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In this paper, we address the decision-making problem of a virtual power plant (VPP) involving a self-scheduling
and market involvement problem under uncertainty in the wind speed and electricity prices. The problem is
modeled using a risk-neutral and two risk-averse two-stage stochastic programming formulations, where the
conditional value at risk is used to represent risk. A sample average approximation methodology is integrated

with an adapted L-Shaped solution method, which can solve risk-neutral and specific risk-averse problems. This
methodology provides a framework to understand and quantify the impact of the sample size on the variability of
the results. The numerical results include an analysis of the computational performance of the methodology for
two case studies, estimators for the bounds of the true optimal solutions of the problems, and an assessment of
the quality of the solutions obtained. In particular, numerical experiences indicate that when an adequate sample
size is used, the solution obtained is close to the optimal one.

1. Introduction

The optimal operation and electricity market involvement of virtual
power plants (VPPs) is currently an active field of research. VPP refers to
an aggregation of distributed energy resources (DER) that interacts with
the electricity market as a single entity (Awerbuch and Preston, 1997;
Pudjianto et al., 2007). These DERs involve generators with small ca-
pacities or that face significant trading risks if operating by themselves.
For example, a wind farm trading in an electricity market is subject
to uncertain wind speeds, electricity prices, and imbalance costs, which
may involve high risk. Aggregating multiple and diverse generators into
a VPP creates an entity with a single power generation profile and a
larger power capacity than the constituting units. A VPP has flexibility
due to the complementarity of its diverse resources, and capacity to de-
velop market intelligence to optimize its participation in the electricity
market (through offers in the pool and by signing forwards contracts).
However, to define a single power output profile, a self-scheduling prob-
lem considering all constituting generators, their interactions, and their
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generation constraints needs to be solved, which is more difficult than
solving individual generator problems. The VPP concept is particularly
relevant for the integration of distributed renewable energy resources
in power systems to mitigate flexibility limitation and power output un-
certainty. Additional details on the technical and commercial functions
of VPPs can be found in Pudjianto et al. (2007), Morales et al. (2014),
and Jansen et al. (2008). In Section 1.1, a review on VPP optimization
is presented. Within the different aspects of a VPP operation, we are
concerned with the optimal scheduling of the generation units and the
interaction with the electricity market.

In the present work, we propose a sample average approximation
(SAA) methodology (Kleywegt et al., 2001; Shapiro and Homem-De-
Mello, 2000) to solve the risk-averse stochastic programming problem
that describes the operation of a VPP. Three important aspects in the im-
plementation of the SAA are studied: 1) the development of an efficient
solution methodology; 2) the impact of the sample size on the perfor-
mance of the methodology; and 3) the determination of point estimates
and confidence intervals for the solutions.
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1.1. Literature review: optimization of VPPs

In the literature, VPP models with distinct portfolios of generation
units, different interactions with the electricity market, and, conse-
quently, various sources of uncertainty can be found. In terms of inter-
actions with the electricity market, the main features captured by VPP
models include:

1. forward contracts (Lima et al., 2015; Pandzi¢ et al., 2013a; Shaban-
zadeh et al., 2016);

2. offers to the day-ahead market (Baringo and Baringo, 2017; Dab-
bagh and Sheikh-El-Eslami, 2016; Kardakos et al., 2016; Moghad-
dam et al.,, 2013; Pandzi¢ et al., 2013b; Rahmani-Dabbagh and
Sheikh-El-Eslami, 2016; Shayegan-Rad et al., 2017; Tajeddini et al.,
2014; Zamani et al., 2016);

3. offers/bids to the balancing market (Dabbagh and Sheikh-El-Eslami,
2016; Kardakos et al., 2016; Tajeddini et al., 2014);

4. offers to spinning reserves (Dabbagh and Sheikh-El-Eslami, 2016);
and

5. strategic offering considering the market clearing and other market
players’ strategies (Kardakos et al., 2016).

The operational decision-making problem of VPPs involves decisions
under uncertainty due to the nature of the renewable energy sources
and electricity prices. Therefore, stochastic optimization approaches
constitute a natural framework to address this type of problems. The
most used approaches are based on stochastic programming and ro-
bust optimization. Some examples include the application of risk-neutral
stochastic programming models (Lima et al., 2018; Pandzic¢ et al., 201 3a;
2013b), risk-averse stochastic programming (Dabbagh and Sheikh-El-
Eslami, 2016; Kardakos et al., 2016; Lima et al., 2018; Moazeni et al.,
2015; Moghaddam et al., 2013; Tajeddini et al., 2014), robust optimiza-
tion (Lima et al., 2015; Rahimiyan and Baringo, 2016; Shabanzadeh
et al., 2015), and recently, a hybrid approach based on stochastic pro-
gramming and robust optimization (Baringo and Baringo, 2017).

When risk-neutral or risk-averse stochastic programming models are
used, the problem is solved for a random uncertainty sample. The main
assumption is that the sample used is representative of the full distribu-
tion of the uncertainties in the problem. In the works above, the sample
size ranges from less than 100 elements to a maximum of 400, except
in the work Lima et al. (2018) where samples of up to 25,000 elements
were used. In some works, a reduced sample size was obtained using a
scenario-reduction method (Dupacova et al., 2003). Typically, the size
of the sample is limited by the capability to solve the problems using
the corresponding extensive form and a branch and cut solver for mixed-
integer linear programming (MILP) problems. Compared with the works
cited above, our VPP model considers a time horizon of one week di-
vided into periods of one hour, whereas most works above consider the
24 h of the next day. The time horizon of one week avoids the myopic
view of a single-day horizon, which neglects the temporal coupling of
some VPP constraints that condition next day operations. Therefore, this
extended horizon enables considering constraints of thermal units, e.g.,
minimum up-time and minimum down-time, and water mass balances
in the reservoir of hydro units across consecutive days, at the cost of a
larger model.

We emphasize that risk-averse stochastic programming models are
more complex to solve than risk-neutral stochastic programming; there-
fore, the impact of the sample size and the length of the time hori-
zon on the computing time of risk-averse problems are comparatively
more critical. Some works propose an out-of-sample analysis that pro-
vides an additional characterization of the solution resulting from the
stochastic programming model (Baringo and Baringo, 2017). Compared
to an out-of-sample analysis that performs a study for a single solu-
tion, the SAA methodology includes a first stage with multiple opti-
mization replications using different samples to generate alternative
solutions and to provide a point estimate of the upper bound on the
true objective function value (for a maximization problem). The work
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in Lima et al. (2018) does not use an SAA approach, but rather focuses
on risk-averse problems and their solutions using the L-Shaped method
(Van Slyke and Wets, 1969). In that work, 14 variants of the L-Shaped
method using combinations of single and multiple optimality cuts and
efficient parallel implementations are discussed, without considering
SAA.

In this work, we propose a more elaborate approach that efficiently
relies on multiple samples to assess solutions and determine confidence
intervals on the relevant performance indices of the VPP operation. No
such work is available for VPP applications.

1.2. Literature review: sample average approximation

The term sample average approximation is used in the literature
to refer to a problem that approximates a stochastic optimization one
(Shapiro and Homem-De-Mello, 2000), but it is also used to indicate a
methodology where the solution of that approximate problem is per-
formed multiple times and increasingly accurate solutions are obtained
(Kleywegt et al., 2001). The repetition enables the calculation of con-
fidence intervals of the optimal objective function value, and also the
assessment of the solution.

The detailed characterization and statistical properties of the
SAA methodology, namely consistency and rates of convergence to
optimal objective function values and solution, have been stud-
ied by Mak et al. (1999), Shapiro and Homem-De-Mello (2000),
Kleywegt et al. (2001), and reviewed in detail in Shapiro (2009) and
Homem-de Mello and Bayraksan (2014). In these works, expressions for
the convergence to the optimal value and solution are developed and ex-
pressions relating the probability of an optimal solution x}, to be equal
to the true solution x* with the sample size are established. However,
as stated in Kleywegt et al. (2001) and Linderoth et al. (2006), it is im-
practical to determine some of the constants in those expressions. Fur-
thermore, the expressions do not provide an estimate of the computing
time required to obtain the approximated solutions and point estimates
of the bounds. Therefore, computational experiments are essential to
determine the trade-off between the computational resources and the
accuracy obtained from the sample size. This type of analysis was per-
formed, for example, in Linderoth et al. (2006) and Verweij et al. (2003).

