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Abstract
A probabilistic approach to compute the geometric convergence rate of a
stochastic process is introduced in this paper. The goal is to quantitatively com-
pute both the upper and lower bounds for rate of the exponential convergence
to the stationary distribution of a stochastic dynamical system. By applying
the coupling method, we derive an algorithm which does not rely on the dis-
cretization of the infinitesimal generator. In this way, our approach works well
for many high-dimensional examples. We apply this algorithm to the random
perturbations of both iterative maps and differential equations. We show that
the rate of geometric ergodicity of a random perturbed system can, to some
extent, reveal the degree of chaoticity of the underlying deterministic dynam-
ics. Various SDE models including the ones with degenerate noise or living on
the high-dimensional state space are also explored.
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1. Introduction

In this paper, we consider the stochastic processes arising from the random perturbations of
deterministic dynamical systems. The dynamics of such a stochastic process, say X = {Xt}, is
a combination of a random diffusion and a deterministic dynamics. The rate of the ergodicity
of X, i.e., the speed of convergence of the law of Xt to the invariant distribution, is a significant
quantity closely related to the spectral gap of the infinitesimal generator of X, especially when
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X is reversible. From an applied viewpoint, knowing the speed of convergence is very useful
to the sampling, uncertainty quantification, and sensitivity analysis [15, 29, 45].

However, the ergodicity of a stochastic process is difficult to study in a quantitative way.
Methods based on functional inequalities only work for a limited class of problems such as the
over-damped Langevin dynamics [4, 24, 37]. The probabilistic approach, on the other hand,
although being ‘softer’ and more applicable, usually does not give a precise bound in most
of the existing results. For instance, by constructing a Lyapunov function and establishing the
minorization condition for a certain ‘small set’, one can easily deduce the geometric ergodicity
[22, 23, 44]. Nevertheless, the rate of geometric ergodicity obtained in this way is far frombeing
optimal. In most cases, we only know that the exponential convergence rate to the steady state
is log ρ for some ρ < 1, but ρ is usually too close to 1 to be useful in practice.

The computational study of the ergodicity, on the other hand, is far frombeingmature.While
one can compute the eigenvalues of the discretized infinitesimal generator for low-dimensional
problems (1D or 2D) as discussed in [27, 36, 48, 49], it does not work well if X lives in a higher
dimensional state space. One can obtain the convergence rate through the computation of the
correlation decay of a test function by the Monte Carlo simulation. However, as discussed
in [38], the correlation (or auto-correlation) has small expectation and large variance, which
results in an unrealistic requirement of large amount of samples in the real simulations. In
addition, the selection of test functions is very subjective.

The main goal of this paper is to propose a coupling approach, a powerful tool that has been
used in many rigorous and computational studies [7, 19, 28, 42, 43], to numerically compute
the geometric ergodicity. Traditionally, the coupling method is mainly used in the theoretical
study of stochastic dynamics. This is partially because in computations, a numerically sim-
ulated trajectory only approximate the real trajectory at discrete times with certain accuracy.
As a result, on a continuous state space, two numerical trajectories can easily ‘miss’ each
other even if the actual trajectories have already been coupled together. We solve this by using
the maximal coupling whenever two trajectories are sufficiently close and develop a corre-
sponding numerical scheme. By applying to various examples, we show that our numerical
coupling algorithm works well for the random perturbed iterative maps, the stochastic dif-
ferential equations (SDEs) with non-degenerate diffusions, as well as the high-dimensional
oscillators. Also, it can be well-adapted to certain systems with degenerate diffusions with
some extra computational cost.

A secondary goal of our study is to reveal how the geometric ergodicity of the perturbed
stochastic system is related to the complexity of its underlying deterministic dynamics. Apply-
ing to the randomperturbed circlemapswith distinct chaotic properties,we show that the rate of
geometric ergodicity, or heuristically the spectral property, can reveal, in some sense, the mix-
ing property of the unperturbed circle maps. For example, as the noise magnitude decreases,
the rate of geometric ergodicity drops ‘quickly’ when the unperturbed dynamics is ergodic
but not mixing; while it drops ‘dramatically’ when the underlying dynamics admits a stable
periodic orbit; see section 4 for more details. Our simulation also shows that for the slow-fast
systems, a larger time scale separation between the slow and fast dynamics can enhance the
geometric convergence rate when the random noises are added. This can be explained by some
heuristic arguments with numerical evidence.

The paper is organized as follows. Section 2 provides the necessary probability and dynami-
cal system backgrounds.Results serving as the theoretical basis of this paper are also presented
and proved. In section 3, various coupling mechanisms and our numerical algorithms are
described. In section 4, by representative examples on the circle, we study the connection
between the geometric ergodicity and the chaotic properties of the deterministic dynamics. In
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section 5, examples of SDEs with various deterministic or random structures are numerically
studied.We conclude this paper in section 6 with some further discussions and potential works.

2. Preliminary

2.1. Markov process and geometric ergodicity

Throughout this paper, let E be a state space, which can be Rk,Tk, or a subset of Rk, endowed
with σ-field B. Consider a Markov process X = {Xt; t ∈ T } on (E,B), where T can be
R�0,Z�0, or hZ�0 := {0, h, 2h, . . .} for h > 0. Let {Pt(x,A); x ∈ E,A ∈ B, t ∈ T } be the tran-
sition probabilities of X, i.e., for any t ∈ T , Pt(·,A) is a measurable function for each fixed
A ∈ B, and Pt(x, ·) is a probability measure for each fixed x ∈ E such that

Pt(x, ·) =
∫
E
Ps(x, dy)Pt−s(y, ·), 0 � s � t.

In the following, for simplicity we denote the Markov process as X = {Xt}, the transition
probabilities as {Pt} when no ambiguity arises.

Given a Markov process X with initial distribution μ, for any t ∈ T , μPt is the distribution
of X at time t such that

μPt(A) =
∫
E
Pt(x,A)μ( dx), ∀ A ∈ B.

In particularly, μ is called invariant if μPt = μ, ∀ t ∈ T . A Markov process X is said to be
ergodic if it admits a unique invariant (probability) distribution π such that for any x ∈ E,
A ∈ B,

|Pt(x,A)− π(A)| → 0, t→∞

For a reference measure φ on (E,B),X is said to be φ-irreducible if given any x ∈ E, φ(A) > 0
implies that Pt(x,A) > 0 for some t > 0. Throughout this paper, we assume that the Markov
process X is ergodic with an invariant (probability) distribution π. It is not hard to see that X
is π-irreducible.

The emphasis of this paper is the geometric ergodicity. An ergodic Markov process X is
said to be geometrically ergodic with rate r > 0 if for π-a.e. x ∈ E,

lim sup
t→∞

1
t

log(‖Pt(x, ·)− π‖TV) = −r,

where ‖μ− ν‖TV := 2 supA∈B |μ(A)− ν(A)| is the total variation distance between probability
measures on (E,B). AMarkov processX is said to be geometrically contractingwith rate r > 0
if for π × π-almost every initial pairs (x, y) ∈ E × E, it holds that

lim sup
t→∞

1
t

log(‖Pt(x, ·)− Pt(y, ·)‖TV) = −r.

It is easy to see that the geometric ergodicity implies the geometric contraction. Since we
already assume the existence of an invariant probability measure, the uniqueness of it directly
follows from the geometrically contractingproperty.On the other hand, in the case of geometric
contraction, one usually has estimate

‖Pt(x, ·)− Pt(y, ·)‖TV � R(x, y)e−rt
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for a prefactor R(x, y). It may happen that the prefactor R(x, ·) is too large to be integrable with
respect to π, i.e.,∫

E
R(x, y)π(dy) = ∞,

so that the geometric convergence to the invariant measure π may not be achieve at the same
rate r > 0.

2.2. Coupling of Markov processes

In this paper, we investigate the geometric ergodicity ofMarkov processes through the coupling
approach. This section serves as the theoretical background of it. We first recall the coupling
of measures. Let μ and ν be two probability measures on (E,B). A coupling of μ and ν is a
probability measure on E × E whose the first and second marginals are respective μ and ν.
There is a well-known inequality showing that the total variation distance between μ and ν is
bounded by the difference of random variables realizing them. To be specific, let X and Y be
random variables with respective distributions μ and ν. Then (see, for instance, lemma 3.6. in
[1])

‖μ− ν‖TV � 2P[X �= Y]. (2.1)

LetX = {Xt; t ∈ T } andY = {Yt; t ∈ T } be two stochastic processes on (E,B). A coupling
of X and Y is a stochastic process (X,Y ) = {(Xt,Yt); t ∈ T } on E × E such that

(a) The first and second marginal processes {Xt} and {Yt} are respective copies of X and Y;
(b) If s ∈ T be such that Xs = Ys, then Xt = Yt for all t � s.

The first meeting time ofXt andYt, denoted as τc := inft�0{Xt = Yt}, is called the coupling
time. A coupling (X,Y) is said to be successful if the coupling time is almost surely finite,
i.e., P[τc < ∞] = 1. Throughout this paper, we consider the couplings of two ergodicMarkov
processes,X andY, with a common transition probabilities {Pt} and a (unique) invariant (prob-
ability) distribution π. A coupling (X,Y) is said to be aMarkov coupling if (X,Y) is a Markov
process. A Markov coupling (X,Y) is further called irreducible if it is (π × π)-irreducible.

Lemma 2.1. Let X and Y be Markov processes with a common transition probabilities {Pt}
and respective initial distributions μ and ν. Then for any coupling (X,Y), we have

‖μPt − νPt‖TV � 2P[τc > t]. (2.2)

Proof. By the definition of coupling time, Xt �= Yt implies that τc > t. Note that μPt (resp.
νPt) is the distribution of Xt (resp. Yt), then (2.2) follows from (2.1). �

The inequality (2.2) is the well-known coupling inequality. A coupling (X,Y) is said to be
optimal if the equality in (2.2) is achieved for any t > 0. In the present paper, we numerically
estimate the rate of geometric ergodicity of X (or Y) via (2.2). In practice, it is unrealistic to
compute the coupling times for all initial values. Instead, we will develop some theoretical
arguments that enable us to extend the result from one initial value to almost all initial values.

