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The short distance behavior of dark matter (DM) at galaxy scales exhibits several features not explained
by the typical cold dark matter with velocity-independent cross section. We discuss a particle physics
model with a hidden sector interacting feebly with the visible sector where a dark fermion self-interacts via
a dark force with a light dark photon as the mediator. We study coupled Boltzmann equations involving two
temperatures, one for each sector. We fit the velocity-dependent DM cross section to the data from scales of
dwarf galaxies to clusters consistent with relic density constraint.
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I. INTRODUCTION

While the Lambda cold dark matter (ΛCDM) model
works very well at large scales, several issues have arisen
recently concerning weakly interacting massive particles
(WIMPs) as CDM with regards to physics at galaxy scales.
Some of these are described as the cusp core, the missing
satellites, and the too-big-to-fail (TBTF) anomalies. A
comprehensive review of these issues can be found in
the paper by Tulin and Yu [1]. There are various sugges-
tions on how to overcome some of these anomalies such as
using complex dynamics and baryonic physics along with
WIMP simulations [2], ultralight axions [3–5] as alternative
to WIMPs and self-interacting dark matter (SIDM). The
last suggestion first made by Spergel and Steinhardt [6] has
recently attracted considerable interest [7–20]. The SIDM
models allow for a fit to the data from the scales of dwarf
galaxies, where the SIDM acts like a collisional fluid, to
galaxy clusters, where SIDM becomes collisionless. Data
from dwarf galaxy scales to galaxy clusters [21–25] will be
collectively denoted as data from Dwarf Galaxy scales to
galaxy Clusters (DGC) in this work. Most of the analyses
to fit the DGC data use Yukawa interactions to model

self-interactions, where the computation of the dark matter
relic density presents a challenge [26].
There is currently a significant amount of data from

dwarf galaxies to galaxy clusters and it is of interest to see if
such data hides any clues to the nature of dark matter which
may allow us to discriminate among various DM models.
One important indicator here is the possible velocity
dependence of dark matter cross sections. It turns out that
the velocity dependence is a possible way to differentiate a
class of SIDM models from CDM. Thus the SIDM models
based on particle exchange produce a scattering cross
section which goes like 1=v4 as in Rutherford scattering
which gives a negligible cross section for large velocities
and SIDM in this region acts like a collisionless fluid. This
is the situation for galaxy clusters where v tends to be as
large as 1000 km=s or larger and σ=m has an upper limit
which is estimated to be maximally 1 cm2=g [1,21,22,26]
and as low as 0.1 cm2=g [23,25] to 0.065 cm2=g at
95% C.L. [24]. Here one may fit the data either by
CDM or by SIDM. However, for midsize galaxies such
as the Milky Way and low surface brightness galaxies
where hvi lies in the range ∼80–200 km=s, fit to data
indicates σ=m ∼ 0.5–5 cm2=g and for dwarf galaxies where
hvi ∼ 10–100 km=s, σ=m lies in the range 1–50 cm2=g
[1,26]. Thus one finds that for velocities smaller than those
in the galaxy cluster range, CDM and SIDM behave
differently since in this region SIDM becomes a collisional
fluid and helps resolve the cusp core and the TBTF
anomalies. Velocity dependence of SIDM is the underlying
reason for the transition of SIDM from one form to the
other, and the desired velocity dependence appears natu-
rally in SIDMmodels where the dark matter is composed of
dark fermions of mass mD and the self-interaction arises
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from a dark force due to the exchange of a dark photon of
mass mγ0 , where mγ0=mD ≪ 1.
It is of interest to construct particle physics models which

can explain the DGC data along with satisfying the relic
density constraint. Since the hidden sector and the visible
sector in general will have different temperatures [27–32], a
proper analysis of the coupled hidden and visible sectors
requires study of Boltzmann equations involving temper-
atures of both the hidden and the visible sectors, which we
carry out in the analysis below.

