithms to numerically estimate the distance
between m and 7. The finite time truncation error over a time interval [0, 7] is estimated by
using extrapolation, which is a common practice in numerical analysis. The main novel part
is the estimation of the rate of contraction of the transition kernel. Traditional approaches for
computing the rate of geometric ergodicity are either computing the principal eigenvalue of
the discretized generator or estimating the decay rate of correlation. The eigenvalue method
works well in low dimension but faces a significant challenge if the SDE is in dimension > 3.
The correlation decay is difficult to estimate as well because a correlation has exponentially
small expectation and large variance. One needs a huge amount of samples to estimate it
effectively. In addition, exponential decay of correlation with respect to an ad hoc observable
is usually not very convincing. In this paper, we propose to estimate the rate of contraction
of the transition kernel by using a coupling technique.

Coupling methods have been used in rigorous proofs for decades [34, 35, 15, 42]. The idea
is to run two trajectories of a random process X = {X;}:>0 where one is from a given initial
distribution and the other is stationary. A suitable joint distribution, called a coupling, is
constructed in the product space, such that two marginals of this joint process are the original
two trajectories. If after some time, the two processes stay together with high probability,
then the law of X; must be very close to its invariant probability measure. It is well known
that the coupling lemma gives bounds of both total variation norm and some 1-Wasserstein-
type distances. In this paper, we use the coupling method numerically. If two numerical
trajectories meet each other, they are coupled and evolve together after coupling. By the
coupling lemma, the contraction rate of the transition kernel can be estimated numerically by
computing the probability of successful coupling, which follows from running a Monte Carlo
simulation. Together with the finite time error, we can estimate the distance between 7 and 7.
The main advantage of a coupling method is that the estimation of coupling time distribution
does not rely on spatial discretization. And many coupling strategies work well for high
dimensional problems. For example, with reflection coupling, the coupling probability of two
Brownian motions is independent of their dimension [35]. In this paper, we demonstrate our
technique on an SDE system in R* in section 4.5.

We provide two sets of algorithms, one for a quantitative upper bound and the other for a
rough, but quick, estimate. To get the quantitative upper bound, one needs an upper bound
of the contraction rate of 1-Wasserstein distance for all pairs of initial values starting from a
certain compact set €2 x . This is done by applying extreme value theory. More precisely,
we uniformly sample initial values from €2 x €2 and compute the contraction rate by using
the coupling method. Then the upper bound of such a contraction rate can be obtained by
numerically fitting a generalized Pareto distribution (GPD) [9, 3]. In practice, one may want
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a low cost estimate for the quality of samples. Hence we provide a “rough estimate” that only
uses the exponential tail of the coupling probability as the rate of contraction of the generator
after a given time T'. This rough estimate differs from the true upper bound by an unknown
constant, but it is more efficient and works well empirically.

Our coupling method can be applied to SDEs with degenerate random terms after suitable
modifications. This is done by comparing the overlap of the probability density functions af-
ter two or more steps of the numerical scheme. Our approach is demonstrated on a Langevin
dynamics example in section 4.3. It is known from [16, 7] that a suitable mixture of reflec-
tion coupling and synchronous coupling can be used for Langevin equation. We find that
this approach can be successfully combined with the “maximal coupling” for the numerical
scheme. However, for SDEs with very degenerate noise, using coupling methods remains a
great challenge.

We test our algorithm with a few different examples, from simple to complicated. The
sharpness of our algorithm is checked by using a “ring density example” whose invariant prob-
ability density function can be explicitly given. Then we demonstrate the use of our coupling
method under degenerate noise by working with a four-dimensional (4D) Langevin equation.
Next we show two examples whose numerical invariant probability & differs significantly from
true invariant probability measure 7. One is an asymmetric double well potential whose tran-
sition kernel has a slow rate of convergence. The other example is the Lorenz 96 model whose
finite time truncation error is very difficult to control due to intensive chaos. Finally, we study
a coupled Fitzhugh-Nagumo oscillator model proposed in [12, 27] to demonstrate that our
algorithm works reasonably well in high dimensional problems.

The organization of this paper is as follows. Section 2 serves as the probability preliminary,
in which we review some necessary background about the coupling method, SDEs, and nu-
merical SDE schemes. The main algorithm is developed in section 3. All numerical examples
are demonstrated in section 4. Section 5 is the conclusion.

2. Probability preliminary. In this section, we provide some necessary probability pre-
liminaries for this paper, which are about the coupling method, SDEs, numerical SDEs, and
convergence analysis.

2.1. Coupling. This subsection provides the definition of coupling of random variables
and Markov processes.

Definition 2.1 (coupling of probability measures). Let P and P' be two probability measures
on a probability space (Q, F). A probability measure v on (Q x Q, F X F) is called a coupling
of P and ' if two marginals of vy coincide with P and P, respectively.

The definition of coupling can be extended to any two random variables that take values
in the same state space.

Definition 2.2 (Markov coupling). A Markov coupling of two Markov processes X = {X¢}+>0
andY = {Y;}¢>0 with the same transition kernel P is a Markov process (X, Y) = {(Xy, ) }i>0
on the product state space V- x V' such that

(i) the marginal processes X and Y are Markov processes with transition kernel P, and

(ii) if Xs = Ys, we have X; = Y; for all t > s.
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There are many ways to construct a Markov coupling between two processes. For example,
let P be the transition ke1:nel~0f a Markov chain X on a countable state space V, the following
transition kernel @ for (X¢,Y:) on V' x V such that

P'(x1,x2) P (y1,y2) if @1 # w1,
Q' ((z1, 1), (2,32)) = P'(x1,22) if x1 = y1 and x2 = ys,
0 if 1 =y1 and x9 # yo

is called the independent coupling. Paths of the two marginal processes are independent until
they first meet, after which they are identical. In the rest of this paper, unless otherwise
specified, we only consider Markov couplings.

2.2. Wasserstein distance and total variation distance. We use the following metrics in
our coupling estimates.

Definition 2.3 (Wasserstein distance). Let d be a metric on the state space V. For probability
measures jn and v on'V , the Wasserstein distance (also known as Monte—Kantorovich distance)
between p and v for d is given by

dw(p,v) = inf{E,[d(z,y)] : v is a coupling of p and v}

= inf {/d(m,y)’y(daz, dy)) : v is a coupling of p and I/}.

For the discussion in our paper, unless otherwise specified, we will use the Wasserstein
distance with the metric

(21) d(.%',y) = min{la H.%' - yH}v x,y € R™.

Definition 2.4 (total variation distance). Let u and v be probability measures on (Q, F). The
total variation distance of p and v is given by

drv(p,v) = |p—v|l7v := sup |u(A) — v(A)].
AcF

2.3. Coupling lemma. In this subsection, we provide inequalities for the approximation
of the coupling time for Markov processes.

_ Definition 2.5 (coupling time). The coupling time of a Markov coupling (X,Y) = {(X;,
Yi)}e>0 is a random variable given by

(2.2) Te=7(X,Y) :=inf{t > 0: X; = Y;}.

Definition 2.6 (successful coupling). A coupling (X,Y) = {(Xt, Y2) >0 of Markov processes
X and Y is said to be successful if

P(r(X,Y) < o0) =1

or equivalently,
Tlim P(r.(X,Y)>T)=0.
— 00
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For all Markov couplings, we have the following two coupling inequalities.

Lemma 2.7 (coupling inequality w.r.t. the total variation distance). For a Markov coupling
(X,Y) with deterministic initial condition (Xo,Yo) = (z,y), we have

P(TC(Xa Y) > T) = P(XT 7& ?T) > dTV (PT(J"’ ’)7 PT(y7 )) :
Proof. For any A € F,

|PT (2, A) — PT(y, A)| = [P[X7 € A] — P[Yr € A|
= [P[{X7 € A} N {Xr # Yr}] - P[{Yr € A} N { X1 # Y7}]
< P[Xr # Y7,

where the second equality follows from canceling the probability
P Xy = Yr € Al = P[{ X7 € A} N {Xr = Y7} = P[{Yr € A} N {Xy = Y7}].