Lemma 2.2. Let (X,Y ) = {(Xt,Yt)} be an irreducible Markov coupling of Markov pro-
cesses X and Y. Assume that there exists a pair of initial value (x0, y0) ∈ E× E and a constant
r0 > 0 such that

E(x0,y0)[e
r0τc] < ∞. (2.3)

Then (2.3) holds for (π × π)-almost all initial values.
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Proof. Suppose the lemma does not hold. Then there exists a measurable set A ⊆ E
× E\{(x, x) : x ∈ E} with (π × π)(A) > 0 such that for any pair (x, y) ∈ A,

E(x,y)[er0τc] = ∞. (2.4)

By the irreducibility, there exists T > 0 such that P(x0,y0)[(XT ,YT) ∈ A] > 0. Then by (2.4),
together with the Markov property, we have

E(x0,y0)[e
r0τc] �

∫
(XT ,YT )∈A

er0τcdP(x0,y0)

� P(x0,y0)[(XT ,YT) ∈ A] ·
∫
(XT ,YT )∈A

er0τcdPT

= P(x0,y0)[(XT ,YT) ∈ A] · Eμ[er0(τc−T)] = ∞,

where PT is the conditional probability measure of P(x0,y0) conditioning on (XT ,YT ) ∈ A, and
μ is the distribution of (XT ,YT ) conditional on A. This contradicts with (2.3). �

One problem with lemma 2.2 is that many efficient couplings we shall use, such as the
synchronous coupling and reflection coupling (see section 3 for the concrete meaning), are
not irreducible. On the other hand, although the independent coupling (i.e., the two marginal
processes are updated independentlyall the time) brings about the irreducibility, it is usually not
efficient for the coupling process. In fact, most stochastic processes in Rk (e.g., a strong-Feller
process), including all the numerical examples in this paper, are non-atomic, which means that
any two independent trajectories of X, say X1

t and X2
t , satisfy P[X1

t+1 = X2
t+1 |X1

t �= X2
t ] = 0

(without loss of generality, here we assume that T = Z�0). So the independent coupling of a
non-atomic Markov process has zero probability of being coupled successfully in finite time.

To overcome this difficulty, we introduce the coupling with independent components. Still,
without loss of generality, we assume T = Z�0. A coupling with independent components
means that at each step before being coupled, with a positive probability (which tough can
be very small), the two marginal processes are updated in an independent way. The following
lemma shows that a coupling with independent components of a non-atomic Markov process
is irreducible. Thus, we can use a mixture of the independent coupling and other more efficient
couplings to achieve both the irreducibility and the coupling efficiency.

Lemma 2.3. Let (X,Y ) = {(Xt,Yt)} be a coupling with independent components of non-
atomic Markov processes X and Y. Then (X,Y) is (π × π)-irreducible.

Proof. It is sufficient to show that for any product set A1 × A2 ∈ B × B with positive π × π
measure, there exists some t0 ∈ T such that P[(Xt0 ,Yt0 ) ∈ A1 × A2] > 0.

By the ergodicity, sinceA1 ∈ B has positiveπ-measure, there exists T1 > 0 such thatP[Xt ∈
A1] > 0 for all t > T1. Similarly, there exists T2 > 0 such that P[Yt ∈ A2] > 0 for all t > T2.
Let t0 = max{T1, T2}+ 1. Because there is a positive probability that independent updates
be chosen for t = 0, 1, . . . , t0, and the Markov process is non-atomic, we have P[(Xt0 ,Yt0 ) ∈
A1 × A2] > 0. �

Lemma 2.4. Let (X,Y) be a coupling with independent components of non-atomic Markov
processes X and Y. Assume that there exist an initial value x0 ∈ E and a constant r0 > 0 such
that

E(x0,π)[e
r0τc ] < ∞. (2.5)

Then (2.5) holds for π-a.e. initial values x ∈ E.
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Proof. Suppose the lemma does not hold. Then there exists a measurable set A ⊆ E with
π(A) > 0 such that for any x ∈ A,

P(x,π)[er0τc] = ∞.

Now let X0 = x0 and Y0 ∼ π. By the irreducibility of X, there exists a finite time T > 0
such that PT (x0,A) > 0. Denote λA and πA as the conditional measure of PT(x0, ·) and π on
A, respectively. Since (X,Y) is a coupling with independent components, the probability that
Xt and Yt remain being independent with each other for t = 0, 1, . . . , T is strictly positive.
Since the Markov processesX and Y are non-atomic. Then with probability 1, the independent
updates will not make X and Y couple. Hence, there exists a positive number δ > 0 such that

P(x0,π)[(XT ,YT) ∈ C] � δ · (PT(x0, ·)× π)(C), ∀ C ⊆ E × E.

Applying the similar arguments as in lemma 2.2, we have

E(x0,π)[e
r0τc ] � δ · PT(x0,A)π(A)EλA×πA[e

r0(τc−T)] = ∞.

This contradicts to (2.5). �
It follows from lemmas 2.2–2.4 that for any coupling with independent components, the

finiteness of E[er0τc ] can be generalized from one pair of initial values to almost all pairs. By
the Markov inequality, we have

P[τc � t] � E[er0τc ]e−r0t.

Then together with the coupling inequality (2.2), the finiteness of E[er0τc] yields the geometric
contraction/ergodicity. However, the moment generating function E[er0τc ] is difficult to com-
pute in practice, especially when r0 is close to the critical value sup{r > 0 : E[erτc ] < ∞}.
To overcome this, we turn to the estimate of the exponential tail of P[τc > t] instead. This is
justified by the following lemma.

Lemma 2.5. For any initial distributions μ and ν, assume that for r0 > 0,

lim sup
t→∞

1
t

log P(μ,ν)[τc > t] � −r0. (2.6)

Then for any ε ∈ (0, r0), it holds that

E(μ,ν)[e(r0−ε)τc ] < ∞.

Proof. By (2.6), for any ε ∈ (0, r0), there exists tε < ∞ such that for all t � tε, it holds that

P(μ,ν)[τc > t] � e−(r0−ε/2)t.

Thus, for any N > tε,

E(μ,ν)[e(r0−ε)τc · 1τc>N] �
∞∑
i=N

e(i+1)(r0−ε)
P[τc = i]

�
∞∑
i=N

e(i+1)(r0−ε)e−(r0−ε/2)i = e(r0−ε)
∞∑
i=N

e−iε/2,

which goes to zero as N goes to infinity. Hence, E(μ,ν)[e(r0−ε)τc] must be finite. �
Combine the above lemmata together, we have the following.
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Proposition 2.6. Let (X,Y) be a coupling with independent components of non-atomic
Markov processes X and Y.

(a) Assume that there exist an initial pair (x0, y0) ∈ E × E and r0 > 0 such that

lim sup
t→∞

1
t

log P(x0,y0)[τc > t] � −r0.

Then for any ε ∈ (0, r0), X (or Y) is geometrically contracting with rate (r0 − ε);
(b) Assume that there exist x0 ∈ E and r0 > 0 such that

lim sup
t→∞

1
t

log P(x0,π)[τc > t] � −r0.

Then for any ε ∈ (0, r0), X (or Y) is geometrically ergodic with rate (r0 − ε).

2.3. An upper bound of the geometric rate

In general, the coupling inequality (2.2) only gives a lower bound of the geometric con-
vergence/contraction rate. We argue that in some cases, e.g., the random perturbation of
a logistic map considered in section 4.4, the upper bound of the geometric ergodicity can
be also estimated by using the first passage times because of the existence of the optimal
coupling.

For sake of simplicity, we consider the discrete-time Markov processes. Recall that a cou-
pling is said to be optimal if the equality in (2.2) holds for all times. It has been shown that for
any two mutually singular probabilities μ and ν, an optimal coupling with initial distribution
μ× ν exists and was explicitly constructed in [21, 47].

Proposition 2.7. Let X = {Xn; n ∈ Z�0} and Y = {Yn; n ∈ Z�0} be Markov processes on
E with initial conditions X0 = x and Y0 = y, respectively, where x �= y. Let {(An,Bn)}∞n=0 be
a sequence of disjoint pairs of subsets in E× E such that x ∈ A0, y ∈ B0. Assume that

ρ := lim sup
n→∞

1
n

log P[min{ηx, ηy} > n] > 0,

where

ηx = min
n>0

{Xn ∈ Acn}, ηy = min
n>0

{Yn ∈ Bcn}.

Then if X (or Y) is geometrically contracting with rate r > 0, we have r � ρ.

Proof. Let (X,Y ) = {(Xn,Yn)} be the optimal coupling of X and Y. Then we have

‖Pn(x, ·)− Pn(y, ·)‖TV = 2P[τc > n],

where {Pt} is the common transition probabilities of X and Y. Note that at the coupling time
τc, we have Xτc = Yτc . This means that before time τc, either Xn has exited from An or Yn

has exited from Bn, i.e., τc � n implies min{η̃x, η̃y} � n. Here, η̃x , η̃y are defined similarly as
ηx , ηy, but for the Xn,Yn instead. By noting that for any n � 0, Xn (resp. Yn) has the same
distribution as Xn (resp. Yn), we have

P[min{ηx, ηy} > n] = P[min{η̃x , η̃y} > n] < P[τc > n].

This completes the proof. �
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In section 4.4, for a random perturbed circle map with a stable 2-periodic orbit, we shall
give both upper and lower bounds of the geometrically ergodic rate through the first exit times
and the coupling times, receptively.

2.4. Deterministic dynamics and random perturbations

Throughout this paper, by a discrete- or continuous-time deterministic dynamical system, we
mean by iterating a map

f : E→ E, (2.7)

or an ordinary differential equation

dZt/ dt = g(Zt), t ∈ R (2.8)

where g is a vector field on E which is locally Lipschitz continuous.
In this paper, we mainly focus on the Markov processes arising from the random perturba-

tions of a deterministic dynamical system. To be specific, we shall consider

(a) The random perturbation of a discrete-time dynamics (2.7)

Xn+1 = f (Xn)+ ζn, (2.9)

where {ζn} are independent random variables taking values in E which will be defined
specifically in each particular situation;

(b) The random perturbation of a continuous-time dynamics (2.8) given by a SDE on Rk,

dXt = g(Xt) dt + σ(Xt) dWt, (2.10)

where σ(·) is a k × k matrix-valued function and Wt is a Wiener process on R
k. Here, g

and σ are assumed to be smooth enough to give a well-defined solution Xt for all t > 0.

In the remainder of this section, we briefly review a classical hierarchy of chaotic properties
of deterministic dynamical systems, from the ergodicity to mixing. Readers may refer to [31,
52] for more details. For sake of clarity and more fitting to the situation in section 4, we use
intuitive examples of maps on S1, which are definitely not essential restrictions.
Irrational rotations and ergodicity. A deterministic map fα : S1 → S

1 is said to be an irra-
tional rotation (or quasi-periodic) if fαx = x + α (mod 1), where α is an irrational number.
Irrational rotation on S1 exhibits certain regular recurrent behaviour that starts from any arbi-
trary initial point, the trajectory will visit any interval subsets in certain ‘periodic’ way. This is
in fact what the ergodic property says.