II. HIDDEN SECTOR DARK MATTER, A DARK
FORCE AND A FEEBLE COUPLING TO THE

VISIBLE SECTOR

In this work we construct models where the dark matter
particles have feeble interactions with the visible sector and
are produced in the early Universe by the freeze-in
mechanism [33–37]. Specifically we consider an extended
standard model with a hidden sector which has matter and
gauge fields with a Uð1ÞX gauge invariance which has
mixings with the visible sector Uð1ÞY via gauge kinetic
[38–40] and Stueckelberg mass mixings [41–45]. The
relevant part of the Lagrangian of the extended model is

L ¼ −
1

4
CμνCμν − gXD̄γμDCμ þmDD̄D

−
δ
2
CμνBμν −

1

2
ðM1Cμ þM2Bμ þ ∂μσÞ2; ð1Þ

where Cμ is the gauge field of Uð1ÞX, Bμ is the gauge field
for the Uð1ÞY , σ is an axion field which gives mass to Cμ

and is absorbed in the unitary gauge, D is a Dirac fermion
which is charged under Uð1ÞX, δ is the kinetic mixing
parameter, M1 and M2 are the mass parameters in the
Stueckelberg mass mixing. The diagonalization of the
gauge boson mass matrix along with the mass matrix
arising from the spontaneous breaking of the Higgs boson
in SUð2Þ ×Uð1ÞY gives the following mass eigenstates: the
photon ðγÞ, the Z boson, and Z0ðγ0Þ. Because the mass of
the third neutral boson would turn out to be in MeV region
we will refer to it as a dark photon or γ0 which, however, is
unstable and decays.

III. DEDUCTION OF SELF-CONSISTENT TWO-
TEMPERATURE BOLTZMANN EQUATIONS

We give in this section a deduction of the temperature-
dependent coupled Boltzmann equations ofD and γ0 and the
evolution equation of η ¼ T=Th, with TðThÞ being the
visible (hidden) sector temperature. One then obtains
the set of basic equations that govern the evolution of the
particle number densities in the visible and hidden sectors
when the two sectors have different bath temperatures.
These equations, solved simultaneously, are essential for
a proper analysis of the coupled visible sector-hidden sector

system in such a situation. One consequence of coupling of
the visible and the hidden sectors is that the entropies in the
hidden and the visible sectors are not individually preserved
but it is only their sum which is a constraint imposed in the
analysis. In this work, we use the hidden sector temperature
as the clock and the temperature in the visible sector is
related to the hidden sector via the function η.
We begin by considering the two Friedman equations for

a flat universe

H2 ¼ 8πGN

3
ρ; ð2Þ

ä
a
¼ −

4πGN

3
ðρþ 3pÞ; ð3Þ

where GN is Newton’s gravitational constant, ρ and
p are the energy density and pressure, respectively.
Differentiating Eq. (2) and using Eqs. (2) and (3), we
can deduce the result

dρ
dt

þ 3Hðρþ pÞ ¼ 0: ð4Þ

As noted above we will use Th as the clock and we can then
obtain from Eq. (4) the following relation:

dTh

dt
¼ −

4ζρ
dρ
dTh

H; ð5Þ

where ζ ¼ 3
4 ð1þ p=ρÞ. Here ζ ¼ 1 is for the radiation

dominated era and ζ ¼ 3=4 for the matter dominated
universe. We wish to determine dρv=dTh in terms of
dρh=dTh (the subscripts v and h correspond to the visible
and hidden sectors, respectively). We begin by considering
the equation obeyed by ρh:

dρh
dt

þ 3Hðρh þ phÞ ¼ jh; ð6Þ

where ρh is the energy density, ph is the pressure in the
hidden sector and jh is the source term in the hidden sector
and arises from freeze-in. Next, we write

dρh
dt

¼ dTh

dt
dρh
dTh

; ð7Þ

and upon using Eqs. (5), (6) and (7), we get

ρ
dρh
dTh

¼
!
ζh
ζ
ρh −

jh
4Hζ

"
dρ
dTh

; ð8Þ

where ζh ¼ 3
4 ð1þ ph=ρhÞ and interpolates between ζh ¼ 1

for radiation dominance and ζh ¼ 3=4 for matter dominance
in the hidden sector. We note that since ρ ¼ ρv þ ρh, we
have dρ=dTh ¼ dρv=dTh þ dρh=dTh and together with
Eq. (8), we can solve for dρv=dTh in terms of dρh=dTh
and get
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dρv
dTh

¼ ζρv þ ρhðζ − ζhÞ þ jh=ð4HÞ
ζhρh − jh=ð4HÞ

dρh
dTh

: ð9Þ

Next, we use Eq. (9) to obtain an equation for dη=dTh. Now
ηðThÞ enters only in dρv=dTh and to compute it we use

dT
dTh

¼ ηþ Thη0; ð10Þ

where η0 ¼ dη=dTh.
In the analysis, we will use the constraint that the

total entropy S ¼ sR3 is conserved which gives
ds=dtþ 3Hs ¼ 0. Here s ¼ sv þ sh, where sv depends
on T and sh on Th so that

s ¼ 2π2

45
ðhheffT3

h þ hveffT
3Þ; ð11Þ

where hveffðhheffÞ is the visible (hidden) effective entropy
degrees of freedom. The Hubble parameter also depends on
both T and Th as can be seen from the Friedman equation