Wang (2007) and Wang and Ahmed (2008) were the first to propose
SAA methods for risk-averse stochastic programming problems. They
focused on min-max problems with expected value objectives and prob-
lems with constraints involving expected values. For these problems,
they proved that the results of their SAA problems converge exponen-
tially fast to the true results of the stochastic problems as the sample
size increases.

A related method to this work, which has been extended to inte-
grate an SAA methodology with risk measures, is stochastic dual dy-
namic programming (SDDP) (Pereira and Pinto, 1991). In Philpott and
de Matos (2012) and Shapiro et al. (2013) are developed risk-
averse SDDP methods to address multistage linear stochastic program-
ming models describing power systems planning problems. In risk-
averse SDDP, the upper bound estimators are known to be weak
(Shapiro, 2011), and in this regard, importance sampling was proposed
in Kozmik and Morton (2015) to improve the quality of those estimators
(for a minimization problem).

Regardless of the approach used, it is generally essential to develop
an efficient SAA methodology that can handle a large number of replica-
tions as well as large sample sizes to calculate tight confidence intervals.
Furthermore, an efficient methodology is paramount to study the impact
of the sample size on the computational performance of the methodol-
ogy. This is a central theme of the present work.

1.3. SAA applied to a risk-averse VPP optimization model

The application of SAA methodologies to the scheduling problems of
VPPs has not been reported in the literature. To fill the gap, we propose
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an SAA methodology to solve these problems that is based on methods
from Linderoth et al. (2006). Specifically, a distinct class of risk-averse
problems from those considered in Linderoth et al. (2006) is addressed,
and thus, insights that are not found in Linderoth et al. (2006) and
Verweij et al. (2003) are analyzed and discussed.

In this work, new avenues to solve the VPP problem are explored,
focusing on the application of an SAA methodology that leads to com-
prehensive results for the VPP, including point estimates, confidence in-
tervals, and the assessment of the solution obtained. The main contribu-
tions of this work are twofold: 1) providing new and efficient strategies
to improve the performance of the SAA methodology; and 2) carrying
out a comprehensive computational study applied to a VPP risk-averse
two-stage stochastic programming problem. Specifically, an efficient ini-
tialization strategy to handle multiple optimization replications that re-
duces the computing time is proposed. In addition, a new method to
reduce the number of times the bound estimation stage is ran is dis-
cussed. As a result, a detailed analysis of the effect of the sample size
shows that, unexpectedly, increasing the sample size for the optimiza-
tion leads to a reduction of the overall computing time in one of the
procedures implemented. This reduction occurs because savings in the
bound estimation stage compensate the additional time spent on the
optimization with larger samples.

The paper is organized as follows. In Section 2, the problem state-
ment and a description of the VPP studied are presented. The stochastic
models with a focus on the objective functions are described in Section 3.
The SAA approach and the implementation of two solution procedures
are presented in Section 4, while the sampling techniques are shown
in Section 5. The computational results are discussed in Section 6 and
conclusions are summarized in Section 7. In a supplementary document,
appendices with the deterministic model of the VPP, flow diagrams of
the solution procedures used, and additional extensive computational
results are made available.

2. Problem statement

In this work, we revisit the problem considered in
Lima et al. (2018) but using an SAA methodology. The problem
addresses the optimal operation and electricity market involvement
of a VPP that consists of a thermal unit, a wind power farm, and a
pumped-storage hydroelectric plant. This configuration provides the
flexibility of two dispatchable units, two renewable sources, and storage
to manage the energy available and to respond to the market. The VPP
participates in the electricity market as a single entity by selling and
buying electricity in the market pool and through weekly contracts.
The time horizon is one week, divided into 168 hourly periods.

The VPP generates electricity through the three units and may con-
sume electricity to pump back water to the upper reservoir of the hydro
plant. Uncertainty in the wind speed and the electricity prices is consid-
ered, with a constant value for each hourly period.

The decision sequence of the VPP involves a two-stage framework.
In the first-stage, the decisions are made before the beginning of the
time horizon, where the VPP has to decide on the self-scheduling of the
thermal unit and the electricity to buy or sell through forward contracts.
The self-scheduling of the thermal unit involves only the commitment,
defined as the periods where it is up or down. The VPP can choose to
buy or sell electricity from two different weekly contracts, each one in-
volving fixed prices and quantities. In the second-stage, the decisions for
the full week are aggregated into one stage. These decisions are related
to the dispatching of the thermal and hydro plants and to the additional
electricity to buy or sell in the electricity pool (short-term electricity
market). The dispatch involves the hourly determination of the power
to generate by the thermal unit when it is up and the power generation
or consumption by the pumped-storage hydro plant.

The objective of the VPP is to maximize the operational profit by de-
termining an optimal solution concerning: a) the commitment, dispatch,
and coordination between units in each period; b) the electricity bought
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and sold in each period; and c) the electricity bought or sold through
contracts. From the decision-maker perspective, the optimal first-stage
variables are the most relevant. These decisions are implemented and
fixed during the time horizon, whereas the optimal second-stage vari-
ables for the 168 periods represent recourse actions based on the realiza-
tions of the uncertain parameters. In practice, during the week, the VPP
needs to solve additional decision problems to define the bidding strat-
egy for the specific electricity market pool (day-ahead market, intra-day
market, balancing market). These problems have a shorter horizon and
use updated information for wind speed and electricity prices.

The thermal unit has lower and upper bounds on the power gen-
eration, minimum up-time and down-time, start-up and shutdown and
power-up and power-down ramp rate limits. Regarding costs, this unit
has fixed and variable generation costs, hot and cold start costs. The
state of the thermal unit before the beginning of the time horizon is
known. The hydro plant has lower and upper limits on the volume of
water of the upper reservoir, and an upper bound on the pumped flow
of water.

3. Risk-averse stochastic models

In this section, the main characteristics of the risk-averse stochas-
tic programming formulations for the VPP problem are described. The
deterministic version of the VPP optimization problem is described in
Appendix A, where the objective function, constraints, variables, and
input data are presented. Below, we focus on building a general risk-
averse stochastic programming formulation that will be used in the SAA
methodology outlined in Section 4.

3.1. VPP general stochastic programming formulation

The stochastic programming formulation of the VPP problem is an
extension of the deterministic VPP problem, which results from con-
sidering the electricity prices and the wind power output as random
variables. In the deterministic VPP problem, the aim is to maximize the
profit defined as the difference between the revenues from selling elec-
tricity and the costs of operation and buying electricity. In the stochastic
version, the profit is a random function, and thus the aim is to maximize
a functional of the profit. We start by denoting the profit function f as

T XU,y (E), y (€, 58,8 1= (H)TxT + () Tx +u
+&T @y E) - Ty (@) +cTs®) )

where £ : Q —» R is a random vector defined on the probability space
(Q,F, P), with Q being the set of all possible outcomes, ¥ a s-algebra
and P a probability measure. The vectors c*, ¢™, EO, andc e R™ denote
deterministic vectors with known parameters, whereas, ¢(¢) is a ran-
dom vector. The vectors x*, x~, u, y* (&), y~(&), s(£) € R™ represent the
variables of the VPP model.

The vectors x*, x~, and u correspond to the first-stage decisions. x*,
x~ capture the power to sell and buy through the contracts, respectively.
The revenues related to the contracts are represented by (c*)x*, while
the costs by (c~)"x~. The vector u encapsulates the binary variables that
define the operation mode of the thermal unit. Therefore, the term ¢°" u
represents the startup costs, shutdown costs, and fixed costs of operation
of the thermal unit.

The second-stage decisions are represented by the vectors y*(&),
y(&), s(&), and r(&). Note that r(¢) is not part of the objective function.
The vectors y* (&), y~(£) denote the energy to sell or buy to the market,
and the vector é°(£) denotes the uncertain hourly electricity prices. The
vector s(¢) is the electricity generated by the thermal unit. Finally, the
vector r(£) captures the energy generated or consumed by the pumped-
storage hydro unit and the volumes of water associated with this unit.