For a deterministic dynamics f, the measure-theoretically chaotic property is usually defined
with respect to certain f-invariant measure m, i.e., m( fA) = m(A). An f-invariant measurem is
said to be ergodic if for any ϕ ∈ C0(E), ψ ∈ L1(m), it holds that

1
n

n−1∑
i=0

∫
ϕ( f ix)ψ(x)dm(x)→

∫
ϕdm

∫
ψdm, n→∞. (2.11)

Another (and more well-known) characterization of ergodicity is through the Birkhoff ergodic
theorem. For any ϕ ∈ L1(m), for m-a.e. x ∈ E, it holds that

1
n

n−1∑
i=0

ϕ( f ix)→ m(A), n→∞ (2.12)
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if f is ergodic with respect to m. The expression (2.12) basically says that a typical trajectory
visits any positive-measured set repeatedly with frequency of the set measure. The irrational
rotation onS1 is ergodicwith respect to the Lebesguemeasurewhich is also the unique invariant
measure.
Expandingmaps and mixing. The rotations on S1 only indicate a low-complexity of chaotic

properties since different orbits exhibits similar asymptotic behaviours. To characterize more
non-trivial chaotic behaviours, certain expanding properties are expected.A smooth circle map
f is said to be expanding if it always holds that | f ′| � 1. An expanding map is further called
uniform expanding if | f ′| is uniformly away from 1. An expanding map often comes with the
mixing property. An f-invariant measure m is said to be (strong) mixing if for any ϕ ∈ C0(E),
ψ ∈ L1(m), it holds that∫

ϕ( f nx)ψ(x)dm(x)→
∫

ϕdm
∫

ψdm, n→∞. (2.13)

A mixing measure is said to be exponentially (resp. polynomially) mixing if (2.13) converges
in the exponential (resp. polynomial) way. It is well-known that the uniform expanding maps
are exponential mixing. For a general (non-uniform) expanding map however, the exponential
mixing property may be lost. A classical example illustrating this is the expanding map with
the only one neutral fixed point; see section 4.2 for more details.

An intuitive way to understand the chaotic properties of ergodicity and mixing is to look
at how two different subsets (measure-theoretically) meet with each other under evolutions.
Taking ϕ = χA,ψ = χB where A,B are two measurable subsets, respectively. The ergodicity
property (2.11) (resp. mixing property (2.13)) yields

1
n

n−1∑
i=0

m( f −iA ∩ B)→ m(A)m(B), n→∞

(resp. m( f −nA ∩ B)→ m(A)m(B), n→∞.)

It is not hard to see that the ergodicity property is mild which can be guaranteed if any two
subsets can meet with each other in a ‘regular’ way (for instance, the irrational rotations on
S
1); on the other hand, the mixing property requires a certain kind of ‘stretching’ of the system

so that any two subsets can meet with each other eventually and forever. By this, we see that
the mixing is a stronger property than the ergodicity.

In section 4, we shall use four examples of circle maps with the degree of chaoticity goes
down from the exponentially/polynomiallymixing to the ones without any mixing behaviours
(which even exhibit contraction properties). We observe that although the geometric ergodic-
ity usually holds when random noises are added, the rate can vary, as the noise vanishes, in
different ways if the unperturbed dynamics exhibits distinct level of complexities. Again, we
remark that the S1 setting is only for convenience. The scenario should be observed in more
general state space.

2.5. Numerical scheme of SDEs

In the real simulations, an SDE is numerically computed at discrete times. We usually choose
a time step size 0 < h 
 1 and consider the discrete-time trajectories X0,Xh, . . . ,Xnh, . . . . To
avoid confusion and make notations consistent, let X = {Xt; t ∈ R�0} be the true trajectories
of the SDE, and X̄ = {X̄t; t ∈ hZ�0} be the trajectories of the numerical integrator. In addition,
we denote Xh = {Xhn ; n ∈ Z�0} as the time-h sample chain of X such that Xhn = Xnh, and X̄h

= {X̄hn; n ∈ Z�0} as the time-h sample chain of X̄ with X̄hn = X̄nh.
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Themost commonlyused numerical schemes of SDE (2.10) is the Euler–Maruyama scheme

X̄(n+1)h = X̄nh + g(X̄nh)h+ σ(X̄nh)
√
hNn,

where {Nn} are standard normal random variables independent for each n. Note that the time-h
sample chain X̄hn fits the setting of discrete-time random perturbed dynamics (2.9)

X̄hn+1 = X̄hn + g(X̄hn)h+ σ(X̄hn)
√
hNn.

The Euler–Maruyama method can be improved to the Milstein method. The 1D Milstein
method reads as

X(n+1)h = Xnh + f (Xnh)h+ σ(Xnh)
√
hNn +

1
2
σ(Xnh)σ′(Xnh)(N2

n − 1)h.

In particular, on any dimensions, the Euler–Maruyama method coincides with the Milstein
method if σ(Xt) is a constant matrix.

Now, we recall the strong and weak approximations defined in [35]. Let T < ∞ be a given
finite time. If for γ > 0,

E[|X̄T − XT |] � C(T)hγ

holds for all sufficiently small h > 0, then we say that X̄ converges strongly to X with the order
γ. Let C�

P denote the space of � times continuously differentiable functions with polynomial
growth rate for both the function itself and all the partial derivatives up to order the �. If for
γ > 0, any test function g ∈ C2(γ+1)

P and any given finite time T , we have

|E[g(X̄T)]− E[g(XT)]| � C(T)hγ ,

then we say that X̄ converges to X weakly with order γ. It is well known that under suitable
regularity conditions, the Euler–Maruyama scheme has strong convergencewith order 0.5 and
weak convergence with order 1.0. The Milstein scheme has strong convergencewith order 1.0
[35].

3. Description of algorithm

The main idea of this paper is to use the exponential tail of the coupling time distributions to
numerically estimate the geometric ergodicity of a stochastic process. Assume that for a pair
of initial values (x0, y0) we have

Px0,y0 [τc > t] ≈ Ce−rt, ∀ t � 1.

It follows from proposition 2.6 that for almost every pair of initial values (x, y),

lim sup
t→∞

1
t

log(‖Pt(x, ·)− Pt(y, ·)‖TV) < −r.

Replacing y by a sampling from the invariant distribution π, the numerical verification of
geometric ergodicity is also obtained by this approach.

Since this paper studies the coupling times in a numerical way, we consider, for the sake
of definiteness, the time-discrete Markov process X = {Xn; n ∈ Z�0} as it fits both cases of
random perturbations of an iterative mapping and the time-h sample chain of an SDE. Note
that here, the n ∈ Z�0 corresponds to the number of iterations or numerical steps. For sake
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of differentiation and clarity, in the SDE setting, we will use nc to denote the numerical steps
needed for a successful coupling, which of course depends on the step size h. The physical
coupling time will be τc = nch.

3.1. Coupling methods

Consider a Markov coupling (X,Y). In the theoretical proof, a coupling is usually done by
making trajectories of both X and Y enter a ‘small set’ which satisfies the minorization condi-
tion [44]. Numerically however, these couplings are not the most efficient ones. We will use a
mixture of the following coupling methods to achieve the numerical coupling efficiently.
Independent coupling. Independent couplingmeans that when running the coupling process

(X,Y), the noise terms in the two marginal processes Xn and Yn are independent until they are
coupled. In other words, we have

(Xn+1,Yn+1) =
(
f (Xn)+ ζ1n , f (Yn)+ ζ2n

)
,

where for each n, (ζ1n , ζ
2
n ) is a pair of independent random variables. In the theoretical studies,

independent coupling is frequently used combined with the renewal theory to show the differ-
ent rates of convergence to the invariant probability measure. In this paper, the independent
coupling is to make the coupling process admit independent components so that lemmas 2.3
and 2.4 are applicable.
Synchronous coupling. Another commonly approach to coupling two processes is the syn-

chronous coupling. Contrary to the independent coupling for which the randomness in the two
stochastic trajectories are totally unrelated, in the synchronous coupling, we always put the
same randomness to the both marginal processes until they are coupled, i.e.,

(Xn+1,Yn+1) =
(
f (Xn)+ ζ1n , f (Yn)+ ζ2n

)
,

where ζ1n = ζ2n for any n < nc. The advantage of the synchronous coupling is that if the deter-
ministic part of the system already admits some kind of stability, then Xn will approach to
Yn quickly when the same noise is added each time [2]. The synchronous coupling not only
requires less assumptions on the random terms, but also builds some potential connections
between the random dynamical system and SDEs; see section 5.4 for a concrete example of
the implementation of the synchronous coupling.
Reflection coupling. When the dimension of the state space is greater than 2, two Wiener

processes will meet less often than the one/two dimensional case. This makes the independent
coupling less effective. The reflection coupling will play a role instead. As an example, take
the Euler–Maruyama scheme of the SDE

X̄hn+1 = X̄hn + f (X̄hn)h+ σ
√
hNn,

where σ is an invertible constant matrix, and Nn is a normal random variable with mean zero
and covariance matrix Idk. The reflection coupling means that we run the time-h chain X̄hn as

X̄hn+1 = X̄hn + f (X̄hn)h+ σ
√
hNn;

while run Ȳhn as

Ȳhn+1 = Ȳhn + f (Ȳhn )h+ σ
√
hPNn,
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where P = I − 2ene�n is a projection matrix with

en =
σ−1(X̄hn − Ȳhn )

‖σ−1(X̄hn − Ȳhn )‖
.

In other words, the noise term is reflected against the hyperplane that orthogonally passes the
midpoint of the line segment connecting X̄hn and Ȳ

h
n .

Theoretically, it has been proved that for the Brownian motions, the reflection coupling is
optimal [26, 43], i.e, the equality in (2.2) is achieved for any t > 0. It also works well for many
SDEs [9, 10, 17, 18, 43], including the Langevin dynamics with degenerate noise [7, 19]. The
reflection coupling introduced above is also applicable to some non-constant σ under suitable
assumptions [43]. However, for a general non-constant σ(x), the ‘true reflection’ is given by
the Kendall–Cranston coupling with respect to the Riemannian matrix σT (x)σ(x) [12, 25, 32],
which is more difficult to implement numerically.
Maximal coupling. In the numerical simulations, the above three couplings can only bring

Xn close to Yn. We still need a mechanism to make Xn+1 = Yn+1 with certain probability.
The maximal coupling aims to achieve this. It is derived to couple two trajectories as much as
possible at the next step, which is in fact modified from the now well-knownDoeblin coupling
[16]. We adopt the name ‘maximal coupling’ from [28].

Assume that at certain step n, (Xn,Yn) takes the value (x, y) ∈ E × E. Denote the probability
measures associated with f (x)+ ζ1n and f (y)+ ζ2n by μx and μy, respectively. Let νx,y be the
‘minimum probability measure’ of μx and μy such that

νx,y(A) =
1
η
min{μx(A),μy(A)},

where η is a normalizer to make νx,y a probability measure. At the next step, (Xn+1,Yn+1) is
sampled such that

• with probability (1− η),

Xn+1 ∼
1

1− η
(μx − ηνx,y), Yn+1 ∼

1
1− η

(μy − ηνx,y)

• with probability η,

ζ1n = ζ2n ∼ νx,y.

In other words, X and Y are coupled if and only if the two samples fall into a ‘common
future’ simultaneously. We remark that the classical version of Doeblin coupling requires that
the two trajectories enter a certain predefined ‘small set’ simultaneously. Then a construction
called the Nummelin split guarantees them to be coupled with certain positive probability.
However, such a construction becomes unnecessary when running the numerical simulations.
We can couple them whenever the probability distributions of the next step have enough
overlap.

3.2. Numerical algorithm

We propose the following two numerical algorithms to estimate the exponential tail of the
coupling time for the rate of geometric contraction/ergodicity. Both algorithms trigger the
maximal coupling when distance between the two trajectories of a coupling is smaller than
a certain threshold. Since the maximal coupling should have O(1) successful rate when it is
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Algorithm 1. Estimate geometric rate of contraction.