H2 ¼ 8πGN

3
ðρvðTÞ þ ρhðThÞÞ; ð12Þ

where ρvðTÞðρhðThÞÞ is the energy density in the visible
(hidden) sector at temperature TðThÞ and given by

ρv ¼
π2

30
gveffT

4; ρh ¼
π2

30
gheffT

4
h: ð13Þ

gveff , h
v
eff are functions of T and we use the fits given in

[46–48] to parametrize them while gheff , h
h
eff are functions of

Th and we use temperature-dependent integrals given in
[49] to parametrize them.
Using Eq. (13) and Eq. (10) we get

dρv
dTh

¼ Av þ Bvη0; ð14Þ

where Av and Bv are given by

Av ¼
π2

30

!
dgveff
dT

η5T4
h þ 4gveffη

4T3
h

"
; ð15Þ

Bv ¼
π2

30

!
dgveff
dT

η4T5
h þ 4gveffη

3T4
h

"
: ð16Þ

Using Eqs. (9) and (14), we get

Av þ Bvη0 ¼
ζρv þ ρhðζ − ζhÞ þ jh=ð4HÞ

ζhρh − jh=ð4HÞ
dρh
dTh

; ð17Þ

which is solved for η0 to get Eq. (26).
Now ρh and ph, which enter in the definition of ζh, are

determined in terms of ργ0 , pγ0 , ρD, pD so that ρh ¼ ργ0 þ
ρD and ph ¼ pγ0 þ pD, where ργ0 and pγ0 are given by

ργ0 ¼
gγ0T4

2π2

Z
∞

xγ0

x3dx
ex − 1

;

pγ0 ¼
gγ0T4

6π2

Z
∞

xγ0

ðx2 − x2γ0Þdx
ex − 1

: ð18Þ

Similarly, for the ρD and pD, we have

ρD ¼ gDT4

2π2

Z
∞

xD

x3dx
ex þ 1

;

pD ¼ gDT4

6π2

Z
∞

xD

ðx2 − x2γ0Þdx
ex þ 1

: ð19Þ

Here gγ0 ¼ 3 and gD ¼ 4 and we have used the natural unit
system c ¼ kB ¼ 1, with xγ0 ¼ mγ0=Th and xD ¼ mD=Th.
In the computation of ζ one needs ρ ¼ ρv þ ρh and p ¼
pv þ ph where the computation of ρv and pv is done
numerically as discussed in the text.
Next, we discuss the Boltzmann equations for the

number densities of the dark fermions D and of the dark
photons γ0 using the hidden sector temperature Th as the
clock. In this case, for the D fermions, we have

dnD
dt

þ 3HnD ¼ ½hσviDD̄→iīðTÞn
eq
D ðTÞ2

− hσviDD̄→γ0γ0ðThÞnDðThÞ2

þ hσviγ0γ0→DD̄ðThÞnγ0ðThÞ2&: ð20Þ

In a similar fashion the Boltzmann equation for nγ0 is
given by

dnγ0
dt

þ 3Hnγ0 ¼ ½hσviDD̄→γ0γ0ðThÞnDðThÞ2

− hσviγ0γ0→DD̄ðThÞnγ0ðThÞ2

þ hσviiī→γ0ðTÞn
eq
i ðTÞ2

− hΓγ0→iīðThÞinγ0ðThÞ&: ð21Þ

In Eqs. (20) and (21), the thermally averaged cross section
and decay widths are given by

hσviaā→bcðTÞ

¼ 1

8m4
aTK2

2ðma=TÞ

Z
∞

4m2
a

ds σðsÞ
ffiffiffi
s

p
ðs − 4m2

aÞK1ð
ffiffiffi
s

p
=TÞ;