The stochastic model of the VPP aims at maximizing a functional of
the profit subject to the constraints that define the region of operation
of the thermal unit, pumped-storage hydro plant, and the two contracts
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that are offered to the VPP:

oy @y OsOr@ [?(X+’ Yoy +£§)’ Y __@’ 5.9
st. ATx*+Ax +Bv<b
Eu< g
Cu+Ds(¢)<d, as.
S(©) =y (@) +y () + (&) —xt +x7 2
+h(&) =0, as.
Jr(§) <j, as.
xtx” e R, v e B, yH(E).y (@),
quads(&) € R, r(&) € R,

where B := {0, 1}, v are the binary variables associated with the choice
of blocks in the contracts, (&) € R™ defines the uncertain wind power,
AT, A7 e R™">M1 B e R™M>XM, C e R™X, D e R™M EeR™M, Je
R™+*71 are matrices with known parameters, and » € R™,d € R™, g €
R™, j € R™ are vectors with known parameters.

In Problem (2), the first constraint covers the contracts. The second
constraint represents the relationships among the binary variables as-
sociated with the commitment of the thermal unit. The third constraint
captures the region of operation of the thermal unit, including minimum
up and down times, and power generation limits. The fourth constraint
represents the energy balance to the VPP. Finally, the last constraint
captures the region of operation of the pumped-storage hydro plant.
See Appendix A for details.

For the sake of clarity on the exposition of the SAA methodology,
a compact formulation of the model with a simplified notation is in-
troduced. We set x := (x*,x7), y := (¥ (&), y (), s(€), r()), z := (u,v),
¢ i1=(c*,c7), ¢ :=2¢", & := & with proper dimensions:

max /0.0 = Tx 4T 2t GGENE]

s.t. Ax+ Bz<b
Cz+ Dy§) <d, as. (€)
¥(&) +x = h(), as.
xR}, ze B, y¢&) eRY,

where x, z denote first-stage variables and y(&) second-stage variables,
h(&) € R" and é(¢) € R" are random vectors, c, ¢, and ¢ are determinis-
tic vectors with known parameters, A € R"1*"1, B € R™>*"1 C € R"2*",
and D € R™*" are matrices with known parameters, and b € R™ and
d € R™ are vectors with known parameters.

3.2. Risk-averse VPP stochastic models

Based on (3), we consider a risk-averse formulation that involves
the CVaR of the profit in the objective function. The CVaR is a coher-
ent risk measure with relevant properties in terms of convexity (Artzner
et al., 1999; Pflug, 2000; Rockafellar and Uryasev, 2000). Therefore, it
has clear advantages over non-convex risk measures. Note that CVaR
is not the only possibility to measure the risk; other measures have
been suggested including the variance, value at risk, drawdown, or
buffered probability of exceedance; see Pflug and Romisch (2007) and
Shang et al. (2018). Also note that many works in the literature apply
the CVaR to a loss function, whereas in this work the CVaR is applied
to a profit one, which leads to different definitions below as compared
with the works cited. The terms “average value at risk” and “expected
shortfall” are also used to refer to the CVaR (Rockafellar, 2007).

The CVaR for the (1 — «) quantile of random variable f is defined
as the conditional expectation of f for f < VaR,_,[f] (Rockafellar and
Uryasev, 2000):

CVaR,_,[f1=E[fIf < VaR_,[f]]. @
where VaR,_,[f] is the value at risk defined as

VaR,_,[f] = max{w|F (w) <1 -a}, o)
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and F; is the cumulative distribution of f, F,(w) = P{f < w}.

From an optimization perspective, there are two additional defini-
tions that are relevant. The first is due to Pflug (2000), which defines
the CVaR through the optimization problem

1
CVaR,_,[/]= max {n - —El0 -] } ©®)

where ()T = max{-, 0}. In Pflug (2000), it is shown that the optimal value
of n in (6) is the VaR,_,[f]. The second definition shows that the func-
tion that defines the CVaR of losses is a convex function (Rockafellar and
Uryasev, 2000), which in our specific case leads to the equality

max {CVaR,_,[/(x.z y(&). &)1}

x,2,y()

1
= max — ——FE{[n - f(x,z,9&), 1) +. 7
max {'1 —a {In - f(x.2,5&).8] }} (7

Based on the properties of the CVaR, we define an objective function
representing the maximization of a combination of the expected profit
and CVaR:

max y[f(x,z,¥(£),)] := max {[E [(1 =B f(x,2,9(£). 8
x,2,y(€) x,2,y(€).n

1
+p (r/ T Sz, 5)]*)] } ®

where g € [0, 1] is a parameter that defines the weights of the expec-
tation and CVaR of f. We are particularly interested in the solution of
Problem (3) with (8) defined with g = (0,1) and g = 1 (maximization of
the CVaR of the profit) using an SAA approach.

Detailed analyses on the properties of the CVaR and VaR metrics
and their integration into stochastic programming can be found in
Pflug (2000), Rockafellar and Uryasev (2000), Rockafellar (2007), and
Sarykalin et al. (2008). Risk metrics for multi-stage stochastic program-
ming, such as the expected CVaR can be found in Pflug and Ruszczyn-
ski (2005), Shapiro et al. (2009), and Mello and Pagnoncelli (2016).
Also, the work in Alonso-Ayuso et al. (2018) provides extensive com-
parisons on multi-period risk metrics.

4. Sample average approximation

For the generic problem formulation

{Eglo(x, y(£), 2, DI} ©

w* = max

x,y(€),zEW
where W :={x,y(&),z|Ax + Bz < b;Cz+ Dy(€) <d, a.s.; Fy(§) + Gx =
h(&), a.s.; x € R, z € B, y(¢) € R}, we define the sample average ap-
proximation problem as (Kleywegt et al., 2001; Shapiro and Homem-De-
Mello, 2000):

1 N
wy = max { ﬁn; $(x. 3, 2, )}, (10)

for a sample with independent and identically distributed elements
&" from the distribution of ¢, and where Wy := {x, y(&"), z| Ax + Bz <
b;Cz+ Dy(E") <d, YVE" € B; Fy(£")+ Gx = h(&"), VE" € By x € Ri‘ ,Z €
B, (&) € R, n=1,...,N}, and ¢ stands for ¢;.

The optimal value and solution of Problem (9) are w* and x*, y*, z*,
respectively, which are approximated by w}, and x7}, y}, zj, obtained
from (10). Note that w’;\, is arandom variable that depends on the sample
of &,

The objective function (8) involve the CVaR measure, which may
not resemble the generic formulation in (9). However, note that (8) is
reformulated as a function of the expectation operator.

Using the SAA methodology, two types of inference statistics for the
solutions are calculated: 1) point estimates and confidence intervals for
the upper and lower bounds on the optimal objective function value w*;
2) a point estimates of the upper bound on the gap between w* and wy,.
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Table 1
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Case 1. Optimization results for the formulation with g = 0. The results are ordered by the optimal
objective function value (i0y ). M =30, N = 10. Bold - set of distinct first-stage solutions.

First-stage variables (aggregated)

m Wy (€) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)
23 2,437,900 2 0.0000 1 100 0 0 155 0
22 2,754,781 2 0.0000 1 100 0 0 50 55
27 2,791,618 2 0.0000 1 100 0 0 50 55
18 2,807,663 2 0.0000 1 100 0 0 50 55
17 2,808,236 2 0.0000 1 100 0 0 50 55
2 2,828,660 2 0.0000 1 100 0 0 50 55
19 2,881,600 2 0.0000 1 100 0 0 50 110
20 2,950,385 2 0.0000 1 100 0 0 50 110
3 2,987,171 2 0.0000 1 100 0 0 0 160
9 3,051,161 2 0.0000 1 100 0 0 0 160
21 3,075,317 2 0.0000 1 100 0 0 0 160
28 3,086,196 2 0.0000 1 100 0 0 0 160
26 3,098,970 2 0.0000 1 100 0 0 0 160
13 3,112,520 2 0.0000 1 100 0 0 0 160
7 3,141,942 2 0.0000 1 100 0 0 0 160
4 3,182,338 2 0.0000 1 100 0 0 0 160
14 3,225259 2 0.0000 1 100 0 0 0 160
12 3,241,059 2 0.0000 1 100 0 0 0 160
15 3,245519 2 0.0000 1 100 0 0 0 160
25 3,251,400 2 0.0000 1 100 0 0 0 160
10 3,273,009 2 0.0000 1 100 0 0 0 160
8 3,311,875 2 0.0000 1 100 0 0 0 160
16 3,326,421 2 0.0000 1 100 0 0 0 160
29 3331775 2 0.0000 1 100 0 0 0 160
11 3,371,868 2 0.0000 1 100 0 0 0 215
6 3,525,814 2 0.0000 1 100 0 0 0 265
30 3,543,351 2 0.0000 1 100 0 0 0 265
5 3,682,847 2 0.0000 1 100 0 0 0 265
1 3,738,467 2 0.0000 1 100 0 0 0 265
24 3,743,889 2 0.0000 1 100 0 0 0 265

m — Optimization replication index, &, - optimal objective function value for optimization repli-
cation m, ITER — number of iterations of the L-Shaped method, GAP - gap between the upper and
lower bound within the L-Shaped method, T - elapsed wall-clock time, UT — percentage of up-time of
the thermal unit, SUP/SD — number of startups/shutdowns of the thermal unit, SELLC/BUYC - power

sold/bought through contracts.

