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Abstract
This paper investigates online algorithms for smooth time-varying optimization prob-
lems, focusing first onmethodswith constant step-size,momentum, and extrapolation-
length. Assuming strong convexity, precise results for the tracking iterate error (the
limit supremum of the norm of the difference between the optimal solution and the
iterates) for online gradient descent are derived. The paper then considers a general
first-order framework, where a universal lower bound on the tracking iterate error
is established. Furthermore, a method using “long-steps” is proposed and shown to
achieve the lower bound up to a fixed constant. This method is then compared with
online gradient descent for specific examples. Finally, the paper analyzes the effect
of regularization when the cost is not strongly convex. With regularization, it is pos-
sible to achieve a non-regret bound. The paper ends by testing the accelerated and
regularized methods on synthetic time-varying least-squares and logistic regression
problems, respectively.
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1 Introduction

Modern optimization applications have increased in scale and complexity [16], and
furthermore, some applications require solutions to a series of problems with low
latency. For example, in contrast to legacy power distribution systems that were built
for constant and unidirectional flow,modern power systems that include solar power at
the residential nodes must incorporate variable and bidirectional flow. Thus, in order
to preserve efficiency, control decisions, solved via optimization, need to be made
frequently, at the time scale of changing renewable generation and non-controllable
loads (e.g., seconds). Making the problem even harder is that the problem must be
solved for a greater number of control points, and so it takes longer to find a suitable
solution. In this example, and many others, batch algorithms take longer to find a
suitable solution than is allowed, and so we have to abandon them in favor of online
algorithms. Motivated by applications requiring a time-varying framework, such as
power systems [17,45], transportation systems [11], and communication networks
[14], this paper evaluates such online algorithms.

In particular, we consider online first-order algorithms. If it takes time h > 0
to make one gradient call (or one gradient call and one evaluation of the proximal
operator), then we encode this into the time-varying problem by discretizing the cost
function with respect to h, leading to a sequence of cost functions. The goal of an
online algorithm is to track the minimum of this sequence, taking only one step at
each time.

In the presence of strong convexity, upper bounds for online gradient descent have
been proved in, e.g., [8,44]. For completeness, we include such an upper bound in
Theorem 3.1. Furthermore, for the first time it is established (Theorem 3.2) that this
is a tight bound. Beyond online gradient descent, there are dynamic regret bounds for
online accelerated methods, but these are not shown to be optimal [50]. This paper
goes further. First, Theorem 4.1 proves a lower bound for online first-order methods
in general. Then, we define a method that we call online long-step Nesterov’s method,
and prove a proportional upper bound for it in Theorem 4.2. In the absence of strong
convexity, we show, in Theorem 5.1, that regularizing online gradient descent leads
to a useful bound that is not in terms of the regret. Finally, this paper demonstrates
the performance of the algorithms by applying them to synthetic time-varying least
squares and logistic regression problems.

The rest of the paper is organized as follows. Section 2 provides all the necessary
preliminaries. Section 3 considers online gradient descent, online Polyak’s method,
and online Nesterov’s method. Section 4 considers the full class of online first-order
methods, including online long-step Nesterov’s method. Section 5 details the results
for online regularized gradient descent. Section 6 demonstrates the performance of
the algorithms on some numerical examples. Section 7 concludes the paper.

2 Preliminaries

This section reviews useful results from convex analysis [6,7,12,13,32,33], and intro-
duces key definitions that will be used throughout the paper. The paper considers
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functions on a Hilbert space H with corresponding norm ‖ · ‖. We assume all func-
tions, ft : H → R, are proper, lower semicontinuous, convex, and strongly smooth;
t ∈ N ∪ {0} denotes the time index [16,29,37,43]. The discretized time-varying opti-
mization problem of interest is the sequence of convex problems (one for each t):

min
x∈H

ft (x) , t ∈ N ∪ {0} (1)

along with a time-varying minimizer set. In particular, assume that the minimizer
set, denoted as X�

t , is nonempty for each t . Let x�
t denote an element of X�

t and
f �
t = ft (x�

t ). We denote the set of sequences of L-strongly smooth functions by
S ′(L). For function sequences that are additionally μ-strongly convex, X�

t contains
only one point; therefore, we can measure the temporal variability of the optimal
solution trajectory of (1) with the sequence

σt := ‖x�
t+1 − x�

t ‖, t ∈ N ∪ {0}.

We define S(κ−1, L, σ ), where κ is the condition number, as the set of L-strongly
smooth, κ−1L-strongly convex functions sequences with σt ≤ σ for all t . For both
S ′(L) and S(κ−1, L, σ ), the Hilbert space, along with its dimension, is left implicit
since the results are independent of it.

Throughout the paper, we will consider various measures of optimality [8,10,16,
21,23,29,37,43,49]: the iterate error ‖xt − x�

t ‖, the function error ft (xt )− f �
t , and the

gradient error ‖∇ ft (xt )‖. For functions that are not strongly convex, the iterate error
yields the strongest results, while the gradient error is the weakest. That is,

‖∇ ft (x)‖ ≤ L‖x − x�
t ‖, (2)

ft (x) − f �
t ≤ L

2
‖x − x�

t ‖2, (3)

and ‖∇ ft (x)‖2 ≤ 2L
(
ft (x) − f �

t

)
(4)

where the first two inequalities follow from standard arguments in convex analysis,
and the third inequality follows by comparing a point and a gradient step from it in
the definition of strong smoothness [42, Sec. 12.1.3]. For functions that are strongly
convex, bounds in the opposite directions can be found.