By the arbitrariness of A € F, the lemma is proved. |

_ Lemma 2.8 (coupling inequality w.r.t. the Wasserstein distance). For a Markov coupling
(X,Y) with deterministic initial condition (Xo,Yo) = (z,y) and the Wasserstein distance
induced by the distance given in (2.1), we have

P(r((X,Y)) > T) = P(Xy # Yr) > dyy (P"(2,-), P"(y,")) .

Proof. By the definition of the Wasserstein distance,
(P (2, P (9.)) < [ d(€n)P(Fr.Ti) € (e, dn)
= [ ate (e, Tr) € (de. )
{&#n}

< / P((Xr, V1) € (d, dn))
{&#n}
= P()?T 7é ?T)a

where d(x,y) is the specific distance given in (2.1). [ ]

2.4. Stochastic differential equations. We consider the following SDE for the process
X = {X;} with initial condition Xy = xo that is measurable with respect to Fyo = oc{B(0)}:
(23) dX; = f(Xt)dt + O'(Xt)th R

where f(X;) is a continuous vector field in R", o(X};) is an n x m matrix-valued function,
and dW; is the white noise in R™. The following theorem is well known for the existence and
uniqueness of the solution of (2.3) [36].

Theorem 2.9. Assume that there are two positive constants K1 and Ko such that the two
functions f and o in (2.3) satisfy
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1. (Lipschitz condition) for all x,y € R™ and t € [to, T

(2.4) (@) = FW)IP +o(@) —o(y)]* < Kl -yl
2. (linear growth condition) for all z,y € R™ and t € [ty, T
(2.5) [f(@) + lo(2)]* < Ka(1+|al?).
Then there exists a unique solution X (t) to (2.3) in M?([to, T); R") = {g : g(t) is F;-adapted
and E( ft lg(t)|? dt) < oo}.

In addition, we assume that X admits a unique invariant probability measure 7. The
existence and uniqueness of m usually follow from some drift condition plus some suitable
irreducibility conditions [28, 22].

2.5. Numerical SDE. In this subsection, we talk about the numerical scheme we use for
sampling SDE (2.3). The Euler-Maruyama approximation X/ of the solution X of (2.3) is
given by

(2:6) Xp=Xh o+ (X)) =t +o (X5 (B - Blte)),

where X = w0, ty = to + kh, t € [tp_1,t), and B(t) — B(tx_1) ~ N(0,t — t_1) and
B(t;) — B(tj—1) ~ N(0,h),5 = 1,2,...,k — 1, are mutually independent Gaussian random
vectors.

We have the following convergence rate for the Euler-Maruyama approximation (see [36]).

Theorem 2.10. Assume that (2.3) satisfies the Lipschitz condition (2.4) and the linear
growth condition (2.5). Let X be the unique solution of (2.3), and let X}' be the Euler-
Maruyama approximation for t € [to,T]. Then

(2.7) E ( sup | X! — Xt]2> < Ch,
to<t<T

where C is a constant depending only on K1, Ko,to,T, and xg.

Namely, the Euler-Maruyama approximation provides a convergence rate of order 1/2.
A commonly used improvement of the Euler-Maruyama scheme is called the Milstein
scheme, which reads

(2.8) X =Xh o+ (X)) At+o (X)) AB+ 7,
where At =t —t;_1, AB = B(t) — B(tx—1) and Z is a vector with components

m  Jo; Ath t )
Zi = Z 3 i j( k- 1>g,k (Xg; 1) /tk B (s) dB(s).

=1 j,k=1

Under suitable assumptions of Lipschitz continuity and linear growth conditions for
some functions of the coefficients f and o, the Milstein scheme [29] is an order 1 strong
approximation.
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Theorem 2.11 ([29]). Under suitable assumptions, we have the following estimate for the
Milstein approximation Xth:

E(1%0 - Xi|) < Kb,

where K is a constant independent of h.

It is easy to see that when o(X}) is a constant matrix, the Euler-Maruyama scheme and
the Milstein scheme coincide. In other words the Euler—-Maruyama scheme for constant o(X;)
also has a convergence rate of order 1. There are also strong approximations of order 1.5 or
2 that are much more complicated to implement. We refer interested readers to [29].

2.6. Extreme value theory. This subsection introduces some extreme value theory that
is relevant to materials in this paper.

Definition 2.12 (generalized Pareto distribution). A random variable Y is said to follow a
GPD if its cumulative distribution function is given by

fi-(e) " e
Feel(a) = 1_exp<ff) if £ =0,

where ¢ >0, and x >0 if >0 and 0 < x < —(/€ if £ <O.

The GPD is used to model the so-called peaks over threshold distribution, that is, the part
of a random variable over a chosen threshold u, or the tail of a distribution. Specifically, for a
random variable X with cumulative distribution function F'(z), consider the random variable
X — u conditioned on the threshold u being exceeded. Its conditional distribution function is
called the conditional excess distribution function and is denoted by
PUX —u<z}n{X >u}) F(r+u)— F(u)

Fy(w) = P(X —u <a|X >u) = P(X > ) T 1-Fu)

Extreme value theory can be used to prove the following theorem.

Theorem 2.13 (see [4, 44]). For a large class of distributions (e.g., uniform, normal, log-
normal, t, F', gamma, beta distributions), there is a function ((u) such that

lim  sup  [Fu(7) — Fe (@) =0,

U=T O<gp<T—u

where T = sup{z|F(z) < 1} is the rightmost point of the distribution.

This theorem shows that the conditional distribution of peaks over threshold can be ap-
proximated by the GPD. In this paper, we will employ this method to estimate the upper
bound of quantities of interest. In our algorithm, we use the maximum likelihood estimation
method to fit the parameters ( and £ and then use them to compute the estimates. To be
specific, for any u > 0, the following formula is applied:

F(z+u)— F(u) _ Neya/N=Nuo/N _ Npyu— Ny
1— F(u) 1— N,/N N—-N, '

Fe¢(z) ~
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where N, is the number of samples that is less than or equal to u and IV is the sample size,
namely, here we use the empirical probabilities to approximate the cumulative probability
function values. In practice, this can be done using the MATLAB function gpfit. Note that
parameters ¢ and & are dependent on the threshold w, so one need to manually choose a
suitable u. The criterion of choosing a suitable threshold is that (i) u should be large enough
such that only less than 1000 samples are greater than w, and (ii) the output of gpfit, i.e., ¢
and &, are stabilized with increasing u until there are too few available samples above w.

3. Description of algorithm.

3.1. Decomposition of error terms. Let X = {X;} and X" = {X]'} be the stochastic
processes given by (2.3) and a numerical approximation with step size h, respectively. Let
P and P be the two corresponding transition kernels. Hence in Xth, t only takes values
0,h,2h,---. Let T > 0 be a fixed constant. Let d,, be the 1-Wasserstein distance of probability
measures induced by distance

d(x7y> = min{lv ||.1' - yH}v T,y € Rna

unless otherwise specified.

Denote the invariant probability measures of X and X" by m and 7, respectively. The
quantity that we are interested in is d, (7, 7). We need to know whether 7 is a good approx-
imation of 7 for a reasonable time step size h. In this paper, we set the threshold at 0.05. If
the computation shows that d, (7, 7) < 0.05 for a numerical scheme with a reasonable time
step size h, this numerical scheme is considered to be trustable.

The following decomposition follows easily by the triangle inequality and the invariance.
(This is motivated by [25]. Similar approaches are also reported in [46, 41].)

(3.1) dw(m, 7) < dy (WPT,WPT) +d, <7TPT,7%PT) .
If the transition kernel P has enough contraction such that
du (7r]5T, frﬁT) < ady(m, 7),

for some o < 1, we have
nPT, WPT)

du (
dy(m,7) < T a
In other words the distance d, (7, 7) can be estimated by computing the finite time error
and the speed of contraction of PT. Theoretically, the finite time error can be given by the
strong approximation of the truncation error of the numerical scheme of (2.3). The second
term comes from the geometric ergodicity of the Markov process X". As discussed in the
introduction, except in some special cases, the rate of geometric ergodicity of X" cannot be
estimated sharply. As a result one can only have an « that is extremely close to 1. Therefore,
we need to look for suitable numerical estimators of the two terms in (3.1).
The other difficulty comes from the fact that both X and X" are defined on an unbounded
domain. However, for a very large class of SDEs, large deviations theory guarantees that the
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mass of both m and & should concentrate near the global attractor of the deterministic part
of (2.3) (i.e., the ODE X/ = f(X;)) [28, 17]. Similar concentration estimates can be made by

many different approaches [33, 23]. Therefore, we assume that there exists a compact set {2
and a constant 0 < € < 1 such that

(3.2) Q%) <e, #(Q)<e, 7TPT(Q) <e.