ð22Þ

and

hΓX→iīðTÞi ¼ ΓX→iī
K1ðmX=TÞ
K2ðmX=TÞ

; ð23Þ

with K1 and K2 being the modified Bessel function of the
second kind and degrees one and two, respectively.
Note that standard thermal averaging is used in the
dark sector since the D fermions enter immediately in
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self-equilibration (see discussion in the next section).
Deviations from this scenario may occur and must be
treated with care [50,51].
In Eq. (20) and Eq. (21), we will use Th as the reference

temperature and replace t by Th. We then analyze the
evolution of nD, nγ0 and η as a function of Th. For the
computation of the relic density, it is more convenient to
deal directly with particle yields defined by Ya ¼ na=s for a
particle species a with number density na. We assume that
the dark particles D, γ0 are feeble and there is no initial
abundance and that they are initially produced only via
freeze-in processes such as iī → DD̄, iī → γ0, where i
refers to standard model particles. However, D and γ0 have
interactions such as DD̄ → γ0γ0 within the hidden sector
which, in our case, are not feeble. The Boltzmann equations
for the yields YD and Yγ0 and the evolution η then take the
form

dYD

dTh
¼ −

s
H

!
dρh=dTh

4ζhρh − jh=H

"
½hσviDD̄→iīðTÞY

eq
D ðTÞ2

− hσviDD̄→γ0γ0ðThÞY2
D þ hσviγ0γ0→DD̄ðThÞY2

γ0 &; ð24Þ

dYγ0

dTh
¼ −

s
H

!
dρh=dTh

4ζhρh − jh=H

"$
hσviDD̄→γ0γ0ðThÞY2

D

− hσviγ0γ0→DD̄ðThÞY2
γ0 −

1

s
hΓγ0→iīðThÞiYγ0

þ hσviiī→γ0ðTÞY
eq
i ðTÞ2

%
; ð25Þ

dη
dTh

¼ −
Av

Bv
þ ζρv þ ρhðζ − ζhÞ þ jh=ð4HÞ

ζhρh − jh=ð4HÞ

dρh
dTh

Bv
; ð26Þ

where

jh ¼
X

i

½2Yeq
i ðTÞ2Jðiī → DD̄ÞðTÞ

þ Yeq
i ðTÞ2Jðiī → γ0ÞðTÞ&s2

− Yγ0Jðγ0 → eþe−ÞðThÞs; ð27Þ

Yeq
i ¼ neqi

s
¼ gi

2π2s
m2

i TK2ðmi=TÞ: ð28Þ

Here gi is the number of degrees of freedom of particle i
and massmi and the source functions J are discussed in the
Appendix. Note that in Eq. (25) there are contributions one
can add on the right-hand side which involve processes
iī → γ0γ, γ0Z, γ0γ0. However, their contributions are rela-
tively small compared to iī → γ0.
The entropy density and the Hubble parameter given by

Eqs. (11) and (12) can be rewritten as

s ¼ 2π2

45
heffT3

h; and H2 ¼ 8πGN

3

π2

30
geffT4

h; ð29Þ

where the total entropy and energy density effective
degrees of freedom are defined as

heff ¼ hheff þ η3hveff ; and geff ¼ gheff þ η4gveff : ð30Þ

Thus, the ratio s=H that appears in Eqs. (24) and (25) can
be written as

s
H

¼ 2
ffiffiffi
2

p
πffiffiffiffiffi

45
p heffffiffiffiffiffiffiffi

geff
p MPlTh; ð31Þ

where MPl ≡
ffiffiffiffiffiffiffiffiffi
1

8πGN

q
¼ 2.4 × 1018 GeV.

In the dark sector, the effective degrees of freedom
include those for the dark photon and for the dark fermion
so that

gheff ¼ gγ
0

eff þ
7

8
gDeff ; and hheff ¼ hγ

0

eff þ
7

8
hDeff : ð32Þ

At temperature Th, geff and heff for the particles γ0 and D
are given by

gγ
0

eff ¼
45

π4

Z
∞

xγ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2γ0

q

ex − 1
x2dx; and hγ

0

eff ¼
45

4π4

Z
∞

xγ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2γ0

q

ex − 1
ð4x2 − x2γ0Þdx;

gDeff ¼
60

π4

Z
∞

xD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2D

p

ex þ 1
x2dx; and hDeff ¼

15

π4

Z
∞

xD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2D

p

ex þ 1
ð4x2 − x2DÞdx; ð33Þ

where xγ0 and xD are as defined after Eq. (19). We note that in the limit xγ0 → 0 one has gγ
0

eff ¼ hγ
0

eff → 3 and when xD → 0
one has gDeff ¼ hDeff → 4.
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IV. DARK FREEZE-OUT, RELIC DENSITY, AND
FITS TO DGC DATA

We give now a numerical analysis based on the formal-
ism of the preceding section. In Table I we give a set of six
benchmarks which satisfy the relic density constraint and
where the dark photon decays before the big bang nucleo-
synthesis (BBN). The values of σ=m at low velocities for
these model points lie in the range ð1.2–3.7Þ cm2=g which
are needed to explain the short distance structure of dark
matter at galaxy scales. The calculation of the relic density
requires solving the set of stiff differential equations,
Eqs. (24)–(26), and integrating the yield of D fermions
to present day temperature to obtain Y0

