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In this paper, we address the decision-making problem of a virtual power plant (VPP) involving a self-scheduling 

and market involvement problem under uncertainty in the wind speed and electricity prices. The problem is 

modeled using a risk-neutral and two risk-averse two-stage stochastic programming formulations, where the 

conditional value at risk is used to represent risk. A sample average approximation methodology is integrated 

with an adapted L-Shaped solution method, which can solve risk-neutral and specific risk-averse problems. This 

methodology provides a framework to understand and quantify the impact of the sample size on the variability of 

the results. The numerical results include an analysis of the computational performance of the methodology for 

two case studies, estimators for the bounds of the true optimal solutions of the problems, and an assessment of 

the quality of the solutions obtained. In particular, numerical experiences indicate that when an adequate sample 

size is used, the solution obtained is close to the optimal one. 
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. Introduction 

The optimal operation and electricity market involvement of virtual

ower plants (VPPs) is currently an active field of research. VPP refers to

n aggregation of distributed energy resources (DER) that interacts with

he electricity market as a single entity ( Awerbuch and Preston, 1997;

udjianto et al., 2007 ). These DERs involve generators with small ca-

acities or that face significant trading risks if operating by themselves.

or example, a wind farm trading in an electricity market is subject

o uncertain wind speeds, electricity prices, and imbalance costs, which

ay involve high risk. Aggregating multiple and diverse generators into

 VPP creates an entity with a single power generation profile and a

arger power capacity than the constituting units. A VPP has flexibility

ue to the complementarity of its diverse resources, and capacity to de-

elop market intelligence to optimize its participation in the electricity

arket (through offers in the pool and by signing forwards contracts).

owever, to define a single power output profile, a self-scheduling prob-

em considering all constituting generators, their interactions, and their
∗ Corresponding author. 
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eneration constraints needs to be solved, which is more difficult than

olving individual generator problems. The VPP concept is particularly

elevant for the integration of distributed renewable energy resources

n power systems to mitigate flexibility limitation and power output un-

ertainty. Additional details on the technical and commercial functions

f VPPs can be found in Pudjianto et al. (2007) , Morales et al. (2014) ,

nd Jansen et al. (2008) . In Section 1.1 , a review on VPP optimization

s presented. Within the different aspects of a VPP operation, we are

oncerned with the optimal scheduling of the generation units and the

nteraction with the electricity market. 

In the present work, we propose a sample average approximation

SAA) methodology ( Kleywegt et al., 2001; Shapiro and Homem-De-

ello, 2000 ) to solve the risk-averse stochastic programming problem

hat describes the operation of a VPP. Three important aspects in the im-

lementation of the SAA are studied: 1) the development of an efficient

olution methodology; 2) the impact of the sample size on the perfor-

ance of the methodology; and 3) the determination of point estimates
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.1. Literature review: optimization of VPPs 

In the literature, VPP models with distinct portfolios of generation

nits, different interactions with the electricity market, and, conse-

uently, various sources of uncertainty can be found. In terms of inter-

ctions with the electricity market, the main features captured by VPP

odels include: 

1. forward contracts ( Lima et al., 2015; Pand ž i ć et al., 2013a; Shaban-

zadeh et al., 2016 ); 

2. offers to the day-ahead market ( Baringo and Baringo, 2017; Dab-

bagh and Sheikh-El-Eslami, 2016; Kardakos et al., 2016; Moghad-

dam et al., 2013; Pand ž i ć et al., 2013b; Rahmani-Dabbagh and

Sheikh-El-Eslami, 2016; Shayegan-Rad et al., 2017; Tajeddini et al.,

2014; Zamani et al., 2016 ); 

3. offers/bids to the balancing market ( Dabbagh and Sheikh-El-Eslami,

2016; Kardakos et al., 2016; Tajeddini et al., 2014 ); 

4. offers to spinning reserves ( Dabbagh and Sheikh-El-Eslami, 2016 );

and 

5. strategic offering considering the market clearing and other market

players’ strategies ( Kardakos et al., 2016 ). 

The operational decision-making problem of VPPs involves decisions

nder uncertainty due to the nature of the renewable energy sources

nd electricity prices. Therefore, stochastic optimization approaches

onstitute a natural framework to address this type of problems. The

ost used approaches are based on stochastic programming and ro-

ust optimization. Some examples include the application of risk-neutral

tochastic programming models ( Lima et al., 2018; Pand ž i ć et al., 2013a;

013b ), risk-averse stochastic programming ( Dabbagh and Sheikh-El-

slami, 2016; Kardakos et al., 2016; Lima et al., 2018; Moazeni et al.,

015; Moghaddam et al., 2013; Tajeddini et al., 2014 ), robust optimiza-

ion ( Lima et al., 2015; Rahimiyan and Baringo, 2016; Shabanzadeh

t al., 2015 ), and recently, a hybrid approach based on stochastic pro-

ramming and robust optimization ( Baringo and Baringo, 2017 ). 

When risk-neutral or risk-averse stochastic programming models are

sed, the problem is solved for a random uncertainty sample. The main

ssumption is that the sample used is representative of the full distribu-

ion of the uncertainties in the problem. In the works above, the sample

ize ranges from less than 100 elements to a maximum of 400, except

n the work Lima et al. (2018) where samples of up to 25,000 elements

ere used. In some works, a reduced sample size was obtained using a

cenario-reduction method ( Dupa čová et al., 2003 ). Typically, the size

f the sample is limited by the capability to solve the problems using

he corresponding extensive form and a branch and cut solver for mixed-

nteger linear programming (MILP) problems. Compared with the works

ited above, our VPP model considers a time horizon of one week di-

ided into periods of one hour, whereas most works above consider the

4 h of the next day. The time horizon of one week avoids the myopic

iew of a single-day horizon, which neglects the temporal coupling of

ome VPP constraints that condition next day operations. Therefore, this

xtended horizon enables considering constraints of thermal units, e.g.,

inimum up-time and minimum down-time, and water mass balances

n the reservoir of hydro units across consecutive days, at the cost of a

arger model. 

We emphasize that risk-averse stochastic programming models are

ore complex to solve than risk-neutral stochastic programming; there-

ore, the impact of the sample size and the length of the time hori-

on on the computing time of risk-averse problems are comparatively

ore critical. Some works propose an out-of-sample analysis that pro-

ides an additional characterization of the solution resulting from the

tochastic programming model ( Baringo and Baringo, 2017 ). Compared

o an out-of-sample analysis that performs a study for a single solu-

ion, the SAA methodology includes a first stage with multiple opti-

ization replications using different samples to generate alternative

olutions and to provide a point estimate of the upper bound on the

rue objective function value (for a maximization problem). The work
2 
n Lima et al. (2018) does not use an SAA approach, but rather focuses

n risk-averse problems and their solutions using the L-Shaped method

 Van Slyke and Wets, 1969 ). In that work, 14 variants of the L-Shaped

ethod using combinations of single and multiple optimality cuts and

fficient parallel implementations are discussed, without considering

AA. 

In this work, we propose a more elaborate approach that efficiently

elies on multiple samples to assess solutions and determine confidence

ntervals on the relevant performance indices of the VPP operation. No

uch work is available for VPP applications. 

.2. Literature review: sample average approximation 

The term sample average approximation is used in the literature

o refer to a problem that approximates a stochastic optimization one

 Shapiro and Homem-De-Mello, 2000 ), but it is also used to indicate a

ethodology where the solution of that approximate problem is per-

ormed multiple times and increasingly accurate solutions are obtained

 Kleywegt et al., 2001 ). The repetition enables the calculation of con-

dence intervals of the optimal objective function value, and also the

ssessment of the solution. 

The detailed characterization and statistical properties of the

AA methodology, namely consistency and rates of convergence to

ptimal objective function values and solution, have been stud-

ed by Mak et al. (1999) , Shapiro and Homem-De-Mello (2000) ,

leywegt et al. (2001) , and reviewed in detail in Shapiro (2009) and

omem-de Mello and Bayraksan (2014) . In these works, expressions for

he convergence to the optimal value and solution are developed and ex-

ressions relating the probability of an optimal solution 𝑥 ∗ 
𝑁 

to be equal

o the true solution 𝑥 ∗ with the sample size are established. However,

s stated in Kleywegt et al. (2001) and Linderoth et al. (2006) , it is im-

ractical to determine some of the constants in those expressions. Fur-

hermore, the expressions do not provide an estimate of the computing

ime required to obtain the approximated solutions and point estimates

f the bounds. Therefore, computational experiments are essential to

etermine the trade-off between the computational resources and the

ccuracy obtained from the sample size. This type of analysis was per-

ormed, for example, in Linderoth et al. (2006) and Verweij et al. (2003) .

Wang (2007) and Wang and Ahmed (2008) were the first to propose

AA methods for risk-averse stochastic programming problems. They

ocused on min-max problems with expected value objectives and prob-

ems with constraints involving expected values. For these problems,

hey proved that the results of their SAA problems converge exponen-

ially fast to the true results of the stochastic problems as the sample

ize increases. 

A related method to this work, which has been extended to inte-

rate an SAA methodology with risk measures, is stochastic dual dy-

amic programming (SDDP) ( Pereira and Pinto, 1991 ). In Philpott and

e Matos (2012) and Shapiro et al. (2013) are developed risk-

verse SDDP methods to address multistage linear stochastic program-

ing models describing power systems planning problems. In risk-

verse SDDP, the upper bound estimators are known to be weak

 Shapiro, 2011 ), and in this regard, importance sampling was proposed

n Kozmík and Morton (2015) to improve the quality of those estimators

for a minimization problem). 

Regardless of the approach used, it is generally essential to develop

n efficient SAA methodology that can handle a large number of replica-

ions as well as large sample sizes to calculate tight confidence intervals.

urthermore, an efficient methodology is paramount to study the impact

f the sample size on the computational performance of the methodol-

gy. This is a central theme of the present work. 

.3. SAA applied to a risk-averse VPP optimization model 

The application of SAA methodologies to the scheduling problems of

PPs has not been reported in the literature. To fill the gap, we propose
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n SAA methodology to solve these problems that is based on methods

rom Linderoth et al. (2006) . Specifically, a distinct class of risk-averse

roblems from those considered in Linderoth et al. (2006) is addressed,

nd thus, insights that are not found in Linderoth et al. (2006) and

erweij et al. (2003) are analyzed and discussed. 

In this work, new avenues to solve the VPP problem are explored,

ocusing on the application of an SAA methodology that leads to com-

rehensive results for the VPP, including point estimates, confidence in-

ervals, and the assessment of the solution obtained. The main contribu-

ions of this work are twofold: 1) providing new and efficient strategies

o improve the performance of the SAA methodology; and 2) carrying

ut a comprehensive computational study applied to a VPP risk-averse

wo-stage stochastic programming problem. Specifically, an efficient ini-

ialization strategy to handle multiple optimization replications that re-

uces the computing time is proposed. In addition, a new method to

educe the number of times the bound estimation stage is ran is dis-

ussed. As a result, a detailed analysis of the effect of the sample size

hows that, unexpectedly, increasing the sample size for the optimiza-

ion leads to a reduction of the overall computing time in one of the

rocedures implemented. This reduction occurs because savings in the

ound estimation stage compensate the additional time spent on the

ptimization with larger samples. 

The paper is organized as follows. In Section 2 , the problem state-

ent and a description of the VPP studied are presented. The stochastic

odels with a focus on the objective functions are described in Section 3 .

he SAA approach and the implementation of two solution procedures

re presented in Section 4 , while the sampling techniques are shown

n Section 5 . The computational results are discussed in Section 6 and

onclusions are summarized in Section 7 . In a supplementary document,

ppendices with the deterministic model of the VPP, flow diagrams of

he solution procedures used, and additional extensive computational

esults are made available. 

. Problem statement 

In this work, we revisit the problem considered in

ima et al. (2018) but using an SAA methodology. The problem

ddresses the optimal operation and electricity market involvement

f a VPP that consists of a thermal unit, a wind power farm, and a

umped-storage hydroelectric plant. This configuration provides the

exibility of two dispatchable units, two renewable sources, and storage

o manage the energy available and to respond to the market. The VPP

articipates in the electricity market as a single entity by selling and

uying electricity in the market pool and through weekly contracts.

he time horizon is one week, divided into 168 hourly periods. 

The VPP generates electricity through the three units and may con-

ume electricity to pump back water to the upper reservoir of the hydro

lant. Uncertainty in the wind speed and the electricity prices is consid-

red, with a constant value for each hourly period. 

The decision sequence of the VPP involves a two-stage framework.

n the first-stage, the decisions are made before the beginning of the

ime horizon, where the VPP has to decide on the self-scheduling of the

hermal unit and the electricity to buy or sell through forward contracts.

he self-scheduling of the thermal unit involves only the commitment,

efined as the periods where it is up or down. The VPP can choose to

uy or sell electricity from two different weekly contracts, each one in-

olving fixed prices and quantities. In the second-stage, the decisions for

he full week are aggregated into one stage. These decisions are related

o the dispatching of the thermal and hydro plants and to the additional

lectricity to buy or sell in the electricity pool (short-term electricity

arket). The dispatch involves the hourly determination of the power

o generate by the thermal unit when it is up and the power generation

r consumption by the pumped-storage hydro plant. 