Input: Initial values x, y ∈ E
Output: A lower bound of geometric rate of contraction r > 0
Choose threshold d > 0
for i = 1 to N do

τi = 0, n = 0, (Xn,Yn) = (x, y)
Flag= 0
while Flag= 0 do
if |Xn − Yn| > d then

Compute (Xn+1,Yn+1) using reflection coupling, synchronous coupling,
or independent coupling

n← n+ 1
else

Compute (Xn+1,Yn+1) using maximal coupling
if ζ1n = ζ2n ∼ νx,y then

Flag= 1
τi = n

else
n← n+ 1

end if
end if

end while
end for
Use τ 1, . . . , τN to compute P[τ > n]
Fit log P[τ > n] versus n by a linear function. Compute the slope −r.

triggered, the threshold d in algorithms 1 and 2 should be proportional to the standard devia-
tion of distribution for the next step. The input of algorithm 1 is a pair of initial points (x, y),
and the output is a lower bound of the geometric contraction rate of ‖Pn(x, ·)− Pn(y, ·)‖TV.
Algorithm 2 takes input of a point x ∈ E, and produces a lower bound of the convergence rate
of ‖Pn(x, ·)− π‖TV. In algorithm 2, we need to sample from the invariant probability measure.
This is done by choosing the initial value of Y0 from a long trajectory of Xn, such that Y0 is
approximately sampled from the invariant distribution π.

Throughout this paper, coupling time distributions in the numerical examples are plotted
in the log-linear plots with powers of 10; while the slope of an exponential tail is computed
by fitting log P[τc > n] versus n with a linear function. Hence the slope of the coupling time
distribution curves equals (log 10)−1 times the corresponding output of algorithms 1 or 2.

Since the geometric ergodicity implies the geometric contraction, in practice, it is sufficient
only to run the algorithm 2 to detect the rate of geometric convergence/contraction if the sam-
pling from π is possible. Algorithm 2 does not work well if the convergence rate is too slow
for a practical long time trajectory to accurately represent samples from π. Theoretically, one
can still run algorithm 1 in this situation to get the geometric contraction rate. However, a slow
geometric convergence rate usuallymeans the geometric contraction rate is slow as well, which
also affects the implementation of algorithm 1.

It remains to discuss the implementation of the maximal coupling. If the probability density
function of both Xn+1 and Yn+1 can be explicitly given, denoted by p(x)(z) and p(y)(z) respec-
tively, one can perform themaximal coupling by comparing these two probability density func-
tions. We adopt the algorithm introduced in [28, 30]. See algorithm 3 for the implementation
details.
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Algorithm 2. Estimate convergence rate to π.

Input: Initial values x ∈ E
Output: A lower bound of convergence rate r > 0 to π
Choose a threshold d > 0, another initial point y ∈ E, and a time step size H
Let y0 = y
for i = 1 to N do

Let X0 = yi−1. Simulate Xt for time H
yi ← XH
τi = 0, n = 0, (Xn,Yn) = (x, yi)
Flag= 0
while Flag= 0 do
if |Xn − Yn| > d then

Compute (Xn+1,Yn+1) using reflection coupling, synchronous coupling,
or independent coupling

n← n+ 1
else

Compute (Xn+1,Yn+1) using maximal coupling
if ζ1n = ζ2n ∼ νx,y then

Flag= 1
τi = n

else
n← n+ 1

end if
end if

end while
end for
Use τ 1, . . . , τN to compute P[τ > n]
Fit log P[τ > n] versus n by a linear function. Compute the slope −r.

Algorithm 3. Maximal coupling.

Input: (Xt,Yt)
Output: (Xt+1,Yt+1), and τc if coupling is successful.
Compute probability density functions p(x)(z) and p(y)(z).
Sample Xt+1 and calculate W = Up(x)(Xt+1), where U is a uniform random variable on (0, 1).
if W � p(y)(Xt+1) then

Yt+1 = Xt+1, τc = t+ 1
else

Sample Yt+1 and calculate W ′ = Vp(y)(Yt+1), where V is a uniform random variable on (0, 1).
whileW ′ � p(x)(Yt+1) do
Resample Yt+1 and V . Recalculate W ′ = Vp(y)(Yt+1).

end while
τc is still undetermined.

end if

3.3. Some remarks

As discussed in section 2.2, the reflection/synchronous coupling does not give an irreducible
process in general, and we use a mixture of independent coupling and reflection/synchronous
coupling so that the coupling has ‘independent components’. To achieve this, at each step,
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we generate an i.i.d. Bernoulli random variable Γ with P[Γ = 1] = β > 0, which is indepen-
dent of everything else. The independent coupling is chosen whenever Γ = 1, and we use the
reflection/synchronous coupling for otherwise. It then follows from lemmas 2.3 and 2.4 that
the exponential tail of the coupling time can be generalized to almost every initial values. It is
difficult to rigorously prove the effect of β. Our numerical simulation result (see section 5.3)
shows that a smaller β often corresponds to a higher convergence rate because the reflection
coupling is more efficient.

In practice, for all the examples we have tested and all the couplings we have used, the
exponential tails starting from different initial values have the same rate. We believe that the
requirement of the independent components is only a technical limitation. Lemmas 2.3 and 2.4
should hold true for a very general class of irreducible Markov processes and couplings.

4. Geometric ergodicity of time-discrete stochastic dynamics

It has been observed that for qualitatively different deterministic dynamical systems, their
small random perturbations also have qualitatively different asymptotic behaviours [40]. In
this section, we numerically perform four examples of random perturbations of deterministic
maps on S

1 with distinct chaotic behaviours: (1) a uniformly expanding map; (2) an (almost)
expandingmap admitting a neutral fixed point; (3) an irrational rotation; (4) a logistic map with
a stable periodic orbit. We note that the complexity of dynamics is decreasing from (1)–(4).
For random perturbations of the above four dynamics, the geometric convergence rates are
computed and compared under different noise magnitudes. Qualitative changes of the geomet-
ric convergence rates versus noises are observed. In general, as noise vanishes, the geometric
convergence rate decreases in a slower way as the complexity of the underlying deterministic
dynamics increases. Heuristic explanations of such changes are provided.

4.1. Expanding circle maps

Consider a deterministic dynamics given by the iterative mapping f : S1 → S
1:

f (x) = 2x + a sin(2πx) (mod1).

Note that for a < 1/(2π), f is uniformly expanding (i.e., | f ′| � 2(1− πa) > 1). It has been
known that the uniformly expanding map is exponentially mixing with respect to an invariant
probability measure with smooth density; see, for instance, [51].

Consider the Markov process X given by the random perturbation of f as follows

Xn+1 = f (Xn)+ εζn (mod1), (4.1)

where {ζn} are i.i.d. standard normal random variables, and ε is the noise magnitude. In our
simulations, we run algorithm 2 with N = 108 samples and collect the coupling times. For all
the examples throughout this section, the threshold d of triggering the maximal coupling is
set as 2ε because εζ t has a standard deviation ε. When the maximal coupling is triggered, we
compare the probability density function on the line R and then fold back to S1. Theoretically,
this is smaller than the ‘true maximal coupling’ for which the coupling probability should add
up all the periodic images. However, it makes little difference here since ε 
 1.

In figure 1, the P[τc > n] versus n plots are demonstrated in the log-linear plot, where the
noise magnitudes ε are chosen to be 0.01, 0.02, 0.04, 0.06, 0.08, 0.1 and 0.12, respectively.We
see that the coupling time distribution has exponential tails which gives the rate of geometric
ergodicity. Slopes of those exponential tails are obtained by fitting log P[τc > n] versus n using
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Figure 1. Example in section 4.1. Left and middle: the P[τc > n] vs n with different
noise magnitudes. Right: the negative slope of the exponential tail vs noise magnitudes,
and the linear fit.

a linear function. The negative slope of the exponential tails versus ε is demonstrated in the
lower right panel of figure 1). It drop linearly with respect to the noise magnitude. (Note that
the log-linear plot uses the logarithm with base 10. Hence, the slopes of curves in figure 1 Left
andMiddle are the corresponding outputs of algorithm 2 multiplied by (log 10)−1. This applies
to all numerical examples in this paper.) This is expected because the threshold to trigger the
maximal coupling is 2ε. Two trajectories need to beO(ε)-close in order to couple. If we assume
that the trajectory of f is well-mixed, heuristically two trajectories should take O(ε−1) time to
be O(ε) close to each other.

4.2. Circle maps with neutral fixed point

The second example is a circle map with a neutral fixed point. Consider

f (x) =

⎧⎪⎨
⎪⎩
x + 2αx1+α, 0 � x � 1

2
;

2x − 1,
1
2
< x < 1,

where 0 < α < 1 is a parameter. Note that | f ′| � 1 on [0, 1], and | f ′| = 1 is achieved only at
x = 0, i.e., x = 0 is the (unique) neutral fixed point. Thus, f is not necessarily exponentially
mixing. In fact, it has been shown that in this example, f has the power-law mixing rate n1−1/α

[55].
Now, we consider the small random perturbation of f given by the Markov process X as

follows

Xn+1 = f (Xn)+ εζn (mod1),

where {ζn} are i.i.d. standard normal random variables. Still, we run algorithm 2 with N = 108

samples and collect all the coupling times to compute the rate of geometric ergodicity. Noise
magnitudes ε are chosen the same as in section 4.1. The P[τc > n] versus n are demonstrate
in the log-linear plot in figure 2 (the left and middle panel). We see that the coupling time
distribution still admits exponential tails, the slope of which versus ε is computed and plotted
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Figure 2. Example in section 4.2. Left and middle: P[τc > n] vs n with different noise
magnitudes. Right: the negative slope of the exponential tail vs noise magnitudes, and
the linear fit.

in figure 2 (the right panel). Note that despite a slower mixing rate (polynomial) of f , the slope
of the exponential tail still drops linearly with respect to the noise magnitude, which is same as
the exponential mixing example in section 4.1. This is because the slow mixing of f is due to a
longer return time from the very small neighbourhood of the unique neutral fixed point x = 0.
A very small noise is already sufficient to ‘shake’ the trajectories away from the neutral fixed
point to maintain a suitable mixing rate. Hence, the effect of slower-mixing rate is hard to be
observed unless the noise term becomes extremely small. We refer to [5, 6] for more recent
theoretical results of similar maps with very small random perturbation.

4.3. Irrational rotation (quasi-periodic)

The third example is the irrational rotation on S1

f (x) = x +
√
2 (mod1). (4.2)

Distinct from the previous two examples, for the irrational rotation (4.2), there is NO any
stretching for the map f (since | f ′| ≡ 1). Also, every orbit of f is dense going almost
everywhere on S1. Thus, f is ergodic but not mixing.