In practice, {2 can be chosen to be a set that contains all samples of a very long trajectory
of X", and e is the reciprocal of the length of this trajectory. This e is usually significantly
smaller than all other error terms. Algorithm 1 needs to run a long trajectory. Hence set 2
(that will be needed in Algorithm 2) can be obtained after running Algorithm 1.

This allows us to estimate the contraction rate « for initial values in a compact set. Let
I" be the optimal coupling plan such that

d(, 7) = / d(z, y)T(dz, dy)
R xR™

Consider a Markov coupling of two trajectories of X", and let P. denote the corresponding
transition kernel on R™ x R™. By the assumption of €2, we have

oPT #PT x AC T4z,
(33) d (ePT AP < [ i PP (. )
< 26+/ d(z,y)T(P.)T (dz, dy)
QxQ

<2+ ag / d(z,y)I'(dz, dy)
QxQ

< 2e + ady(m, ),

where agq is the minimum contracting rate of (P.)7 on Q x Q such that

an = sup
(z,9)eQxQ

I

Ay (.27, 8,P7)
d(z,y)

where J, and d, are the two one-point distributions concentrated at x and y, respectively, and
6, PT and 6, PT are two marginal distributions of 4§, (Pe)”.
Combine (3.1) and (3.3), we have

do (7P, 7PT) + 2¢
1—aq '

(3-4) dy (m, ) <

It remains to discuss the choice of T. We find that the result does not depend sensitively
on T as long as T is in a suitable range, such that (1 — ag)™' = O(1). In practice, we
choose T such that (1 — agq) ! is between 1.5 and 3. Smaller (resp., larger) T works better if
dy(mPT, 7 PT) grows faster (resp., slower) with increasing 7.
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3.2. Estimator of error terms. From (3.4), we need to numerically estimate the finite
time error d,, (ﬂ'PT, 7r]5T) and the contraction rate ag. We propose the following approach to
estimate these two quantities.

Extrapolation for finite time error. There are some known analytical results about
the stability error d,, (7P, 7PT) in 1-Wasserstein norm (or other weak norms), which usually
give the order of the finite time error in terms of h with an unknown prefactor [14, 10, 18, 43].
But these estimates are not quantitative because the prefactor is usually unknown. In this
paper, we use an extrapolation to numerically estimate this error term. By the definition of
1-Wasserstein distance, we have

dy (rPT, 7 PT) < / d(z, y)y(dx, dy)
R xR"™

for any coupling measure . A suitable choice of v that can be sampled easily is 72(P7 o PT),
where 72 is the coupling measure of 7 on the “diagonal” of R™ x R” that is supported by the
hyperplane

{(x,y) eR" |y =x},
such that 72({(x,x)|x € A}) = w(A).

Theoretically, we can sample an initial value from 7, run X and Xh up to time 7', and
calculate d(Xr, X%) However, we do not have exact expressions for m and X;. Hence in the
estimator, we use 7 to replace m and use extrapolation to estimate d(XT,Xéi). We need to
assume that |7 — 7|7y is a small quantity such that |# — 7|2, < ||# — 7||7v. Then

/ d(z,y)m*(PT o PT)(dx, dy)
R xR™

can be approximated by
[ e (PT o PP dy).
R xR™

This approximation causes a very small error,

I = 7 llry % d(z,y)(vF)*(P" o PT)(dx, dy)
(3.5) </R"><]R”

-/ d(x,y><v—>2<PToPT><dx,dy>) ,
R xR™

where v = (|7 — #||7v) "' (7 — #) is a renormalized signed measure with zero mass and total
variation 1. The two terms are both at the same magnitude as d,,(m, 7), hence (3.5) gives a
higher order error. We assume that this error term is negligible.

The integral

/ Az, y)72(PT o PT)(dx, dy)
R xR

is computable. It can be estimated by sampling d(XT,Xél) such that Xo = Xo ~ #. The
distance d(X7, X}) can be obtained by extrapolating d(X%, X2"), where X2 is the random
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process of the same numerical scheme with the same noise term but 2h time step size. For
the same noise, we mean the sum of noise terms of two h-steps should be equal to the noise
term of one 2h-step. Take the Euler-Maruyama scheme as an example. The update of th
and X[ should follow

Xy = X+ f(XDh+ o(X)VAN,
Xlion = X + F(XP )b+ o (X ) VAN,

and
X2, = XP + f(XP)h 4 o (XP)V2R(Ny + No)/V/2,

respectively, where N1 and Ny are two independent standard normal random variables. See
Algorithm 1 for more details of the implementation.

When N is sufficiently large, x1,...,xy in Algorithm 1 are from a long trajectory of the
time-T" skeleton of X% Hence x1,...,xy are approximately sampled from 7. The error term
y; = cd(XR, X2h) for X = X3! = x; estimates d(X7, X}). Therefore,

N
3
i=1
estimates the integral
d(x, )7 (PT o PT) (dx, dy),
R™ xR"

which is an upper bound of d, (7 PT, 7 PT).

The constant ¢ in Algorithm 1 is chosen based on the strong order of accuracy. If the
numerical scheme is a strong approximation with order p, the error d(Xr, X2) is O(hP).
Then we have

Ad(Xp, X2 ~ 2Pd(Xp, XP).

This gives
(27 = 1)d(Xr, X}) = d(Xr, X§*) — d(Xr, X}) < d(Xp, X7,

which gives ¢ = (2P — 1)~

Algorithm 1 Estimate finite time error

Input: Initial value xg
Output: An estimator of d(7P7, 7 PT)
Run the numerical trajectory for some time Ty to “burn in.” Let x; = X{,ﬁo
fori=1to N do
Using the same noise, simulate X" and X2 with initial value x; up tot=1T.
Let y; = cd(f(éﬁ, X%h), where ¢ = (2P — 1)71, p is the strong order of convergence of the
numerical scheme.
Let Xi+1 = Xélw
end for
Return + Zl]\il Yi
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One advantage of Algorithm 1 is that it can run together with the Monte Carlo sampler.
The trajectory of Xt% cannot be recycled. But the trajectory of Xth can be used to estimate
either the invariant density or the expectation of an observable.

Coupling for contraction rate. The idea of estimating aq is to use coupling. We can
construct a Markov process Zp = (Xt(l),f(t@)) such that Z; is a Markov coupling of Xt(l) and

)A(t@). Then as introduced in section 2, the first passage time to the “diagonal” hyperplane
{(x,y) € R |y = x} is the coupling time, which is denoted by 7.. It then follows from
Lemma 2.8 that

dy (6, PT,6,PT) < P[r. > T].

Then we can use extreme value theory to estimate aqg. The idea is to uniformly sample
initial values (z,y) from Q x Q, and define S(z,y) := P[r, > T]/d(x,y). Then B is actually
a random variable whose sample can be easily computed. Assume M samples starting from
each (z,y) are simulated, and K of them have coupled before time T'. An estimator of 5(x,y)
is K/(d(z,y)M). We use extreme value theory to estimate an upper bound for 5 and denote
it by ag. See Algorithm 2 for details. The threshold V' in Algorithm 2 is usually chosen such
that approximately 5% samples are greater than this threshold. The goal is to make (i) the
empirical cumulative distribution function matches that of the resultant GPD, and (ii) the
result aq does not sensitively depend on the choice of the threshold.

If running successfully, Algorithms 1 and 2 give us an upper bound of d,, (7, 7) according

o (3.4), which can be used to check the quality of samples.