D. In solving the
coupled system, the effective number of degrees of freedom
for the hidden sector, gheff and hheff , are determined from
the set of equations, Eq. (33), while those for the visible
sector, gveff and hveff , are read from tabulated results in
micrOMEGAs obtained from Refs. [47,48]. The relic
density of D is then determined by using

Ωh2 ¼ mDY0
Ds0h

2

ρc
; ð34Þ

where ρc is the critical density, s0 is today’s entropy density
and h ¼ 0.678.
In Fig. 1 we exhibit the dark freeze-out where the

decoupling between the dark photon and the dark fermion,
i.e., nDðThÞhσviDD̄→γ0γ0ðThÞ ∼HðTÞ occurs for values of
Th=mD ∼Oð1–7Þ × 10−3 exhibited by the knee in the
lower part of the plot. The dark fermions interact with
each other via the exchange of a dark photon or a Z boson.
The coupling of D with the former is proportional to gX
while its coupling with the latter is proportional to the
gauge kinetic mixing δ. Since gX is quite sizable, the D

fermions immediately enter into self-equilibrium after
production and remain so even at low temperatures. This
is shown in Fig. 2 which is a plot of nDhσviDD→DD (solid
curves) and the Hubble parameter HðTÞ (dashed curves)
versus the hidden sector temperature. One can clearly see
that the self-interaction processes (DD → DD, DD̄ → DD̄
and D̄ D̄ → D̄ D̄) remain above HðTÞ and thus in equilib-
rium even at low temperatures. This justifies the use of
thermal averaging of cross sections in the dark sector.
In Fig. 3 we exhibit the phenomenon of thermalization of

the hidden sector for one model point. Here one finds that
starting with different initial conditions on ξ≡ η−1 at some
high temperature, one ends up with ξ ¼ 1, i.e., Th ¼ T at
low temperatures. We further discuss the thermalization of
the hidden and visible sectors exhibited in Fig. 3. First we

TABLE I. The benchmarks used in the analysis where we set
M2 ¼ 0 and δ is in units of 10−9.

Model mD (GeV) M1 (MeV) gX δ

(a) 1.50 1.20 0.016 28
(b) 2.0 1.22 0.014 4.0
(c) 2.16 1.13 0.015 4.7
(d) 3.2 1.77 0.018 3.8
(e) 3.26 1.99 0.018 3.5
(f) 4.0 2.20 0.020 3.6

Model σ=mD (cm2=g) Ωh2 Γγ0→eþe− (GeV) τ (ms)

(a) 2.48 0.1215 1.4 × 10−21 0.49
(b) 1.97 0.1233 2.9 × 10−23 22.7
(c) 3.69 0.1218 3.0 × 10−23 21.8
(d) 1.79 0.1191 4.9 × 10−23 13.4
(e) 1.24 0.1185 4.8 × 10−23 13.8
(f) 1.43 0.1229 5.6 × 10−23 11.7

FIG. 1. A display of dark freeze-out showing a plot of
nDhσviDD̄→γ0γ0 (solid line) and HðTÞ (dashed line) versus Th

for three benchmarks of Table I.

FIG. 2. A plot of the dark matter self-interaction cross section
and the Hubble parameter for three benchmarks of Table I. One
notices that nDhσvi remains higher than HðTÞ.
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note that we can look at the visible and hidden sectors as
two heat baths. If there is a coupling between these two,
they would eventually thermalize according to the second
law of thermodynamics. The rate at which they thermalize
would be model dependent. Thus thermalization could
occur more rapidly (more slowly) if the coupling between
them is stronger (weaker). We exhibit this phenomenon in a
quantitative fashion in Fig. 4. Here we show that thermal-
ization happens for all the cases considered but the time at
which it happens depends on the coupling between the
sectors which is parametrized by the kinetic mixing. To
show this, we vary the kinetic mixing and plot the evolution
of ξ in the upper panel of Fig. 4. We note that for the three
values of δ, thermalization between the sectors eventually
takes place but for larger couplings, thermalization sets in at
higher temperature (green curve), i.e., earlier in time while
for smaller couplings, thermalization takes place at a later
stage, i.e., at lower temperatures (red curve). The same plot
is given for the six benchmarks in the lower panel which
shows the same observation.
The evolution of the yield for the dark fermions and dark