Besides, for the specific application, the solutions are complemented
with the corresponding point estimates and confidence intervals for the
expected profit and the CVaR of the profit.

To evaluate the inference statistics on the bounds of the optimal ob-
jective function value w*, the following notation is used: a) for the upper
bound, N denotes the sample size, n is the index of an element of the
sample, M is the number of replications, and m is the replication index;
b) for the lower bound, N’ denotes the sample size, ' is the index of an
element of the sample, T and T’ are the number of replications, and ¢
and ¢’ are replication indices. For the upper bound on the gap between
w* and w*N, N, n, M, and m are used with the same purpose as in a).
Note that the symbols 7, ¢, and T are not related to the symbols ¢ and T
used in Appendix A to refer to time periods and time horizon.

4.1. Motivating example

In this section, we illustrate the variance of the optimal objective
function values and first-stage solutions obtained using different sam-
ples having the same size. The samples and results used in this exam-
ple are part of the computational experiments described in Section 6.
Table 1 outlines the results of 30 optimization replications, each with a
sample of size N = 10, for the maximization of the expected profit.

The variability of these results can be highlighted with the results
of two samples. The first sample (m = 1) has optimal objective function
value of 3,738,467 and first-stage solution {100, 0, 0, 0, 265}, whereas
for m = 2, the optimal objective function value is 2,828,660 with first-
stage solution {100, 0, 0, 50, 55}. This table also shows that the first-
stage solution {100, 0, 0, 0, 265} corresponds to the higher profits, and
the solution with {100, 0, 0, 0, 160} has the higher number of occur-

rences. These results do not support a clear-cut decision on the best
solution to choose. Obviously, the variance of these results is due to
the size of the sample used for the optimization. However, with a small
sample and the methodologies presented in this work, it is possible to
provide a set of inference statistics and to assess the solutions. This in-
formation can help the selection of first-stage solutions.

The impact of the sample size N and the number of replications M
on the probability of obtaining an optimal solution to the true problem
from the SAA problem is discussed in Kleywegt et al. (2001). In that
work, it is claimed that the relation between N and this probability
is problem specific, and that beyond a given M, it would be better to
increase N.

4.2. Upper bound on the optimal objective function value w*

The approximation of w* is done by calculating point estimates of
lower and upper bounds on w*. An upper bound on w* is defined by the
well-known relation Elwy]12 w* (Mak et al., 1999). The value of the
E[w?},]is estimated by the statistical estimator U By y, that is determined
by solving M optimization problems (10)

N
D= IBS { % 2,90z :"*’")}, vme M, an
and by using iy ,, to estimate the U By ,, through
| M
UByy =37 Y oy e 12)

m=1
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The sample variance estimator is
< 2
12 _ N
(Syp)" = MM =1 Z (N —UByp)"- (13)

m=1

Thus, U By j, is a statistical estimator of E[iy] with the 100(1 - %
confidence interval

[LUBN 3. UUBN y| := [UBn.ps = tag—t oS- UBn oyt + tn—1aSn.m |-
(14)

where 7),_; s is the critical value from the t-distribution.
4.3. Lower bound on the optimal objective function value w*

We define LBy , r as an estimator of a lower bound on w*, which is
associated with a first-stage solution from the optimization replication
m denoted by (X ,,» 2y ). The calculation of LBy, 1 is done using T
independent samples of size N’, as follows

n’'=1

N!
N _ N A n' t
WN s = ye%i)f.m,, {—N, E DPEN s Vs EN > € )}, Vme M,VteT,

15)

1 T
LByt pur = ?z DNt g ImE M. (16)
=1

Note that the estimator LBy, 7 is associated with the solution of the
optimization replication with index m. To generate a single estimator of
the lower bound (from the M bounds LBy , 1), the first-stage solution
that corresponds to the maximum value of LBy, 1 is selected and for
this solution a new estimator is calculated using 7’ independent samples
of size N':

N!
’
Dyr g = max { — RS BN, ET) 3, YV eT!, 17
W7y yeWNr,,{N’,,Z’d)(XNyZNg )} 17

=1
where (X5, , 2y) is the first-stage solution selected. For this first-stage
solution, the estimator of the lower bound is given by
1 -
LBy = = . oy s (18)

=1
and the sample variance of LBy through

J )
(SEV',T’)Z = m Z (wN’,t’ - LBN’.T’) N (19)

m=1

with the confidence interval defined as

[LLBNI_TI, ULBN',T’] = [LBNI’T! - tT—l,(t’SN’,T” LBN!’T! + tT—l,()(’ SN’,T']'

(20)
This approach to calculate the point estimate of the lower bound is based
on Linderoth et al. (2006).
4.4. Upper bound on the gap between w* and E, [¢(fc NV ENs é)]

In Mak et al. (1999), it is derived a method for assessing the quality
of a solution (%, ), which defines an estimator of an upper bound on
the following gap:

gap(fy.2y) 1= w* — E¢ [y 3. 2y O)]. @n

This gap represents the difference between the true optimal solution w*
and the true optimal solution E, [qﬁ(fc NV ENS 5)] for (X, 2y). The upper
bound, G, on the gap(%y, 2y) is defined as (Mak et al., 1999):

1 X 1 X
G = [E[xyyr,gg%lv {F; d)(x,y,z,cf”)} - ﬁ; PN, ¥, 2n,E")
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> gap(Xy, 2Zy). (22)

G is calculated using E[w}/] as a valid statistical upper bound on
w*, E[w},] > w*, and E[idy] as an estimator of E¢[p(%y.y,2y,&)]. In
Mak et al. (1999), it is proposed to use the upper limit of the confidence
interval of the estimator of ¢ as an upper bound on the gap(%y.,zy).
This upper limit calculation is presented in Procedure 2. Note that this
procedure uses the same sample to calculate the two terms on the left
hand side of the inequality in (22), and the upper bound on the gap is
always positive. Additional details regarding variants of evaluation pro-
cedures and convergence analysis of the gap estimator can be found in
Bayraksan and Morton (2006) and Mak et al. (1999).

4.5. Implementation

The practical computation of the statistical point estimates and
confidence intervals described in Sections 4.2-4.4 is presented in
Procedures 1 and 2, and the corresponding diagrams in Appendix B.
These two procedures involve two stages denoted as optimization stage
and bound estimation stage. In line 3 of Procedures 1 and 2, a risk-
neutral or a risk-averse stochastic programming problem is solved. Each
of these problems can be solved directly using an MILP solver or by
decomposition. We adopt the latter and use the L-Shaped method pro-
posed in the seminal work of Van Slyke and Wets (1969). This choice
is supported by a previous successful application of this method in solv-
ing large scale problems (Lima et al., 2018). The L-Shaped method is
an extension of Benders decomposition (Benders, 1962) for two-stage
stochastic programming problems, which is straightforward to describe
using problem (23):

N
max c'x+cz+(1-p) > [p,,Q(x, z, 5")]
n=1

X,z

l_an=l

1 N
+ﬂ{n - —— 2 [puln - O(x, 2, EM)*] } 23)

st. Ax+Bz<b
xeRi‘,zeB”Z,neR,

where Q(x, z, &") is defined as

O(x.z,€M 1= max &y,
st. Dy, <d-Czl y,_q1 N, (24)
ynzhn_x
n
Yo €ERY

where the first problem is an MILP problem followed by a collection
of LP subproblems that constitutes a sample element-wise decomposi-
tion, meaning one subproblem for each element n = 1, ..., N of the sam-
ple. This formulation moves the variable y, to the subproblems. The
L-Shaped method is an iterative method, where in each iteration the
following steps are performed:

1. A relaxation of problem (23), called master problem, is solved. This
master problem is constructed by outer-approximating the terms in-
volving Q(x, z, £&"), and thus, its objective function value provides an
upper bound on the objective function value of problem (23). The
solution of this master problem is the first-stage variables: (x, z).