The objective of the VPP is to maximize the operational profit by de-

ermining an optimal solution concerning: a) the commitment, dispatch,

nd coordination between units in each period; b) the electricity bought
3 
nd sold in each period; and c) the electricity bought or sold through

ontracts. From the decision-maker perspective, the optimal first-stage

ariables are the most relevant. These decisions are implemented and

xed during the time horizon, whereas the optimal second-stage vari-

bles for the 168 periods represent recourse actions based on the realiza-

ions of the uncertain parameters. In practice, during the week, the VPP

eeds to solve additional decision problems to define the bidding strat-

gy for the specific electricity market pool (day-ahead market, intra-day

arket, balancing market). These problems have a shorter horizon and

se updated information for wind speed and electricity prices. 

The thermal unit has lower and upper bounds on the power gen-

ration, minimum up-time and down-time, start-up and shutdown and

ower-up and power-down ramp rate limits. Regarding costs, this unit

as fixed and variable generation costs, hot and cold start costs. The

tate of the thermal unit before the beginning of the time horizon is

nown. The hydro plant has lower and upper limits on the volume of

ater of the upper reservoir, and an upper bound on the pumped flow

f water. 

. Risk-averse stochastic models 

In this section, the main characteristics of the risk-averse stochas-

ic programming formulations for the VPP problem are described. The

eterministic version of the VPP optimization problem is described in

ppendix A, where the objective function, constraints, variables, and

nput data are presented. Below, we focus on building a general risk-

verse stochastic programming formulation that will be used in the SAA

ethodology outlined in Section 4 . 

.1. VPP general stochastic programming formulation 

The stochastic programming formulation of the VPP problem is an

xtension of the deterministic VPP problem, which results from con-

idering the electricity prices and the wind power output as random

ariables. In the deterministic VPP problem, the aim is to maximize the

rofit defined as the difference between the revenues from selling elec-

ricity and the costs of operation and buying electricity. In the stochastic

ersion, the profit is a random function, and thus the aim is to maximize

 functional of the profit. We start by denoting the profit function 𝑓 as 

 ( 𝑥 + , 𝑥 − , 𝑢, 𝑦 + ( 𝜉) , 𝑦 − ( 𝜉) , 𝑠 ( 𝜉) , 𝜉) ∶= ( 𝑐 + ) ⊤𝑥 + + ( 𝑐 − ) ⊤𝑥 − + 𝑐 
0 ⊤
𝑢 

+ ̃𝑐 0 ⊤( 𝜉) 𝑦 + ( 𝜉) − 𝑐 0 ⊤( 𝜉) 𝑦 − ( 𝜉) + 𝑐 ⊤𝑠 ( 𝜉) (1) 

here 𝜉 ∶ Ω → ℝ 

𝑟 is a random vector defined on the probability space

Ω,  , 𝑃 ) , with Ω being the set of all possible outcomes,  a 𝜎-algebra

nd 𝑃 a probability measure. The vectors 𝑐 + , 𝑐 − , 𝑐 0 , and 𝑐 ∈ ℝ 

𝑛 1 denote

eterministic vectors with known parameters, whereas, 𝑐 0 ( 𝜉) is a ran-

om vector. The vectors 𝑥 + , 𝑥 − , 𝑢, 𝑦 + ( 𝜉) , 𝑦 − ( 𝜉) , 𝑠 ( 𝜉) ∈ ℝ 

𝑛 1 represent the

ariables of the VPP model. 

The vectors 𝑥 + , 𝑥 − , and 𝑢 correspond to the first-stage decisions. 𝑥 + ,

 

− capture the power to sell and buy through the contracts, respectively.

he revenues related to the contracts are represented by ( 𝑐 + ) ⊤𝑥 + , while

he costs by ( 𝑐 − ) ⊤𝑥 − . The vector 𝑢 encapsulates the binary variables that

efine the operation mode of the thermal unit. Therefore, the term 𝑐 
0 ⊤
𝑢

epresents the startup costs, shutdown costs, and fixed costs of operation

f the thermal unit. 

The second-stage decisions are represented by the vectors 𝑦 + ( 𝜉) ,
 

− ( 𝜉) , 𝑠 ( 𝜉) , and 𝑟 ( 𝜉) . Note that 𝑟 ( 𝜉) is not part of the objective function.

he vectors 𝑦 + ( 𝜉) , 𝑦 − ( 𝜉) denote the energy to sell or buy to the market,

nd the vector 𝑐 0 ( 𝜉) denotes the uncertain hourly electricity prices. The

ector 𝑠 ( 𝜉) is the electricity generated by the thermal unit. Finally, the

ector 𝑟 ( 𝜉) captures the energy generated or consumed by the pumped-

torage hydro unit and the volumes of water associated with this unit. 

The stochastic model of the VPP aims at maximizing a functional of

he profit subject to the constraints that define the region of operation

f the thermal unit, pumped-storage hydro plant, and the two contracts
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hat are offered to the VPP: 

max 
 

+ ,𝑥 − ,𝑣,𝑢,𝑦 + ( 𝜉) ,𝑦 − ( 𝜉) ,𝑠 ( 𝜉) ,𝑟 ( 𝜉) 
𝜓 

[
𝑓 ( 𝑥 + , 𝑥 − , 𝑢, 𝑦 + ( 𝜉) , 𝑦 − ( 𝜉) , 𝑠 ( 𝜉) , 𝜉) 

]
s.t. 𝐴 

+ 𝑥 + + 𝐴 

− 𝑥 − + 𝐵 𝑣 ≤ 𝑏 

𝐸 𝑢 ≤ 𝑔 

𝐶 𝑢 + 𝐷 𝑠 ( 𝜉) ≤ 𝑑 , a.s. 

𝑠 ( 𝜉) − 𝑦 + ( 𝜉) + 𝑦 − ( 𝜉) + 𝑟 ( 𝜉) − 𝑥 + + 𝑥 − 

+ ℎ ( 𝜉) = 0 , a.s. 

𝐽𝑟 ( 𝜉) ≤ 𝑗, a.s. 

𝑥 + , 𝑥 − ∈ ℝ 

𝑛 1 
+ , 𝑣, 𝑢 ∈ 𝔹 

𝑛 1 , 𝑦 + ( 𝜉) , 𝑦 − ( 𝜉) , 

𝑞𝑢𝑎𝑑𝑠 ( 𝜉) ∈ ℝ 

𝑛 1 
+ , 𝑟 ( 𝜉) ∈ ℝ 

𝑛 1 , 

(2) 

here 𝔹 ∶= {0 , 1} , 𝑣 are the binary variables associated with the choice

f blocks in the contracts, ℎ ( 𝜉) ∈ ℝ 

𝑛 1 defines the uncertain wind power,

 

+ , 𝐴 

− ∈ ℝ 

𝑚 1 ×𝑛 1 , 𝐵 ∈ ℝ 

𝑚 1 ×𝑛 1 , 𝐶 ∈ ℝ 

𝑚 2 ×𝑛 1 , 𝐷 ∈ ℝ 

𝑚 2 ×𝑛 1 , 𝐸 ∈ ℝ 

𝑚 3 ×𝑛 1 , 𝐽 ∈
 

𝑚 4 ×𝑛 1 are matrices with known parameters, and 𝑏 ∈ ℝ 

𝑚 1 , 𝑑 ∈ ℝ 

𝑚 2 , 𝑔 ∈
 

𝑚 3 , 𝑗 ∈ ℝ 

𝑚 4 are vectors with known parameters. 

In Problem (2) , the first constraint covers the contracts. The second

onstraint represents the relationships among the binary variables as-

ociated with the commitment of the thermal unit. The third constraint

aptures the region of operation of the thermal unit, including minimum

p and down times, and power generation limits. The fourth constraint

epresents the energy balance to the VPP. Finally, the last constraint

aptures the region of operation of the pumped-storage hydro plant.

ee Appendix A for details. 

For the sake of clarity on the exposition of the SAA methodology,

 compact formulation of the model with a simplified notation is in-

roduced. We set 𝑥 ∶= ( 𝑥 + , 𝑥 − ) , 𝑦 ∶= ( 𝑦 + ( 𝜉) , 𝑦 − ( 𝜉) , 𝑠 ( 𝜉) , 𝑟 ( 𝜉)) , 𝑧 ∶= ( 𝑢, 𝑣 ) ,
 ∶= ( 𝑐 + , 𝑐 − ) , 𝑐 ∶= 𝑐 

0 
, 𝑐 ∶= 𝑐 0 with proper dimensions: 

max 
,𝑧,𝑦 ( 𝜉) 

𝜓 

[
𝑓 ( 𝑥, 𝑧, 𝑦 ( 𝜉) , 𝜉) ∶= 𝑐 ⊤𝑥 + 𝑐 

⊤
𝑧 + 𝑐 ⊤( 𝜉) 𝑦 ( 𝜉) 

]
s.t. 𝐴𝑥 + 𝐵𝑧 ≤ 𝑏 

𝐶𝑧 + 𝐷𝑦 ( 𝜉) ≤ 𝑑, a.s. 

𝑦 ( 𝜉) + 𝑥 = ℎ ( 𝜉) , a.s. 

𝑥 ∈ ℝ 

𝑛 1 
+ , 𝑧 ∈ 𝔹 

𝑛 1 , 𝑦 ( 𝜉) ∈ ℝ 

𝑛 1 
+ , 

(3) 

here 𝑥, 𝑧 denote first-stage variables and 𝑦 ( 𝜉) second-stage variables,

 ( 𝜉) ∈ ℝ 

𝑛 1 and 𝑐 ( 𝜉) ∈ ℝ 

𝑛 1 are random vectors, 𝑐, 𝑐 , and 𝑐 are determinis-

ic vectors with known parameters, 𝐴 ∈ ℝ 

𝑚 1 ×𝑛 1 , 𝐵 ∈ ℝ 

𝑚 1 ×𝑛 1 , 𝐶 ∈ ℝ 

𝑚 2 ×𝑛 1 ,

nd 𝐷 ∈ ℝ 

𝑚 2 ×𝑛 1 are matrices with known parameters, and 𝑏 ∈ ℝ 

𝑚 1 and

 ∈ ℝ 

𝑚 2 are vectors with known parameters. 

.2. Risk-averse VPP stochastic models 

Based on (3) , we consider a risk-averse formulation that involves

he CVaR of the profit in the objective function. The CVaR is a coher-

nt risk measure with relevant properties in terms of convexity ( Artzner

t al., 1999; Pflug, 2000; Rockafellar and Uryasev, 2000 ). Therefore, it

as clear advantages over non-convex risk measures. Note that CVaR

s not the only possibility to measure the risk; other measures have

een suggested including the variance, value at risk, drawdown, or

uffered probability of exceedance; see Pflug and Römisch (2007) and

hang et al. (2018) . Also note that many works in the literature apply

he CVaR to a loss function, whereas in this work the CVaR is applied

o a profit one, which leads to different definitions below as compared

ith the works cited. The terms “average value at risk ” and “expected

hortfall ” are also used to refer to the CVaR ( Rockafellar, 2007 ). 

The CVaR for the ( 1 − 𝛼) quantile of random variable 𝑓 is defined

s the conditional expectation of 𝑓 for 𝑓 ≤ VaR 1−α[f] ( Rockafellar and

ryasev, 2000 ): 

VaR 1− 𝛼[ 𝑓 ] = 𝔼 
[
𝑓 |𝑓 ≤ VaR 1− 𝛼[ 𝑓 ] 

]
, (4)

here VaR 1− 𝛼[ 𝑓 ] is the value at risk defined as 

aR 1− 𝛼[ 𝑓 ] = max { 𝑤 |𝐹 𝑓 ( 𝑤 ) ≤ 1 − 𝛼} , (5)
4 
nd 𝐹 𝑓 is the cumulative distribution of 𝑓, 𝐹 𝑓 ( 𝑤 ) = 𝑃 { 𝑓 ≤ 𝑤 } . 
From an optimization perspective, there are two additional defini-

ions that are relevant. The first is due to Pflug (2000) , which defines

he CVaR through the optimization problem 

VaR 1− 𝛼[ 𝑓 ] = max 
𝜂

{ 

𝜂 − 

1 
1 − 𝛼

𝔼 
[
( 𝜂 − 𝑓 ) + 

]} 

, (6)

here ( ⋅) + = max { ⋅, 0} . In Pflug (2000) , it is shown that the optimal value

f 𝜂 in (6) is the VaR 1− 𝛼[ 𝑓 ] . The second definition shows that the func-

ion that defines the CVaR of losses is a convex function ( Rockafellar and

ryasev, 2000 ), which in our specific case leads to the equality 

max 
,𝑧,𝑦 ( 𝜉) 

{
CVaR 1− 𝛼[ 𝑓 ( 𝑥, 𝑧, 𝑦 ( 𝜉) , 𝜉) ] 

}
= max 

𝑥,𝑧,𝑦 ( 𝜉) ,𝜂

{ 

𝜂 − 

1 
1 − 𝛼

𝔼 
{
[ 𝜂 − 𝑓 ( 𝑥, 𝑧, 𝑦 ( 𝜉) , 𝜉) ] + 

}} 

. (7) 

Based on the properties of the CVaR, we define an objective function

epresenting the maximization of a combination of the expected profit

nd CVaR: 

max 
,𝑧,𝑦 ( 𝜉) 

𝜓 [ 𝑓 ( 𝑥, 𝑧, 𝑦 ( 𝜉) , 𝜉) ] ∶= max 
𝑥,𝑧,𝑦 ( 𝜉) ,𝜂

{ 

𝔼 
[ 
(1 − 𝛽) 𝑓 ( 𝑥, 𝑧, 𝑦 ( 𝜉) , 𝜉) 

+ 𝛽

( 
𝜂 − 

1 
1 − 𝛼

[ 𝜂 − 𝑓 ( 𝑥, 𝑧, 𝑦 ( 𝜉) , 𝜉) ] + 
) ] } 

, (8) 

here 𝛽 ∈ [0 , 1] is a parameter that defines the weights of the expec-

ation and CVaR of 𝑓 . We are particularly interested in the solution of

roblem (3) with (8) defined with 𝛽 = (0 , 1) and 𝛽 = 1 (maximization of

he CVaR of the profit) using an SAA approach. 