Due to the temporal variability, we cannot expect any of the error sequences to
converge to zero in general. Thus, we will characterize the performance of online
algorithms via bounds on the limit supremum of the errors, which we term “tracking”
error, rather than bounds on the convergence rate (to the tracking error ball).

Note that for S ′(L), the regret literature uses the dynamic regret, RegT :=∑T
t=0 ft (xt )− f �

t , as a measure of optimality [10,21,23,49]. The path variation, func-
tion variation, and gradient variation—respectively,

V p
T = max

{x�
t ∈X�

t }Tt=0

T∑

t=1

‖x�
t − x�

t−1‖,
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V f
T =

T∑

t=1

sup
x

| ft (x) − ft−1(x)|,

and V g
T =

T∑

t=1

sup
x

‖∇ ft (x) − ∇ ft−1(x)‖

—are used to bound the dynamic regret. On the other hand, our approach to S ′(L)

is inspired by regularization reduction [1]. Through regularization, we are able to
bound the tracking gradient error via the (σt ) corresponding to the regularized prob-
lem. But, there are a couple of reasons why our bound cannot be compared with
the bounds in the regret literature. First, it is possible for RegT /(T + 1) to be
bounded while the function error has a subsequence going to infinity. For example,
let (Δt )t∈N∪{0} = (1, 0, 2, 0, 0, 3, 0, 0, 0, . . .). Then 1

T+1

∑T
t=0 Δt ≤ 1 even though

there is a subsequence of (Δt ) that goes to infinity. Second, in order for the function
variation or gradient variation to be finite, the constraint set must be compact. Our
bound only requires that the optimal solution trajectory lie in a compact set.

In this paper, we consider three general algorithms: ALG(α, β, η) presented in
Sect. 3, online long-step Nesterov’s method (OLNM(T )) presented in Sect. 4, and
online regularized gradient descent (ORGD(δ, xc)), presented in Sect. 5. ALG(α, β, η)

encompasses methods such as online gradient descent, online Polyak’s method (also
known as the online heavy ball method), and online Nesterov’s method as special
cases (see Table 1).

The proposed OLNM is motivated by the following observation: suppose that the
optimizer has access to all the previous functions; dependingon the temporal variability
of the problem, the question we pose is whether it is better to use the same function for
some number of iterations before switching to a new one, or utilize a new function at
each iteration. This question is relevant especially in the case where “observing” a new
function may incur a cost (for example, in sensor networks, where acquisition of new
datamay be costly from a battery and data transmission standpoint).We call the former
idea “long-steps,” drawing an analogy to interior-pointmethods [34, Sec. 14], [12, Sec.
11]. Specifically, we pause at a function for some number of iterations, and we apply
a first-order algorithm with the optimal coefficients for the number of iterations, in the
sense of [20,25,46]. Thus, short-steps are online gradient steps. Restarting Nesterov’s
method has been shown to be optimal for strongly convex functions in, e.g. [35], [2,
App. D]. It turns out that the optimal restart count as a long-step length is optimal for
the strongly convex time-varying problem.

On the other hand, the literature on batch algorithms with inexact gradient calls
has shown that accelerated methods accumulate errors for some non-strongly con-
vex functions [40, Prop. 2], [18, Thm. 7], [4,9,48]. This suggests that there may be
some non-strongly convex function sequences such that all online accelerated meth-
ods perform worse than online gradient descent. On the other hand, only averaged
function error bounds exist for online gradient descent. We get around this via reg-
ularization; in particular, we balance the error introduced by the regularization term
with a smaller tracking error achieved by the regularized algorithm. This allows us to
derive a non-averaged error bound for ORGD.
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Table 1 Special cases of ALG(α, β, η) for ( ft ) ∈ S(κ−1, L, σ ) where μ = L/κ

Form of ALG(α, β, η) Typical parameter choice Name

ALG(α, 0, 0) 0 < α < 2
L Online gradient descent

ALG(α, β, 0) α = 4(√
L+√

μ
)2 , β =

(√
L−√

μ√
L+√

μ

)2
Online Polyak’s method [36]

ALG(α, β, β) α = 1/L , β = η =
√
L−√

μ√
L+√

μ
Online Nesterov’s method [32]

While thepaper considers strongly smooth functions for simplicity of exposition,we
note how to extend results to the composite case (where the cost function is the sum of
f and a possibly nondifferentiable function with computable proximal operator, such
as an indicator function encoding constraints or an 
1 penalty). We leave the analysis
for Banach spaces as a future direction. See [47, Sec. 3.1] for an excellent treatment
of acceleration for Banach spaces.

3 Simple First-Order Methods

In this section, we focus on the class of algorithms that, given x0, construct (xt ) via:

xt+1 = xt − α∇ ft (yt ) + β(xt − xt−1) (ALG(α, β, η))

yt+1 = xt+1 + η(xt+1 − xt ) (5)

which will be referred to as ALG(α, β, η), where α > 0 is the step-size, β is the
momentum, and η is the extrapolation-length. ALG(α, 0, 0) corresponds to online
gradient descent, ALG(α, β, 0) to an online version of Polyak’s method [36], and
ALG(α, β, β) to an online version of Nesterov’s method [32].

It should be pointed out that, while the analysis of online algorithms for time-
varying optimization such as ALG(α, β, η) share commonalities with online learning
[21–23], the two differ in their motivations and aspects of their implementations, as
noted in [16]. For example, in online learning frameworks, the step size may depend
on the time-horizon or, in the case of an infinite time-horizon, a doubling-trick may
be utilized [41, Sec. 2.3.1]. On the other hand, every step of an online algorithm
applied to a time-varying problem is essentially the first step at that time. Hence,
the parameters of the algorithm should be cyclical or depend on measurements of
the temporal variation. We only consider the former. The simplest subset of cyclical
algorithms is the set of algorithms with constant parameters, as in ALG.