Construction of Z;. It remains to construct a coupling scheme that is suitable for the
numerical trajectory X,. In this paper we use the following two types of couplings.

Denote two margins of Z; by Xt(l) and Xt(z), respectively. A reflection coupling of the
SDE (2.3) means the noise terms of Xt(l) and Xt@) in an update are symmetric about the
normal plane bisecting the line segment between their positions. For the case of a constant
coefficient matrix o(X;) = o and using the Euler-Maruyama scheme, reflection coupling gives
the following update from t to t + h:

(3.6) X0, = X047 (X9) bt o VN,
X2 =xP 4y ( ) h+ovVh(I — 2e.eT)Ny

where N, is a normal random variable with mean 0 and variance h = dt, and

g )

is a unit vector. It is known that reflection coupling is the optimal coupling for Brownian mo-
tion in R™ [35, 21]. Empirically it gives fast coupling rates for many SDEs with nondegenerate
noise.

The mazimal coupling looks for the maximal coupling probability for the next step (or
next several steps) of the numerical scheme. Assume X M and X ) are both known. Then

it is easy to explicitly calculate the probability density function of X (1)h and Xt( +)h7 denoted
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Algorithm 2 Estimate contraction rate

Input: A compact set €2
Output: An estimator of the minimal contraction rate agq.
fori=1to N do
Sample pairs (z;,y;) uniformly from € x Q.
Set Kz :O, T3 =0.
for j=1to M do
Run Z; with initial value (z;,y;) until min{z,, T'}.
if 7. <T then
K, + K;+1
end if
end for
Bi < Ki/(d(z,y:) M)
end for
if max{f;} > 1 then
The estimator fails. Choose better coupling algorithm or larger T
else
Let v; =1/(1—f;) forall 1 <i < N.
Choose a threshold V.
Use GPD to fit {v; — V' |v; > V} to get two parameters (¢, &).

if £ > 0 then
The estimator fails. Choose better coupling algorithm or larger 7.
else
Let vyae =V — /€.
end if
end if

Return 1 — 1/vy44 as the estimator of ag.

by p((z) and p® (), respectively. The update of X t(i)h and X t(i)h is described in Algorithm
3, which is adopted from [24, 26]. This update maximizes the probability of coupling at the

next step. We adopt the name “maximal coupling” from [24].

In practice, we use reflection coupling when Xt(l) and Xt@) are far away from each other,
and maximal coupling when they are sufficiently close. This method is suited for discrete-time
numerical schemes, as using reflection coupling alone will easily allow the two processes to
miss each other. In our simulation code, the threshold of the changing coupling method is
2v/h||o||. When the distance between Xt(l) and Xt(Q) is smaller than this, we use maximal
coupling. In practice, the coupling speed does not depend on this threshold sensitively as long

as it is O(Vho).

3.3. A fast estimator. In practice, Algorithm 1 can be done together with the Monte
Carlo sampler to compute either an observable or the invariant probability density function.
The extra cost comes from simulating trajectories of X 2l which takes 50% of the time of
running the trajectories of X". The main overhead of the above mentioned methods is
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Algorithm 3 Maximal coupling

Input: Xtm and Xt(z)
Output: Xt(i)h, Xﬁ_)h,
Compute probability density functions p(!)(z) and p® (z).

Sample XM and calculate W = Up(l)(f((l)

and 7. if the coupling is successful.

), where U is a uniform random variable on

t+h t+h

(0,1).
. )/ v(@)
if W <p'¥(X,,}) then

Xt(i)h = X&)h, Tc = t + h, the coupling is successful.
else X )

Sample Xt(i)h and calculate W/ = Vp(?) (Xg)h), where V' is a uniform random variable
on (0,1).

. & (2
while W' < p(}) (Xt(+)h) do )

Resample Xt(i)h and V. Calculate W’ = Vp®2) (Xt(i)h) with new samples.
end while

Let t =t + h. The coupling is unsuccessful and 7, is undetermined.
end if

Algorithm 2. Because we want a quantitative upper bound of d,,(, 7), the contraction rate
of PT in 1-Wasserstein space with respect to all pairs of initial points in Q x € must be
estimated. In practice, this takes a long time because one needs to run many (100 — 1000)
independent trajectories from each initial point to estimate the coupling probability.

In practice, if one only needs a rough estimate about the sample quality instead of a
definite upper bound of the 1-Wasserstein distance, Algorithm 2 can be done in a much easier
way by estimating the exponential rate of convergence of Pt Tt is usually safe to assume
that the rate of exponential contraction is same for all “reasonable” initial distributions. In
addition, the contraction rate is bounded from below by the exponential tail of the coupling
time distribution P[r. > t]. Therefore, we only need to sample some initial points uniformly
distributed in 2 x € and estimate the exponential tail of the coupling time distribution. This
gives an estimate

.1
tli)Igo n log(Py[7e > t]) = —7,

where u denotes the uniform distribution on Q x €, and v can be obtained by a linear fit of
Py [Te > t] versus ¢ in a log-linear plot. In other words, we have

Ay (P, 7 PY) < Cp pe My (m, 7).
The unknown prefactor C » depends on 7 and 7. Assuming Cr # = 1, we have
dp(7PT #PT) < e Tdy(m, 7).
Combining with (3.1), a rough estimate of d,, (7, 7) is given by

dy (7 PT 7 PT)

(3.7) dy (7, 70) = [T

where d,(7PT, 7 PT) is estimated by Algorithm 1.
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Equation (3.7) usually differs from the output of Algorithm 1, Algorithm 2, and (3.4) by
an unknown multiplicative constant. However, in practice, this is usually sufficient for us to
predict the quality of the Monte Carlo sampler with relatively low computational cost. In
numerical examples we will show that it is usually sufficient to estimate the exponential tail
of Py[7e > t] by running 10* — 10° trajectories.

4. Numerical examples.

4.1. Ring density. The first example is the “ring density” example that has a known

invariant probability measure. Consider the following SDE:
1) dX; = (—AX((X2+ Y2 = 1)+ Y;) dt + o dW",
‘ AV, = (= 4Yi(X2 + Y2 = 1) = X,) dt + o dW,?,

where Wt(l) and Wt(z) are independent Wiener processes, and o is the strength of the noise.
The drift part of (4.1) is a gradient flow of the potential function V(z,y) = (22 +y%—1)? plus
a rotation term orthogonal to the equipotential lines of V. This rotation term does not change
the invariant probability density function, which can be verified by plugging V (z,y) into the
Fokker—Planck equation. Hence the invariant probability measure of (4.1) has a probability
density function

where K =7 fixi e=2/9* 4t is a normalizer. We will compare the invariant probability mea-
sure of the Euler-Maruyama scheme and that of (4.1).

In our simulation, we choose ¢ = 0.5 and T = 10. The first simulation runs eight
independent long trajectories up to time 1.25 x 10°. Hence Algorithm 1 compares the distance
between Xél and X%h for 107 samples. Constant ¢ equals 1 here because the Euler-Maruyama
scheme is a strong approximation with accuracy O(h) when o is a constant. Algorithm 1 gives
an upper bound

dy(mPT, 7PT) < 0.00141635 .

In addition, all eight trajectories are contained in the box [—2,2]?. Hence we choose Q =
[—2,2)2 and e = 1077,

Then we run Algorithm 2 to get coupling probabilities up to T" = 10. The number of
initial values (z;,y;) is 20000. Then we run 1000 pairs of trajectories from each initial point
to estimate the coupling probability. The probability that coupling has not happened before
T is then divided by d(z;,y;), which estimates an upper bound of the contraction rate

Po g [re > T] _ du(0s,P", 8, P")
dzi,yi)  — d(zi, y;)

Then we use GPD to fit {1/(1 — r;)}2%°. The threshold V is chosen to be 1.48. The
fitting algorithm gives parameters £ = —0.0419 and ¢ = 0.0254. This gives ag = 0.5207. A
comparison of cumulative distribution functions of empirical data and that of the GPD fitting
is demonstrated in Figure 1, top left.

r; =

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 07/30/21 to 128.119.168.112. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

150 MATTHEW DOBSON, YAO LI, AND JIAYU ZHAI
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Figure 1. Top left: A comparison of cumulative distribution functions of empirical data {v; |v; > V} and
that of the GPD. Top right: Exponential tail of P[r. > t] versus t when initial values are uniformly sampled in
Q x Q. Bottom left: Linear extrapolation for the total variance distance ||w — 7||rv at the infinite sample limit.
Bottom right: Difference between # and 7 with 6.4 x 10° samples.