photon in terms of the hidden sector temperature is shown
in Fig. 5 for three benchmarks of Table I. The injection of
particle number density into the hidden sector from the
visible sector is evident from the steep rise of the yield ofD
(solid curve) and γ0 (dashed curve) showing the freeze-in
mechanism at play. Once the hidden sector is populated
enough, the processes DD̄ ↔ γ0γ0 become important. This
can be seen in Fig. 1 where the solid curves rise above the
Hubble parameter HðTÞ (dashed line) at high temperature.
As the temperature drops, the process DD̄ → γ0γ0 falls
below HðTÞ and the 2 → 2 processes producing the dark
fermions become less efficient. This causes the dark
fermion number density to freeze-out as shown in
Fig. 5. The increase in γ0 number density is sustained by
the 2 → 1 processes until the process γ0 → eþe− dominates

causing a dramatic drop in the dark photon number density.
Thus the dark photons do not contribute to the relic density
as they decay before the BBN. This shows that the
mechanism behind producing the correct relic density is
a combination of freeze-in due to the feeble couplings
between the hidden and visible sectors and a dark freeze-
out owing to the size of gX which gives weak scale
interactions in the dark sector. Though it can be minimal,
the evolution of ξ or η has an effect on the relic density. For
the benchmarks of Table I, we notice a change in the relic
density by a factor of∼2–3when switching between ξ0 ¼ 1
(sectors have the same temperature) and ξ0 ¼ 1000 (start-
ing with a cooler hidden sector). In Fig. 6 we give a plot of
σv=mD where σ refers to self-interaction cross section and

FIG. 3. Evolution of ξ as a function of T for benchmark (a) of
Table I for three different initial values of ξ at high temperature.

FIG. 4. Evolution of ξ with the visible sector temperature for
three values of the gauge kinetic mixing δ (upper panel) and for
the six benchmarks of Table I (lower panel). The upper panel
exhibits the phenomenon that the thermalization of the hidden
and the visible sector takes place at a lower temperature for
smaller values of δ indicating that a more feeble coupling
between the two sectors delays the thermalization process in
contrast with a stronger coupling. The lower panel shows that
thermalization takes place for all model points of Table I.
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v is the Moller velocity. The theory curves are for six model
points of Table I using THINGS and LSB galaxies and
clusters’ analysis taken from [23,26], showing that the
models can fit the dark matter cross sections from galaxy
scales to clusters.
The six benchmarks presented in Table I are only part of

a larger parameter space where one can satisfy the dark
matter relic density and produce a fit to the cross sections
from DGC data. To illustrate this, we consider six values of
the dark fermion mass mD ¼ 1.5, 2.0, 2.5, 3.0, 3.5 and
4.0 GeV and two values of the couplings gX ¼ 0.015 and
0.02 and for each set of ðmD; gXÞ we vary the gauge kinetic
mixing δ and the dark photon massmγ0 and plot the allowed
regions in the parameter space. The combined plot which

includes the considered dark fermion mass range is given
in Fig. 7. The plot shows regions which satisfy the relic
density constraints and give a fit to the DGC data, and are
consistent with other laboratory and astrophysical con-
straints. We now discuss these constraints. These include
constraints from dark photon experiments which are
numerous [53] and we only show the relevant and most
stringent ones for our case, namely, from E137 [54] (blue
region) and CHARM [55,56] (red region) which look at the
decay of dark photons into visible Standard Model par-
ticles. Constraints on spin-independent proton-dark matter
scattering cross section from DarkSide-50 is recast to fit our
model and is shown as dashed lines for each benchmark of
Table I. There is no constraint from DarkSide-50 on the
mD ¼ 1.5 GeV case which can also be seen from Fig. 7.
The green horizontal band shown in Fig. 7 represents the
region which produces the correct relic density from freeze-
in and the vertical red band is the allowed region in which a
good fit to the DGC data can be produced, within a 2σ
corridor. We notice that there is a an allowed region
where the relic density and galaxy fits are satisfied while
escaping constraints from DarkSide-50 and dark photon
experiments. This corresponds to a dark photon mass in
the range ∼1–5 MeV, a gauge kinetic mixing δ ∼
Oð10−9–10−8Þ and 0.015 ≤ gX ≤ 0.02 for 1.5 GeV ≤
mD ≤ 4.0 GeV. A plot similar to Fig. 7 is made for six
sets of ðmD; gXÞ values and shown in Fig. 8.
Finally, in Fig. 9 we exhibit the spin-independent proton-

DM cross section as a function of the dark matter mass
mD where the current limits from CDMSlite R3 [58],

FIG. 5. Evolution of YD and Yγ0 as a function of Th for three
benchmarks of Table I. The dashed horizontal lines correspond to
the yields which give a relic density ∼0.12 consistent with Planck
experiment [52] for each dark matter mass.