In the following subsections, we give a tight bound on the performance of online
gradient descent and analyze ALG for two examples.
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3.1 Online Gradient Descent

When the function ft is strongly convex for all t , upper bounds on the tracking errors
for online gradient descent are available in the literature (see, e.g., [8,19,28,44]); these
results are tailored to the setting considered in this paper by the following theorem,
which is followed by two examples used to give intuition and prove tightness results.

Theorem 3.1 Suppose that ( ft ) ∈ S(κ−1, L, σ ) and let α ∈]0, 2/(μ + L)]. Then,
given x0, ALG(α, 0, 0) constructs a sequence (xt ) such that

lim sup
t→∞

‖xt − x�
t ‖ ≤ (αμ)−1σ (6)

where μ = κ−1L. In particular, the bound is minimized for α = 2
μ+L , in which case,

lim sup
t→∞

‖xt − x�
t ‖ ≤ κ + 1

2
σ. (7)

The proof follows by using the fact that the map I − α∇ ft is Lipschitz continuous
with parameter c = max{|1 − αμ|, |1 − αL|} [39, Sec. 5.1] and x�

t is a fixed point
of that map. The result straightforwardly extends to the composite case by using the
nonexpansiveness property of the proximal operator and a similar fixed point result.

3.2 Example: Translating Quadratic

For quadratic functions with constant positive definite matrix but minimizer moving
at constant speed on a straight line, the analysis of [27] can be extended, using the
Neumann series, to show that the set of (α, β, η) such that ALG has a finite worst-case
tracking iterate error is exactly the stability set of (α, β, η) in the batch setting (i.e., in
a setting where the cost does not change during the execution of the algorithm). As an
example, the stability set for online Nesterov’s method is given in [5, Prop. 3.6]. Thus,
in the online setting, one should consider only (α, β, η) that are in the batch stability
set.

As a particular example, let f (x) = 1
2 x

T Ax , with A = diag(μ, L, L, ...). Given
(α, β, η) and initialization x0, we want to construct ( ft ) ∈ S(μ/L, L, σ ) in such a
way that the iterates of ALG(α, β, η) trail behind (x�

t ) at a constant distance. Towards

this end, define ξ =
(
1−β
αμ

+ η
)

σ , which will end up being the trailing distance.

Let e denote the first canonical basis vector, and define ft = f (· − x�
t ) where x�

t =
x0 + (tσ + ξ)e. By induction, we will show that Δt := xt − x�

t = −ξe ∀t ∈ N∪ {0}.
The base case follows by construction. Now, assume the result holds for all t ′ ≤ t .
Then,

Δt+1 = (1 + β)xt − βxt−1 − x�
t+1 − α∇ ft

(
(1 + η)xt − ηxt−1

)

= (1 + β)Δt − βΔt−1 + (1 + β)(x�
t − x�

t+1) − β(x�
t−1 − x�

t+1)

− α∇ f
(
(1 + η)Δt − ηΔt−1 − η(x�

t−1 − x�
t )

)
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xt xt+1 x�
t

x�
t+1

σ ξ − σ σ
e axis

Fig. 1 Movement of iterates and minimizers

= −(1 + β)ξe + βξe − (1 + β)σe + 2βσe

− α∇ f (−(1 + η)ξe + ηξe + ησe)

= −ξe − (1 − β)σe − α∇ f (−ξe + ησe)

= −ξe + αμξe − (1 − β + αμη)σe

= −ξe

and so the result holds for all t by induction. Figure 1 shows how the iterates trail
behind the minimizers.
For online gradient descent, we have ξ = (αμ)−1σ ; this shows that the bound in
Theorem 3.1 is tight. We formalize this tightness result (which is a contribution of the
present paper) in Theorem 3.2.

Theorem 3.2 For all α ∈]0, 2/(μ + L)] and initialization x0, ∃( ft ) ∈ S(μ/L, L, σ )

such that ALG(α, 0, 0) constructs a sequence (xt ) with

lim sup
t→∞

‖xt − x�
t ‖ = (αμ)−1σ. (8)

For Polyak’s method, using the usual parameters, one gets ξ = √
κσ . On the other

hand, for Nesterov’s method one gets ξ = (
2
√

κ − 1
)
σ . Thus, when applied to this

example, the tracking iterate error scales with the square root of the condition number
for both of these methods. However, as we will see in the next example, this is not
always the case for these methods.

3.3 Example: Rotating Quadratic

Consider the function f utilized in the previous example, and consider rotating the
first two canonical basis directions every iteration. We can reduce the full problem to
one in R2. Define

ft (x) = 1

2
xT At x

A2t =
(
L 0
0 μ

)

A2t+1 =
(

μ 0
0 L

)

and note that ( ft ) ∈ S(μ/L, L, σ ) for all σ ≥ 0. Now, let (xt ) be the sequence
generated by ALG(α, β, η) given x0. Denote a+ = (1 + β) − (1 + η)αL , a− =
(1 + β) − (1 + η)αμ, b+ = −β + ηαL , and b− = −β + ηαμ. Then,
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x2t =
(
a− 0
0 a+

)
x2t−1 +

(
b− 0
0 b+

)
x2(t−1)

x2t+1 =
(
a+ 0
0 a−

)
x2t +

(
b+ 0
0 b−

)
x2t−1

=
(
a+a− + b+ 0

0 a+a− + b−

)
x2t−1 +

(
a+b− 0
0 a−b+

)
x2(t−1).