Now, we consider the Markov process X given by

Xn+1 = f (Xn)+ εζn (mod1),

where {ζn} are i.i.d. standard normal random variables. Still, the rate of geometric ergodicity
are computed by running algorithm 2 with N = 108 samples under different noise magnitudes
(Here, ε are chosen the same as the previous two examples). The P[τc > n] versus n plots are
demonstrated in the log-linear plot in figure 3. We see that the coupling time distributions still
exhibit exponential tails as the previous two examples. However, in this example, the slope (of
the exponential tail) versus ε curve drops super-linearly, instead of linearly as in the previous
two examples, as the noise magnitude decreases. We fit it by a quadratic polynomial function
fairly well; see the right panel in figure 3. The heuristic reason for the O(ε2) slope is the fol-
lowing. Without mixing, the only force that brings two trajectories together is the diffusion,
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Figure 3. Example in section 4.3. Left and middle: P[τc > n] vs n with different noise
magnitudes. Right: the negative slope of the exponential tail vs noise magnitudes, and
the quadratic fit.

which takes O(ε−2) time to move O(1) distance. Hence, one can expect two trajectories to be
‘well mixed’ after O(ε−2) time.

4.4. Logistic map with stable periodic orbit

The last example is from the logistic family

fλ = λx(1− x)(mod1)

where 0 � λ � 4. The logistic map was introduced as a demographic model [3] and has been
well studied since then for its manipulability and abundant dynamical phenomena. It has been
known that forλ between 2 and 3.569 95 (approximately), the dynamics of fλ is simple. There is
a periodic orbit, for which the period doubles as λ increases, attracting all the other trajectories.
However, for a typicalλ beyond the critical value 3.5699, the dynamics of fλ goes into a chaotic
regime.Any two trajectorieswill diverge nomatter how close initially they are. In this example,
we choose the logistic map

f := f3.2 = 3.2x(1− x)(mod1).

which admits a 2-periodic orbit PQPQPQ . . . , where P = 0.7995,Q = 0.5130 (approxi-
mately), that attracts all the initial values in (0, 1).

Now, we consider the Markov chain X

Xn+1 = f (Xn)+ εζn (mod1),

where {ζn} are i.i.d. standard normal random variables. Still, we compute the rate of geometric
ergodicity of X with different noise magnitudes by running algorithm 2 with N = 108 samples
trajectories. A little bit different from the previous three examples, the noise magnitudes in this
example are chosen as 0.015, 0.02, 0.03, 0.04, 0.06, 0.08, and 0.1, respectively. This is because
in this example, the coupling is extremely slow which is hard to be observed numerically if
the noise is too small. Slopes of the exponential tails of the coupling times are computed and
demonstrated in figure 4 (blue lines). The lower right panel in figure 4 shows that the coupling
becomes exponentially slow as the noise vanishes. This is because the trajectories start from
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Figure 4. Example in section 4.4. First 7 panels: blue line: P[τc > n] vs n with different
noise magnitudes. Red line: log P[ηPQ > n] vs nwith different noise magnitudes. Lower
right panel: linear extrapolation of ε2 log(−S(ε)) and ε2 log(−Ŝ(ε)), where S(ε) and Ŝ(ε)
are the slopes of exponential tail of the coupling time and the first exit time with respect
to the noise magnitude ε, respectively.

the basin of the different periodic sequences PQPQP . . . and QPQPQ . . . need to ‘overcome
the attraction’ from the corresponding periodic sequence in order to meet.

In addition to the lower bound, for this example, we also compute the upper bound of the
rate of geometric ergodicity through the first exit time. By transparent calculations, one finds
that the basin of attraction of the periodic sequences PQPQPQ . . . and QPQPQP . . . are

A = [0.110 , 0.312] ∪ [0.688 , 0.890] ∪ · · · and B = [0.313 , 0.688] ∪ · · · ,

respectively, i.e., a deterministic trajectory starts from A converges to the periodic sequence
PQPQPQ . . . , and a deterministic trajectory starts from B converges to the periodic sequence
QPQPQP . . . . For each value of ε chosen above, we compute the first exit time ηPQ of the
coupling (X,Y) starting from A× B as follows

ηPQ = min

{
inf
n�0

{n | Xn /∈ A, n even, orXn /∈ B, n odd },

inf
n�0

{n | Yn /∈ B, n even, orYn /∈ A, nodd }
}
.

The log-linear plots of P[ηPQ > n] versus n are also demonstrated in figure 4 (red lines). Still,
we run 108 samples. We see that when ε is small, the distribution of the first exit time is also
exponentially small as the coupling times. By proposition 2.7, this gives an upper bound for
the rate of geometric ergodicity.

If let S(ε) and Ŝ(ε) be the slopes of the exponential tails of the coupling time and first exit
time under the ε-noise perturbation, then the large deviation theory tells that ε2 log(−Ŝ(ε))
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converges to a finite limit as ε vanishes [20]. This is confirmed by our numerical simulations in
figure 4 lower right (red crosses). In addition, the term ε2 log(−S(ε)) also converges to a finite
limit as well (blue dots).

5. Geometric ergodicity of SDEs

5.1. Numerical and analytical coupling times

For SDEs, the first issue to address is the impact of numerical approximations. As we know,
the numerical trajectories X̄t of an SDE are only approximations of the true trajectories Xt.
Although the independent/synchronous/reflection coupling methods introduced in section 3.1
can be analogously applied to the SDE setting (2.10), the analytical coupling mechanisms are
different from the numerical ones. Two trajectories of Xt are coupled whenever they meet,
without the need to trigger a maximal coupling one step earlier. Such a difference makes the
direct comparison of coupling times between Xt and X̄t difficult, if not impossible. To solve
this, for the time-h sample chain of the true SDE, we apply the numerical coupling strategy as
well, i.e., the maximal coupling is triggered when two trajectories are close to each other. This
enables us to compare the coupling times under the same coupling mechanisms.

Now, applying the coupling strategy in algorithm 1, we construct a coupling (Xh,Yh) of the
time-h chain of (2.10) as follows:

(a) When the maximal coupling is not triggered, (X h
n ,Yh

n ) evolves according to the same cou-
pling method (independent, reflection, or synchronous) as the one used by the numerical
coupling (X̄ h

n, Ȳh
n) for n = 0, 1, . . . ;

(b) At each t = nh, n � 0, check the distance between X h
n and Yh

n . Trigger the maximal
coupling if and only if |X h

n − Yh
n | < d, where d is the same threshold as in algorithm

1;
(c) If the maximal coupling is triggered at t = nh, perform the maximal coupling with respect

to the probability distribution of X h
(n+1) and Yh

(n+1), respectively
3.

It is easy to see that (Xh,Yh) is a coupling of the time-h sample chain of the SDE (2.10). We
further assume the following for (Xh,Yh) and (X̄h, Ȳh), respectively.

(S1) The numerical scheme used in algorithm 1 is a strong approximation. More precisely,
for any finite t > 0, there exists a constant C(t) > 0 such that

P[|X̄hi − Xhi | > hp] � C(t)h1+α, i = 0, 1, . . . , �t/h�+ 1

holds for some p > 1/2, α > 0, and all sufficiently small h > 0;
(S2) For each z := x− y, the probability density function of Z :=X h

1 − Yh
1 (resp. Z̄ := X̄ h

1
− Ȳh

1) given X h
0 = x,Yh

0 = y (resp. X̄ h
0 = x, Ȳh

0 = y), denoted by pz(Z) (resp. p̄z(Z̄)),
satisfies

Cbh
−k/2e−(Z−z)�Σb(Z−z)/h � pz(Z) � Cuh

−k/2e−(Z−z)�Σu(Z−z)/h

(resp. C̄bh
−k/2e−(Z̄−z)�Σ̄b(Z̄−z)/h � p̄z(Z̄) � C̄uh

−k/2e−(Z̄−z)�Σ̄u(Z̄−z)/h ) ,

3 If at step (ii), we already haveX h
n = Yh

n . Thenwe just set τc = nh, and the step (iii) will not be implemented. However,
for strong Feller processes, this happens with zero probability.
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Figure 5. Left: P[|X̄1 − X1| > h0.55]/h1.1 for different h, where Xt is a geometric Brow-
nian motion. Error bars are included. Right: L1 distance between the probability density
function of N(0, h) and that of N(h0.8, h) for different small h.

where Σu,Σb (resp.Σ̄u, Σ̄b) are positive definite k× k matrices, and Cu,Cb > 0 (resp.
C̄u, C̄b > 0) are constants in order O(1);

(S3) The threshold d to trigger the maximal coupling is in order O(
√
h). To be specific, we

set d = 2ε
√
h, where ε is the noise magnitude in (2.10);

(S4) The probability density function ofXh1 (resp. X̄
h
1) conditioning on X

h
0 = x (resp. X̄h0 = x),

denoted by f hx (resp. f̄ hx), changes continuously with respect to h. More precisely, there
exists a functionϕ : R+ → R+ satisfying limh→0 ϕ(h) = 0 such that for all γ > 1/2 and
the unit vector v ∈ R

k, it holds that

‖ f hx − f hx+hγv‖L1 < ϕ(h) (resp.‖ f̄ hx − f̄ hx+hγv‖L1 < ϕ(h)).

In addition, the one-step transition probability density function f̄ hx approximates f hx in
the L1-norm, i.e.,

‖ f hx − f̄ hx‖L1 < ϕ(h), ∀ x ∈ R
k.

Also, we require that the two coupling processes (Xt,Yt) and (X̄ t, Ȳ t) use the same Brow-
nian motion as the true SDE trajectory to produce the discrete random variables. This makes
the comparison between the numerical and true SDE trajectories possible.

Essentially, (S1)–(S4) assume that (i) X̄h is a strong approximation of Xh with a good con-
trol of the tails; (ii) the probability density function of Xh1 given Xh0 (resp. X̄h1 given X̄

h
0) is a

good approximation of a Gaussian function with variance O(h). We justify the assumptions
(S1)–(S4) by numerical computations or the theoretical arguments. Please see the following
remark 5.1.

Remark 5.1. Assumptions (S2) and (S4) are both about the transition probability den-
sity function. When the Euler–Maruyama scheme is used, p̄z and f̄ hx are probability density
functions of normal distributions, and for h sufficiently small, pz and f hx are also closely
approximated by the normal probability density functions. Hence, (S2) and (S4) are reasonable
assumptions. In particularly, if g and σ in (2.10) are constants, (S2) holds easily, as well as the
first inequality in (S4). For the second inequality in (S4), it is not easy to integrate | f̄ hx − f̄ hx+hγv|
by hand, which is equivalent to integrating∫

Rd
(2π)−d/2 det (hΣ)−1/2|e−xT (hΣ)−1x/2 − e−(x−hγv)T (hΣ)−1(x−hγv)/2| d x,
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where Σ = σ(x). We numerically compute the L1 distance between the probability density
function of N(0, h) and N(h0.8, h) for different small h, and plotted in figure 5 left. The L1

distance converges to zero at a power-law speed with respect to h. This verifies (S4).
For (S1), we numerically compare the strong error of Milstein scheme for the geometric

Brownian motion dXt = 0.2Xtdt + XtdWt at t = 1. The ratio P[|X̄1 − X1| > h0.55]/h1.1 for dif-
ferent h is plotted in figure 5 left. We see that the ratio decreases with respect to h. Hence (S1)
is satisfied.

In practice, the threshold d in (S3) can be set as d = C
√
h with C being in the same scale

as ε (here, we choose C = 2ε). In this way, the two trajectories can be coupled with certain
reasonable probability once the maximal coupling is triggered. Our numerical study finds that
the numerical coupling time is not very sensitive against C.