FIG. 6. σv=mD plotted versus hvi in the halo using self-
interacting dark matter cross section for the six model points
of Table I. The data points are taken from the work of [23,26].

FIG. 7. Plots in the gauge kinetic mixing-dark photon mass
plane showing the allowed regions of the parameter space for a
range of dark fermion mass and coupling gX. The blue and red
regions represent limits on dark photon decay to visible SM
particles from experiments E137 [54] and CHARM [55,56]. The
limit on the SI cross section from DarkSide-50 [57] is recast to
our model and is shown as dashed lines. The green band is the
region giving the correct relic density from freeze-in and the red
vertical band shows the region giving a fit to the DGC data.
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DarkSide-50 [57] and PandaX-II [59] are also exhibited.
One finds that the model points are consistent with the
current limits including constraints from CMB [60] and
dark photon experiments [53–56] and can be explored in
future improved experiments. We note that while the model
discussed above can resolve the cusp core and too-big-to-
fail anomalies, a resolution of the missing satellites

anomaly requires a very late kinetic decoupling. Using
the formalism of [61] we estimate the kinetic decoupling
temperature to be Oð100Þ keV. A further reduction to
achieve very late kinetic decoupling could be accomplished
by the inclusion of more dark degrees of freedom as
discussed in [62] and the references therein.

V. CONCLUSION

New analytic results of this work are the three coupled
equations defined by Eqs. (24)–(28) which allow one to
solve the Boltzmann equations for the relic density of dark
matter where the evolution depends on two temperatures,
one for the hidden and the other for the visible sector. It is
then seen that one must simultaneously evolve the ratio
η ¼ T=Th consistently to solve for the relic density. The
analysis shows that thermalization of the hidden sector
occurs for all the model points and the more feeble the
interaction is the longer it takes for thermalization to occur.
The hidden sector model we consider consists of a dark
fermion D and a dark photon γ0 as mediator where the dark
photon is unstable and decays before BBN.We present a set
of model points which satisfy the relic density constraint
and their self-interactions produce velocity dependence of
dark matter cross sections within SIDM framework using
DGC data. We note that the velocity dependence of dark
matter cross sections is a direct consequence of a force
mediator mass in the range OðMeVÞ and the confirmation
of such velocity dependence would point to the existence of
a dark force. The model points can be tested in future direct

FIG. 8. Plots in the δ-mγ0 plane showing the allowed regions of the parameter space for six values of the dark fermion mass, mD and
coupling gX. The limits are the same as the ones described in the caption of Fig. 7.

FIG. 9. The spin-independent proton-DM scattering cross
sections for the six benchmarks of Table I calculated using
micrOMEGAs 5.0 [63] with model files generated by SARAH

[64,65]. Also shown are the current exclusion limits from
CDMSlite R3, DarkSide-50 and PandaX-II.
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detection experiments via the spin-independent proton-DM
cross sections. We note that a confirmation of the velocity
dependence of the DM cross section within the self
interacting dark matter model would point to the existence
of a dark force mediated by a light dark photon which
controls the dynamics of dark matter from galaxy scales to
scales of galaxy clusters.
We discuss now the analysis of this work in the context

of previous works. Thus as noted above one of the main
results of this work are the set of equations, Eqs. (24)–(28).
It is widely realized in the literature (see, e.g., [28] or [32])
that a proper treatment of coupled visible and hidden
sectors which are not in thermal equilibrium requires the
evolution of the ratio of the visible and hidden sector
temperatures. However, an explicit set of equations that
accomplish this does not exist in the literature. The work of
[28] gives a broad analysis of four ways of creating dark
matter. In this work the dark photon is assumed massless.
However, a massless dark photon cannot produce a
Yukawa-like force that is needed to produce a velocity
dependence of dark matter cross sections which we discuss
in this work. Further, while this work recognizes the
importance of evolution of the ratio of the visible and
hidden sector temperatures, no explicit equation for the
evolution of the ratio of two temperatures, i.e., the analog of
Eq. (26), is given. In [32], the dark photon is given a mass
and the paper discusses the importance of a proper treat-
ment of two temperatures T and T 0 in the evolution.
However, the closest work comes to how T 0 is to be
determined is Eq. (3.25) which is not an explicit differential
equation such as Eq. (26) of our work. Further, we note that
in [32] as well as in [28], aside from the absence of explicit
analytic formula on T 0 vs T, there is also no numerical
exhibition of the evolution of the ratio ξ ¼ T 0=T while this
is done in Fig. 3 and Fig. 4. We note that the analysis of [32]
deals with millicharges which is also not directly relevant to
our work. In our analysis the hidden sector equilibrates
with itself. This is shown to manifest in that a freeze-out is
achieved in this sector as exhibited in Fig. 1 of the paper.
We note that the deviations from equilibrium must be
accounted for as discussed in [50] for the case of freeze-out
and in [51] for the case of freeze-in.
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APPENDIX: FURTHER ANALYTICAL RESULTS