Detailed analyses on the properties of the CVaR and VaR metrics

nd their integration into stochastic programming can be found in

flug (2000) , Rockafellar and Uryasev (2000) , Rockafellar (2007) , and

arykalin et al. (2008) . Risk metrics for multi-stage stochastic program-

ing, such as the expected CVaR can be found in Pflug and Ruszczyn-

ki (2005) , Shapiro et al. (2009) , and Mello and Pagnoncelli (2016) .

lso, the work in Alonso-Ayuso et al. (2018) provides extensive com-

arisons on multi-period risk metrics. 

. Sample average approximation 

For the generic problem formulation 

 

∗ = max 
𝑥,𝑦 ( 𝜉) ,𝑧 ∈ 

{ 𝔼 𝜉[ 𝜙( 𝑥, 𝑦 ( 𝜉) , 𝑧, 𝜉) ] } , (9)

here  ∶= { 𝑥, 𝑦 ( 𝜉) , 𝑧 |𝐴𝑥 + 𝐵𝑧 ≤ 𝑏 ; 𝐶𝑧 + 𝐷𝑦 ( 𝜉) ≤ 𝑑, 𝑎.𝑠. ; 𝐹 𝑦 ( 𝜉) + 𝐺𝑥 =
 ( 𝜉) , 𝑎.𝑠. ; 𝑥 ∈ ℝ 

𝑛 1 
+ , 𝑧 ∈ 𝔹 

𝑛 1 , 𝑦 ( 𝜉) ∈ ℝ 

𝑛 1 
+ } , we define the sample average ap-

roximation problem as ( Kleywegt et al., 2001; Shapiro and Homem-De-

ello, 2000 ): 

 

∗ 
𝑁 

= max 
𝑥,𝑦,𝑧 ∈ 𝑁 

{ 

1 
𝑁 

𝑁 ∑
𝑛 =1 

𝜙( 𝑥, 𝑦, 𝑧, 𝜉𝑛 ) 

} 

, (10)

or a sample with independent and identically distributed elements
𝑛 from the distribution of 𝜉, and where  𝑁 

∶= { 𝑥, 𝑦 ( 𝜉𝑛 ) , 𝑧 |𝐴𝑥 + 𝐵𝑧 ≤
 ; 𝐶𝑧 + 𝐷𝑦 ( 𝜉𝑛 ) ≤ 𝑑, ∀𝜉𝑛 ∈ Ξ; 𝐹 𝑦 ( 𝜉𝑛 ) + 𝐺𝑥 = ℎ ( 𝜉𝑛 ) , ∀𝜉𝑛 ∈ Ξ; 𝑥 ∈ ℝ 

𝑛 1 
+ , 𝑧 ∈

 

𝑛 2 , 𝑦 ( 𝜉𝑛 ) ∈ ℝ 

𝑛 3 
+ , 𝑛 = 1 , … , 𝑁} , and 𝜙 stands for 𝜙𝛽 . 

The optimal value and solution of Problem (9) are 𝑤 

∗ and 𝑥 ∗ , 𝑦 ∗ , 𝑧 ∗ ,

espectively, which are approximated by 𝑤 

∗ 
𝑁 

and 𝑥 ∗ 
𝑁 

, 𝑦 ∗ 
𝑁 

, 𝑧 ∗ 
𝑁 

obtained

rom (10) . Note that 𝑤 

∗ 
𝑁 

is a random variable that depends on the sample

f 𝜉𝑛 . 

The objective function (8) involve the CVaR measure, which may

ot resemble the generic formulation in (9) . However, note that (8) is

eformulated as a function of the expectation operator. 

Using the SAA methodology, two types of inference statistics for the

olutions are calculated: 1) point estimates and confidence intervals for

he upper and lower bounds on the optimal objective function value 𝑤 

∗ ;

) a point estimates of the upper bound on the gap between 𝑤 

∗ and 𝑤 

∗ 
𝑁 

.
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Table 1 

Case 1. Optimization results for the formulation with 𝛽 = 0 . The results are ordered by the optimal 

objective function value ( ̂𝑤 𝑁,𝑚 ). 𝑀 = 30 , 𝑁 = 10 . Bold – set of distinct first-stage solutions. 

First-stage variables (aggregated) 

𝑚 𝑤̂ 𝑁,𝑚 ( €) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW) 

23 2,437,900 2 0.0000 1 100 0 0 155 0 

22 2,754,781 2 0.0000 1 100 0 0 50 55 

27 2,791,618 2 0.0000 1 100 0 0 50 55 

18 2,807,663 2 0.0000 1 100 0 0 50 55 

17 2,808,236 2 0.0000 1 100 0 0 50 55 

2 2,828,660 2 0.0000 1 100 0 0 50 55 

19 2,881,600 2 0.0000 1 100 0 0 50 110 

20 2,950,385 2 0.0000 1 100 0 0 50 110 

3 2,987,171 2 0.0000 1 100 0 0 0 160 

9 3,051,161 2 0.0000 1 100 0 0 0 160 

21 3,075,317 2 0.0000 1 100 0 0 0 160 

28 3,086,196 2 0.0000 1 100 0 0 0 160 

26 3,098,970 2 0.0000 1 100 0 0 0 160 

13 3,112,520 2 0.0000 1 100 0 0 0 160 

7 3,141,942 2 0.0000 1 100 0 0 0 160 

4 3,182,338 2 0.0000 1 100 0 0 0 160 

14 3,225,259 2 0.0000 1 100 0 0 0 160 

12 3,241,059 2 0.0000 1 100 0 0 0 160 

15 3,245,519 2 0.0000 1 100 0 0 0 160 

25 3,251,400 2 0.0000 1 100 0 0 0 160 

10 3,273,009 2 0.0000 1 100 0 0 0 160 

8 3,311,875 2 0.0000 1 100 0 0 0 160 

16 3,326,421 2 0.0000 1 100 0 0 0 160 

29 3,331,775 2 0.0000 1 100 0 0 0 160 

11 3,371,868 2 0.0000 1 100 0 0 0 215 

6 3,525,814 2 0.0000 1 100 0 0 0 265 

30 3,543,351 2 0.0000 1 100 0 0 0 265 

5 3,682,847 2 0.0000 1 100 0 0 0 265 

1 3,738,467 2 0.0000 1 100 0 0 0 265 

24 3,743,889 2 0.0000 1 100 0 0 0 265 

𝑚 – Optimization replication index, 𝑤̂ 𝑁,𝑚 - optimal objective function value for optimization repli- 

cation 𝑚, ITER – number of iterations of the L-Shaped method, GAP – gap between the upper and 

lower bound within the L-Shaped method, T – elapsed wall-clock time, UT – percentage of up-time of 

the thermal unit, SUP/SD – number of startups/shutdowns of the thermal unit, SELLC/BUYC – power 

sold/bought through contracts. 
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a

𝑈  
esides, for the specific application, the solutions are complemented

ith the corresponding point estimates and confidence intervals for the

xpected profit and the CVaR of the profit. 

To evaluate the inference statistics on the bounds of the optimal ob-

ective function value 𝑤 

∗ , the following notation is used: a) for the upper

ound, 𝑁 denotes the sample size, 𝑛 is the index of an element of the

ample, 𝑀 is the number of replications, and 𝑚 is the replication index;

) for the lower bound, 𝑁 

′ denotes the sample size, 𝑛 ′ is the index of an

lement of the sample, 𝑇 and 𝑇 ′ are the number of replications, and 𝑡

nd 𝑡 ′ are replication indices. For the upper bound on the gap between

 

∗ and 𝑤 

∗ 
𝑁 

, 𝑁, 𝑛, 𝑀, and 𝑚 are used with the same purpose as in a).

ote that the symbols 𝑡, 𝑡 ′, and 𝑇 are not related to the symbols 𝑡 and 𝑇 

sed in Appendix A to refer to time periods and time horizon. 

.1. Motivating example 

In this section, we illustrate the variance of the optimal objective

unction values and first-stage solutions obtained using different sam-

les having the same size. The samples and results used in this exam-

le are part of the computational experiments described in Section 6 .

able 1 outlines the results of 30 optimization replications, each with a

ample of size 𝑁 = 10 , for the maximization of the expected profit. 

The variability of these results can be highlighted with the results

f two samples. The first sample ( 𝑚 = 1 ) has optimal objective function

alue of 3,738,467 and first-stage solution {100 , 0 , 0 , 0 , 265} , whereas

or 𝑚 = 2 , the optimal objective function value is 2,828,660 with first-

tage solution {100 , 0 , 0 , 50 , 55} . This table also shows that the first-

tage solution {100 , 0 , 0 , 0 , 265} corresponds to the higher profits, and

he solution with {100 , 0 , 0 , 0 , 160} has the higher number of occur-
5 
ences. These results do not support a clear-cut decision on the best

olution to choose. Obviously, the variance of these results is due to

he size of the sample used for the optimization. However, with a small

ample and the methodologies presented in this work, it is possible to

rovide a set of inference statistics and to assess the solutions. This in-

ormation can help the selection of first-stage solutions. 

The impact of the sample size 𝑁 and the number of replications 𝑀

n the probability of obtaining an optimal solution to the true problem

rom the SAA problem is discussed in Kleywegt et al. (2001) . In that

ork, it is claimed that the relation between 𝑁 and this probability

s problem specific, and that beyond a given 𝑀, it would be better to

ncrease 𝑁 . 

.2. Upper bound on the optimal objective function value 𝑤 

∗ 

The approximation of 𝑤 

∗ is done by calculating point estimates of

ower and upper bounds on 𝑤 

∗ . An upper bound on 𝑤 

∗ is defined by the

ell-known relation 𝔼 [ 𝑤 

∗ 
𝑁 

] ≥ 𝑤 

∗ ( Mak et al., 1999 ). The value of the

 [ 𝑤 

∗ 
𝑁 

] is estimated by the statistical estimator 𝑈𝐵 𝑁,𝑀 

that is determined

y solving 𝑀 optimization problems (10) 

̂
 𝑁,𝑚 = max 

𝑥,𝑦,𝑧 ∈ 𝑁,𝑚 

{ 

1 
𝑁 

𝑁 ∑
𝑛 =1 

𝜙( 𝑥, 𝑦, 𝑧, 𝜉𝑛,𝑚 ) 

} 

, ∀𝑚 ∈ 𝑀, (11)

nd by using 𝑤̂ 𝑁,𝑚 to estimate the 𝑈𝐵 𝑁,𝑀 

through 

𝐵 𝑁,𝑀 

= 

1 
𝑀 

𝑀 ∑
𝑚 =1 

𝑤̂ 𝑁,𝑚 . (12)
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solution of the master problem obtained in step 1. 
he sample variance estimator is 

 𝑠 1 
𝑁,𝑀 

) 2 = 

1 
𝑀( 𝑀 − 1) 

𝑀 ∑
𝑚 =1 

(
𝑤̂ 𝑁,𝑚 − 𝑈𝐵 𝑁,𝑀 

)2 
. (13)

hus, 𝑈𝐵 𝑁,𝑀 

is a statistical estimator of 𝔼 [ ̂𝑤 𝑁 

] with the 100(1 − 𝛼′)%
onfidence interval 

𝐿𝑈 𝐵 𝑁,𝑀 

, 𝑈 𝑈 𝐵 𝑁,𝑀 

]
∶= 

[
𝑈 𝐵 𝑁,𝑀 

− 𝑡 𝑀−1 ,𝛼′𝑠 𝑁,𝑀 

, 𝑈 𝐵 𝑁,𝑀 

+ 𝑡 𝑀−1 ,𝛼𝑠 𝑁,𝑀 

]
, 

(14) 

here 𝑡 𝑀−1 ,𝛼′ is the critical value from the t -distribution. 