2. The subproblems (24) are solved independently for fixed values of
the first-stage variables obtained from the master problem.

3. The VaR and CVaR of the second stage profit are evaluated based on
the distribution of the second stage profits (the objective function
values of the subproblems), and they are used in the next step.

4. The upper and lower bounds are calculated and the method termi-
nates if the gap between these bounds reaches a specified threshold.

5. The dual variables solution of the subproblems are used to build the
outer-approximations to be added to the master problem in the next
iteration. In the next iteration, these outer-approximations “cut” the
solution of the master problem obtained in step 1.
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Procedure 1 Proposed implementation of an SAA method. Input: M

samples of size N: & n=1,...,N,m=1,...,M; T samples of size
N': 5”/*’, n=1,...,N',t=1,...,T; T' samples of size N': 5""’/, n =
1,...,N', ¥ =1,...,T"; and confidence level. Output: first-stage solu-

tion, point estimates of bounds on the optimal objective function value
w*, and confidence intervals.
1: form=1to M do
2: Initialize the L-Shaped method with (fc%f”n, 2’]’?;,1 ), if this solution
is available
3:  Solve using the L-Shaped method each MILP problem with the
sample with size N of i.i.d. &™":

1 N
Wy, = max {F’;qﬁ(x,y,z,é"’”')} (25)

X,9.2EWN

Let (R s 9’1’\,’,”, 2y ) be the optimal solution from (25)
if iy, > Wy, then
(R0 01) = (R e 2 )
end if
if (X 4> 2y ) is @ new solution then
fort =1 to T do {Lower bound estimation}
10: Solve each LP subproblem with the sample with size N’ of

iid. &

NI
N s = = >, BN s ¥ Ey s € (26)
WN! g = ye%i’/"m‘t N INm Y ENm €

n'=1

© ® N 9D oRA

11: end for

12: Evaluate LBy, r using (16)

13: if m =1 then

14: Ens2n) < Gnmr Enm)

15: else if m > 1 and LBy;,, 7 > LBy/,_; r then
16: (N> 2N) < N Enm)

17: end if

18:  end if

19: end for

20: Evaluate U By ), using (12) and the confidence interval using (14)
21: for ¢/ =1 to T’ do {Lower bound estimation}
22:  Solve each LP subproblem with the sample with size N’ of i.i.d.

n',t’.
: 1 v
N N n it
- z SV 2N €T 27
,VEWNX/,,/ { N’ =1 ¢(XN »EN 5 )} ( )

L{A)N/',/ = ma

23: end for
24: Evaluate LBy, 1+ using (18) and the confidence interval using (20)
25: return (fy,2y), UBy p, LBy 77, and confidence intervals

The outer-approximations are known as optimality cuts. These cuts
require that all subproblems in step 2 are feasible, otherwise, a feasi-
bility subproblem needs to be solved for each infeasible subproblem.
The optimal values of the dual variables of these feasibility subprob-
lems are then used to build cuts, known as feasibility cuts, to be added
to the master problem in the next iteration. In the problems studied in
this work, the subproblems are always feasible for all values of the first-
stage variables. This is due to the possibility to buy electricity from the
pool, which is implemented in the subproblems to satisfy contracts de-
cided in the master problem. An algorithmic description, specific prob-
lem formulations, expressions for bounds, and details on handling the
variable n and the CVaR calculation can be found in Lima et al. (2018),
and the outer-approximations derivations and convergence analysis in
Van Slyke and Wets (1969), Birge and Louveaux (2011), and Kall and
Mayer (2011).

Clearly, the solution of multiple replications of risk-averse prob-
lems in Procedures 1 and 2 is a computationally demanding pro-
cess, especially for MILP problems. Therefore, implementations of
Procedures 1 and 2 should include strategies to reduce their overall com-
puting time. An attractive approach is to parallelize the implementation
of these procedures taking advantage of the modeling and hardware ca-

Procedure 2 Proposed implementation of the upper bound on the
gap between w* and E;[¢(%y,y. 2y, &)| (Bayraksan and Morton, 2006;
Mak et al., 1999). Input: (%, 2y) from Procedure 1; M samples of size
N: g™ p=1,...,N, m=1,..., M; and confidence level. Output: upper
bound on the gap(Xy, Zy) = w* — E;[pFy, ¥, Zn €]

1: form=1to M do

2: Initialize the L-Shaped method with (%, 2 ) or if available, with
()?best fbest )
N,m’> “N,m
3:  Solve using the L-Shaped method each MILP problem with the

sample with size N of i.i.d. &™":

1 XN
Dy = max { ﬁ; $x.y. 2 6"”")} @8)

Let (% y s 'y > Zn.m) De the optimal solution of (28)
if Wy, > Wy, then
(RO 25650) — (R s 2.m)
end if
Solve each LP subproblem with the sample with size N of i.i.d.

'Sn,m:
| N
9: Evaluate
1N
] S ) B

10: end for
11: Evaluate the statistical point estimate for the expected gap and sam-
ple variance

© N T A

- 1M

Onm = Mmz,l ONm (€2Y)
) 1 M _ 2

(sp)” = mmz:,l (gN.m - gN,M) (32

12: return upper bound UGy », = EN,M +tyo1aSM

pabilities available. In this work, the parallelization is exploited in the
solution of the independent LP subproblems in two places: 1) within the
L-Shaped method; and 2) at the lower bound estimation, where for each
first-stage solution, N’ LP subproblems are solved.

In Procedures 1 and 2, we implement an initialization step that uses
the best first-stage solution obtained in a replication m’ < m to initialize
the L-Shaped method in replication m. This initialization is indicated in
line 2 of Procedure 1, where (25’5‘:" 25’5‘,”, ) is the best first-stage solution.
We note that this first-stage solution is not available in the first optimiza-
tion replication (m = 1). In contrast, in Procedure 2, by construction, the
solution (%, Z2y) is available at the beginning of the procedure, thus,
the initialization mentioned in line 2 is active from the first replication.
The initialization step entails that in the first iteration of the L-Shaped
method, the best first-stage solution is assigned to the first-stage solu-
tion, instead of finding a solution using the master problem. With this
initialization step, the initial lower bound of the L-Shaped method, cal-
culated after solving the LP subproblems, is generally better than the
one calculated using the solution of the master problem in the first iter-
ation. Note that the corresponding computational gain is multiplied by
the number of optimization replications.

In the bound estimation stage, the bounds described in Sections 4.2—
4.4 are evaluated using the first-stage solutions and the objective func-
tion values obtained from the optimization stage. In Procedure 1, the
lower bound estimation is computationally more demanding than the
upper bound estimation. Therefore, we implement another important
time saving strategy: the lower bound estimation is only carried out for
new distinct first-stage solutions. Note that an alternative would be to
perform the lower bound estimation only for e-different first-stage so-
lutions. This alternative would avoid the computing time for the lower
bound estimation for slightly different first-stage solutions. In the dis-
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cussion of the results, the impact of avoiding the lower bound estimation
for repeated solutions on the computing time is analyzed and situations
where it is relevant are identified.

The risk-averse formulations involving the CVaR measure add an ex-
tra burden to the L-Shaped method and lower bound estimation. The
evaluation of the CVaR measure requires the calculation of the condi-
tional average of the Q(x, z, &") (defined in (24)). To reduce this evalu-
ation time, an efficient approach in the lower bound estimation is im-
plemented, where the evaluation of the CVaR for a > «' re-uses the in-
formation of the distribution of the previous CVaR evaluation for «’.