Theorem 5.2. Let τc and τ̄ c be the coupling times of (X,Y) and (X̄, Ȳ), respectively. Assume
that (S1)–(S4) hold. Then for any finite t > 0, there exists a(t) > 0 such that for any b ∈ (0, p
− 1

2 ) and any h > 0 sufficiently small, it holds that

|P[τc > t]− P[τ̄ c > t]| � a(t)hα + cϕ(h)+ hp−
1
2−b, (5.1)

where c > 0 is a uniform constant for all small h > 0, and the parameters α, p are as in (S1).
In particularly,

lim
h→0

P[τ̄ c > t] = P[τc > t].

By theorem 5.2, if an extrapolation of small h shows that the exponential tail of the coupling
time of (X̄h, Ȳh) is strictly away from zero, then the numerical coupling provides a lower bound
of the geometric convergence/contraction rate of the SDE (2.10).

In the remainder of this section we prove theorem 5.2. Before proceeding to the proof, we
briefly describe the idea of it. Observe that at each step i, if the coupling succeeds for (X h

i ,Yh
i ),

then at the previous step (i− 1), X h
i−1 and Yh

i−1 must be sufficiently close so that the maximal
coupling is triggered. The strong approximation property (S1) then guarantees that at the step
(i− 1), very likely, the maximal coupling is also triggered for the numerical coupling (X̄ h

n, Ȳh
n).

In other words, the maximal coupling is triggered for one coupling process while not for the
other can only happen with small probability. The events A i−1, Ā i−1,Bi−1 and C i−1 defined
below as well as proposition 5.3 are to indicate this. Moreover,whenever the maximal coupling
is triggered, as long as X h

i−1, X̄ h
i−1 and Yh

i−1, Ȳh
i−1 are both close, the probabilities to achieve a

successful coupling at the next step are about the same. Lemma5.4 is to establish this. Although
there are situations when |X h

n − Yh
n | (resp. |X̄ h

n − Ȳh
n|) falls at the ‘edge’ of the triggering area,

the probabilities are small as stated by lemma 5.5.

Proof of Theorem 5.2. For convenience, write t = nhh where nh = � th�. Recall that we
use nc (resp. n̄c) to denote the numerical steps for a successful coupling for the time-h chain
Xh (resp. X̄h), where τc = hnc (resp. τ̄ c = hn̄c). Then

|P[τc > t]− P[τ̄ c > t]| = |P[nc > nh]− P[n̄c > nh]| = |P[nc � nh]− P[n̄c � nh]|.

Since the maximal coupling is triggered no early than the second step, we have

|P[nc � nh]− P[n̄c � nh]‖ �
nh∑
i=2

‖P[nc = i]− P[n̄c = i]|.

As discussed above, for each 2 � i � nh, if the coupling between X̄ h
n and Ȳh

n occurs at step
i, then at step (i− 1), besides that the maximal coupling of (X h

n ,Yh
n ) must be triggered, the

maximal coupling of (X̄ h
n, Ȳh

n) is (very likely) triggered as well. To clarify this, we split each
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term (P[nc = i]− P[n̄c = i]) according to whether the coupling process at the step (i− 1) falls
at the ‘edge’ of the triggering area. The following several events are defined according to this.

Fix δ ∈ (0, p−
1
2

3 ). Let

A i−1 =
{
|X h

i−1 − Yh
i−1| < d − hp−δ, nc > i− 1

}
,

Ā i−1 =
{
|X̄ h

i−1 − Yh
i−1| < d − hp−δ, n̄c > i− 1

}
,

Bi−1 =

{
|X̄ h

i−1 −X h
i−1| �

1
2
hp−δ , |Ȳh

i−1 − Yh
i−1| �

1
2
hp−δ, nc > i− 1, n̄c > i− 1

}
,

C i−1 =

{
|X h

i−1 − Yh
i−1| < d , |X̄ h

i−1 − Yh
i−1| < d, |X̄ h

i−1 −X h
i−1|

� 1
2
hp−δ , |Ȳh

i−1 − Yh
i−1| �

1
2
hp−δ, nc > i− 1, n̄c > i− 1

}
,

where p > 1/2, d = 2ε
√
h are from (S1) and (S3), respectively. Note that the occurrence of

both events A i−1 (resp. Ā i−1) and Bi−1 induces the occurrence of the event C i−1, i.e.,

A i−1\C i−1⊆ Bc
i−1 (resp. Ā i−1\C i−1⊆ Bc

i−1).

Combined with the strong approximation property (S1), we immediately obtain the following
estimates.

Proposition 5.3. For each 2 � i � nh, it holds that

P[nc = i,A i−1\C i−1] � 2C(t)h1+α (resp. P[n̄c = i, Ā i−1\C i−1] � 2C(t)h1+α),

where C(t) is from (S1).

Now, for each 2 � i � nh, we split P[nc = i] (resp. P[n̄c = i]) as

P[nc = i] = P[nc = i,C i−1]+ P[nc = i,A i−1\C i−1]+ P[nc = i,A c
i−1].

(resp. P[n̄c = i] = P[n̄c = i, Ā i−1]+ P[n̄c = i, Ā i−1\C i−1]+ P[n̄c = i, Ā c
i−1]).

By proposition 5.3 we have

|P[nc = i]− P[n̄c = i]| � |P[nc = i,C i−1]− P[n̄c = i,C i−1]|+ 4C(t)h1+α

+ |P[nc = i,A c
i−1]− P[n̄c = i, Ā c

i−1]|.

Hence, the estimation of |P[nc = i]− P[n̄c = i]| is reduced to the estimations of

|P[nc = i,C i−1]− P[n̄c = i,C i−1]|

and

|P[nc = i,A c
i−1]− P[n̄c = i, Ā c

i−1]|.

These are concluded by the following two lemmas.

6957



Nonlinearity 33 (2020) 6935 Y L i and S Wang

Lemma 5.4. For each 2 � i � nh, it holds that

|P[nc = i,C i−1]− P[n̄c = i,C i−1]| � c0ϕ(h)P[nc = i],

where c0 > 0 is a uniform constant for all i and small h > 0.

Lemma 5.5. For each 2 � i � nh, the following hold

P[nc = i,A c
i−1] � c1h

p− 1
2−2δ

P[nc = i] (5.2)

P[n̄c = i, Ā c
i−1] � c1h

p− 1
2−2δ

P[n̄c = i], (5.3)

where c1 > 0 is a uniform constant for all i and small h > 0.

We postpone the proofs of lemmas 5.4 and 5.5 to the end. Combining all the estimates
above,

|P[nc = i]− P[n̄c = i]| � 4C(t)h1+α + c0ϕ(h)P[nc = i]

+ c1h
p− 1

2−2δ(P[nc = i]+ P[n̄c = i]).

Note that
nh∑
i=2

P[nc = i] � 1,
nh∑
i=2

P[n̄c = i] � 1.

Then together with nh being in the order O(t/h), we finally obtain
nh∑
i=2

|P[nc = i]− P[n̄c = i]| � 4nhC(t)h
1+α + c0ϕ(h)

nh∑
i=2

P[nc = i]

+ c1h
p− 1

2−2δ
nh∑
i=2

(P[nc = i]+ P[n̄c = i])

� C̃(t)hα + c0ϕ(h)+ 2c1h
p− 1

2−2δ,

where C̃(t) > 0 only depend on t.
Now, theorem 5.2 is proved by setting a(t) = C̃(t) and b = 3δ.

Proof of Lemma 5.4. Since (p− δ) > 1/2, if denote f x, f x̄ (resp. f y, f̄ ȳ) as the probability
density functions of X h

i , X̄ h
i (resp. Yh

i , Ȳh
i ) conditioning on X h

i−1 = x, X̄ h
i−1 = x̄ (resp. Yh

i−1
= y, Ȳh

i−1 = ȳ), by (S4), we have

‖ f x − f̄ x̄‖L1 � 2ϕ(h) (resp. ‖ f y− f̄ ȳ‖L1 � 2ϕ(h)).

Then the mechanism of the maximal coupling yields

|P[nc = i,C i−1]− P[n̄c = i,C i−1]| = |P[nc = i|C i−1]− P[n̄c = i|C i−1]| · P[C i−1]

� 4ϕ(h)P[C i−1].

Note that as long as the maximal coupling is triggered, the coupling probability is in order
O(1) and uniform with respect to all small h > 0, i.e.,

P[nc = i,C i−1] � η0P[C i−1]
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for a constant η0 > 0. Therefore,

|P[nc = i,C i−1]− P[n̄c = i,C i−1]| � (4ϕ(h)/η0)P[nc = i,C i−1] � (4ϕ(h)/η0)P[nc = i].

Lemma 5.4 is proved by letting c0 = 4/η0.

Proof of Lemma5.5. Weonly need to prove (5.2), and (5.3) can be obtained similarly. First,
we estimate P[d − hp−δ � |X h

i−1 − Yh
i−1| � d]. Conditioning on the value at the step (i− 2),

we have

P[d − hp−δ � |X h
i−1 − Yh

i−1| � d] =
∫
Rk×Rk

P [d − hp−δ � |X h
i−1 − Yh

i−1|

� d | X h
i−2 = x,Yh

i−2 = y]μi−2(dx, dy),

where μi−2(dx, dy) is the joint probability distribution of (X h
i−2,Yh

i−2).
By (S2), the probability density function of (X h

i−1 − Yh
i−1) conditional on X h

i−2
= x,Yh

i−2 = y is Gaussian-like. So we have the following comparison ofP[d − hp−δ � |X h
i−1 −

Yh
i−1| � d | X h

i−2 = x,Yh
i−2 = y] and P[|X h

i−1 − Yh
i−1| � d | X h

i−2 = x,Yh
i−2 = y] as follows:

(a) If |x− y| � −δ log h · h1/2. Since d = O(h1/2), within the set {|X h
i−1 − Yh

i−1| � d}, the
maximal density of (X h

i−1 − Yh
i−1) is at most O(h−δ) times the minimal density of (X h

i−1
− Yh

i−1). In consideration that the volume of the shell {(u,w) ∈ R
k : d − hp−δ � |u−

w| � d} is O(h(k−1)/2+p−δ), we can find a constant c > 0 such that

P [d − hp−δ � |X h
i−1 − Yh

i−1| � d | X h
i−2 = x,Yh

i−2 = y]

� chk/2+p− 1
2−2δ

P
[
|X h

i−1 − Yh
i−1| � d | X h

i−2 = x,Yh
i−2 = y

]
;

(b) If |x− y| > −δ log h · h1/2. Then the probability density of (X h
i−1 − Yh

i−1) within the set

{|X h
i−1 − Yh

i−1| � d} is less than ce−(δ log h)2h−k/2 (here, we still use c > 0 as a uniform
constant), which converges to zero faster than hr for any r > 0. Hence,

P [d − hp−δ � |X h
i−1 − Yh

i−1| � d | X h
i−2 = x,Yh

i−2 = y]

� hp−
1
2−δ+r

P
[
|X h

i−1 − Yh
i−1| � d | X h

i−2 = x,Yh
i−2 = y

]
.