Define zt = [x2t ; x2t+1]. Then,

zt =

⎛

⎜⎜
⎝

b− 0 a− 0
0 b+ 0 a+

a+b− 0 a+a− + b+ 0
0 a−b+ 0 a+a− + b−

⎞

⎟⎟
⎠ zt−1

:= Czt−1

= Ct z0.

Thus, zt → z� = 0 precisely when ρ(C) < 1 (since ρ(C) = limt ‖Ct‖1/t ). It is easy
to see that C is similar to the block-diagonal matrix with D and E on the diagonal
blocks where

D =
(

b− a−
a+b− a+a− + b+

)
and E =

(
b+ a+

a−b+ a+a− + b−.

)

Furthermore, D and E have the same trace and determinant:

tr(D) = tr(E) = a+a− + b+ + b−
det(D) = det(E) = a+a−b− + b+b− − a+a−b− = b+b−.

Thus, ρ(C) = ρ(D) = ρ(E). Note that ρ(C) = 0 when α = 1
L and β = η = 0.

In fact, ALG(1/L, 0, 0) converges exactly in just two steps. Thus, online gradient
descent performs better than online Polyak’s method and online Nesterov’s method
for the rotating quadratic example. In fact, online Polyak’s method actually diverges.

For the usual parameters of Polyak’s method, ρ(C) = 6
(√

κ−1√
κ+1

)2
, which is bigger

than 1 precisely when κ >
(√

6+1√
6−1

)2 ≈ 5.7. We state this more formally in Theorem

3.3.

Theorem 3.3 For all κ ≥ 6, L > 0, σ ≥ 0, ∃( ft ) ∈ S(κ−1, L, σ ), such that online
Polyak’s method diverges (for any non-optimal initialization x0).

In the batch setting, decreasing the step-size increases robustness to noise [15,27].
Thus, it makes sense that in the online setting, decreasing the step-size leads to greater
stability. In other words, online Polyak’s method diverges because of its large step-
size. By reducing the stepsize to α = 1

L , then η ≤ β < 1 is sufficient to guarantee
ρ(C) < 1.

123



Journal of Optimization Theory and Applications (2021) 189:437–457 445

4 General First-Order Methods

In [30], Nemirovsky and Yudin proved lower bounds on the number of first-order
oracle calls necessary for ε-convergence in both the smooth and convex setting and
the smooth and strongly convex setting [30, Thm. 7.2.6]. Then, in [31], Nesterov
constructed a method that achieved the lower bound in the smooth and convex setting.
Hismethodhas amomentumparameter that goes to one as the iteration count increases.
By modifying the momentum sequence, it is possible to achieve the lower bound in
the smooth and strongly convex setting as well. This can be done by either setting the
momentumparameter to a particular constant, restarting the originalmethod every time
the iteration count reaches a particular number, or adaptively restarting the original
method [35].

Nesterov presents the lower bounds in Theorems 2.1.7 and 2.1.13 respec-
tively of [32]. These theorems involve some subtleties, which we now discuss.
First, Nesterov says that (xt ) comes from a first-order method if xt+1 − x0 ∈
span{∇ f (x0), ...,∇ f (xt )} for all t . This is the definition that we will generalize to the
time-varying setting. Second, the lower bounds do not hold for all t . The lower bound in
the smooth and convex setting only holds for t < 1

2 (d−1)where d is the dimension of
the space. In the smooth and strongly convex setting, Nesterov only proves the bound
for infinite-dimensional spaces. In fact, for finite-dimensional spaces, the lower bound
can only hold for t ≤ O(d) since the conjugate gradient method applied to quadratic
functions converges exactly in d iterations. In order to prove lower bounds that hold
for all t in finite-dimensional spaces, it is necessary to restrict to smaller classes of
methods. In particular, [3] excludes the conjugate gradient method by restricting to
methods with “stationary” update rules. Third, the lower bounds are based on explicit
adversarial functions. In particular, we will use the adversarial function that Nesterov
gives in [32, 2.1.13] to construct an adversarial sequence of functions in the time-
varying setting. Thus, our lower bound only holds for infinite-dimensional spaces. It
is an open problem whether the function sequence can be modified to give a lower
bound that holds for all t in finite-dimensional spaces or whether it is necessary to
restrict to smaller classes of methods.

We say that (xt ) comes from a first-order method if xt+1 − x0 ∈ span
{∇ fτ0(x0), ...,∇ fτt (xt )} where, for each t , τt ∈ {0, ..., t}. More generally, we still
consider (xt ) to be from a first-order method if (xt ) is a simple auxiliary sequence of
some (yt ) that is more precisely first-order. Now, calling the most recent gradient at
each step of the algorithm, as ALG does, corresponds to τt = t for all t . While it is
possible for an algorithm to call an older gradient, it is not clear how this could be
helpful. In Sect. 4.2 will show that having τt = T �t/T � for all t makes it possible to
build up momentum in the online setting.

4.1 Universal Lower Bound

In Theorem 4.1 we give a generalization of Nesterov’s lower bound for the online
setting considered in this paper. In the proof, we omit certain details that can be found
in [32, Sec. 2.1.4].
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Theorem 4.1 Let H = 
2(N). For any x0, ∃( ft ) ∈ S(κ−1, L, σ ) such that, if (xt ) is
generated by an online first-order method starting at x0, then

‖xt − x�
t ‖ ≥

√
κ − 1

2
σ.