Combining all estimates above, we obtain a bound
(4.2) dy (7, ) < 0.002955 .

Since the invariant probability measure of (4.1) is known, we can check the sharpness of
the bound given in (4.2). The approach we take is Monte Carlo simulation with extrapolation
to infinite sample size. On a 256 x 256 grid, we use eight long trajectories to estimate the
invariant probability density function of (4.1). The sample sizes of these trajectories are
8x10%,1.6x10%,...,6.4x10°. As seen in Figure 1, bottom right, the error between probability
density functions of 7 and 7 is at the magnitude of 1073. Then we compute the total variation
distance between

u(z,y) = oV
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and the empirical probability density function at those grid points. As seen in Figure 1,
bottom right, the error is inversely proportional to the square root of the sample size. Linear
extrapolation shows that the total variation distance at the infinite sample limit is &~ 0.001534.
The linear extrapolation is demonstrated in Figure 1, bottom left. Since d,, is smaller than
the total variation distance, the 1-Wasserstein distance d,, (7, 7) should be no greater than
0.001534. (The total variation distance can be seen as a 1-Wasserstein distance with underlying
distance J(az,y) = 14—y}, which is larger than the distance d(x,y) used throughout this
paper.) Therefore, our estimation given in (4.2) is larger than the true distance between 7
and 7 but is reasonably sharp.

It remains to comment on the fast estimator mentioned in section 3.3. In Figure 1, top
right, we draw the exponential tail of P[r, > t| and its linear fit. The slope of the exponential
tail is ¥ = —0.14049. When T = 10, we have e~77 = 0.2454. Equation (3.7) then gives an
estimate

dy (7, 7) = 0.001877,

which is actually closer to the total variation distance that we have measured numerically.

4.2. Double well potential. The second example we study is a gradient flow with respect
to an asymmetric double well potential. Let

622 — 60 if z > 4,

Viz) = gzt — 222 +4 if 0 <z <4,
grizt —2r222 44 if —4/r <2 <0,
67222 — 60 if o < —4/r.

If » # 1, V is an asymmetric double well potential function. Note that we make V(z) a
quadratic function when > 4 or x < —4/r, because the original quartic function has very
large derivatives when |z| is large, which has some undesired numerical artifacts.

Now consider the gradient flow of V(x) with additive random perturbation

dXt = —V/(Xt) dt + O'th .

It is easy to see that X; admits an invariant probability measure m with probability density
function

where K is a normalizer.

Because of the double well potential, trajectories from two local minima need a long time
to meet with one another. Hence the speed of convergence of the law of X; to 7 is slow.
Much longer times are needed so that trajectories can couple in Algorithm 2. In addition, we
changed the underlying distance from |z — y| to |z — y|%*®, because if two initial values are
very close to each other, with some small probability one trajectory can run into a different
local minimum and takes a very long time to return. As a result, for reasonably large T, if
the underlying distance |x — y| is used, PT does not contract in 1-Wasserstein metric space
when two initial points are very close to each other.

Model parameters are chosen to be » = 5, ¢ = 1.2, and T' = 50. Then we choose
Q2 =[-2,4], as u(x) is extremely small when z < —2 or « > 4. The numerical trajectory Xf
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is obtained by running the Euler—-Maruyama scheme with h = 0.0025. We first run Algorithm
1 with eight independent long trajectories to compare the distance between X;i and X%h The
length of each trajectory is 5 x 10%. The constant ¢ is still equal to 1 because the accuracy
of the Euler-Maruyama scheme is O(h) when o is a constant. Algorithm 1 gives an upper
bound

dy(7PT, 7 PT) < 0.167345.

The upper bound is quite large due to large second order derivatives of V(z) and large time
span 7.

Then we run Algorithm 2 to get the contraction rate of PT for T = 50. The number of
initial values (z;,y;) is 20000. We run 1000 pairs of trajectories from each initial points to get
P[1. > T']. This gives 20000 numbers,

Pmi,yi [TC > T] > dw((slz‘pTvdyipT)

d(zi,yi) d(zi, yi)
Then we use GPD to fit {1/(1 —r;)}2%9%. Similar to the previous example, GPD parameter
fitting gives aq = 0.2157. See Figure 2, top left, for the fitting result. In addition, because

r; =

1 GPD fitting , Plre>Tl
—— Empirical CDF 0.2
08 —GPD fitting
0.15
0.6
x
w 0.1
0.4
02 0.05
0 0
0 0.02 0.04 0.06
X X
109 slope = -0.036937 Compsgrison of invariant probability density fur1|<itions
1.
J— P[Tc > 1] = potential function
. ) —SDE
2 — linear fit 25 - - Euler-Maruyama 12
10 1
20
‘,“\ u 0.8
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t

Figure 2. Top left: Fitting GPD with v; = 1/(1 — r;). The fitting result is compared with the empirical
cumulative distribution function. Top right: Heat map of contraction rate r; for initial pairs of points on a grid
that covers Q x Q. Bottom left: Exponential tail of P[r. > t] versus t when initial values are uniformly sampled

in  x Q. Bottom right: potential function V(x) and a comparison of invariant probability density functions of
X and X".
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this is a 1D problem, we can plot the contraction rate r; for each pair of (z;,y;) on a grid
that covers Q0 x Q. See Figure 2, top right, for a heat map of contraction rates from each
pair of initial points. From Figure 2, right, we can see that the high value of Py, ,, [7. > T is
reached when one of the pairs (z, y) falls into the left part of the domain, where V' (x) has large
derivatives. In addition, when (x,y) becomes even closer to line {z —y = 0}, Py, o, [7c > T
drops dramatically to 0. This further confirms that PT is contracting in 1-Wasserstein metric
space for T' = 50. Finally, we provide an exponential tail of P[r, > t] for X" demonstrated
in Figure 2, bottom left. The exponential tail is v = —0.036937. Hence e 7T gives 0.1577,
which is smaller than «gq obtained above.
Combining all estimates above, we have an upper bound

(4.3) du(m, 7) < 0.2134.
If (3.7) is used instead, we have a rough estimate
du (i, 7) ~ 0.19867 .

Both results imply that two invariant probability measures may be very different from
each other. This can be confirmed by using Monte Carlo simulation to compute the invariant
probability measure of X" We run eight independent long trajectories of XZ‘ up to 5 x 106
to compute its invariant probability density function. The result is compared with u(x), the
invariant probability density function of X, in Figure 2, bottom right. We can see visible
difference between these two probability density functions. The total variation difference be-
tween them is 0.05906. This is smaller than the bound predicted by (4.3), partially because we
have to use the distance induced by |z —y|®*® to make 7; uniformly bounded from above. But
our calculation still predicts an unusually large difference between two invariant probability
measures.

We still owe readers a heuristic explanation of the phenomenon seen in Figure 2, bottom
right. The probability density of the invariant probability measure of X" is much lower than
that of X around the local minimum z = —0.4 because the potential function is asymmetric.
As a result, when a trajectory of X" moves from z = —0.4 to 2 = 0, the Euler-Maruyama
scheme tend to underestimate —V’(x), which increases dramatically near z = —0.4. The effect
of such underestimation is much weaker near the other local minimum x = 2, where the value
of [V'(z)| is significantly smaller. As a result, it is easier for the trajectory of X" to pass
the separatrix x = 0 from left to right than from right to left. This causes the unbalanced
invariant probability density function as seen in Figure 2, bottom right.