With this overall approach, we provide a full characterization of the
solution of our problem, which encompasses the following information:

1. approximation of the optimal solution, in terms of the first-stage
variables;

2. point estimate and confidence interval for the upper bound on the
true optimal objective function value;

3. point estimate and confidence interval for the lower bound on the
true optimal objective function value;

4. point estimate on the upper bound on the gap between the true op-
timal objective function value and the expected optimal objective
function value associated with a first-stage solution;

Therefore, this information provides inference statistics on the solu-
tions that are more informative than the single optimal objective func-
tion value and corresponding first-stage variables of a deterministic
problem.

In the next section, we describe the sampling procedure to generate
the samples of the wind and electricity prices.

5. Sampling
5.1. Sampling the electricity prices

We generate the samples for the electricity prices from an ARIMA
model that is fitted to an electricity price time series. Specifically, the
samples are drawn by sampling the error term of the ARIMA model; see
Conejo et al. (2010) for a discussion on this type of approach. Specific
details for the data used are given in Section 6.1.1.

5.2. Sampling the wind speed with a truncated Karhunen-Loéve expansion

In this section, we briefly introduce the KLE, and in Section 6,
we provide additional information regarding the wind data used. See
Maitre and Knio (2010, Section 2.1) for a presentation on KLE.

5.2.1. Wind speed model

Assuming that the wind speed A(t) is always strictly positive, we
adopt here a log-normal model where X (1) = log(h(?)) is a Gaussian pro-
cess with mean function u(¢) and covariance function C(z,t'), which are
approximated in our application using a sample (x (t))fi , and the empir-
ical estimation

N
1 i
un ~ ;1 X0 (33)

N
L > 0 — WO @) = . (34)
i=1

and C@,t) =~
@.1) N

Given a time interval uniformly discretized (1,)!_, with a resolution
At =1 h, the rest of Section 5.2 is dedicated to the KLE-based approxi-
mation of the wind speed model under the form

h(t;) ~ exp <u(t,-> + Z \/ﬂ_joicf,-) (35)
i=j

where (§,);_, are independent random variables drawn according to the
standard normal distribution.
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5.2.2. Continuous formulation

Let (Q, F, P) be a probability space, with Q being the sample space,
F a c-algebra and P a probability measure. Let I = [a, b] be an interval
of R. X is a square-integrable stochastic process that is assumed to be
defined on I. The Karhunen-Loéve decomposition of the process can be
expressed as

X =+ Y, VAV, (36)
i=1

where V2, isa Hilbert basis of L2(I), the random variables (&), are
mutually independent, with zero mean and unit variance, and (A2,
are positive constants in a decreasing order (4; > 4, > --- > 0). Under
sufficient regularity of the covariance C, the pairs (4;, V; 2 | are solutions
of the following Fredholm integral equation of the second kind

/ C@t, W (Hdt' = A,V,(0). 37
el
The random variable ¢; is defined by

1
;= — Vi()(X (2) — p(r))dt. 38
& \/ﬂ_;/fel {(OX (@) — u(®) (38)

Note that if X is a Gaussian process, then the random variables (fi)li'il
follow the standard Gaussian distribution.

5.2.3. Discretization
Let (Si)?=o be a regular discretization of the interval I such that

a=s5y<s; < <s,=b, and s, —5;=At, 39)

and let (#))_, be the midpoints (s; - s;_;)/2. Evaluating the integral in
Eq. (37) with a midpoint-quadrature formula at every ¢; yields

3 Ctt)Vit)AL = L V(). (40)
j=1

Let the matrix K € R"™" and the vector W; € R" be defined by

Ky =AiC@,.1), and W = V). (1)

The discretized Fredholm integral equation leads to the following alge-
braic eigenvalue problem

KW, = ,W,. 42)

The time discretization followed by a truncation of the sum yield there-
fore the approximations

X) = ut)+ Y \S1 Wl ua)+ X[ Wk 43)
Jj=1 Jj=1

Given a tolerance ¢, the constant r is chosen such that

1
A \2
(—ZZ’T‘A) <e, (44)
i=1"

ensuring that the relative L? error between the n-terms and the r-terms
approximations is less than e.

6. Numerical experiments

The results presented in this section demonstrate the new features
implemented in the proposed procedures and provide a complete set of
statistical results to better support the decision-maker. The objectives of
the experiments are fourfold:

1. to demonstrate the positive impact of the proposed strategies on the
computing time;

2. to analyze the performance of the optimization stage for risk-averse
approaches;

3. to compute high-quality solutions for the VPP problem;

4. to assess those solutions using statistic estimators and confidence
intervals.
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Table 2
Summary of the specifications of the thermal unit in
Cases 1 and 2.

Thermal unit specifications Case 1 Case 2
Initial state On Off
Maximum power (MW) 455 55
Fixed generation cost (€ [h) 1000 660
Variable generation cost (€ /MWh)  16.19 25.92
Minimum up-time (h) 8 1
Minimum down-time (h) 8 1

The first and second objectives above are related to the first contribu-
tion of this work and the third and fourth objectives to the second con-
tribution. In terms of the organization of the results, we discuss the com-
putational performance of Procedure 1 in Section in 6.2, the objective
function values in Section 6.3, the first-stage solutions in Section 6.4,
and the maximum gaps obtained in Section 6.5.

More specifically, in Procedure 1, we analyze the impact of a) the
sample size N on the computing time of the L-Shaped method and the
variance of the solutions; b) the sample size N’ on the computing time
and variance of the solutions; c¢) the number of replications T and T’ on
the lower bound estimation. In Procedure 2, we study the influence of
the sample size N on the upper bound estimation.

In a supplementary document, detailed experimental results that
support the ones presented in this section are provided.

6.1. Description of the case studies

We consider two cases pertaining to the VPP described in Section 2,
which we refer to as Cases 1 and 2. In both cases a similar wind farm
and a similar pumped-storage hydro unit are considered. However, the
specifications of the thermal unit in each case are different in terms
of initial state, operational constraints, and costs. Table 2 specifies the
differences in terms of capacity and costs between the thermal unit in
Cases 1 and 2.

For the same samples of the wind speed and electricity prices, these
differences induce a distinct reaction of the VPP. Furthermore, the
higher generation cost of the thermal unit in Case 2 leads to a situa-
tion where the gap between the electricity price and generation costs
is smaller than the gap in Case 1. The results presented in this section
show that the two cases are sufficiently distinct to give a broad view on
the performance of the methods used in this work.

The solutions of interest for the VPP problem are the optimal first-
stage solutions and the performance indices expected profit and the
CVaR of the profit for different quantiles. Given the number of elements
in each sample, and the fact that in practice, the second-stage variables
have to be adjusted to the future realization of the random variables,
these variables are less meaningful and thus their values are not re-
ported.

6.1.1. Wind speed and electricity prices data

We consider a time horizon of 168 h, which corresponds to the week
of August 25-31, 2014. The ARIMA model uses the same structure and
fit of the model proposed in Lima et al. (2018). The electricity price time
series has 12 weeks before the week studied, from the Iberian Peninsula
electricity market (Iberian Electricity Market, 2015).

The raw data for the wind speed for a specific wind farm location
consists of a wind speed ensemble with 51 members obtained from the
European Centre for Medium Range Weather Forecasts (ECMWF). We
use the wind speed ensemble and the KLE to generate additional samples
of the wind speed for the SAA methodology. The electricity prices are
considered independent of the wind speed available at the location of
the considered VPP, due to the small capacity of the VPP in each case
study, which has no market power to influence the electricity prices.
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Table 3

Size of the extensive form and problems within the L-Shaped method.
Problem N p NCNST NVAR 0-1 NVAR
Extensive 10 0.0 21,346 14,298 508
Extensive 5000 0.0 10,081,186 6,720,858 508
Extensive 5000 1.0 10,086,186 6,725,859 508
Master? 10 00 1187 859 508
Master? 5000 0.0 1187 859 508
Master? 5000 0.5 6188 5861 508
Master? 5000 1.0 6187 5860 508
Subproblem* - - 1345 2353 -

T — Sizes refer to the second iteration of the L-Shaped method. * - Size
refers to the dual of (24). NCNST - number of constraints plus objec-
tive function; NVAR - number of total variables; 0-1 NVAR — number of
binary variables.