Proof First, set γ =
√

κ−1√
κ+1

and let c be the solution to γ c = σ

√
1+γ
1−γ

, namely c =
log

(
σ

√
1+γ
1−γ

)
/ log(γ ). Note that γ√

1−γ 2
=

√
κ−1
2 κ−1/4 =

√
κ−1
2

√
1−γ
1+γ

. Set μ =
κ−1L , define A as the symmetric tridiagonal operator on 
2(N)with 2’s on the diagonal
and −1’s on the sub-diagonal, and let a ∈ [μ, L]. Abusing notation to write the
operators as matrices, define

ft (x) = 1

2
xT

(
aIt 0
0 L−μ

4 A + μI

)
x − γ cxT

(
a1t

L−μ
4 e1

)
.

Then, ∇ ft (x) =
(
aIt 0
0 L−μ

4 A + μI

)
x − γ c

(
a1t

L−μ
4 e1

)

so x�
t (i) =

{
γ c i ≤ t

γ i−t+c i > t

and so ‖x�
t+1 − x�

t ‖2 = γ 2c 1 − γ

1 + γ
.

Thus, ( ft ) ∈ S(κ−1, L, σ ). Without loss of generality, assume that x0 = 0 since
shifting ( ft ) does not affect membership in S(κ−1, L, σ ). Then, xt (i) = 0 ∀i > t for
any first-order online algorithm. Thus,

‖xt − x�
t ‖ ≥

( ∞∑

i=t+1

γ 2(i−t+c)

)1/2

= γ c γ
√
1 − γ 2

=
√

κ − 1

2
γ c

√
1 − γ

1 + γ

=
√

κ − 1

2
σ.

��
Remark 4.1 If κ ≥ 5, then L−μ

4 ∈ [μ, L]. If we apply ALG(4/(L − μ), 0, 0) to the

online Nesterov functionwith a = L−μ
4 , then it is easy to see that ‖xt −x�

t ‖ =
√

κ−1
2 σ .

Thus, online gradient descent with an appropriately large step-size performs optimally
against the online Nesterov function.
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In the following subsection, we will construct an algorithm that performs optimally
up to a fixed constant against the full class S(κ−1, L, σ ); that is, it exhibits an upper
bound that is equal to the lower bound of Theorem 4.1 times a fixed constant.

4.2 Online Long-Step Nesterov’s Method

There is a conceptual difficulty when it comes to adapting accelerated methods to
the online setting. Informally, in batch optimization, “acceleration” refers to the fact
that accelerated methods converge faster than gradient descent. However, the goal in
the online optimization framework considered here is reduced tracking error, and not
necessarily faster convergence. As shown by the rotating quadratic example, tracking
and convergence actually behave differently. Fortunately, we can leverage the fast
convergence of Nesterov’s method towards reduced tracking error.

In this section, we present a long-step Nesterov’s method; the term “long-steps”
refers to the fact that the algorithm takes a certain number of steps using the same
stale function before catching up to the most recent function and repeating. For this
particular long-step Nesterov’s method, we are able to prove upper bounds on the
tracking error (on the other hand, no bounds for the online Nesterov’s method are yet
available, and are the subject of current efforts).

The specific sequence constructed by OLNM(T ) is defined in Algorithm 1.

Algorithm 1 OLNM(T )

Require: x0
1: y0 ← x0, z0 ← x0, a0 ← 1
2: for t = 1, 2, . . . do
3: zt+1 = yt − 1

L ∇ fT �t/T �(yt )
4: if T � | t + 1 then

5: at+1 = 1+
√
1+4a2t
2

6: yt+1 = zt+1 + at−1
at+1

(zt+1 − zt )

7: xt+1 = xt � so xt+1 = xt = xT �t/T �
8: else if T | t + 1 then
9: at+1 = 1
10: yt+1 = zt+1
11: xt+1 = zt+1
12: end if
13: end for

The method can be extended to the composite case by applying the proximal oper-
ator to the z iterates. Theorem 4.2 gives an upper bound on the tracking iterate error
of OLNM, using results from [7, Thm. 10.34].

Theorem 4.2 If ( ft ) ∈ S(κ−1, L, σ ), then, given x0, OLNM(T ) where T = c
√

κ for
c > 2 such that c

√
κ ∈ N, constructs a sequence (xt ) such that

lim sup
t→∞

‖xt − x�
t ‖ ≤ 2c(c − 1)

c − 2

√
κσ. (9)
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Proof First, via standard batch optimization bounds, we have

‖xkT − x�
(k−1)T ‖ ≤ 2

√
κ

T
‖x(k−1)T − x�

(k−1)T ‖.

Thus,

‖xkT − x�
kT ‖ ≤ 2

√
κ

T
‖x(k−1)T − x�

(k−1)T ‖ + Tσ

≤
(
2
√

κ

T

)k

‖x0 − x�
0‖ + Tσ

1 − 2
√

κ

T

=
(
2
√

κ

T

)k

‖x0 − x�
0‖ + T 2σ

T − 2
√

κ

and so

‖xt − x�
t ‖ = ‖xT �t/T � − x�

t ‖
≤ ‖xT �t/T � − x�

T �t/T �‖ + ‖x�
t − x�

T �t/T �‖

≤
(
2
√

κ

T

)�t/T �
‖x0 − x�

0‖ + T 2σ

T − 2
√

κ
+ Tσ.

Then, taking the limit supremum, we get

lim sup
t→∞

‖xt − x�
t ‖ ≤ T 2σ

T − 2
√

κ
+ Tσ

= 2Tσ
(
T − √

κ
)

T − 2
√

κ

= 2c(c − 1)

c − 2

√
κσ.