Now, for both cases, integrating over the initial conditions (x, y), we have

P[d − hp−δ � |X h
i−1 − Yh

i−1| � d] � hp−
1
2−2δ

P[|X h
i−1 − Yh

i−1| � d].

Consequently,

P[nc = i,A c
i−1]

= P[nc = i|d − hp−δ � |X h
i−1 − Yh

i−1| � d] · P[d − hp−δ � |X h
i−1 − Yh

i−1| � d]

� hp−
1
2−2δ · P[nc = i|d − hp−δ � |X h

i−1 − Yh
i−1| � d] · P[|X h

i−1 − Yh
i−1| � d]

As in the proof of lemma 5.4, since the coupling probability conditioning on the event {|X h
i−1

− Yh
i−1| � d} is uniform for all small h > 0, we have

P[nc = i|d − hp−δ � |X h
i−1 − Yh

i−1| � d] � P[nc = i|X h
i−1 − Yh

i−1| � d]/η0,
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Figure 6. Left: coupling time distribution of the overdamped Langevin dynamics under
different time step sizes. Right: comparison of exponential tails of coupling time with
different time step sizes.

where η0 is as in the proof of lemma 5.4. Thus,

P[nc = i,A c
i−1] � (hp−

1
2−2δ/η0)P[nc = i].

By setting c1 = 1/η0, lemma 5.5 is proved.

5.2. Overdamped Langevin dynamics

The first SDE example we shall use is the overdamped Langevin dynamics. Consider

dXt = −∇V(Xt)+ ε dWt, (5.4)

where V(x) is a potential function. It is well known that (5.4) admits a unique invariant
probability measure πε with the probability density

ρε =
1
K
e−2 V(X)/ε2 ,

whereK is a normalizer. In addition, if V is strictly convex such that Hess(V)− RIdk is positive
definite, then πε satisfies the Logarithmic Sobolev inequality with constant ε2R/2. Hence, the
geometric convergence rate is at least R. (We refer to [4, 37] for details.) Now we check our
numerical result for the rate of geometric ergodicity with the above analytical result.

Consider n = 2 and V(x, y) = (x2 + y2)/2. This potential function is strictly
convex with Hessian matrix Id2. We run algorithm 2 for different steps sizes
h = 0.0005, 0.001, 0.0015, 0.002, 0.0025 and 0.003. Throughout this section, the thresh-
old of triggering the maximal coupling is set as d = 2ε

√
h . The sample size N = 107. To

reach the optimal coupling rate, we use the reflection coupling until the maximal coupling is
triggered. Coupling time distributions versus different step sizes are compared in a log-linear
plot (figure 6 left). The slopes of those exponential tails are computed by fitting log P[τc > t]
versus t using a linear function. We linearly extrapolate the negative slopes for decreasing
h in figure 6 right. We see that the numerical result for the rate of geometric ergodicity is
very close to the theoretical one. In addition, a smaller time step size gives a higher rate. By
theorem 5.2, these numerically computed rates of geometric ergodicity are trustable.
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Figure 7. Top left: limit cycle of the Van der Pol oscillator for μ = 12. Top mid: deter-
ministic trajectory of x-variable. Top right: P[τc > t] versus t for different values of β
in log-linear plot. Mid left: linear fit of negative slopes of P[τc > t] versus t for differ-
ent values of β. Mid right: P[τc > t] versus t for different values of μ in log-linear plot.
Bottom left: negative slopes of P[τc > t] versus t for different values of β. Bottom mid:
positions where two trajectories couple when μ = 2. Bottom right: positions where two
trajectories couple when μ = 12.

5.3. Van der Pol oscillator

The second SDE example is the Van der Pol oscillator with additive noise. We use this example
to demonstrate the effect of slow-fast dynamics on the geometric ergodicity. Consider

dXt =

(
Xt −

1
3
X3
t − Yt

)
dt + ε dW1

t

dYt =
1
μ
Xt dt + ε dW2

t .

(5.5)

The deterministic part of (5.5) admits a limit cycle, as shown in figure 7 top left. When μ � 1,
this system demonstrates the slow-fast dynamics, which is called the relaxation oscillation.
The solution will move slowly along left/right side of the limit cycle for a long time, and then
jump to the other side quickly after passing the ‘folding point’. See figure 7 top middle for
x-trajectory versus time of the deterministic equation.

The Van der Pol oscillator has been studied for decades. We shall use our coupling methods
to numerically study the spectral property of (5.5). Themagnitude of noise is chosen as ε = 0.3,
which is small compared with the size of the limit cycle. We run algorithm 2 with N = 107

samples and time step size is set as h = 0.001. Before the two trajectories are sufficiently close
to each other, we use a mixture of the independent and reflection couplings. More precisely,
at each step, with probability β we use the independent coupling, and use the reflection cou-
pling for otherwise. This makes the coupling process irreducible. In the first simulation, we fix
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μ = 12 and let β = 0, 0.02, 0.04, 0.06, 0.08, 0.1.We find that the resultant rate of the exponen-
tial tails decreases slightly as β increases since the reflection coupling is more efficient than the
independent coupling. However, this dependency is not very sensitive; see figure 7 top right
and middle left for more details.

In the second simulation, we fix β = 0.05 and let μ = 2, 4, 6, 8, 10, 12.The exponential tails
of the coupling time distribution corresponding to the different μ’s are compared; see figure 7
middle right and bottom left. Note that the middle right figure is cut off at the probability 10−5

and horizontally stretched in order to demonstrate the difference between μ = 10 and μ = 12
plots. The slopes of these exponential tails versus different μ’s are computed and plotted in
figure 7 bottom left.

In this example, the rate of geometric ergodicity is small. This is expected because one
trajectory needs to diffuse along the limit cycle to ‘chase’ the other trajectory, which takes a
considerable amount of time. An interesting observation is that the rate of geometric ergodic-
ity increases significantly with the increased time separation scale μ. In other words, a larger
time-scaling separation of the slow-fast dynamics make the law of (5.5) converge to its steady
state distribution faster. To the best of our knowledge, this interesting phenomenon is not doc-
umented in the previous studies. We believe the reason is that a larger μ makes a trajectory
move both slower near the slow manifold and closer to it, which significantly increase the
chance for two trajectories to ‘meet’. This is confirmed numerically by figure 7 bottom middle
and right. The positions of 500 samples are plotted at which they are coupled for μ = 2 and
12 respectively. We see that the larger μ makes the trajectories more likely to couple near the
slow manifolds (the left and right branches of the limit cycle and its extensions).

5.4. SIR model with degenerate noise

In this subsection, we use an SIR model with degenerate noise to demonstrate how our
algorithm can be adapted for SDEs with degenerate diffusion terms. For degenerate diffusions,
only one step of the numerical algorithm does not produce a well-defined probability density
function. We need more than one step to implement the maximal coupling.

Consider an epidemic model in which the whole population is divided into three distinct
classes S (susceptible class), I (infected class), and R (recovered class), respectively. An SIR
model with the population growth is given by

dS = (α− βSI − μS) dt

dI = (βSI − (μ+ ρ+ γ)I) dt

dR = (γI − μR) dt,

(5.6)

whereα is the population birth rate,μ is the disease-free death rate, ρ is the excess death rate for
the infected class, γ is the recover rate for the infected population, and β is the effective contact
rate between the susceptible class and infected class [14]. This model has been intensively
studied. We refer [8, 33, 34] for a few representative references.

Assume that all the three classes are driven by the same random factor (such as temperature,
humidity, etc). This gives the SDE a degenerate noise. Note that S and I in (5.6) are independent
of R. So we consider the following SDE instead

dS = (α− βSI − μS) dt + σS dWt

dI = (βSI − (μ+ ρ+ γ)I) dt + σI dWt,
(5.7)

where σ > 0 is the intensity of the white noise, and the two dWt terms are from the same
Brownian motion. See figure 8 left for the trajectory in R

2
+.
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Figure 8. Left: trajectory of equation (5.7) up to T = 100. Right: coupling time distri-
bution P[τc > t] vs t in log-linear plot and linear function fitting. Parameters are α = 7,
β = 3, μ = 1, ρ = 1, γ = 2, and σ = 1.

In [14], several results about the asymptotic behaviours of (5.7) are proved. Let

λ =
αβ

μ
−
(
μ+ ρ+ γ − σ2

2

)
.

Ifλ > 0, then (5.7) admits a non-degenerate invariant probabilitymeasure onR2
+. In addition, it

was shown that (5.7) approaches to its invariant probabilitymeasure faster than any polynomial
of t. This result is later improved in [46]. In this example, it is very challenging to construct an
optimal Lyapunov function to control the two different factors simultaneously. The Lyapunov
function of (5.7) must take high valueswhen S and I are either too large or too small. A different
approach is used in [46] to show the exponential ergodicity, but the resultant rate is still not
quantitative.

We use algorithm 2 with an adaptation to the degenerate noise (which will be explained
later) to examine the ergodicity of (5.7). The model parameters are set as α = 7, β = 3, μ = 1,
ρ = 1, γ = 2, andσ = 1, the same as the example used in [14]. Note that the reflection coupling
cannot be applied due to the degeneracy of the noise. In fact, for this set of parameters, the
deterministic part of (5.7) converges to a unique equilibrium. With the same random noise
being applied each time, any pair of stochastic trajectories of (5.7) will converge to each other,
just as its deterministic part does. So in algorithm 2, we first use the synchronous coupling to
make the two trajectories sufficiently close. Then we implement a ‘two-step version’ of the
maximal coupling to check whether the two trajectories can couple after every two steps. The
numerical algorithm we use is still the Euler–Maruyama method with the step size h = 0.001.
The total sample size is N = 108. The coupling time distribution is demonstrated in figure 8
right. We can clearly see an exponential tail for P[τc > t]. The linear fitting of log P[τc > t]
versus t gives a slope≈ −0.533 49. Therefore, we conclude that (5.7) is indeed geometrically
ergodic.

Now, we explain how to adapt algorithm 3 for the degenerate diffusions. Since the one-step
transition probability density function of (5.7) is degenerate, the density functions p(x) and p(y)

in algorithm 3 are not well-defined. Instead, we need to manually calculate the two-step transi-
tion probability density function and then run the maximal coupling for two successive steps.
Hence, the output in algorithm 3 should be (Xn+2,Yn+2) and τc = nch. For convenience, we
still use p(x) and p(y) to denote the respective probability density functions of Xn+2 and Yn+2.

6963



Nonlinearity 33 (2020) 6935 Y L i and S Wang

In this way, the two-step version of algorithm 3 is as follows: (i) sample Xn+2 and calculate
W = Up(x)(Xn+2); (ii) if W � p(y)(Xn+2), let Xn+2 = Yn+2, τc = (n+ 2)h. Otherwise, sam-
ple Yn+2 and calculateW ′ = Vp(y)(Yn+2) until W ′ > p(x)(Yn+2). This method works for other
similar problems with degenerate diffusions. If the noise is very degenerate, one may need to
calculate the probability density function after more than two steps.