.3. Lower bound on the optimal objective function value 𝑤 

∗ 

We define 𝐿𝐵 𝑁 

′ ,𝑚,𝑇 as an estimator of a lower bound on 𝑤 

∗ , which is

ssociated with a first-stage solution from the optimization replication

 denoted by ( ̂𝑥 𝑁,𝑚 , ̂𝑧 𝑁,𝑚 ) . The calculation of 𝐿𝐵 𝑁 

′ ,𝑚,𝑇 is done using 𝑇 

ndependent samples of size 𝑁 

′, as follows 

̂
 𝑁 

′ ,𝑚,𝑡 = max 
𝑦 ∈ 𝑁 ′ ,𝑚,𝑡 

{ 

1 
𝑁 

′

𝑁 

′∑
𝑛 ′=1 

𝜙( ̂𝑥 𝑁,𝑚 , 𝑦, ̂𝑧 𝑁,𝑚 , 𝜉
𝑛 ′ ,𝑡 ) 

} 

, ∀𝑚 ∈ 𝑀, ∀𝑡 ∈ 𝑇 , 

(15) 

𝐵 𝑁 

′ ,𝑚,𝑇 = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝑤̂ 𝑁 

′ ,𝑚,𝑡 , ∀𝑚 ∈ 𝑀. (16)

ote that the estimator 𝐿𝐵 𝑁 

′ ,𝑚,𝑇 is associated with the solution of the

ptimization replication with index 𝑚 . To generate a single estimator of

he lower bound (from the 𝑀 bounds 𝐿𝐵 𝑁 

′ ,𝑚,𝑇 ), the first-stage solution

hat corresponds to the maximum value of 𝐿𝐵 𝑁 

′ ,𝑚,𝑇 is selected and for

his solution a new estimator is calculated using 𝑇 ′ independent samples

f size 𝑁 

′: 

̂
 𝑁 

′ ,𝑡 ′ = max 
𝑦 ∈ 𝑁 ′ ,𝑡 

{ 

1 
𝑁 

′

𝑁 

′∑
𝑛 ′=1 

𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉𝑛 
′ ,𝑡 ) 

} 

, ∀𝑡 ′ ∈ 𝑇 ′, (17)

here ( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

) is the first-stage solution selected. For this first-stage

olution, the estimator of the lower bound is given by 

𝐵 𝑁 

′ ,𝑇 ′ = 

1 
𝑇 ′

𝑇 ′∑
𝑡 ′=1 

𝑤̂ 𝑁 

′ ,𝑡 ′ , (18)

nd the sample variance of 𝐿𝐵 𝑁 

′ ,𝑇 ′ through 

 𝑠 2 
𝑁 

′ ,𝑇 ′ ) 
2 = 

1 
𝑇 ( 𝑇 − 1) 

𝑀 ∑
𝑚 =1 

(
𝑤̂ 𝑁 

′ ,𝑡 ′ − 𝐿𝐵 𝑁 

′ ,𝑇 ′
)2 
, (19)

ith the confidence interval defined as 

 𝐿𝐿𝐵 𝑁 

′ ,𝑇 ′ , 𝑈𝐿𝐵 𝑁 

′ ,𝑇 ′ ] ∶= [ 𝐿𝐵 𝑁 

′ ,𝑇 ′ − 𝑡 𝑇−1 ,𝛼′𝑠 𝑁 

′ ,𝑇 ′ , 𝐿𝐵 𝑁 

′ ,𝑇 ′ + 𝑡 𝑇−1 ,𝛼′𝑠 𝑁 

′ ,𝑇 ′

(20) 

his approach to calculate the point estimate of the lower bound is based

n Linderoth et al. (2006) . 

.4. Upper bound on the gap between 𝑤 

∗ and 𝔼 𝜉
[
𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉) 
]

In Mak et al. (1999) , it is derived a method for assessing the quality

f a solution ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) , which defines an estimator of an upper bound on

he following gap: 

𝑎𝑝 ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) ∶= 𝑤 

∗ − 𝔼 𝜉
[
𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉) 
]
. (21)

his gap represents the difference between the true optimal solution 𝑤 

∗ 

nd the true optimal solution 𝔼 𝜉
[
𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉) 
]

for ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) . The upper

ound,  , on the 𝑔𝑎𝑝 ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) is defined as ( Mak et al., 1999 ): 

 ∶= 𝔼 

[ 
max 

𝑥,𝑦,𝑧 ∈ 𝑁 

{ 

1 
𝑁 

𝑁 ∑
𝑛 =1 

𝜙( 𝑥, 𝑦, 𝑧, 𝜉𝑛 ) 

} 

− 

1 
𝑁 

𝑁 ∑
𝑛 =1 

𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉𝑛 ) 

] 
6 
≥ 𝑔𝑎𝑝 ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) . (22) 

 is calculated using 𝔼 [ 𝑤 

∗ 
𝑁 

] as a valid statistical upper bound on

 

∗ , 𝔼 [ 𝑤 

∗ 
𝑁 

] ≥ 𝑤 

∗ , and 𝔼 [ ̂𝑤 𝑁 

] as an estimator of 𝔼 𝜉
[
𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉) 
]
. In

ak et al. (1999) , it is proposed to use the upper limit of the confidence

nterval of the estimator of  as an upper bound on the 𝑔𝑎𝑝 ( ̂𝑥 𝑁 

, 𝑧 𝑁 

) .
his upper limit calculation is presented in Procedure 2 . Note that this

rocedure uses the same sample to calculate the two terms on the left

and side of the inequality in (22) , and the upper bound on the gap is

lways positive. Additional details regarding variants of evaluation pro-

edures and convergence analysis of the gap estimator can be found in

ayraksan and Morton (2006) and Mak et al. (1999) . 

.5. Implementation 

The practical computation of the statistical point estimates and

onfidence intervals described in Sections 4.2 –4.4 is presented in

rocedures 1 and 2 , and the corresponding diagrams in Appendix B.

hese two procedures involve two stages denoted as optimization stage

nd bound estimation stage. In line 3 of Procedures 1 and 2 , a risk-

eutral or a risk-averse stochastic programming problem is solved. Each

f these problems can be solved directly using an MILP solver or by

ecomposition. We adopt the latter and use the L-Shaped method pro-

osed in the seminal work of Van Slyke and Wets (1969) . This choice

s supported by a previous successful application of this method in solv-

ng large scale problems ( Lima et al., 2018 ). The L-Shaped method is

n extension of Benders decomposition ( Benders, 1962 ) for two-stage

tochastic programming problems, which is straightforward to describe

sing problem (23) : 

ax 
𝑥,𝑧,𝜂

𝑐 ⊤𝑥 + 𝑐 
⊤
𝑧 + (1 − 𝛽) 

𝑁 ∑
𝑛 =1 

[
𝑝 𝑛 𝑄 ( 𝑥, 𝑧, 𝜉𝑛 ) 

]
+ 𝛽

{ 

𝜂 − 

1 
1 − 𝛼

𝑁 ∑
𝑛 =1 

[
𝑝 𝑛 ( 𝜂 − 𝑄 ( 𝑥, 𝑧, 𝜉𝑛 ) ) + 

]} 

𝑠.𝑡. 𝐴𝑥 + 𝐵𝑧 ≤ 𝑏 

𝑥 ∈ ℝ 

𝑛 1 
+ , 𝑧 ∈ 𝔹 

𝑛 2 , 𝜂 ∈ ℝ , 

(23) 

here 𝑄 ( 𝑥, 𝑧, 𝜉𝑛 ) is defined as 

𝑄 ( 𝑥, 𝑧, 𝜉𝑛 ) ∶= max 
𝑦 𝑛 

𝑐 ⊤
𝑛 
𝑦 𝑛 

𝑠.𝑡. 𝐷𝑦 𝑛 ≤ 𝑑 − 𝐶𝑧 

𝑦 𝑛 = ℎ 𝑛 − 𝑥 

𝑦 𝑛 ∈ ℝ 

𝑛 3 
+ 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
∀𝑛 = 1 , … , 𝑁, (24)

here the first problem is an MILP problem followed by a collection

f LP subproblems that constitutes a sample element-wise decomposi-

ion, meaning one subproblem for each element 𝑛 = 1 , … , 𝑁 of the sam-

le. This formulation moves the variable 𝑦 𝑛 to the subproblems. The

-Shaped method is an iterative method, where in each iteration the

ollowing steps are performed: 

1. A relaxation of problem (23) , called master problem, is solved. This

master problem is constructed by outer-approximating the terms in-

volving 𝑄 ( 𝑥, 𝑧, 𝜉𝑛 ) , and thus, its objective function value provides an

upper bound on the objective function value of problem (23) . The

solution of this master problem is the first-stage variables: ( 𝑥, 𝑧 ) . 
2. The subproblems (24) are solved independently for fixed values of

the first-stage variables obtained from the master problem. 

3. The VaR and CVaR of the second stage profit are evaluated based on

the distribution of the second stage profits (the objective function

values of the subproblems), and they are used in the next step. 

4. The upper and lower bounds are calculated and the method termi-

nates if the gap between these bounds reaches a specified threshold.

5. The dual variables solution of the subproblems are used to build the

outer-approximations to be added to the master problem in the next

iteration. In the next iteration, these outer-approximations “cut ” the
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Procedure 1 Proposed implementation of an SAA method. Input: 𝑀

samples of size 𝑁 : 𝜉𝑛,𝑚 , 𝑛 = 1 , … , 𝑁, 𝑚 = 1 , … , 𝑀 ; 𝑇 samples of size 

𝑁 

′: 𝜉𝑛 
′ ,𝑡 , 𝑛 ′ = 1 , … , 𝑁 

′, 𝑡 = 1 , … , 𝑇 ; 𝑇 ′ samples of size 𝑁 

′: 𝜉𝑛 
′ ,𝑡 ′ , 𝑛 ′ = 

1 , … , 𝑁 

′, 𝑡 ′ = 1 , … , 𝑇 ′; and confidence level. Output: first-stage solu- 

tion, point estimates of bounds on the optimal objective function value 

𝑤 

∗ , and confidence intervals. 

1: for 𝑚 = 1 to 𝑀 do 

2: Initialize the L-Shaped method with ( ̂𝑥 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

, ̂𝑧 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

) , if this solution 

is available 

3: Solve using the L-Shaped method each MILP problem with the 

sample with size 𝑁 of i.i.d. 𝜉𝑛,𝑚 : 

𝑤̂ 𝑁,𝑚 = max 
𝑥,𝑦,𝑧 ∈ 𝑁,𝑚 

{ 

1 
𝑁 

𝑁 ∑
𝑛 =1 

𝜙( 𝑥, 𝑦, 𝑧, 𝜉𝑛,𝑚 ) 

} 

(25) 

4: Let ( ̂𝑥 𝑁,𝑚 , ̂𝑦 
𝑛 
𝑁,𝑚 

, ̂𝑧 𝑁,𝑚 ) be the optimal solution from (25) 

5: if 𝑤̂ 𝑁,𝑚 > 𝑤̂ 𝑁,𝑚 −1 then 

6: ( ̂𝑥 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

, ̂𝑧 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

) ← ( ̂𝑥 𝑁,𝑚 , ̂𝑧 𝑁,𝑚 ) 
7: end if

8: if ( ̂𝑥 𝑁,𝑚 , ̂𝑧 𝑁,𝑚 ) is a new solution then 

9: for 𝑡 = 1 to 𝑇 do {Lower bound estimation} 

10: Solve each LP subproblem with the sample with size 𝑁 

′ of 

i.i.d. 𝜉𝑛 
′ ,𝑡 : 

𝑤̂ 𝑁 

′ ,𝑚,𝑡 = max 
𝑦 ∈ 𝑁 ′ ,𝑚,𝑡 

{ 

1 
𝑁 

′

𝑁 

′∑
𝑛 ′=1 

𝜙( ̂𝑥 𝑁,𝑚 , 𝑦, ̂𝑧 𝑁,𝑚 , 𝜉
𝑛 ′ ,𝑡 ) 

} 

(26) 

11: end for 

12: Evaluate 𝐿𝐵 𝑁 

′ ,𝑚,𝑇 using (16) 

13: if 𝑚 = 1 then 

14: ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) ← ( ̂𝑥 𝑁,𝑚 , ̂𝑧 𝑁,𝑚 ) 
15: else if 𝑚 > 1 and 𝐿𝐵 𝑁 

′ ,𝑚,𝑇 > 𝐿𝐵 𝑁 

′ ,𝑚 −1 ,𝑇 then 

16: ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) ← ( ̂𝑥 𝑁,𝑚 , ̂𝑧 𝑁,𝑚 ) 
17: end if 

18: end if 

19: end for 

20: Evaluate 𝑈𝐵 𝑁,𝑀 

using (12) and the confidence interval using (14) 

21: for 𝑡 ′ = 1 to 𝑇 ′ do {Lower bound estimation} 

22: Solve each LP subproblem with the sample with size 𝑁 

′ of i.i.d. 

𝜉𝑛 
′ ,𝑡 ′ : 

𝑤̂ 𝑁 

′ ,𝑡 ′ = max 
𝑦 ∈ 𝑁 ′ ,𝑡 ′

{ 

1 
𝑁 

′

𝑁 

′∑
𝑛 ′=1 

𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉𝑛 
′ ,𝑡 ′ ) 

} 

(27) 

23: end for 

24: Evaluate 𝐿𝐵 𝑁 

′ ,𝑇 ′ using (18) and the confidence interval using (20) 

25: return ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) , 𝑈𝐵 𝑁,𝑀 

, 𝐿𝐵 𝑁 

′ ,𝑇 ′ , and confidence intervals 
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Procedure 2 Proposed implementation of the upper bound on the 

gap between 𝑤 

∗ and 𝔼 𝜉
[
𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉) 
]

( Bayraksan and Morton, 2006; 

Mak et al., 1999 ). Input: ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) from Procedure 1 ; 𝑀 samples of size 

𝑁 : 𝜉𝑛,𝑚 , 𝑛 = 1 , … , 𝑁, 𝑚 = 1 , … , 𝑀 ; and confidence level. Output: upper 

bound on the 𝑔𝑎𝑝 ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) = 𝑤 

∗ − 𝔼 𝜉[ 𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉] 
1: for 𝑚 = 1 to 𝑀 do 

2: Initialize the L-Shaped method with ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) or if available, with 

( ̂𝑥 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

, ̂𝑧 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

) 
3: Solve using the L-Shaped method each MILP problem with the 

sample with size 𝑁 of i.i.d. 𝜉𝑛,𝑚 : 

𝑤̂ 𝑁,𝑚 = max 
𝑥,𝑦,𝑧 ∈ 𝑁,𝑚 

{ 

1 
𝑁 

𝑁 ∑
𝑛 =1 

𝜙( 𝑥, 𝑦, 𝑧, 𝜉𝑛,𝑚 ) 

} 

(28) 

4: Let ( ̂𝑥 𝑁,𝑚 , ̂𝑦 
𝑛 
𝑁,𝑚 

, ̂𝑧 𝑁,𝑚 ) be the optimal solution of (28) 

5: if 𝑤̂ 𝑁,𝑚 > 𝑤̂ 𝑁,𝑚 −1 then 

6: ( ̂𝑥 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

, ̂𝑧 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

) ← ( ̂𝑥 𝑁,𝑚 , ̂𝑧 𝑁,𝑚 ) 
7: end if

8: Solve each LP subproblem with the sample with size 𝑁 of i.i.d. 