��
If we minimize the bound in Eq. (9) over c ∈ R, then we get c = 2 + √

2 with a
value of 2c(c − 1)/(c − 2) = 6 + 4

√
2 ≈ 11.66; this is in contrast with the batch

setting, where c = √
8. However, we have the extra restriction that c

√
κ ∈ N so, in

general, we will take T = �(2 + √
2)

√
κ�.

Note that the bound is asymptotically (as the condition number goes to infinity)
optimal (hence tight) up to the constant 4c(c − 1)/(c − 2). In particular, for κ ≥
(4c(c − 1)/(c − 2))2, the bound is better than the bound for online gradient descent.
However, these are bounds over a general class of functions. One question is how the
two methods fare against specific examples, as exemplified next.

As we noted in Remark 4.1, online gradient descent with an appropriately large
step-size performs optimally against the online Nesterov function. Even with a typi-
cal step-size, the tracking iterate error of online gradient descent still scales linearly
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Fig. 2 Algorithms applied to the online Nesterov function with L = 500, d = 1000, a = (L + μ)/2,
σ = 1, and T = �(2 + √

2)
√

κ�. a Evolution of the iterate error for the particular example μ = 1. b
Tracking iterate error for varying μ

with the square root of the condition number. Furthermore, while OLNM also scales
linearly with the square root of the condition number, online gradient descent has a
smaller constant. Figure 2a depicts the iterate error for algorithms applied to the online
Nesterov function with condition number equal to 500. Online gradient descent per-
forms the best, followed by online Nesterov’s method and OLNM. In fact, this can be
seen in the dependence on the condition number as well. Figure 2b shows the linear
dependence of the tracking iterate error on the square root of the condition number.
The constant for online gradient descent is 0.481, the constant for online Nesterov’s
method is 1.101, and the constant for OLNM is 2.491. Note that, despite OLNM having
a worse constant than online gradient descent, the former’s constant is still less than
its upper bound of 2c(c − 1)/(c − 2) ≈ 11.66.

For the rotating quadratic example, the minimizer is fixed, so OLNM has the same
convergence rate as Nesterov’s method does in the batch setting. However, with the
right step-size, online gradient descent can converge in just two steps! On the other
hand, for the translating quadratic example, since the tracking iterate error of online
gradient descent scales with κ , while the tracking iterate error of OLNM scales with√

κ ,OLNM outperforms online gradient descent for sufficiently high condition number.
In particular, Fig. 3a depicts the iterate error for algorithms applied to the translating
quadratic function with condition number equal to 500. Online Nesterov’s method
performs the best, followed by OLNM and online gradient descent. Figure 3b shows
the tracking iterate error for varying condition number for OLNM (online gradient
descent and online Nesterov’s method are left out since we analytically solved for their
tracking iterate error). The constant is 7.21. Note that this is larger than the constant
for OLNM applied to the online Nesterov function. While the online Nesterov function
is a universal adversary, the translating quadratic is more particularly adversarial for
OLNM because the minimizer is maximizing its distance away from the OLNM iterates
by moving in a straight line away from the old minimizer the OLNM iterates are
approaching. Also note that this is more than half of the upper bound, showing that
the upper bound is tight at least up to a constant less than two.
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Fig. 3 Algorithms applied to the translating quadratic function with d = 2, σ = 1, and T = �(2+√

2)
√

κ�.
a shows the evolution of the iterate error for L = 500 and μ = 1. b shows the tracking iterate error for
L = 1 and varying μ

5 Regularization

When the functions are convex, but not strongly convex, performancemetrics for online
first-order methods typically rely on dynamic regret bounds. The dynamic regret is the
averaged function error. We take a different approach, however, deriving a gradient
error bound via regularization. While gradient error bounds are weaker than function
error bounds, the benefit is that we bound the error, rather than the averaged error.

The main idea is that there is a trade-off between tracking error and regularization
error. Regularizing by any amount means that we can apply Theorem 3.1. In this case,
increasing the amount of regularization increases the regularization error while also
decreasing the tracking error. In the following, we provide a framework for balancing
these two errors.

Given x0, let online regularized gradient descent, ORGD(δ, xc), with δ > 0, con-
struct the sequence (xt ) via

xt+1 = xt − 2

L + 2δ
(∇ ft (xt ) + δ(xt − xc)). (ORGD(δ, xc))

It is easy to see that ORGD(δ, xc) is vanilla online gradient descent for the regularized
problem ft (·; δ, xc) = ft + δ

2‖ · −xc‖2. Since we don’t vary xc in the analysis, we
write ft (·; δ) for simplicity.

Now, in order to bound the algorithm error of ORGD, we need to bound the regu-
larization error. As with the algorithm error, we can measure the regularization error
in terms of the variable, the cost, or the gradient. Unfortunately, it is impossible,
without further assumptions, to bound the variable regularization error, ‖x� − x�

r ‖
where x�

r is the unique minimizer to the regularized problem [26,38]. For example, if
we regularize a constant function by any amount, then there are minimizers arbitrar-
ily far away from the regularized minimizer. However, if we assume the function
is coercive (‖x‖ → ∞ �⇒ f (x) → ∞), then we know the variable regu-
larization error is bounded. But, it is still impossible to bound it in terms of the
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strong smoothness constant. For example, assume that we are going to regularize by
adding δ

2‖ · ‖2. Then, for an arbitrary distance ξ , there exists an L-smooth function
such that the variable regularization error is greater than ξ . In particular, consider
f (x) = λ

2‖x − 2ξe‖2 where λ ≤ min{L, δ} and e is a unit vector. Then x�
r = λ

λ+δ
e

and so ‖x� − x�
r ‖ = δ

λ+δ
‖2ξe‖ ≥ ξ .