The J functions that appear in Eq. (27) are defined as

neqi ðTÞ2Jðiī → DD̄ÞðTÞ

¼ T
32π4

Z
∞

s0
ds σDD̄→iīsðs − s0ÞK2ð

ffiffiffi
s

p
=TÞ; ðA1Þ

neqi ðTÞ2Jðiī → γ0ÞðTÞ

¼ T
32π4

Z
∞

s0
ds σiī→γ0sðs − s0ÞK2ð

ffiffiffi
s

p
=TÞ; ðA2Þ

nγ0Jðγ0 → eþe−ÞðThÞ ¼ nγ0mγ0Γγ0→eþe− ; ðA3Þ

and

neqi ðTÞ2hσviiī→γ0ðTÞ

¼ T
32π4

Z
∞

s0
ds σðsÞ

ffiffiffi
s

p
ðs − s0ÞK1ð

ffiffiffi
s

p
=TÞ; ðA4Þ

where K1 is the modified Bessel function of the second
kind and degree one and s0 is the minimum of the
Mandelstam variable s. The self-interaction cross sections
for DD̄ → DD̄, DD → DD, and D̄ D̄ → D̄ D̄ are given by

dσ
dΩ

¼
X3

i¼1

jMij2

64π2s
; ðA5Þ

where for DD̄ → DD̄

jM1j2 ¼ 2g4X

&
t2 þ u2 þ 8m2

Ds − 8m4
D

ðs −m2
γ0Þ2 þ Γ2

γ0m
2
γ0

þ u2 þ s2 þ 8m2
Dt − 8m4

D

ðt −m2
γ0Þ2

þ
2½m4

γ0 −m2
γ0ðsþ tÞ þ stþ Γ2

γ0m
2
γ0 &

½m4
γ0 −m2

γ0ðsþ tÞ þ st&2

× ðu2 − 8m2
Duþ 12m4

DÞ
'
: ðA6Þ

For DD → DD

jM2j2 ¼ 2g4X

&
s2 þ u2 − 8m2

Dðsþ uÞ þ 24m4
D

ðt −m2
γ0Þ2

þ t2 þ s2 − 8m2
Dðsþ tÞ þ 24m4

D

ðu −m2
γ0Þ2

þ
2½m4

γ0 −m2
γ0ðuþ tÞ þ utþ Γ2

γ0m
2
γ0 &

½m4
γ0 −m2

γ0ðuþ tÞ þ ut&2

× ðs2 − 8m2
Dsþ 12m4

DÞ
'
; ðA7Þ

where s, t, u are the Mandelstam variables. For
D̄ D̄ → D̄ D̄, jM3j2 ¼ jM2j2. The cross section for the
process DD̄ → γ0γ0 is given by
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σDD̄→γ0γ0ðsÞ ¼ g4XðR11 − sδR21Þ4

8πsðs − 4m2
DÞ

×
&
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

γ0Þðs − 4m2
DÞ

q

m4
γ0 þm2

Dðs − 4m2
γ0Þ

½2m4
γ0 þm2

Dðsþ 4m2
DÞ&

þ logA
s − 2m2

γ0
ðs2 þ 4m2

Dsþ 4m4
γ0 − 8m4

D − 8m2
Dm

2
γ0Þ
'
; ðA8Þ

with

A ¼
s − 2m2

γ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

γ0Þðs − 4m2
DÞ

q

s − 2m2
γ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

γ0Þðs − 4m2
DÞ

q : ðA9Þ

HereR11 andR21 are matrix elements ofRwhich diagonalizes the mass and kinetic energy matrices as given in [43]. When
kinematically allowed the process γ0γ0 → DD̄ is given by

9ðs − 4m2
γ0Þσγ

0γ0→DD̄ðsÞ ¼ 8ðs − 4m2
DÞσDD̄→γ0γ0ðsÞ: ðA10Þ
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