4.3. Degenerate diffusion. Langevin dynamics have noise terms that only appear directly
in the velocity equation and not on the position, leading to a Fokker—Planck equation with a
degenerate, hypoelliptic diffusion. We consider a potential energy similar to the ring density
equation, with SDE

dX, = V, dt,

4.4

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 07/30/21 to 128.119.168.112. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

154 MATTHEW DOBSON, YAO LI, AND JIAYU ZHAI

where
(4.5) UX)=(X?+X3-1)>2

One trajectory of (4.4) is demonstrated in Figure 3, top left. The invariant measure satisfies
p(X,V) o exp(—B(V? + U(X))) where 3 = ‘27%

Because of the degenerate noise term, we use a modified coupling algorithm involving
three components (reflection coupling, synchronous coupling, and maximal coupling) which
are based on the coupling in [16]. We consider two realizations (X, V(1) and (X®),V®)
of the SDE and note that the difference process is contractive on the hyperplane Q = X —
X@ 441 (v() — V@) =0 [16]. We employ reflection coupling when ||Q|| > 0.08, where the
reflection tensor is given by I —2xQQT /Q?. When ||Q|| < 0.08, we use synchronized coupling,
where both processes use the same realization of the Brownian noise. The threshold of the
switching coupling method (which is 0.08 in our computation) should be O(v/h), which is the
distance that (X[l, Vth) jumps after one step. When the processes are sufficiently close, we
attempt to couple using maximal coupling using two steps of the numerical integrator. Two
steps of the Euler—-Maruyama integrator with step size h gives

(4.6) Viion = (1 — yh)2Vi — (1 = yh)AVU (X;) — hVU (X, + hV})
+ 0 (1 — yh)h' /2Ny + oh'/2 Ny,

where Ny and N; represent two independent and identically distributed normal variables. We
sample from the above to compute the probability of the processes to couple after two steps.
To improve the computational efficiency of the scheme we only test for coupling when the
processes are close, specifically, when |X(1) — X(2)| < 2.50h%/? and \V(l) — V(2)| < 2.50h1/2.

In this simulation, we choose ¢ = 0.5 and truncation time 7" = 40. The time step size
is h = 0.001. Averaged from eight long trajectories with length 4 x 10%, we find the error
dy (7P, 7PT) < 0.0111313. We choose the domain Q = [-3, 3]2x[—6, 6]2 for the coordinates
(z1,22,v1,v2). GPD fitting used 20000 pairs of initial values and 1000 trajectories for each
pair of initial value giving ag = 0.5369. See Figure 3, top right, for a comparison of the
cumulative distribution function of the GPD fitting. This gives an upper bound

dy (7, #) < 0.02403.

It is not easy to numerically estimate the distance between 7w and 7 as they are probability
measures in R, Instead, we project them to the X-plane and compare the projected prob-
ability density functions. Note that the difference between two projected probability density
functions is smaller than that of 7 and 7. In Figure 3, bottom left, we can see the difference
between P,7 and P,w, where P, is the projection operator to the X-plane. The approximate
numerical invariant measure 7 in Figure 3, bottom left, is obtained from 80 long trajectories,
each of which is integrated up to 7' = 107. The probability density function of # is computed
on a H12 x 512 grid.

Finally, as shown in Figure 3, bottom right, we compute the exponential tail of the coupling
time to obtain the slope v = —0.025979. Therefore, when T' = 40, (3.7) gives a rougher
estimate

dy (7, 7) = 0.01722.
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X-trajectory of Langevin equation GPD fitting
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Figure 3. Top left: A sample path of Langevin equation with length 100 (projected to X-plane). Top right:
Fitting GPD with v; = 1/(1 — r;). The fitting result is compared with the empirical cumulative distribution
function. Bottom left: Difference between 7 and m projected to X-plane. Bottom right: Ezxponential tail of
P[r. > t] versus t when initial values are uniformly sampled in Q x Q.

4.4. Lorenz 96 model. In this subsection we study a highly chaotic example. Consider
equation

(4.7) AX} = (X2 - xPHxP - x} + F + odwV,
AX2 = (X} — XP)X} = X2+ F + cdW?,

AX] = (X[ = XI X - X+ F4odW?, i=3,...,D—1,

AxP = (x} - xP)xP1 - xP + F 4+ caw?,
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where the forcing term F' is usually chosen to be 8. When D = 4, the system has a large
periodic orbit. It demonstrates chaotic dynamics when D > 5 [27]. See Figure 4, top left, for
the trajectory of the first three variables as an example.

In our simulations, we use the Euler—-Mayurama scheme with step size h = 0.0001 to
simulate numerical trajectories Xﬁ Model parameters are ¢ = 3 and F' = 8. The time span
is chosen to be T' = 3. When D = 4, in Algorithm 1, we run eight long trajectories with
length 3 x 10° each to compare the difference between Xéi and X%h The simulation gives an
upper bound

du (WPT,WPT) < 0.144864 .

Lorenz trajectory ) GPD fitting
= Empirical CDF
10 — GPD fitting
5
0
0 0.2 0.4 0.6 0.8

X

4D Lorenz, slope = -0.23305

5D Lorenz, slope = -0.12601

0 . 0 _
10
10 —P[r_>1 —Plr_>1]
—linear fit —linear fit
— 1072 — 1072
N N
o o
o o 4
107 107
1076 : : : : 107 : : : :
0 10 20 30 40 50 0 20 40 60 80
t t

Figure 4. Top left: A plot of the first three variables of the limit cycle. Top right: GPD fitting of
{1/(1 = 7:)}228% and a comparison with the empirical cumulative distribution function. Bottom: Exponential
tail of P[r. > t] versus t when initial values are uniformly sampled in Q x Q. Left: 4D Lorenz 96 system. Right:
5D Lorenz 96 system.
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Although we have chosen a small time step size h, this upper bound is still relatively large. The
error gets even larger when D = 5 is used, because the deterministic dynamics is intensively
chaotic. The output of Algorithm 1 is 0.11946 for h = 0.00001 and 0.431059 for A = 0.0001.

Then we run Algorithm 2 for D = 4 to get the contraction rate of PT for T = 3. Q is
chosen to be the 4D box [—16, 19]* because when running Algorithm 1, no trajectory has ever
been outside of this box. The number of initial values (x;,y;) is 20000. We run 1000 pairs of
trajectories from each initial points to get P[r. > T']. This gives

Po g [re > T] _ dw(8s, P, 8, P")
d(wi,yi) d(i, i)

for ¢« = 1,...,20000. The GPD fitting gives ag = 0.7302. See Figure 4, top right, for the
fitting result. Combine the output of two algorithms, we have the bound

r; =

dw(m, 7) < 0.5369 .

When D =5 and h = 1 x 10~°, the computational cost of Algorithm 2 becomes very high
due to extremely small time step size. Instead, we compute exponential tails of the coupling
time for D =4 and D = 5 with A = 0.0001. The result is demonstrated in Figure 5, bottom.
We can see that when D = 5, we have an exponential tail v = 0.12601. Therefore, if T'= 3 is
unchanged, we have (1 —e™7)~! = 3.1767. We conclude that when D = 5, the 1-Wasserstein
distance between 7 and # is unacceptably large even if h = 1 x 1075, This is mainly caused by
very large finite time error. In order to approximate 7 effectively, high order approximation
of (4.7) is necessary.

4.5. Stochastically coupled Fitzhugh—Nagumo oscillator with mean-field interaction.
We consider here a high dimensional example, a stochastically coupled Fitzhugh—Nagumo
oscillator. The Fitzhugh—Nagumo model is a nonlinear model that models the periodic change
of membrane potential of a spiking neuron under external stimulation. The model is a 2D
system,

1
(48) ,U,d’LL = (’LL — §u3 — 1}) dt + \/ﬁUth,
dv = (u+ a)dt + cdWy,

where u is the membrane potential, and v is a recovery variable.

When a = 1.05, the deterministic system admits a stable fixed point with a small basin
of attraction [12]. A suitable random perturbation can drive this system away from the basin
of attraction and trigger limit cycles intermittently.