Fortunately, even without coercivity, it is possible to bound the gradient regular-
ization error [32, Thm. 2.2.7], which allows us to bound the tracking gradient error of
ORGD. However, we do have to make an additional assumption. Loosely, we have to
assume that the sequence of minimizer sets doesn’t “drift.” To make the assumption
more precise, we need some definitions.

First, let x�
t (δ) = argminx ft (x; δ) for δ > 0. We know the right-hand side is a

singleton by strong convexity. Furthermore, since ft is proper, closed, and convex,
∂ ft is maximally monotone, and so we can apply [6, Thm. 23.44], which tells us that
x�
t (·) is continuous and limδ→0 x�

t (δ) is the unique projection of xc onto the zero set of
∂ ft . Thus, we can define x�

t (0) = limδ→0 x�
t (δ). We also have that δ �→ ‖x�

t (δ)− xc‖
is monotonically decreasing (this is not hard to show and can be found in the proof of
[32, Thm. 2.2.7]). Let R(δ; xc) = supt∈N∪{0} ‖x�

t (δ) − xc‖ for all δ ≥ 0. Again, since
we do not vary xc in the analysis, we write R(δ) for simplicity. Note that R(·) is also
monotonically decreasing. Thus, if R(0) < ∞, then R(δ) < ∞ for all δ ≥ 0. We will
assume this is true:

R(0) < ∞. (bounded drift)

While this assumption precludes problems like the translating quadratic, it is realistic
when the problem is data-dependent. For machine learning problems it is common
to have normalized data and to be learning normalized weights. Then, the minimizer
will, in fact, lie in a bounded set.

Let σ(δ) = supt∈N ‖x�
t (δ) − x�

t−1(δ)‖ for δ ≥ 0. Note that σ(δ) is bounded above
by 2R(δ), via the triangle inequality, which in turn is bounded above by R(0) < ∞,
via the monotonicity of R(·).

Finally, consider the function h(δ) = σ(δ)
R(δ)

− 2
(

δ
L

)2
for δ ≥ 0. h(·) is continuous

since x�
t (·) is continuous and R(δ) > 0 for all δ ≥ 0 (unless xc = x�

t (0), which would
be the trivial case). Also, h(0) = σ(0)

R(0) > 0 and h(L) ≤ 0. Thus, via the Intermediate
Value Theorem, we have just proved the following lemma.

Lemma 5.1 If ( ft ) ∈ S ′(L) has bounded drift, then ∃ 0 < δ ≤ L s.t. δ = L
√

σ(δ)
2R(δ)

.

In Theorem 5.1, we derive a bound on the tracking gradient error in terms of σ(δ)

and R(δ). However, since σ(δ) and R(δ) both depend on δ, it is impossible, without
further information about the function sequence, tominimize the bound explicitly with
respect to δ. The δ in Lemma 5.1 corresponds to what the minimizing δ would be if
σ(δ) and R(δ) were constant.
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Theorem 5.1 If ( ft ) ∈ S ′(L) has bounded drift, then ∃ 0 < δ ≤ L such that, given
x0, ORGD(δ, xc) constructs a sequence (xt ) with

lim sup
t→∞

‖∇ ft (xt )‖ ≤ 2
√
2L

√
σ(δ)R(δ). (10)

Proof Let δ be as in Lemma 5.1. Observe,

0 = ∇ ft (x
�
t (δ); δ)

= ∇ ft (x
�
t (δ)) + δ(x�

t (δ) − xc)

so

‖∇ ft (x
�
t (δ))‖ = δ‖x�

t (δ) − xc‖.

Thus,

‖∇ ft (xt )‖ ≤ ‖∇ ft (x
�
t (δ))‖ + ‖∇ ft (xt ) − ∇ ft (x

�
t (δ))‖

≤ δ‖x�
t (δ) − xc‖ + L‖xt − x�

t (δ)‖
≤ δR(δ) + L‖xt − x�

t (δ)‖

so

lim sup
t→∞

‖∇ ft (xt )‖ ≤ δR(δ) + L(L + 2δ)σ (δ)

2δ

= L
√
2σ(δ)R(δ) + Lσ

≤ L
√
2σ(δ)R(δ) + L

√
2σ(δ)R(δ)

= 2
√
2L

√
σ(δ)R(δ).

��
Note that if σ(0) ≈ σ(δ) ≈ R(δ) ≈ R(0) then the bound in Eq. 10 is≈ 2

√
2LR(0),

which is of the same form but has worse constants than the bound for the algorithm
which abstains from tracking (i.e., ∀t xt = xc):

‖∇ ft (xt )‖ = ‖∇ ft (xc)‖
= ‖∇ ft (xc) − ∇ ft (x

�
t (0))‖

≤ L‖xc − x�
t (0)‖

≤ LR(0).

Conversely, if σ(δ) � R(δ), then δ is small so σ(0) ≈ σ(δ) and R(0) ≈ R(δ). In this

case, Eq. 10 becomes ≈ 2
√
2
√

σ(0)
R(0) LR(0) � LR(0). Thus, we can only guarantee

the usefulness of ORGD when σ(δ) � R(δ).
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6 Illustrative Numerical Examples

Our code is online at github.com/liammadden/time-varying-experiments. In this sec-
tion, we consider time-varying least-squares regression and time-varying logistic
regression. At each t ∈ N ∪ {0}, we are given an input matrix A(t) ∈ R

n×d , with
i-th row vector denoted by a(t)

i , and an n-dimensional output vector b(t), where each

(a(t)
i , b(t)

i ) corresponds to a single data point. For least-squares regression, b(t) ∈ R
n .