𝜉𝑛,𝑚 : 

max 
𝑦 ∈ 𝑁,𝑚 

{ 

1 
𝑁 

𝑁 ∑
𝑛 =1 

𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉𝑛,𝑚 ) 

} 

(29) 

9: Evaluate 

 𝑁,𝑚 = 

1 
𝑁 

𝑁 ∑
𝑛 =1 

[
𝜙( ̂𝑥 𝑁,𝑚 , ̂𝑦 

𝑛 
𝑁,𝑚 

, ̂𝑧 𝑁,𝑚 , 𝜉
𝑛,𝑚 ) − 𝜙( ̂𝑥 𝑁 

, ̂𝑦 𝑛 
𝑁 

, ̂𝑧 𝑁 

, 𝜉𝑛,𝑚 ) 
]

(30) 

10: end for 

11: Evaluate the statistical point estimate for the expected gap and sam- 

ple variance 

 𝑁,𝑀 

= 

1 
𝑀 

𝑀 ∑
𝑚 =1 

 𝑁,𝑚 (31) 

( 𝑠 𝑀 

) 2 = 

1 
𝑀( 𝑀 − 1) 

𝑀 ∑
𝑚 =1 

( 𝑁,𝑚 −  𝑁,𝑀 

)2 
(32) 

12: return upper bound 𝑈𝐺 𝑁,𝑀 

=  𝑁,𝑀 

+ 𝑡 𝑀−1 ,𝛼𝑠 𝑀 

p  

s  
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The outer-approximations are known as optimality cuts. These cuts

equire that all subproblems in step 2 are feasible, otherwise, a feasi-

ility subproblem needs to be solved for each infeasible subproblem.

he optimal values of the dual variables of these feasibility subprob-

ems are then used to build cuts, known as feasibility cuts, to be added

o the master problem in the next iteration. In the problems studied in

his work, the subproblems are always feasible for all values of the first-

tage variables. This is due to the possibility to buy electricity from the

ool, which is implemented in the subproblems to satisfy contracts de-

ided in the master problem. An algorithmic description, specific prob-

em formulations, expressions for bounds, and details on handling the

ariable 𝜂 and the CVaR calculation can be found in Lima et al. (2018) ,

nd the outer-approximations derivations and convergence analysis in

an Slyke and Wets (1969) , Birge and Louveaux (2011) , and Kall and

ayer (2011) . 

Clearly, the solution of multiple replications of risk-averse prob-

ems in Procedures 1 and 2 is a computationally demanding pro-

ess, especially for MILP problems. Therefore, implementations of

rocedures 1 and 2 should include strategies to reduce their overall com-

uting time. An attractive approach is to parallelize the implementation

f these procedures taking advantage of the modeling and hardware ca-
7 
abilities available. In this work, the parallelization is exploited in the

olution of the independent LP subproblems in two places: 1) within the

-Shaped method; and 2) at the lower bound estimation, where for each

rst-stage solution, 𝑁 

′ LP subproblems are solved. 

In Procedures 1 and 2, we implement an initialization step that uses

he best first-stage solution obtained in a replication 𝑚 

′ < 𝑚 to initialize

he L-Shaped method in replication 𝑚 . This initialization is indicated in

ine 2 of Procedure 1 , where ( ̂𝑥 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

, ̂𝑧 𝑏𝑒𝑠𝑡 
𝑁,𝑚 

) is the best first-stage solution.

e note that this first-stage solution is not available in the first optimiza-

ion replication ( 𝑚 = 1 ). In contrast, in Procedure 2 , by construction, the

olution ( ̂𝑥 𝑁 

, ̂𝑧 𝑁 

) is available at the beginning of the procedure, thus,

he initialization mentioned in line 2 is active from the first replication.

he initialization step entails that in the first iteration of the L-Shaped

ethod, the best first-stage solution is assigned to the first-stage solu-

ion, instead of finding a solution using the master problem. With this

nitialization step, the initial lower bound of the L-Shaped method, cal-

ulated after solving the LP subproblems, is generally better than the

ne calculated using the solution of the master problem in the first iter-

tion. Note that the corresponding computational gain is multiplied by

he number of optimization replications. 

In the bound estimation stage, the bounds described in Sections 4.2 –

.4 are evaluated using the first-stage solutions and the objective func-

ion values obtained from the optimization stage. In Procedure 1 , the

ower bound estimation is computationally more demanding than the

pper bound estimation. Therefore, we implement another important

ime saving strategy: the lower bound estimation is only carried out for

ew distinct first-stage solutions. Note that an alternative would be to

erform the lower bound estimation only for 𝜖-different first-stage so-

utions. This alternative would avoid the computing time for the lower

ound estimation for slightly different first-stage solutions. In the dis-
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intervals. 
ussion of the results, the impact of avoiding the lower bound estimation

or repeated solutions on the computing time is analyzed and situations

here it is relevant are identified. 

The risk-averse formulations involving the CVaR measure add an ex-

ra burden to the L-Shaped method and lower bound estimation. The

valuation of the CVaR measure requires the calculation of the condi-

ional average of the 𝑄 ( 𝑥, 𝑧, 𝜉𝑛 ) (defined in (24) ). To reduce this evalu-

tion time, an efficient approach in the lower bound estimation is im-

lemented, where the evaluation of the CVaR for 𝛼 > 𝛼′ re-uses the in-

ormation of the distribution of the previous CVaR evaluation for 𝛼′. 

With this overall approach, we provide a full characterization of the

olution of our problem, which encompasses the following information:

1. approximation of the optimal solution, in terms of the first-stage

variables; 

2. point estimate and confidence interval for the upper bound on the

true optimal objective function value; 

3. point estimate and confidence interval for the lower bound on the

true optimal objective function value; 

4. point estimate on the upper bound on the gap between the true op-

timal objective function value and the expected optimal objective

function value associated with a first-stage solution; 

Therefore, this information provides inference statistics on the solu-

ions that are more informative than the single optimal objective func-

ion value and corresponding first-stage variables of a deterministic

roblem. 

In the next section, we describe the sampling procedure to generate

he samples of the wind and electricity prices. 

. Sampling 

.1. Sampling the electricity prices 

We generate the samples for the electricity prices from an ARIMA

odel that is fitted to an electricity price time series. Specifically, the

amples are drawn by sampling the error term of the ARIMA model; see

onejo et al. (2010) for a discussion on this type of approach. Specific

etails for the data used are given in Section 6.1.1 . 

.2. Sampling the wind speed with a truncated Karhunen–Loève expansion 

In this section, we briefly introduce the KLE, and in Section 6 ,

e provide additional information regarding the wind data used. See

aître and Knio (2010 , Section 2.1) for a presentation on KLE. 

.2.1. Wind speed model 

Assuming that the wind speed ℎ ( 𝑡 ) is always strictly positive, we

dopt here a log-normal model where 𝑋( 𝑡 ) = log ( ℎ ( 𝑡 )) is a Gaussian pro-

ess with mean function 𝜇( 𝑡 ) and covariance function 𝐶( 𝑡, 𝑡 ′) , which are

pproximated in our application using a sample ( 𝑥 𝑖 ( 𝑡 )) 𝑁 

𝑖 =1 and the empir-

cal estimation 

( 𝑡 ) ≈ 1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑥 𝑖 ( 𝑡 ) (33) 

nd 𝐶( 𝑡, 𝑡 ′) ≈ 1 
𝑁 − 1 

𝑁 ∑
𝑖 =1 

( 𝑥 𝑖 ( 𝑡 ) − 𝜇( 𝑡 ))( 𝑥 𝑖 ( 𝑡 ′) − 𝜇( 𝑡 ′)) . (34) 

Given a time interval uniformly discretized ( 𝑡 𝑖 ) 𝑛 𝑖 =1 with a resolution

𝑡 = 1 h, the rest of Section 5.2 is dedicated to the KLE-based approxi-

ation of the wind speed model under the form 

 ( 𝑡 𝑖 ) ≈ exp 

( 

𝜇( 𝑡 𝑖 ) + 

𝑟 ∑
𝑖 = 𝑗 

√ 

𝜆𝑗 𝑊 𝑗𝑖 𝜉𝑗 

) 

, (35)

here ( 𝜉𝑖 ) 𝑟 𝑖 =1 are independent random variables drawn according to the

tandard normal distribution. 
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.2.2. Continuous formulation 

Let (Ω,  , ) be a probability space, with Ω being the sample space,

a 𝜎-algebra and  a probability measure. Let 𝐼 = [ 𝑎, 𝑏 ] be an interval

f ℝ . 𝑋 is a square-integrable stochastic process that is assumed to be

efined on 𝐼 . The Karhunen–Loève decomposition of the process can be

xpressed as 

( 𝑡 ) = 𝜇( 𝑡 ) + 

∞∑
𝑖 =1 

√
𝜆𝑖 𝑉 𝑖 ( 𝑡 ) 𝜉𝑖 , (36)

here ( 𝑉 𝑖 ) ∞𝑖 =1 is a Hilbert basis of 𝐿 

2 ( 𝐼) , the random variables ( 𝜉𝑖 ) ∞𝑖 =1 are

utually independent, with zero mean and unit variance, and ( 𝜆𝑖 ) ∞𝑖 =1 
re positive constants in a decreasing order ( 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 0 ). Under

ufficient regularity of the covariance 𝐶, the pairs ( 𝜆𝑖 , 𝑉 𝑖 ) ∞𝑖 =1 are solutions

f the following Fredholm integral equation of the second kind 

𝑡 ′∈𝐼 
𝐶( 𝑡, 𝑡 ′) 𝑉 𝑖 ( 𝑡 ′)d 𝑡 ′ = 𝜆𝑖 𝑉 𝑖 ( 𝑡 ) . (37)

he random variable 𝜉𝑖 is defined by 

𝑖 = 

1 √
𝜆𝑖 

∫𝑡 ∈𝐼 𝑉 𝑖 ( 𝑡 ) ( 𝑋( 𝑡 ) − 𝜇( 𝑡 ) ) d 𝑡. (38)

ote that if 𝑋 is a Gaussian process, then the random variables ( 𝜉𝑖 ) ∞𝑖 =1 
ollow the standard Gaussian distribution. 

.2.3. Discretization 

Let ( 𝑠 𝑖 ) 𝑛 𝑖 =0 be a regular discretization of the interval 𝐼 such that 

 = 𝑠 0 ≤ 𝑠 1 ≤ ⋯ ≤ 𝑠 𝑛 = 𝑏, and 𝑠 𝑖 +1 − 𝑠 𝑖 = Δ𝑡, (39)

nd let ( 𝑡 𝑖 ) 𝑛 𝑖 =1 be the midpoints ( 𝑠 𝑖 − 𝑠 𝑖 −1 )∕2 . Evaluating the integral in

q. (37) with a midpoint-quadrature formula at every 𝑡 𝑗 yields 

𝑛 

𝑗=1 
𝐶( 𝑡 𝑖 , 𝑡 𝑗 ) 𝑉 𝑖 ( 𝑡 𝑗 )Δ𝑡 = 𝜆𝑖 𝑉 𝑖 ( 𝑡 𝑖 ) . (40)

et the matrix 𝐾 ∈ ℝ 

𝑛 ×𝑛 and the vector 𝑊 𝑖 ∈ ℝ 

𝑛 be defined by 

 𝑖𝑗 = Δ𝑡𝐶( 𝑡 𝑖 , 𝑡 𝑗 ) , and 𝑊 𝑖𝑗 = 𝑉 𝑖 ( 𝑡 𝑗 ) . (41)

he discretized Fredholm integral equation leads to the following alge-

raic eigenvalue problem 

𝑊 𝑖 = 𝜆𝑖 𝑊 𝑖 . (42)

he time discretization followed by a truncation of the sum yield there-

ore the approximations 

( 𝑡 𝑖 ) ≈ 𝜇( 𝑡 𝑖 ) + 

𝑛 ∑
𝑗=1 

√ 

𝜆𝑗 𝑊 𝑗𝑖 𝜉𝑗 ≈ 𝜇( 𝑡 𝑖 ) + 

𝑟 ∑
𝑗=1 

√ 

𝜆𝑗 𝑊 𝑗𝑖 𝜉𝑗 . (43)

iven a tolerance 𝜖, the constant 𝑟 is chosen such that 

 ∑𝑛 

𝑖 = 𝑟 +1 𝜆𝑖 ∑𝑛 

𝑖 =1 𝜆𝑖 

) 

1 
2 

≤ 𝜖, (44)

nsuring that the relative 𝐿 

2 error between the 𝑛 -terms and the 𝑟 -terms

pproximations is less than 𝜖. 