In this section we consider N coupled equations (4.8) with both nearest-neighbor interac-
tion and mean-field interaction. Let v = ,/uv be the new recovery variable. We have
(4.9) du; = (1u — iu3 — iv +— il “ (i1 + w1 — 2u;) + E(ﬂ — uz)> dt + idW(22 b,

po 3p Vi p @ Vi

dv; = (fu+f> dt+\rth( g
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trajectory of 4D FHN model

3 —neuron 1
——neuron 2 2
5 2 |
E p l 1
21
5 | ‘
Q
2ot I || 0
: l
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£ Rt L | .
£ | ‘ | | N | ‘ ! {J
2 l ,‘ |
I -2
-3 . . . . .
0 5 10 15 20 25 30 10 20 30 40
time neuron ID
’ GPD fitting 100 4D FHN, slope = -0.5216 80D FHN, slope = -0.31455
— —FPlr_>1] | 10° —Plr_>1]|
—Emplrl.CE:ll CDF —— linear fit — linear fit
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Figure 5. Top: Dynamics of the Fitzhugh—-Nagumo model. Left: Trajectory of membrane potential of
two neurons evolving along (4.9) with N = 2 and other parameters specified in this paper. Right: Snapshots
of membrane potential of 40 neurons evolving along (4.9) with N = 40 and other parameters specified in this
paper. Bottom left: GPD fitting of {1/(1—7:)}i2% and a comparison with the empirical cumulative distribution
function. Bottom middle: Exponential tail of P[t. > t] versust for (4.9) with N = 2. Bottom right: Exponential
tail of Pltc > t] versus t for (4.9) with N = 40.

fori=1,..., N, where Wt(l), cee Wt(2N) are independent Wiener processes, d,, is the neareast-
neighbor coupling strength, w is the mean-field coupling strength, and

is the mean membrane potential. In our simulations, we let u_; = uy and uyy1 = u;. In
other words, N neurons are connected as a ring.

The parameters we choose are d, = 0.03 and w = 0.3. In addition we have ¢ = 0.6.
Activities of neurons are weakly coupled under this parameter set. See Figure 5, top left,
for the dynamics of this system. In particular, from Figure 5, top right, we can see that
nearest-neighbor neurons tend to spike together. However, the global dynamics is only weakly
synchronized. The dimensions of the system in our study are chosen to be N = 2 and N = 40,
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corresponding to SDEs in R* and R®. The numerical scheme in our simulation is an Euler—
Maruyama scheme with h = 0.0005. The finite time span is T = 3 for both cases.

We first run Algorithms 1 and 2 for (4.9) with N = 2. In Algorithm 1, we run eight long
trajectories up to 3 x 10°. The simulation gives an upper bound

dy (7 PT, 7 PT) < 0.0105652

for T = 3. Then we run Algorithm 2 for Q = [~6, 6]*N to get the contraction rate of PT.
The number of initial values is 40000. This gives 40000 coupling probabilities r1, ..., T40000-
Fitting these numbers with GPD gives ag = 0.5271. See the result in Figure 5, bottom left.
Combining the output of two algorithms, we have

dy (7, 7) < 0.02234.

Hence the invariant probability measure simulated by running the Euler-Maruyama scheme is
trustworthy in spite of the presence of slow-fast dynamics. In addition, we compute the tail of
coupling time for N = 2, which is demonstrated in Figure 5, bottom middle. The exponential
tail has a slope v = 0.5216. Therefore, (3.7) gives an estimate

d(r, %) ~ 0.01336 .

When N = 40, we still run Algorithm 1 with eight long trajectories up to time 3 x 10°.
This gives us an estimate
dy(mPT 7 PT) < 0.0443737

for T' = 3. However, Algorithm 2 becomes expensive for N = 40. Instead we compute the
exponential of coupling time to get a rough estimate. The exponential tail of coupling time is
demonstrated in Figure 5, bottom right. We have an exponential tail with slope v = 0.31455.
Therefore, (3.7) gives a rough estimate

dy (7, 7) ~ 0.07265.

Therefore, we conclude that 7 is an acceptable approximation of = when N = 40.

5. Conclusion. In this paper we provide a coupling-based approach to quantitatively
estimate the distance between the invariant probability measure 7 of an SDE and that of its
numerical scheme, denoted by 7. The key idea is that the distance d(m, 7) can be bounded by
€(1—a)™L, where € is the finite time truncation error over the time interval [0, 7], and « is the
rate of contraction of PT, the time-T" transition kernel of the numerical scheme for the SDE.
The finite time truncation error comes from extrapolation analysis, and we use a coupling
method to estimate «. Depending on the practical requirement, we provide one algorithm
for computing a quantitative upper bound of d(w,7) and an efficient algorithm for a “rough
estimate” of d(m, ). The performance of these two algorithms is tested with several numerical
examples. Our approach can be extended to other stochastic processes, such as SDEs with
random switching and applications related to Hamiltonian Monte Carlo [7, 36].

Essentially, the distance between two invariant probability measure studied in this paper
is a sensitivity analysis problem. We study the robustness of 7 against a small change of
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the infinitesimal generator of an SDE caused by a time discretization. In practice, the small
change of the infinitesimal generator does not have to come from a discretization. Therefore,
our method is applicable to a large class of sensitivity analysis problems. For example, 7
could be the invariant probability measure of the original SDE subject to a small parameter
change. The finite time truncation error can be replaced with the perturbation, and the speed
of convergence can still be estimated by the coupling method.

This paper mainly estimates 1-Wasserstein distance between m and 7. However, the
coupling method can also be used to estimate the other type of distances, such as the total
variation distance. In addition, in many cases, we are actually more interested in the error
of the expectation of a certain observable when integrating with respect to 7 versus w. We
choose 1-Wasserstein distance mainly because it is more convenient to estimate the finite
time truncation error in 1-Wasserstein distance. In fact, there is only a small literature about
estimating finite time truncation error in the total variation norm. The difficulty of estimating
finite time truncation error in total variation distance is partially solved if the grid-based SDE
solver introduced in [8] is used. It is much easier to count samples on grids than in continuous
state space. In fact, we find that this grid-based SDE solver is more compatible with both
the Fokker—Planck solver in [32, 13] and the sample quality checking algorithm studied in this
paper. In the future, we will write a separate paper to discuss the application of this sample
quality checking algorithm to this grid-based SDE solver.

REFERENCES

[1] C. ANDRIEU, N. DE FREITAS, A. DOUCET, AND M. I. JORDAN, An introduction to memce for machine
learning, Machine Learning, 50 (2003), pp. 5-43.

[2] D. BAKRY AND M. EMERY, Diffusions hypercontractives, in Séminaire de Probabilités XIX 1983/84,
Springer, New York, 1985, pp. 177-206.

[3] T. G. BaLl, The generalized extreme value distribution, Econom. Lett., 79 (2003), pp. 423-427.

[4] A. BALKEMA AND L. DE HAAN, Residual life time at great age, Ann. Probab., 2 (1974), pp. 792-804.

[5] V. BALLY AND D. TALAY, The law of the euler scheme for stochastic differential equations, Probab.
Theory Related Fields, 104 (1996), pp. 43-60.

[6] V. BALLY AND D. TALAY, The law of the Euler scheme for stochastic differential equations: II. Conver-
gence rate of the density, Monte Carlo Methods Appl., 2 (1996), pp. 93-128.

[7] N. Bou-RABEE, A. EBERLE, AND R. ZIMMER, Coupling and Convergence for Hamiltonian Monte Carlo,

preprint, https://arxiv.org/abs/1805.00452, 2018.
[8] N. Bou-RABEE AND E. VANDEN-ELNDEN, Continuous-Time Random Walks for the Numerical Solution
of Stochastic Differential Equations, Mem. Amer. Math. Soc. 256, AMS, Providence, RI, 2018.
[9] E. CASTILLO AND A. S. HADI, Fitting the generalized pareto distribution to data, J. Amer. Statist. Assoc.,
92 (1997), pp. 1609-1620.
[10] B. CHARBONNEAU, Y. SVYRYDOV, AND P. F. TUPPER, Weak convergence in the Prokhorov metric of
methods for stochastic differential equations, IMA J. Numer. Anal., 30 (2010), pp. 579-594.
[11] C. CHEN, J. HONG, AND X. WANG, Approzimation of invariant measure for damped stochastic nonlinear
schrédinger equation via an ergodic numerical scheme, Potent. Anal., 46 (2017), pp. 323-367.
N. CHEN, A. J. MAJDA, AND X. T. TONG, Spatial Localization for Nonlinear Dynamical Stochastic
Models for Ezcitable Media, preprint, https://arxiv.org/abs/1901.07318, 2019.
[13] M. DoBsoN, Y. L1, AND J. ZHAL, An Efficient Data-Driven Solver for Fokker-Planck Equations: Algo-
rithm and Analysis, https://arxiv.org/abs/1906.02600, 2019.
[14] C. R. DOERING, K. V. SARGSYAN, AND P. SMEREKA, A numerical method for some stochastic differential
equations with multiplicative noise, Phys. Lett. A, 344 (2005), pp. 149-155.
[15] A. EBERLE, Reflection coupling and wasserstein contractivity without convezity, C. R. Math., 349 (2011),
pp. 1101-1104.