For logistic regression, b(t) ∈ {−1, 1}n . For simplicity, we assume the inputs are con-
stant across time, i.e. At = A for all t , while only the outputs change. This type of
time-variation fits applications with time-series data where the time-dependency is
not captured by any of the input features. For example, a problem may have a discrete
number of states that it switches between based on a hidden variable.

The cost function for least-squares regression is

ft (x) = 1

2

n∑

i=1

(
〈ai , x〉 − b(t)

i

)2

= 1

2
‖Ax − b(t)‖2

and for logistic regression is

ft (x) = 1

n

n∑

i=1

log
(
1 + exp(−b(t)

i 〈ai , x〉)
)

.

The least-squares cost function is strongly convex while the logistic cost function is
only strictly convex. However, it can be shown that gradient descent still achieves
linear convergence when applied to the logistic cost function [24].

A “weight vector,” x ∈ R
d , predicts an output, b, from an input, a. For least-squares

regression, b = 〈a, x〉. For logistic regression, b = sign(〈a, x〉); more precisely, x
predicts b = 1 with probability (1 + exp(−〈a, x〉))−1 and b = −1 with the remaining
probability. The minimizer, x�

t , of the respective objective function is the “optimal”
weight vector.

6.1 Least Squares Regression

For the least-squares regression we considered the case n = 20 and d = 5. We
generated A by defining its singular value decomposition. For its left and right-singular
vectors, we sampled two Haar distributed orthogonal matrices, U ∈ R

n×n and V ∈
R
d×d . We let its singular values be equally spaced from 1/

√
κ to 1. We generated bt

by varying x�
t via a randomwalk with σ = 1 and adding a low-level of Gaussian noise

(mean, 0; standard deviation, 10−3) to the corresponding outputs. We initialized x�
0 as

the vector of ones. For each κ , we ran the experiment 200 times and took the average
of the tracking errors.
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Fig. 4 Least-squares regression with random data matrix and random walk variation of the minimizer

For OLNM, we set T = �(2 + √
2)

√
κ�. However, instead of updating the x iterate

by the z iterate only every T iterations, we updated it every iteration. Doing so works
better in practice, though we lose the theoretical guarantees of Theorem 4.2. However,
the theory only requires that the x iterates do not move away from the minimizer that
the z iterates are converging to. Not updating the x iterates ensures they do not move
away, but it is too conservative in practice.

For all the algorithms, we initialized x0 = x�
0 so that we wouldn’t need a long

“burn-in” period while waiting for convergence to the tracking error.We computed the
tracking error as themaximum error over the 5th cycle of T . Figure 4 shows the results.
OLNMperformsbetter than online gradient descent, however, onlineNesterov’smethod
performs much better than both of the other methods, despite its lack of guarantees.

6.2 Logistic Regression with Streaming Data

For logistic regression we again considered the case n = 20 and d = 5. We generated
A in the same way as for least-squares regression, but with singular values drawn from
the uniformdistribution on (0,1) and then scaled to havemaximumsingular value equal
to 2

√
L (since the strong smoothness constant of the cost function is ‖A‖22/4). We

initialized bt from the Rademacher distribution and uniformly at random chose one
label to flip each time step.

A classic problem that logistic regression is used for is spam classification. The
problem is to predict whether an email is spam or not based on a list of features. Since
emails are received in a streaming fashion, this is a time-varying problem. Thus, when
an email first arrives, we may report that it is spam, but then later realize it is not,
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Fig. 5 Logistic regression with random data matrix and randomly flipping labels

or vice versa. Such an extension of spam classification can be incorporated into the
time-varying logistic regression framework.

We let xc be the zero vector. As a weight vector, xc predicts 1 or −1 with equal
probability. For each L , we approximated the solution to the fixed point equation

δ = L
√

E(σ (δ))
E(R(δ))

where the expectation is taken over A and the bt ’s. Figure 5a shows
how σ(δ) and R(δ) vary with L . The ratio between σ(δ) and R(δ) stays constant at
≈ 0.5.

We ran the experiment 200 times and took the average of the tracking errors. We
calculated the tracking error using windows of 100 iterations and stopping when the
maximum error over the last two windows was the same as over the last window.
Figure 5b shows the results. Online gradient descent (which lacks theoretical tracking
gradient error bounds) performs slightly better than ORGD and both outperform xc.
Thus, with only one label flipping every time step, it is still possible to track the
solution. However, if we sufficiently increased the number of labels that flip every
time step, then it would be better to just guess the labels, as xc does.

7 Conclusions

By categorizing classes of functions based on the minimizer variation, this paper was
able to generalize results frombatch optimization to the online setting. These results are
important for time-varying optimization, especially for applications in power systems,
transportation systems, and communication networks. We showed that fast conver-
gence does not necessarily lead to small tracking error. For example, online Polyak’s
method can diverge even when the minimizer variation is zero. On the other hand,
online gradient descent is guaranteed to have a tracking error that does not grow more
than linearly with the minimizer variation. We also gave a universal lower bound for
online first-order methods and showed that OLNM achieves it up to a constant factor. It
is a future research direction to consider more deeply the connection to the long-steps
of interior-point methods and see if a satisfactory criteria can be found for adaptively
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deciding when to long-step. Perhaps, this enquiry may eventually lead to error bounds
for online Nesterov’s method itself.
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