6.1.2. Setup of the parameters of the procedures

The risk-neutral and risk-averse stochastic programming problems
are solved with an L-Shaped based method with single optimality cuts.
For this method, the stop criteria are a maximum wall-clock time of
10,800 s, a maximum gap between the bounds of 1x10~*%, and a max-
imum number of iterations of 5000. Note that this gap is related to the
bounds on the objective function value within the L-Shaped method for
a given sample. These bounds are not related to the bounds described
in Sections 4.2 and 4.3.

We perform a sensitivity analysis with Procedure 1 combining the
following parameters M = 30 (number of optimization replications),
N e {10, 50, 100, 500, 5000} (size of the samples used in each optimiza-
tion replication), T € {10, 30}, T’ € {10, 30} (number of replications in
the lower bound estimation), N’ € {5000, 25,000} (size of the samples
used in the lower bound estimation).

We consider four combinations of B,a) €
{(0, -), (0.5, 0.9), (1, 0.9), (1, (N — 1)/N)} for the optimization replica-
tion. The case with a = (N —1)/N corresponds to the maximization
of the worst profit consistently with the definition of the CVaR. In
the lower bound estimation, for each first-stage solution we evaluate
point estimates and confidence intervals of the CVaR of the profit for
a € {09, 0.95, (N’ — 1)/N'}.

For Procedure 2, we set M = 30 (number of replications of the op-
timization) and N € {500, 5000} (size of the samples). All confidence
intervals presented correspond to 95%.

A workstation with 40 Intel Xeon CPU E5-2680 v2 @ 2.80 GHz pro-
cessors, and 125.8 Gb of RAM was used and the solution of the LP sub-
problems was distributed among the 40 CPUs. The MILP and LP prob-
lems were solved with CPLEX 12.7.1.0 using the GAMS/GRID/GUSS ca-
pabilities to distribute the solution of the LP subproblems.

6.2. Computational performance

In this subsection, we first present the dimensions of the problems
considered and discuss the choice of the L-Shaped method over the di-
rect solution of the extensive form. Next, the benefits of the proposed
initialization of the L-Shaped method are shown and then analysis on
the overall performance of Procedure 1 is provided.

In Table 3, we show that the size of the extensive form reaches mil-
lions of constraints and variables for samples with N = 5000, and that
the L-Shaped method decomposes the extensive form into one smaller
master problem and N smaller subproblems.

We adopt the L-Shaped variant that provided the best performance
in Lima et al. (2018), i.e., Algorithm 1, which corresponds to using a
single optimality cut for each of the expectation and CVaR operators and
calculating VaR based on the solution of the subproblems, rather than
using VaR as a first-stage variable. In that work it is shown that for f = 0,
the L-Shaped method with an efficient parallelization solution of the
subproblems is one order of magnitude faster than the direct solution of
the extensive form. Whereas for g € {0.1, 0.5, 0.9, 1.0}, a = 0.9, sample
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Table 4

Ratio between the total wall-clock time for 30 optimization repli-
cations using an initial solution (Tinit) and without using an initial
solution (TO0) in the L-Shaped method. M = 30.

N =500 N = 5000

Case 1 Case 2 Case 1 Case 2
p a Tinit/TO  Tinit/TO Tinit/TO  Tinit/TO
0 - 0.68 0.82 0.63 0.82
0.5 0.9 0.52 0.75 0.56 0.80
1 0.9 0.56 0.78 0.61 0.81
1 (N-1)/N 0.96 1.19 1.06 1.09

sizes of 5100 elements, and maximum wall clock time of 7200 s, the
MILP solver applied to the extensive form did not find a feasible solution
for four case studies similar to the two considered in this work. We refer
the reader to that work for detailed computational results showing the
superior performance of the L-Shaped method over solving directly the
extensive form.

6.2.1. Initialization of the optimization stage

Table 4 shows the ratios between the total wall-clock time with and
without initialization for 30 optimization replications.

These results cover four combinations of risk parameters using two
sample sizes — 500 and 5000 elements — over 30 replications. A ratio
smaller than one means that the initialization is effective in reducing
the total computing time. Overall, the results suggest that the initializa-
tion reduces the required computing time. The exception is the formula-
tion with g =1 and a = (N — 1)/ N, (last row of Table 4). This peculiar
behavior occurs because convergence is not reached for the first-stage
solution over the replications, and thus, one solution from one repli-
cation is not necessarily a good initial solution for another replication.
For the remaining risk metrics, there is convergence for the first-stage
variables, and therefore, the initialization has a positive impact on com-
puting time. This is further discussed in Section 6.2.4.

6.2.2. Performance of the optimization stage

Fig. 1 a and b shows for Cases 1 and 2, respectively, the average
wall-clock time for 30 optimization replications as a function of the risk
parameters and size of the sample. These results show that with a sam-
ple with 10 elements, the average wall-clock time for Case 1 is approxi-
mately 1 s, independently of the risk parameters. However, this comput-
ing time increases with the sample size, with the formulation with g =1,
a = (N —1)/N exhibiting a steeper increase for an average of 3146 s.
For Case 2 the average wall-clock time for the formulations with the
CVaR is independent of the size of the sample. The next sub-section fo-
cuses on the results of the formulations with f =1, «a = (N - 1)/N.

6.2.3. Performance of the optimization stage for f =1, a = (N — 1)/N
The formulation with # =1, « = (N — 1)/N exhibits some relevant
results that are worth discussing. First of all, for the formulations with
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100
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Fig. 1. Average wall-clock time for 30 opti-
mization replications for the combinations of
sample sizes and risk parameters studied.

BSP,B=05,0a=09
mSP,B=1.0,a=(N-1)/N

500 5,000

(b) Case 2.

the CVaR, the L-Shaped method evaluates the CVaR in each iteration,
which requires resources, however, for § = 1, a = (N — 1)/ N this evalu-
ation is straightforward. In general, comparing the formulations with
f=0and >0, a<(N—-1)/N in terms of computing time, we can
see that the CVaR specific calculation is not computationally the most
demanding. For example, in Fig. 1a for N = 500, the computing times
for f=0and >0, a < (N —1)/N are similar. On the other hand, for
p=1,a=(N —1)/N the average number of iterations is 5.7, whereas
for p=1, « =0.9 it is 2.0. Therefore, the higher computing times ob-
tained with f =1, a = (N — 1)/N do not arise from the CVaR evalua-
tion, but rather from the number of iterations executed by the L-Shaped
method, as discussed below.

For Case 1, for N = 10, the L-Shaped method requires on average 2.1
iterations to meet the stopping criteria, while for N = 5000 it requires on
average 8.6 iterations. Fig. 2 presents the profiles of the bounds in the
L-Shaped method for the optimization replications with the lower and
higher number of iterations within each optimization replication with
N =10 and N = 5000. The figures for Case 1 show that for N = 10 the
number of iterations ranges from 2 to 4, while for N = 5000 it ranges
from 2 to 21 iterations. However, it is not the size of the sample that
demands extra iterations, since for # =0 and N = 5000, the L-Shaped
method requires on average 2.0 iterations to meet the stopping criteria.
It is rather the elements within large samples that have an impact on
the performance of the L-Shaped method if applied to the maximization
of the CVaR of the profit with « = (N — 1)/N.

For Case 2, Fig. 1b shows that the average wall-clock times for the
formulations with the CVaR are independent of the size of the sample.
In the specific case of f =1, a = (N — 1)/N, for N = 10, the L-Shaped
method requires on average 101.2 iterations to meet the stopping crite-
ria, whereas for N = 5000 it requires on average 11.4 iterations. These
results combined with the results in Fig. 1b indicate that 1) Case 2 forces
the L-Shaped method to perform more iterations than Case 1, for the
same samples, which is explained by the higher generation costs of the
thermal unit in Case 2; and 2) consequently, for the formulations that
maximize the worst profit observation, the L-Shaped method requires
additional iterations than the other formulations. Fig. 2c and d shows
the profiles of the optimization replications with the lower and higher
number of iterations obtained with N =10 and N = 5000. From these
figures, it is also clear that in some replications the L-Shaped method re-
quires few iterations. For example, 10 and 6 for N = 10 and N = 5000,
respectively, while in others it may require a large number — 417 and
25 for N = 10 and N = 5000, respectively.