It is not easy to explicitly estimate the probability density function of the Euler–Maruyama
method for two steps (or more). (One exception is the Langevin dynamics because the deriva-
tive of the position variable is a linear function of the velocity, which makes it possible to
calculate an explicit probability density function; see the first author’s another recent paper
[15].) We need to use the transformation of probability density functions to calculate p(x) and
p(y) at different points. Our implementation is as below.

Let S̄n and Īn be the approximate values of Shn and I
h
n when running the Euler–Maruyama

method. After one step iteration, we have

S̄n+1 = S̄n + (α− βS̄nĪn − μS̄n)h+ σS̄n
√
hN1 := S̃n+1 + σS̄n

√
hN1,

Īn+1 = Īn + (βS̄nĪn − (μ+ ρ+ γ )̄In)h+ σĪn
√
hN1 := Ĩn+1 + σĪn

√
hN1,

where N1 is a standard normal random variable. After two steps, with some calculations we
have

S̄n+2 = S̃n+1 + (α− βS̃n+1 Ĩn+1 − μS̃n+1)h+ RS(N1,N2)

Īn+2 = Ĩn+1 + (βS̃n+1Ĩn+1 − (μ+ ρ+ γ )̃In+1)h+ RI(N1,N2),
(5.8)

where N1, N2 are two independent standard normal random variables. The transformations RS
and RI are as follows

RS(N1,N2) = [−βσS̄nh
3/2̃In+1 − βσĪnh

3/2S̃n+1 − μσS̄nh
3/2 + σS̄nh

1/2]N1

+ σS̃n+1h
1/2N2 − βσ2S̄nĪnh

2N2
1 + σ2S̄nhN1N2 (5.9)

and

RI(N1,N2) = [βσS̄nh
3/2Ĩn+1 + βσĪnh

3/2S̃n+1 − (μ+ ρ+ γ)σĪnh
3/2

+ σĪnh
1/2 ]N1 + σĨn+1h

1/2N2 − βσ2S̄nĪnh
2N2

1 + σ2 ĪnhN1N2. (5.10)

For h sufficiently small, the transformation (N1,N2) �→ (RS,RI) is close to a linear transfor-
mation since all the coefficients of quadratic terms are significantly smaller than that of the
linear terms. Hence, we treat this transformation as invertible when calculating the probability
density function.

By the elementary probability, it is easy to see that the joint probability density function
p(RS,RI) is given by

p(RS,RI) = |J|−1pnorm(N̄1, N̄2), (5.11)

where J is the Jacobian matrix of the transformation (N1,N2) �→ (RS,RI), pnorm is the proba-
bility density function of the 2D standard normal random variable, and N̄1, N̄2 are the values
of random variables N1 and N2 that produce (RS,RI).

Now, let X h
n = (S̄xn, Ī

x
n ) and Yh

n = (S̄yn, Ī
y
n) be the two numerical trajectories that need to be

coupled. Let px and py be the probability density functions of X h
n+2 and Yh

n+2, respectively. In
algorithm 3, we need to compute four probability densities: p(x)(X h

n+2), p
(x)(Yh

n+2), p
(y)(X h

n+2),

6964



Nonlinearity 33 (2020) 6935 Y L i and S Wang

and p(y)(Yh
n+2). Since the normal random variables N1 and N2 are already known when sam-

pling X h
n+2, p

(x)(X h
n+2) is given by (5.11) directly. For p(x)(Yh

n+2), we need to calculate the
‘effective’ (RyS,R

y
I ) from (5.8) for X h

n+2, which are the ‘effective random terms’ for X h
n+2 to

produce Yh
n+2. This is done by solving the following equations

S̄yn+2 = S̃xn+1 + (α− βS̃xn+1 Ĩ
x
n+1 − μS̃xn+1)h+ RyS(N

y
1,N

y
2)

Īyn+2 = Ĩ xn+1 + (βS̃xn+1 Ĩ
x
n+1 − (μ+ ρ+ γ )̃Ixn+1)h+ RyI (N

y
1,N

y
2).

Then we solve (Ny
1,N

y
2) by numerically solving equation (5.9) and (5.10) for (RyS,R

y
I ). We use

Newton’s method which converges after less than 5 steps. This gives the ‘effective normal
random variables’ for X h

n+2 to produce Yh
n+2. The probability density function p(x)(Yh

n+2) is
obtained by applying the transformation (5.11) to the numerically solved (Ny

1,N
y
2). Computa-

tions of p(y)(X h
n+2) and p

(y)(Yh
n+2) are analogous.

We remark that this is a representative example becausemany random dynamical systems in
various different settings admit randomattractors [2, 13, 50, 53, 54]. Thismeans that any trajec-
tory along the same Brownian sample path, denoted by ω, will converge to an ω-dependent set
A(ω). If A(ω) is a stable equilibrium, the synchronous coupling can bring any two trajectories
close to each other. It is also called reliability by some authors [41]. When the two trajec-
tories close enough, one can shift to the maximal coupling to make them collapse together.
This approach builds some additional connections between the theories of random dynamical
systems and SDEs.

5.5. Coupled stochastic FitzHugh–Nagumo model

A significant advantage of the coupling method used in this paper is that it is relatively
dimension-free. In contrast, approaches relying on the discretization of the generator is
extremely difficult when dealing with higher dimensional problems. In this subsection, we
consider a very high dimensional example: the stochastic FitzHugh–Nagumo (FHN) model,
for which the many stochastically FHN oscillators are coupled. It is well known that the FHN
model is a nonlinear model that models the periodic evolution of the membrane potential of a
spiking neuron under external stimulations. For a single neuron, this model is a 2D dynamical
system with additive noise

μ du =

(
u− 1

3
u3 − v

)
dt +

√
μσ dW (1)

t

dv = (u+ a) dt + σ dW (2)
t ,

(5.12)

where u represents the membrane potential, v is a recovery variable, and W (1)
t ,W (2)

t are two
independent Brownian motions. When a = 1.05, the deterministic system admits a stable
equilibrium with a small basin of attraction. Intermittent limit cycles can be triggered by suit-
able random perturbations which are strong enough to drive the system out from the basin of
attraction.

Consider 50 coupled equation (5.12) with both the nearest-neighbour interaction and a
mean-field interaction. Similar as in [11], let v =

√
μv be the new recovery variable. This
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Figure 9. Panel I–V: time evolutions of membrane potential of 50 coupled neurons in
FHN model. Coupling strength du takes value 0, 0.1, 0.3, 0.5, and 1 in five figures. Dif-
ferent colours means different membrane potentials (see the colour bar beside). X-axis:
neuron ID. Y-axis: time. Panel VI: coupling time distributions of FHN model with five
different du values in a log-linear plot.

gives the coupled FHN oscillator

dui =

(
1
μ
ui −

1
3μ

u3i −
1
√
μ
vi +

du
μ
(ui+1 + ui−1 − 2ui)+

w

μ
(ū− ui)

)
dt

+
σ
√
μ
dW (2i−1)

t

dvi =

(
1
√
μ
ui +

a
√
μ

)
dt +

σ
√
μ
dW (2i)

t

(5.13)

for i = 1, . . . , 50, where du is the nearest-neighbour coupling strength, w is the mean field
coupling strength,W (1)

t , . . . ,W (100)
t are independent Brownian motions, and

ū =
1
50

50∑
i=1

ui

is the mean membrane potential. We set u0 = u50 and u51 = u1 so that the 50 neurons are con-
nected as a ring.We would like to use this example to demonstrate the strength of our algorithm
when dealing with the high-dimensional problems. The connection between the ergodicity and
degree of synchrony will also be discussed.

In our simulations, we choose parametersw = 0.4, μ = 0.05, and σ = 0.6. These parame-
ters are similar to those in [11]. The main control parameter is du. A higher du means a stronger
nearest-neighbour coupling, which gives a more synchronized dynamics. See figure 9 panel
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I–V for the time evolutions of the membrane potential with different du. We see that a higher
du makes the membrane potentials of the 50 neurons evolve more coherently.

We use the Euler–Maruyama scheme in our simulations with the step size h = 0.001. We
run algorithm 2 with N = 106 samples for du = 0, 0.1, 0.3, 0.5, and 1 to compute the slopes of
exponential tails of the distribution of coupling times. See figure 9 panel VI for a comparison
of the coupling time distributions and slopes. We see that higher du’s provide longer coupling
times, and hence lower rates of geometric ergodicity. Heuristically, this phenomenon is caused
by the phase lock. In the presence of strong synchronization, the trajectories are attracted to the
neighbourhood of a high dimensional limit cycle and follow it as time evolves. When running
the coupling process, the two independent trajectories can be attracted to difference phases
of this limit cycle. When this happens, it will take longer times for the two trajectories to
couple, as one trajectory needs to diffuse by itself to ‘chase’ the other one along the limit
cycle.

6. Conclusion and further discussions

The geometric ergodicity is an important property of a stochastic process with an infinitesimal
generator. It measures the mixing effect given by a combination of the underlying deterministic
dynamics and the random perturbations. In this paper, based on the coupling technique, we
propose a probabilistic method to numerically compute the rate of geometric ergodicity. Some
straightforward arguments show that the lower bound of the rate can be estimated by computing
the exponential tail of the coupling times. In addition, we find that the upper bound of the
geometric convergence rate can also be estimated by computing the first exit time with respect
to a sequence of disjoint sets pairs. Compared with the traditional method that looks for the
eigenvalues of the discretized infinitesimal generator, our method is relatively dimension-free.
It works well when the dimension of the phase space becomes too high for the grid-based
method to handle.

As numerical examples, we study several deterministic dynamical systems with additive
noise perturbations. One interesting finding is that the coupling time distributions under noise
magnitudes can provide a lot of information about the deterministic dynamics. As demon-
strated in section 4, the random perturbed systems admit different convergence rate versus
noise curves when their underlying deterministic dynamics admit different degrees of chaos.
In other words, the coupling times provide some data-driven inference of the underlying deter-
ministic dynamics. Since the coupling method is relatively dimension-free, we expect that this
approach can be used to characterize some high-dimensional deterministic dynamical systems,
such as the gradient flows of high-dimensional potential functions. We plan to further explore
along this direction in future works.

Despite the success of the many examples, the coupling method has its own limitations.
Although there are some known results about coupling with degenerate noise, such as the
coupling for the Langevin dynamics [19] or the Hamiltonian Monte Carlo method [7]. When
the noise is highly degenerate, it becomes difficult to design an effective coupling scheme.
In addition, with degenerate noise, the numerical maximal coupling updates become signifi-
cantly difficult, as one needs to compute the probability density function of several consecutive
updates in order to get a non-degenerate probability density function. As shown in section 5.4,
even the implementation of a relatively simple 2D example has some nontrivial overhead. At
each step, one needs to run a nonlinear equation solver twice to check the probability of cou-
pling. In this situation, a ‘weaker’ approach based on the numerical return time and analytical
minorization condition works better; see the first author’s earlier paper [39]. The method in
[39] can numerically check the qualitative rate of ergodicity (geometric or sub-geometric),
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although in general it does not give a useful bound for the rate of geometric ergodicity. The
first author is currently writing a separate paper to extend the method in [39] to the case of
SDEs with highly degenerate noise terms.
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