(12]

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.


https://arxiv.org/abs/1805.00452
https://arxiv.org/abs/1901.07318
https://arxiv.org/abs/1906.02600

Downloaded 07/30/21 to 128.119.168.112. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

ESTIMATION OF SAMPLE QUALITY FOR SDE 161

[16] A

(17]

(18]

(19]

20]

(21]
(22]
23]
(24]
(25]
(26]

27]
(28]

29]
(30]
(31]
32]
(33]

(34]
(35]

(36]
37]
(38]

39]
(40]

(41]

[42]
(43]

. EBERLE, A. GUILLIN, AND R. ZIMMER, Couplings and quantitative contraction rates for langevin
dynamics, Ann. Probab., 47 (2019), pp. 1982-2010.

M. I. FREIDLIN AND A. D. WENTZELL, Random perturbations, in Random Perturbations of Dynamical

Systems, Springer, New York, 1998, pp. 15-43.

M. GELBRICH AND S. T. RACHEV, Discretization for stochastic differential equations, Ip Wasserstein

metrics, and econometrical models, in Distributions with Fixed Marginals and Related Topics, Lecture
Notes Monograph Ser. 28, Institute of Mathematical Statistics, 1996, pp. 97-119.

M. HAIRER, Convergence of Markov Processes, Lecture Notes, University of Warwick, 2010, Available at

http://hairer.org/notes/Convergence.pdf.

M. HAIRER AND J. C. MATTINGLY, Yet another look at Harris ergodic theorem for Markov chains, in

E.

Seminar on Stochastic Analysis, Random Fields and Applications VI, Progr. Probab. 63, Springer,
2011, pp. 109-117.

P. Hsu anD K.-T. STURM, Mazimal coupling of Euclidean Brownian motions, Commun. Math. Stat.,
1 (2013), pp. 93-104.

W. HuanGg, M. Ji, Z. L1u, AND Y. Y1, Steady states of Fokker-Planck equations: 1. Existence, J. Dynam.

Differential Equations, 27 (2015), pp. 721-742.

W. Huanag, M. J1, Z. Liu, AND Y. Y1, Concentration and limit behaviors of stationary measures, Phys.

D, 369 (2018), pp. 1-17.
. E. JAacoB, J. O'LEARY, AND Y. F. ATCHADE, Unbiased Markov Chain Monte Carlo with Couplings,
preprint, https://arxiv.org/abs/1708.03625, 2017.

. E. JoHNDROW AND J. C. MATTINGLY, Error Bounds for Approzimations of Markov Chains Used in

Bayesian Sampling, preprint, https://arxiv.org/abs/1711.05382 2017.

. E. JOHNSON, A coupling-regeneration scheme for diagnosing convergence in Markov chain Monte Carlo
algorithms, J. Amer. Statist. Assoc., 93 (1998), pp. 238-248.

. KariMI AND M. R. PAuL, Eztensive chaos in the Lorenz-96 model, Chaos, 20 (2010), 043105.

. KHASMINSKII, Stochastic Stability of Differential Equations, Stoch. Model. Appl. Probab. 66, Springer,
New York, 2011.

. E. KLOEDEN AND E. PLATEN, Numerical Solution of Stochastic Differential Equations, Stoch. Model.
Appl. Probab. 23, Springer, New York, 2013.

. LEIMKUHLER AND C. MATTHEWS, Rational Construction of Stochastic Numerical Methods for Molec-
ular Sampling, Appl. Math. Res. Express AMRX, 2013 (2012), pp. 34-56.

. LELIEVRE AND G. STOLTZ, Partial differential equations and stochastic methods in molecular dynamics,
Acta Numer., 25 (2016), pp. 681-880.

. L1, A data-driven method for the steady state of randomly perturbed dynamics, Commun. Math. Sci.,
17 (2019), pp. 1045-1059.

. LI AND Y. Y1, Systematic measures of biological networks I: Invariant measures and entropy, Commun.
Pure Appl. Math., 69 (2016), pp. 1777-1811.

. LINDVALL, Lectures on the Coupling Method, Courier Corporation, North Chelmsford, MA, 2002.

. LINDVALL AND L. C. G. ROGERS, Coupling of multidimensional diffusions by reflection, Ann. Probab.,
14 (1986), pp. 860-872.

. MAo AND C. YUAN, Stochastic Differential Equations with Markovian Switching, Imperial College
Press, London, 2006.

. C. MATTINGLY, A. M. STUART, AND D. J. HicHAM, Ergodicity for SDES and approzimations: Locally

Lipschitz vector fields and degenerate noise, Stoch. Process. Appl., 101 (2002), pp. 185-232.

. C. MATTINGLY, A. M. STUART, AND M. V. TRETYAKOV, Convergence of numerical time-averaging

and stationary measures via Poisson equations, STAM J. Numer. Anal., 48 (2010), pp. 552-577.
P. MEYN AND R. L. TWEEDIE, Markov Chains and Stochastic Stability, Springer, New York, 2012.
. N. MiLSTEIN AND M. V. TRETYAKOV, Computing ergodic limits for Langevin equations, Phys. D, 229
(2007), pp. 81-95.
. Y. MITROPHANOV, Sensitivity and convergence of uniformly ergodic Markov chains, J. Appl. Probab.,
42 (2005), pp. 1003-1014.
. MUFA, Estimation of spectral gap for Markov chains, Acta Math. Sin. New Ser., 12 (1996), pp. 337-360.
L. NGUYEN AND G. YIN, Pathwise convergence rate for numerical solutions of stochastic differential
equations, IMA J. Numer. Anal., 32 (2012), pp. 701-723.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.


http://hairer.org/notes/Convergence.pdf
https://arxiv.org/abs/1708.03625
https://arxiv.org/abs/1711.05382

Downloaded 07/30/21 to 128.119.168.112. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

162 MATTHEW DOBSON, YAO LI, AND JIAYU ZHAI

[44] J. PickaNDs 111, Statistical inference using extreme order statistics, Ann. Statist., 3 (1975), pp. 119-131.

[45] G. O. ROBERTS, AND R. L. TWEEDIE, Ezponential convergence of Langevin distributions and their
discrete approzimations, Bernoulli, 2 (1996), pp. 341-363.

[46] D. RUDOLF, AND N. SCHWEIZER, Perturbation theory for Markov chains via Wasserstein distance,
Bernoulli, 24 (2018), pp. 2610-2639.

[47] D. TALAY, Second-order discretization schemes of stochastic differential systems for the computation of
the invariant law, Stochastics, 29 (1990), pp. 13-36.

[48] D. TALAY AND L. TUBARO, Ezpansion of the global error for numerical schemes solving stochastic dif-
ferential equations, Stoch. Anal. Appl., 8 (1990), pp. 483-5009.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



	Introduction
	Probability preliminary
	Coupling
	Wasserstein distance and total variation distance
	Coupling lemma
	Stochastic differential equations
	Numerical SDE
	Extreme value theory

	Description of algorithm
	Decomposition of error terms
	Estimator of error terms
	A fast estimator

	Numerical examples
	Ring density
	Double well potential
	Degenerate diffusion
	Lorenz 96 model
	Stochastically coupled Fitzhugh–Nagumo oscillator with mean-field interaction

	Conclusion