. Numerical experiments 

The results presented in this section demonstrate the new features

mplemented in the proposed procedures and provide a complete set of

tatistical results to better support the decision-maker. The objectives of

he experiments are fourfold: 

1. to demonstrate the positive impact of the proposed strategies on the

computing time; 

2. to analyze the performance of the optimization stage for risk-averse

approaches; 

3. to compute high-quality solutions for the VPP problem; 

4. to assess those solutions using statistic estimators and confidence
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Table 2 

Summary of the specifications of the thermal unit in 

Cases 1 and 2. 

Thermal unit specifications Case 1 Case 2 

Initial state On Off

Maximum power (MW) 455 55 

Fixed generation cost ( € /h) 1000 660 

Variable generation cost ( € /MWh) 16.19 25.92 

Minimum up-time (h) 8 1 

Minimum down-time (h) 8 1 
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Table 3 

Size of the extensive form and problems within the L-Shaped method. 

Problem 𝑁 𝛽 NCNST NVAR 0-1 NVAR 

Extensive 10 0.0 21,346 14,298 508 

Extensive 5000 0.0 10,081,186 6,720,858 508 

Extensive 5000 1.0 10,086,186 6,725,859 508 

Master † 10 0.0 1187 859 508 

Master † 5000 0.0 1187 859 508 

Master † 5000 0.5 6188 5861 508 

Master † 5000 1.0 6187 5860 508 

Subproblem 

⋆ – – 1345 2353 –

† – Sizes refer to the second iteration of the L-Shaped method. ⋆ – Size 

refers to the dual of (24) . NCNST – number of constraints plus objec- 

tive function; NVAR – number of total variables; 0–1 NVAR – number of 

binary variables. 
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The first and second objectives above are related to the first contribu-

ion of this work and the third and fourth objectives to the second con-

ribution. In terms of the organization of the results, we discuss the com-

utational performance of Procedure 1 in Section in 6.2 , the objective

unction values in Section 6.3 , the first-stage solutions in Section 6.4 ,

nd the maximum gaps obtained in Section 6.5 . 

More specifically, in Procedure 1 , we analyze the impact of a) the

ample size 𝑁 on the computing time of the L-Shaped method and the

ariance of the solutions; b) the sample size 𝑁 

′ on the computing time

nd variance of the solutions; c) the number of replications 𝑇 and 𝑇 ′ on

he lower bound estimation. In Procedure 2 , we study the influence of

he sample size 𝑁 on the upper bound estimation. 

In a supplementary document, detailed experimental results that

upport the ones presented in this section are provided. 

.1. Description of the case studies 

We consider two cases pertaining to the VPP described in Section 2 ,

hich we refer to as Cases 1 and 2. In both cases a similar wind farm

nd a similar pumped-storage hydro unit are considered. However, the

pecifications of the thermal unit in each case are different in terms

f initial state, operational constraints, and costs. Table 2 specifies the

ifferences in terms of capacity and costs between the thermal unit in

ases 1 and 2. 

For the same samples of the wind speed and electricity prices, these

ifferences induce a distinct reaction of the VPP. Furthermore, the

igher generation cost of the thermal unit in Case 2 leads to a situa-

ion where the gap between the electricity price and generation costs

s smaller than the gap in Case 1. The results presented in this section

how that the two cases are sufficiently distinct to give a broad view on

he performance of the methods used in this work. 

The solutions of interest for the VPP problem are the optimal first-

tage solutions and the performance indices expected profit and the

VaR of the profit for different quantiles. Given the number of elements

n each sample, and the fact that in practice, the second-stage variables

ave to be adjusted to the future realization of the random variables,

hese variables are less meaningful and thus their values are not re-

orted. 

.1.1. Wind speed and electricity prices data 

We consider a time horizon of 168 h, which corresponds to the week

f August 25–31, 2014. The ARIMA model uses the same structure and

t of the model proposed in Lima et al. (2018) . The electricity price time

eries has 12 weeks before the week studied, from the Iberian Peninsula

lectricity market ( Iberian Electricity Market, 2015 ). 

The raw data for the wind speed for a specific wind farm location

onsists of a wind speed ensemble with 51 members obtained from the

uropean Centre for Medium Range Weather Forecasts (ECMWF). We

se the wind speed ensemble and the KLE to generate additional samples

f the wind speed for the SAA methodology. The electricity prices are

onsidered independent of the wind speed available at the location of

he considered VPP, due to the small capacity of the VPP in each case

tudy, which has no market power to influence the electricity prices. 
9 
.1.2. Setup of the parameters of the procedures 

The risk-neutral and risk-averse stochastic programming problems

re solved with an L-Shaped based method with single optimality cuts.

or this method, the stop criteria are a maximum wall-clock time of

0,800 s, a maximum gap between the bounds of 1 ×10 −4 % , and a max-

mum number of iterations of 5000. Note that this gap is related to the

ounds on the objective function value within the L-Shaped method for

 given sample. These bounds are not related to the bounds described

n Sections 4.2 and 4.3 . 

We perform a sensitivity analysis with Procedure 1 combining the

ollowing parameters 𝑀 = 30 (number of optimization replications),

 ∈ {10 , 50 , 100 , 500 , 5000} (size of the samples used in each optimiza-

ion replication), 𝑇 ∈ {10 , 30} , 𝑇 ′ ∈ {10 , 30} (number of replications in

he lower bound estimation), 𝑁 

′ ∈ {5000 , 25 , 000} (size of the samples

sed in the lower bound estimation). 

We consider four combinations of ( 𝛽, 𝛼) ∈
(0 , −) , (0 . 5 , 0 . 9) , (1 , 0 . 9) , (1 , ( 𝑁 − 1)∕ 𝑁)} for the optimization replica-

ion. The case with 𝛼 = ( 𝑁 − 1)∕ 𝑁 corresponds to the maximization

f the worst profit consistently with the definition of the CVaR. In

he lower bound estimation, for each first-stage solution we evaluate

oint estimates and confidence intervals of the CVaR of the profit for

∈ {0 . 9 , 0 . 95 , ( 𝑁 

′ − 1)∕ 𝑁 

′} . 
For Procedure 2 , we set 𝑀 = 30 (number of replications of the op-

imization) and 𝑁 ∈ {500 , 5000} (size of the samples). All confidence

ntervals presented correspond to 95%. 

A workstation with 40 Intel Xeon CPU E5-2680 v2 @ 2.80 GHz pro-

essors, and 125.8 Gb of RAM was used and the solution of the LP sub-

roblems was distributed among the 40 CPUs. The MILP and LP prob-

ems were solved with CPLEX 12.7.1.0 using the GAMS/GRID/GUSS ca-

abilities to distribute the solution of the LP subproblems. 

.2. Computational performance 

In this subsection, we first present the dimensions of the problems

onsidered and discuss the choice of the L-Shaped method over the di-

ect solution of the extensive form. Next, the benefits of the proposed

nitialization of the L-Shaped method are shown and then analysis on

he overall performance of Procedure 1 is provided. 

In Table 3 , we show that the size of the extensive form reaches mil-

ions of constraints and variables for samples with 𝑁 = 5000 , and that

he L-Shaped method decomposes the extensive form into one smaller

aster problem and 𝑁 smaller subproblems. 

We adopt the L-Shaped variant that provided the best performance

n Lima et al. (2018) , i.e., Algorithm 1, which corresponds to using a

ingle optimality cut for each of the expectation and CVaR operators and

alculating VaR based on the solution of the subproblems, rather than

sing VaR as a first-stage variable. In that work it is shown that for 𝛽 = 0 ,
he L-Shaped method with an efficient parallelization solution of the

ubproblems is one order of magnitude faster than the direct solution of

he extensive form. Whereas for 𝛽 ∈ {0 . 1 , 0 . 5 , 0 . 9 , 1 . 0} , 𝛼 = 0 . 9 , sample
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Fig. 1. Average wall-clock time for 30 opti- 

mization replications for the combinations of 

sample sizes and risk parameters studied. 

Table 4 

Ratio between the total wall-clock time for 30 optimization repli- 

cations using an initial solution (Tinit) and without using an initial 

solution (T0) in the L-Shaped method. 𝑀 = 30 . 

𝑁 = 500 𝑁 = 5000 

Case 1 Case 2 Case 1 Case 2 

𝛽 𝛼 Tinit/T0 Tinit/T0 Tinit/T0 Tinit/T0 

0 – 0.68 0.82 0.63 0.82 

0.5 0.9 0.52 0.75 0.56 0.80 

1 0.9 0.56 0.78 0.61 0.81 

1 ( 𝑁 − 1)∕ 𝑁 0.96 1.19 1.06 1.09 
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izes of 5100 elements, and maximum wall clock time of 7200 s, the

ILP solver applied to the extensive form did not find a feasible solution

or four case studies similar to the two considered in this work. We refer

he reader to that work for detailed computational results showing the

uperior performance of the L-Shaped method over solving directly the

xtensive form. 

.2.1. Initialization of the optimization stage 

Table 4 shows the ratios between the total wall-clock time with and

ithout initialization for 30 optimization replications. 

These results cover four combinations of risk parameters using two

ample sizes – 500 and 5000 elements – over 30 replications. A ratio

maller than one means that the initialization is effective in reducing

he total computing time. Overall, the results suggest that the initializa-

ion reduces the required computing time. The exception is the formula-

ion with 𝛽 = 1 and 𝛼 = ( 𝑁 − 1)∕ 𝑁, (last row of Table 4 ). This peculiar

ehavior occurs because convergence is not reached for the first-stage

olution over the replications, and thus, one solution from one repli-

ation is not necessarily a good initial solution for another replication.

or the remaining risk metrics, there is convergence for the first-stage

ariables, and therefore, the initialization has a positive impact on com-

uting time. This is further discussed in Section 6.2.4 . 

.2.2. Performance of the optimization stage 

Fig. 1 a and b shows for Cases 1 and 2, respectively, the average

all-clock time for 30 optimization replications as a function of the risk

arameters and size of the sample. These results show that with a sam-

le with 10 elements, the average wall-clock time for Case 1 is approxi-

ately 1 s, independently of the risk parameters. However, this comput-

ng time increases with the sample size, with the formulation with 𝛽 = 1 ,
= ( 𝑁 − 1)∕ 𝑁 exhibiting a steeper increase for an average of 3146 s.

or Case 2 the average wall-clock time for the formulations with the

VaR is independent of the size of the sample. The next sub-section fo-

uses on the results of the formulations with 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 . 

.2.3. Performance of the optimization stage for 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁
The formulation with 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 exhibits some relevant

esults that are worth discussing. First of all, for the formulations with
10 
he CVaR, the L-Shaped method evaluates the CVaR in each iteration,

hich requires resources, however, for 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 this evalu-

tion is straightforward. In general, comparing the formulations with

= 0 and 𝛽 > 0 , 𝛼 < ( 𝑁 − 1)∕ 𝑁 in terms of computing time, we can

ee that the CVaR specific calculation is not computationally the most

emanding. For example, in Fig. 1 a for 𝑁 = 500 , the computing times

or 𝛽 = 0 and 𝛽 > 0 , 𝛼 < ( 𝑁 − 1)∕ 𝑁 are similar. On the other hand, for

= 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 the average number of iterations is 5.7, whereas

or 𝛽 = 1 , 𝛼 = 0 . 9 it is 2.0. Therefore, the higher computing times ob-

ained with 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 do not arise from the CVaR evalua-

ion, but rather from the number of iterations executed by the L-Shaped

ethod, as discussed below. 

For Case 1, for 𝑁 = 10 , the L-Shaped method requires on average 2.1

terations to meet the stopping criteria, while for 𝑁 = 5000 it requires on

verage 8.6 iterations. Fig. 2 presents the profiles of the bounds in the

-Shaped method for the optimization replications with the lower and

igher number of iterations within each optimization replication with

 = 10 and 𝑁 = 5000 . The figures for Case 1 show that for 𝑁 = 10 the

umber of iterations ranges from 2 to 4, while for 𝑁 = 5000 it ranges

rom 2 to 21 iterations. However, it is not the size of the sample that

emands extra iterations, since for 𝛽 = 0 and 𝑁 = 5000 , the L-Shaped

ethod requires on average 2.0 iterations to meet the stopping criteria.

t is rather the elements within large samples that have an impact on

he performance of the L-Shaped method if applied to the maximization

f the CVaR of the profit with 𝛼 = ( 𝑁 − 1)∕ 𝑁 . 

For Case 2, Fig. 1 b shows that the average wall-clock times for the

ormulations with the CVaR are independent of the size of the sample.

n the specific case of 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁, for 𝑁 = 10 , the L-Shaped

ethod requires on average 101.2 iterations to meet the stopping crite-

ia, whereas for 𝑁 = 5000 it requires on average 11.4 iterations. These

esults combined with the results in Fig. 1 b indicate that 1) Case 2 forces

he L-Shaped method to perform more iterations than Case 1, for the

ame samples, which is explained by the higher generation costs of the

hermal unit in Case 2; and 2) consequently, for the formulations that

aximize the worst profit observation, the L-Shaped method requires

dditional iterations than the other formulations. Fig. 2 c and d shows

he profiles of the optimization replications with the lower and higher

umber of iterations obtained with 𝑁 = 10 and 𝑁 = 5000 . From these

gures, it is also clear that in some replications the L-Shaped method re-

uires few iterations. For example, 10 and 6 for 𝑁 = 10 and 𝑁 = 5000 ,
espectively, while in others it may require a large number – 417 and

5 for 𝑁 = 10 and 𝑁 = 5000 , respectively. 

Overall, these results show that: 

1. the maximization of the CVaR of the profit with 𝛼 = ( 𝑁 − 1)∕ 𝑁
forces the L-Shaped method to perform more iterations, by compari-

son with 𝛽 = 0 . The reason is that in the former problem, the search

is driven by the worst profit, which forces the L-Shaped method to

search for the optimal commitment of the thermal unit or contract se-

lection to respond to the low electricity prices that induce the worst

case profit. By contrast, the problem with 𝛽 = 0 is driven by the max-
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Fig. 2. Upper and lower bounds (continuous 

lines) from the L-Shaped method. The dashed 

line is the objective function for the first-stage 

solution. In each sub-figure, there are the two 

optimization replications with the lower and 

higher number of iterations. For 𝑀 = 30 , 𝛽 = 1 , 
and 𝛼 = ( 𝑁 − 1)∕ 𝑁 . 
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Table 5 

Case 1. Number of successful optimization replications and distinct solutions. 

𝑀 = 30 . 

𝛽 = 0 𝛽 = 0 . 5 , 𝛼 = 0 . 9 𝛽 = 1 , 𝛼 = 0 . 9 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁

𝑁 SR DS SR DS SR DS SR DS 

10 30 6 30 6 30 3 30 3 

50 30 4 30 4 30 2 30 3 

100 30 3 30 3 30 2 30 3 

500 30 1 30 1 30 2 30 10 

5,000 30 1 30 1 30 1 25 18 

SR – number of successful optimization replications that meet the stop criteria 

(out of 30); DS – number of distinct solutions. 
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imization of the expected profit that is less sensitive to low electricity

price observations; 

2. the size of the samples have an impact on the performance of the

L-Shaped method because increasing the sample size increases the

likelihood of observations with lower electricity prices; 

3. the thermal plant with higher generation costs induces more itera-

tions of the L-Shaped method by comparison with the thermal plant

with lower generation costs; and 

4. the variability in the number of iterations required by the L-Shaped

method in each optimization replication is induced by the differ-

ent characteristics of the observations with lower electricity prices

among the samples. By different characteristics, we mean that across

the samples, the lower electricity prices occur on different hours of

the week and distinct minimum values. 

.2.4. Combined performance of the optimization and bound estimation 

tages 

Fig. 3 presents the total wall-clock time required by Procedure 1 and

y its two main stages: optimization and bound estimation. This fig-

re compares the computational performance obtained with 𝛽 = 0 and

= 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 . It also shows the impact on the computing time of

ncreasing the number of replications and the sample size in the lower

ound estimation, from { 𝑇 , 𝑇 ′} = 10 and 𝑁 

′ = 5000 to { 𝑇 , 𝑇 ′} = 30 and

 

′ = 25 , 000 . Using 𝑁 

′ = 25 , 000 and { 𝑇 , 𝑇 ′} = 30 the overall time in-

reases, by comparison with 𝑁 

′ = 5000 and { 𝑇 , 𝑇 ′} = 10 , but there is no

nfluence on the optimization time. 

These results provide relevant insights regarding the trade-off be-

ween the sample size and the overall time required. We can observe

hat increasing the sample size in the optimization, the overall time

oes not monotonically increase. In fact, for 𝛽 = 0 , there is a minimum

verall time for 𝑁 = 500 , instead of 𝑁 = 10 ; see Fig. 3 a and c. This be-

avior is explained by noting that: 1) the lower bound estimation is

nly performed when a new solution is obtained from an optimization

eplication; and 2) for 𝑁 = 10 , multiple distinct solutions are obtained,

hereas for 𝑁 = 500 , only one distinct solution is obtained. In Fig. 3 , as

increases the time required by the optimization stage increases, but

ot the lower bound estimation time. For 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁, there

s also a minimum time that corresponds to 𝑁 = 10 for 𝑁 

′ = 5000 and
11 
 𝑇 , 𝑇 ′} = 10 , and 𝑁 = 50 for 𝑁 

′ = 25 , 000 and { 𝑇 , 𝑇 ′} = 30 ; see Fig. 3 b

nd d. 

We complement these results by presenting in Table 5 the number

f distinct solutions obtained as a function of 𝑁 and the risk parameters

or Case 1. 

This table shows that increasing the sample size, the problem con-

erges to one distinct solution for all combinations of risk parameters;

xcept for 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 . For 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁, increasing

he sample size increases the number of distinct solutions. In this spe-

ific situation, 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁, the objective is to maximize the

ingle worst observation of the profit. The primary difference among the

rst-stage solutions for 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 is the hourly commitment

f the thermal plant; see also additional results available in the supple-

entary document. This difference suggests that the thermal plant is

rone to shutdown and startup to follow the lowest electricity price ob-

ervation. The samples with more elements have a higher likelihood of

ower electricity prices, which from one sample to the other may occur

t different hours of the week. Therefore, distinct first-stage solutions

merge among the optimization replications. 

The number of distinct solutions obtained with 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁
or 𝑁 = 500 also justifies the worst performance of the initialization im-

lemented in the L-Shaped method. Thus, one solution from one opti-

ization replication may not be a good starting point for an optimiza-

ion replication with a different sample. 
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Fig. 3. Case 1. Wall-clock time as a function 

of the size of the sample for the optimization. 

𝑀 = 30 . 

Fig. 4. Case 2. Wall-clock time as a function 

of the size of the sample for the optimization. 

𝑀 = 30 . 
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For Case 2 with 𝛽 = 0 , the results show that increasing the sample

ize for the optimization, the number of distinct solutions decreases,

hich means a decrease in the time for the lower bound estimation; see

ig. 4 a and c. However, for 𝛽 = 1 with 𝛼 ∈ {0 . 9 , ( 𝑁 − 1)∕ 𝑁} , the number

f distinct solutions is equal to the number of optimization replications,

hich means that there is no convergence to a distinct solution; see

able 6 . Therefore, the computing time for the lower bound estimation

s independent of the sample size for the optimization; see Fig. 4 b and

. 

.3. Objective function values and its bounds 

This section presents the bounds on the optimal objective function

alue 𝑤 

∗ for the different formulations as a function of the samples size
12 
nd the number of replications. Figs. 5 and 6 show the limits of the

onfidence intervals for the upper and lower bounds on the true opti-

al objective function value 𝑤 

∗ obtained for Case 1 and Case 2, respec-

ively. These figures illustrate the impact of the sample size and number

f replications used in the lower bound estimation on the confidence in-

ervals for 𝛽 = 0 and 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 . In the supplementary results

ocument, the bounds for additional risk parameters are presented. 

A relevant result shows that for the formulation that maximizes the

xpected profit ( 𝛽 = 0 ), the point estimate of the upper bound on the true

ptimal objective function value 𝑤 

∗ falls within the confidence interval

f the upper bound for all 𝑁 tested. Increasing the sample size reduces

he confidence interval, converging approximately to the center of the

onfidence intervals. For the formulation with 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁, the
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Fig. 5. Case 1. Limits of the confidence inter- 

vals on the point estimate of the lower and up- 

per bounds ( 𝐿𝐵 𝑁 ′ ,𝑇 ′ and 𝑈𝐵 𝑁,𝑀 

) on the true 

optimal objective function value ( 𝑤 

∗ ) as a func- 

tion of risk parameters, 𝑁 

′, 𝑇 , and 𝑇 ′. 𝑀 = 30 . 

Fig. 6. Case 2. Limits of the confidence inter- 

vals on the point estimate of the lower and up- 

per bounds ( 𝐿𝐵 𝑁 ′ ,𝑇 ′ and 𝑈𝐵 𝑁,𝑀 

) on the true 

optimal objective function value ( 𝑤 

∗ ) as a func- 

tion of risk parameters, 𝑁 

′, 𝑇 , and 𝑇 ′. 𝑀 = 30 . 

Table 6 

Case 2. Number of successful optimization replications and distinct solutions. 

𝑀 = 30 . 

𝛽 = 0 𝛽 = 0 . 5 , 𝛼 = 0 . 9 𝛽 = 1 , 𝛼 = 0 . 9 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁

𝑁 SR DS SR DS SR DS SR DS 

10 30 26 30 17 28 30 28 30 

50 30 10 30 30 30 30 30 30 

100 30 8 30 30 30 30 30 30 

500 30 1 30 23 30 30 30 30 

5,000 30 1 30 30 30 30 27 30 

SR – number of successful optimization replications that meet the stop criteria 

(out of 30); DS – number of distinct solutions. 

p  
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c  

s  

r

 

b  

w  

s  

b  

𝑇  

o  

13 
oint estimate of the upper bound overestimates the true optimal objec-

ive function value, and the point estimate is not included in all the

onfidence intervals (for different 𝑁). Thereby, increasing the sample

ize for the optimization decreases the value of the point estimate and

ange of the confidence intervals. 

Figs. 5 and 6 indicate that the confidence interval for the lower

ound on the true optimal objective function value is underestimated

ith the samples with 𝑁 

′ = 5000 , { 𝑇 , 𝑇 ′} = 10 . For example, this can be

een comparing in Fig. 5 a and b the confidence interval for the lower

ound represented by the dashed lines. These results indicate that for

 

′ = 10 there is a bias in the estimation of the lower bound on the true

ptimal objective function value. However, as 𝑁 

′ is increased to 25,000
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Table 7 

Case 1. First-stage solutions and point estimates of the lower bound on the true optimal objective function value ( 𝐿𝐵 𝑁 ′ ,𝑇 ′ ) 

with confidence intervals. 𝑁 

′ = 25 , 000 , { 𝑀, 𝑇 , 𝑇 ′} = 30 . 

First-stage solutions (aggregated) CI, [LLB,ULB] 

𝛽 𝛼 𝑁 UT (%) SUP SD SELLC (MW) BUYC (MW) 𝐿𝐵 𝑁 ′ ,𝑇 ′ ( €) LLB ( €) ULB ( €) 

0 – 10 100 0 0 0 160 3,188,599 3,185,869 3,191,329 

0 – 50 100 0 0 0 160 3,188,599 3,185,869 3,191,329 

0 – 100 100 0 0 0 160 3,188,599 3,185,869 3,191,329 

0 – 500 100 0 0 0 160 3,188,599 3,185,869 3,191,329 

0 – 5000 100 0 0 0 160 3,188,599 3,185,869 3,191,329 

0.5 0.9 10 100 0 0 155 0 2,454,870 2,453,669 2,456,071 

0.5 0.9 50 100 0 0 155 0 2,454,870 2,453,669 2,456,071 

0.5 0.9 100 100 0 0 155 0 2,454,870 2,453,669 2,456,071 

0.5 0.9 500 100 0 0 155 0 2,454,870 2,453,669 2,456,071 

0.5 0.9 5000 100 0 0 155 0 2,454,870 2,453,669 2,456,071 

1 0.9 10 100 0 0 315 0 2,100,859 2,100,156 2,101,562 

1 0.9 50 100 0 0 315 0 2,100,859 2,100,156 2,101,562 

1 0.9 100 100 0 0 315 0 2,100,859 2,100,156 2,101,562 

1 0.9 500 100 0 0 315 0 2,100,859 2,100,156 2,101,562 

1 0.9 5000 100 0 0 315 0 2,100,859 2,100,156 2,101,562 

1 ( 𝑁 − 1)∕ 𝑁 10 100 0 0 315 0 1,768,962 1,759,967 1,777,956 

1 ( 𝑁 − 1)∕ 𝑁 50 100 0 0 315 0 1,768,962 1,759,967 1,777,956 

1 ( 𝑁 − 1)∕ 𝑁 100 100 0 0 315 0 1,768,962 1,759,967 1,777,956 

1 ( 𝑁 − 1)∕ 𝑁 500 95.2 1 1 315 0 1,764,836 1,755,568 1,774,104 

1 ( 𝑁 − 1)∕ 𝑁 5000 95.2 1 1 315 0 1,764,554 1,755,197 1,773,911 

CI – Confidence interval, LLB and ULB as in (20) , UT – percentage of up-time of the thermal unit, SUP/SD – number of 

startups/shutdowns of the thermal unit, SELLC/BUYC – power sold/bought through contracts. 
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nd { 𝑇 , 𝑇 ′} to 30, the confidence interval of the lower bound converges

ith the confidence interval of the upper bound. 

Note that for the optimization replications where the L-Shaped

ethod did not meet the stopping criteria, the upper bound from the

-Shaped method is used to evaluate the point estimate on the upper

ound on the true optimal solution. This replacement justifies the larger

ange of the confidence interval for the upper bound for Case 1 with

= 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁, 𝑁 = 5000 in Fig. 5 c and d, and for Case 2 with

= 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁, 𝑁 ∈ {10 , 5000} in Fig. 6 c and d. 

Overall, the convergence of the bounds for 𝑁 

′ = 25 , 000 , { 𝑇 , 𝑇 ′} =
0 indicate that high-quality solutions are obtained, which are further

ssessed in the next sub-section. 

.4. First-stage solutions 

Tables 7 and 8 provide the best first-stage solution and inference

tatistics resulting from each set of risk parameters and sample size. 

The first stage solutions are given in aggregated form to simplify

heir presentation. Therefore, to distinguish between equal aggregated

olutions that correspond to distinct disaggregated solutions, the point

stimates of their lower bounds are provided. 

For Case 1, for each set of risk parameters ( 𝛽, 𝛼) ∈
(0 , −) , (0 . 5 , 0 . 9) , (1 , 0 . 9)} there is only one distinct solution, inde-

endently of the sample size for the optimization. However, 𝛽 = 1 ,
= ( 𝑁 − 1)∕ 𝑁 has three distinct solutions, which are identified by the

hree distinct values of 𝐿𝐵 𝑁 

′ ,𝑇 ′ , see Table 7 . 

For Case 2 with 𝛽 = 0 , the same first-stage solution is obtained in-

ependently of the sample size for optimization, while for the other set

f risk parameters, within each set there are slight variations on the

ower bought through contracts. The slight variations in this variable

ead to small variations in the lower bound and confidence interval for

he point estimate of the lower bound on the true optimal objective

unction value. 

These results explain why the confidence interval on the point esti-

ate for the lower bounds in Figs. 5 and 6 are represented by (almost)

orizontal dashed lines. 
14 
.5. Gap between 𝑤 

∗ and 𝔼 𝜉
[
𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉) 
]

We further evaluate each distinct solution using a point estimate on

he upper bound on the gap between 𝑤 

∗ and 𝔼 𝜉
[
𝜙( ̂𝑥 𝑁 

, 𝑦, ̂𝑧 𝑁 

, 𝜉) 
]
, as de-

cribed in Section 4.4 . Tables 9 and 10 show this point estimate for

 = 500 and 𝑁 = 5000 , for Cases 1 and 2, respectively. 

For Case 1, a gap of zero is obtained for the solutions with 𝛽 = 0 and

= 0 . 5 , independently of 𝑁, and for 𝑁 = 5000 for 𝛽 = 1 , 𝛼 = 0 . 9 . For the

ther risk parameters, the maximum relative gap is 1.5%. 

For Case 2, the solution obtained for 𝛽 = 0 has a gap of zero for both

alues of 𝑁 . The remaining gaps are relatively small, as the maximum

elative gap is 1.1%. 

We also present the wall-clock time required, which consists of the

ime for the optimization and lower bound estimation. It is clear that the

ormulations with 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 are more demanding, in partic-

lar for 𝑁 = 5000 . The limiting step in this procedure is the optimization

tage, which in Case 1 with 𝛽 = 1 , 𝛼 = ( 𝑁 − 1)∕ 𝑁 and in Case 2 is much

ore demanding than the lower bound estimation, as it can be noticed in

igs. 3 a, b and 4 a, b. For example, in Case 2 with 𝑁 = 500 , the optimiza-

ion stage requires on average 1216 s and 20,998 s for 𝛼 < ( 𝑁 − 1)∕ 𝑁
nd 𝛼 = ( 𝑁 − 1)∕ 𝑁, respectively, while the lower bound estimation on

verage only requires 73 s. 

For the assessment of multiple solutions of the same problem,

rocedure 2 can be improved by noting that the optimization stage is

ndependent of the solution to assess. Therefore, to assess multiple so-

utions, it is necessary one optimization stage (valid for all solutions)

lus one lower bound estimation stage per solution. In this way, and

iven the computing times for the optimization stage mentioned in the

revious paragraph, the computing time required by Procedure 2 could

e significantly reduced. 

Conceptually, Procedure 1 is oriented to the generation of solutions

nd specific inference statistics, whereas the objective of Procedure 2 is

o assess the solution quality of a given solution. The optimization stage

s similar in both procedures, however, the lower bound estimation in

rocedure 1 is made for each new solution, whereas in Procedure 2 it is

nly for the single input solution of the procedure. The common parts

etween the procedures suggest that they can be merged to take ad-

antage of these similarities to reduce the overall computing time. A

erging would require Procedure 1 to be adapted so that during the
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Table 8 

Case 2. First-stage solutions and point estimates of the lower bound on the true optimal objective function value ( 𝐿𝐵 𝑁 ′ ,𝑇 ′ ) 

with confidence intervals. 𝑁 

′ = 25 , 000 , { 𝑀, 𝑇 , 𝑇 ′} = 30 . 

First-stage solutions (aggregated) CI, [LLB,ULB] 

𝛽 𝛼 𝑁 UT (%) SUP SD SELLC (MW) BUYC (MW) 𝐿𝐵 𝑁 ′ ,𝑇 ′ ( €) LLB ( €) ULB ( €) 

0 – 10 100 1 0 0 160 418,652 417,656 419,648 

0 – 50 100 1 0 0 160 418,652 417,656 419,648 

0 – 100 100 1 0 0 160 418,652 417,656 419,648 

0 – 500 100 1 0 0 160 418,652 417,656 419,648 

0 – 5000 100 1 0 0 160 418,652 417,656 419,648 

0.5 0.9 10 100 1 0 100 50.89 260,050 259,967 260,132 

0.5 0.9 50 100 1 0 100 50.81 260,048 259,966 260,130 

0.5 0.9 100 100 1 0 100 51.15 260,055 259,971 260,138 

0.5 0.9 500 100 1 0 100 52.00 260,061 259,975 260,146 

0.5 0.9 5000 100 1 0 100 50.99 260,052 259,969 260,134 

1 0.9 10 100 1 0 100 38.24 239,852 239,795 239,910 

1 0.9 50 100 1 0 100 38.68 239,869 239,811 239,927 

1 0.9 100 100 1 0 100 38.84 239,865 239,807 239,923 

1 0.9 500 100 1 0 100 38.64 239,869 239,811 239,927 

1 0.9 5000 100 1 0 100 38.64 239,869 239,811 239,927 

1 ( 𝑁 − 1)∕ 𝑁 10 100 1 0 100 38.22 217,371 216,616 218,127 

1 ( 𝑁 − 1)∕ 𝑁 50 100 1 0 100 38.31 217,361 216,610 218,113 

1 ( 𝑁 − 1)∕ 𝑁 100 100 1 0 100 38.00 217,389 216,617 218,161 

1 ( 𝑁 − 1)∕ 𝑁 500 100 1 0 100 38.04 217,387 216,619 218,156 

1 ( 𝑁 − 1)∕ 𝑁 5000 100 1 0 100 38.05 217,387 216,619 218,155 

CI – Confidence interval, LLB and ULB as in (20) , UT – percentage of up-time of the thermal unit, SUP/SD – number of 

startups/shutdowns of the thermal unit, SELLC/BUYC – power sold/bought through contracts. 

Table 9 

Case 1. Distinct first-stage solutions and the upper bound on the absolute gap ( 𝑈𝐺 𝑁,𝑀 

) obtained from Procedure 2 . 

𝑀 = 30 . 

First-stage variables (aggregated) 𝑁 = 500 𝑁 = 5000 

𝛽 𝛼 UT (%) SUP SD SELLC (MW) BUYC (MW) 𝑈𝐺 𝑁,𝑀 Time (s) 𝑈𝐺 𝑁,𝑀 Time (s) 

0 – 100 0 0 0 160 0 254 0 3304 

0.5 0.9 100 0 0 155 0 0 277 0 3312 

1 0.9 100 0 0 315 0 563 268 0 3312 

1 ( 𝑁 − 1)∕ 𝑁 100 0 0 315 0 4921 1665 10,618 93,279 

1 ( 𝑁 − 1)∕ 𝑁 95.2 1 1 315 0 27,188 1680 16,127 92,788 

1 ( 𝑁 − 1)∕ 𝑁 95.2 1 1 315 0 27,977 1667 16,646 92,012 

UT – percentage of up-time of the thermal unit, SUP/SD – number of startups/shutdowns of the thermal unit, 

SELLC/BUYC – power sold/bought through contracts. 

Table 10 

Case 2. Distinct first-stage solutions and the upper bound on the absolute gap ( 𝑈𝐺 𝑁,𝑀 

) obtained from Procedure 2 . 

𝑀 = 30 . 

First-stage variables (aggregated) 𝑁 = 500 𝑁 = 5000 

𝛽 𝛼 UT (%) SUP SD SELLC (MW) BUYC (MW) 𝑈𝐺 𝑁,𝑀 Time (s) 𝑈𝐺 𝑁,𝑀 Time (s) 

0 – 100 1 0 0 160 0 784 0 7488 

0.5 0.9 100 1 0 100 50.89 160 1341 43 15,587 

0.5 0.9 100 1 0 100 50.81 160 1381 45 15,033 

0.5 0.9 100 1 0 100 51.15 160 1365 35 15,165 

0.5 0.9 100 1 0 100 52.00 182 1447 24 15,595 

0.5 0.9 100 1 0 100 50.99 160 1444 40 15,332 

1 0.9 100 1 0 100 38.24 79 1368 35 13,320 

1 0.9 100 1 0 100 38.68 56 1333 13 13,286 

1 0.9 100 1 0 100 38.84 64 1306 18 13,543 

1 0.9 100 1 0 100 38.64 55 1225 13 13,075 

1 0.9 100 1 0 100 38.64 55 1198 13 13,000 

1 ( 𝑁 − 1)∕ 𝑁 100 1 0 100 38.22 2412 20,984 1365 82,972 

1 ( 𝑁 − 1)∕ 𝑁 100 1 0 100 38.31 2434 21,362 1351 84,861 

1 ( 𝑁 − 1)∕ 𝑁 100 1 0 100 38.00 2371 21,144 1422 81,950 

1 ( 𝑁 − 1)∕ 𝑁 100 1 0 100 38.04 2377 20,910 1407 82,132 

1 ( 𝑁 − 1)∕ 𝑁 100 1 0 100 38.05 2379 20,945 1403 82,635 

UT – percentage of up-time of the thermal unit, SUP/SD – number of startups/shutdowns of the thermal unit, 

SELLC/BUYC – power sold/bought through contracts. 

15 
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ower bound estimation, the required information can be extracted to

valuate the upper bound on the gap defined in (22) . 

. Conclusions 

We presented and applied a methodology based on SAA to generate

rst-stage solutions and inference statistics for the optimal operation of

 VPP. To cope with the computational complexity of the problems ad-

ressed, new strategies were developed to reduce the computing time

f the optimization replications and innovations on managing the repe-

ition of sampling, optimization, and evaluation of first-stage solutions.

We performed a detailed characterization of the overall solution by

roviding point estimates and confidence intervals for the main quanti-

ies of interest, including a) upper and lower bounds for the true optimal

bjective function value; and b) an upper bound on the gap between the

rue optimal objective function value and the optimal objective func-

ion value for a given first-stage solution. This methodology is applied

o formulations involving a parameterized combination of the expected

rofit and the CVaR of the profit. The results and discussions focus on

he extremes of the parameterization – the risk-neutral and risk-averse

olutions. 

For specific conditions, we identified a relevant trade-off between the

ize of the sample used in the optimization and the time spent on the

ower bound estimation; specifically, increasing the size of the sample

or the optimization reduces the time spent in the lower bound estima-

ion and the overall required time. Two reasons justify this behavior:

) the lower bound estimation is only performed for new first-stage so-

utions; and 2) increasing the sample size for the optimization reduces

he number of distinct first-stage solutions. There is one exception to

his behavior, which occurs for specific instances of the maximization

f the CVaR with 𝛼 = ( 𝑁 − 1)∕ 𝑁, where each optimization replication

rovides one distinct first-stage solution. 

For the present setup, computational experiments indicated that with

he number of replications performed, the five sample sizes tested con-

erge to the same solution or a neighboring solution. These results in-

icate that the replications with samples of ten elements can generate

rst-stage solutions that are the same or close to the best solutions gen-

rated from samples of 500 elements. However, the variance of the solu-

ions obtained with samples of 10 elements makes it difficult to identify

hether the best solution has been obtained. 

The inference statistics indicate that some of the optimal first-stage

olutions of the SAA problem are relatively close to the true optimal

olution. 

Although the definition of the sample size and the number of replica-

ions that guarantee specific bounds or convergence is problem depen-

ent, some practical insights are in order. As general guidelines, given

imited time and computational resources, the first issue to address is

he sample size for the optimization. On the one hand, if the optimiza-

ion replications are relatively efficient, then larger samples should be

sed to reduce the variance of the solutions, eventually avoiding the

ower bound estimation for repeated solutions. On the other hand, more

ifficult optimization problems may require smaller samples for the op-

imization, which increase the variance. However, our results indicate

hat among the solutions found, there is a high probability of identifying

n excellent first-stage solution that can be further evaluated with the

ower bound estimation. 

Future work can evolve in two directions: 1) a comparison between

isk-averse stochastic programming and robust optimization; and 2) the

tudy of alternative risk metrics. Regarding the comparison, the first-

tage solutions and point estimates of the expected profit and the CVaR

f the profit obtained in this work can be contrasted with the solutions

rom a robust optimization approach. Additionally, it would be rele-

ant to explore alternative risk metrics, such as stochastic dominance

 Escudero and Monge, 2018 ), and to assess the quality of the solu-

ions and the overall SAA methodology performance with alternative

isk metrics. 
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