Overall, these results show that:

1. the maximization of the CVaR of the profit with « = (N - 1)/N
forces the L-Shaped method to perform more iterations, by compari-
son with g = 0. The reason is that in the former problem, the search
is driven by the worst profit, which forces the L-Shaped method to
search for the optimal commitment of the thermal unit or contract se-
lection to respond to the low electricity prices that induce the worst
case profit. By contrast, the problem with g = 0 is driven by the max-
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imization of the expected profit that is less sensitive to low electricity
price observations;

2. the size of the samples have an impact on the performance of the
L-Shaped method because increasing the sample size increases the
likelihood of observations with lower electricity prices;

3. the thermal plant with higher generation costs induces more itera-
tions of the L-Shaped method by comparison with the thermal plant
with lower generation costs; and

4. the variability in the number of iterations required by the L-Shaped
method in each optimization replication is induced by the differ-
ent characteristics of the observations with lower electricity prices
among the samples. By different characteristics, we mean that across
the samples, the lower electricity prices occur on different hours of
the week and distinct minimum values.

6.2.4. Combined performance of the optimization and bound estimation
stages

Fig. 3 presents the total wall-clock time required by Procedure 1 and
by its two main stages: optimization and bound estimation. This fig-
ure compares the computational performance obtained with g =0 and
p=1,a=(N—1)/N.Italso shows the impact on the computing time of
increasing the number of replications and the sample size in the lower
bound estimation, from {T,T’} = 10 and N’ = 5000 to {T,T’} = 30 and
N’ =25,000. Using N’ =25,000 and {T,T'} = 30 the overall time in-
creases, by comparison with N’ = 5000 and {T, T’} = 10, but there is no
influence on the optimization time.

These results provide relevant insights regarding the trade-off be-
tween the sample size and the overall time required. We can observe
that increasing the sample size in the optimization, the overall time
does not monotonically increase. In fact, for f = 0, there is a minimum
overall time for N = 500, instead of N = 10; see Fig. 3a and c. This be-
havior is explained by noting that: 1) the lower bound estimation is
only performed when a new solution is obtained from an optimization
replication; and 2) for N = 10, multiple distinct solutions are obtained,
whereas for N = 500, only one distinct solution is obtained. In Fig. 3, as
N increases the time required by the optimization stage increases, but
not the lower bound estimation time. For § =1, a = (N — 1)/N, there
is also a minimum time that corresponds to N = 10 for N’ = 5000 and

11

Table 5
Case 1. Number of successful optimization replications and distinct solutions.
M = 30.

p=0 f=05a=09 p=1,a=09 p=la=(N-1)/N
N SR DS SR DS SR DS SR DS

10 30 6 30 6 30 3 30 3

50 30 4 30 4 30 2 30 3

100 30 3 30 3 30 2 30 3

500 30 1 30 1 30 2 30 10

5000 30 1 30 1 30 1 25 18

SR — number of successful optimization replications that meet the stop criteria
(out of 30); DS — number of distinct solutions.

(T, T'} =10, and N =50 for N’ = 25,000 and {T,T’} = 30; see Fig. 3b
and d.

We complement these results by presenting in Table 5 the number
of distinct solutions obtained as a function of N and the risk parameters
for Case 1.

This table shows that increasing the sample size, the problem con-
verges to one distinct solution for all combinations of risk parameters;
except for f=1, a=(N —-1)/N. For =1, a =(N —1)/N, increasing
the sample size increases the number of distinct solutions. In this spe-
cific situation, f =1, a = (N — 1)/ N, the objective is to maximize the
single worst observation of the profit. The primary difference among the
first-stage solutions for f =1, a = (N — 1)/N is the hourly commitment
of the thermal plant; see also additional results available in the supple-
mentary document. This difference suggests that the thermal plant is
prone to shutdown and startup to follow the lowest electricity price ob-
servation. The samples with more elements have a higher likelihood of
lower electricity prices, which from one sample to the other may occur
at different hours of the week. Therefore, distinct first-stage solutions
emerge among the optimization replications.

The number of distinct solutions obtained with f =1, = (N - 1)/N
for N = 500 also justifies the worst performance of the initialization im-
plemented in the L-Shaped method. Thus, one solution from one opti-
mization replication may not be a good starting point for an optimiza-
tion replication with a different sample.
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For Case 2 with = 0, the results show that increasing the sample
size for the optimization, the number of distinct solutions decreases,
which means a decrease in the time for the lower bound estimation; see
Fig. 4a and c. However, for § = 1 with @ € {0.9, (N — 1)/ N}, the number
of distinct solutions is equal to the number of optimization replications,
which means that there is no convergence to a distinct solution; see
Table 6. Therefore, the computing time for the lower bound estimation
is independent of the sample size for the optimization; see Fig. 4b and
d.

6.3. Objective function values and its bounds

This section presents the bounds on the optimal objective function
value w* for the different formulations as a function of the samples size

0 100
Size of the sample (N)
(d)B=1,a=(N-1)/N, N =25,000, {T,T'} = 30.

12

500 5,000

and the number of replications. Figs. 5 and 6 show the limits of the
confidence intervals for the upper and lower bounds on the true opti-
mal objective function value w* obtained for Case 1 and Case 2, respec-
tively. These figures illustrate the impact of the sample size and number
of replications used in the lower bound estimation on the confidence in-
tervals for f =0and =1, a = (N — 1)/ N. In the supplementary results
document, the bounds for additional risk parameters are presented.

A relevant result shows that for the formulation that maximizes the
expected profit (f = 0), the point estimate of the upper bound on the true
optimal objective function value w* falls within the confidence interval
of the upper bound for all N tested. Increasing the sample size reduces
the confidence interval, converging approximately to the center of the
confidence intervals. For the formulation with f = 1, = (N — 1)/ N, the
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Fig. 5. Case 1. Limits of the confidence inter-
vals on the point estimate of the lower and up-
per bounds (LBy: 7+ and UBy ,,) on the true
optimal objective function value (w*) as a func-
tion of risk parameters, N’, T, and T’. M = 30.

Fig. 6. Case 2. Limits of the confidence inter-
vals on the point estimate of the lower and up-
per bounds (LBy: 7+ and UBy ) on the true
optimal objective function value (w*) as a func-
tion of risk parameters, N’, T, and T’. M = 30.

point estimate of the upper bound overestimates the true optimal objec-

tive function value, and the point estimate is not included in all the

confidence intervals (for different N). Thereby, increasing the sample

size for the optimization decreases the value of the point estimate and

Figs. 5 and 6 indicate that the confidence interval for the lower
bound on the true optimal objective function value is underestimated
with the samples with N’ = 5000, {T, T’} = 10. For example, this can be
seen comparing in Fig. 5a and b the confidence interval for the lower
bound represented by the dashed lines. These results indicate that for

Table 6
Case 2. Number of successful optimization replications and distinct solutions.
M = 30.
=0 f=05a=09 p=1,a=09 p=la=(N-1)/N . )
range of the confidence intervals.
N SR DS SR DS SR DS SR DS
10 30 26 30 17 28 30 28 30
50 30 10 30 30 30 30 30 30
100 30 8 30 30 30 30 30 30
500 30 1 30 23 30 30 30 30
5,000 30 1 30 30 30 30 27 30

SR — number of successful optimization replications that meet the stop criteria

(out of 30); DS — number of distinct solutions.

13

T’ = 10 there is a bias in the estimation of the lower bound on the true
optimal objective function value. However, as N’ is increased to 25,000
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Case 1. First-stage solutions and point estimates of the lower bound on the true optimal objective function value (LBy: 1)

with confidence intervals. N’ = 25,000, {M,T, T’} = 30.

First-stage solutions (aggregated)

CI, [LLB,ULB]

p a N UT (%) SUP SD SELLC (MW) BUYC (MW) LBy, 1 (€) LLB (€) ULB (€)

0 - 10 100 0 0 0 160 3,188,599 3,185,869 3,191,329
0 - 50 100 0 0 0 160 3,188,599 3,185,869 3,191,329
0 - 100 100 0 0 0 160 3,188,599 3,185,869 3,191,329
0 - 500 100 0 0 0 160 3,188,599 3,185,869 3,191,329
0 - 5000 100 0 0 0 160 3,188,599 3,185,869 3,191,329
05 09 10 100 0 0 155 0 2,454,870 2,453,669 2,456,071
05 09 50 100 0 0 155 0 2,454,870 2,453,669 2,456,071
0.5 09 100 100 0 0 155 0 2,454,870 2,453,669 2,456,071
05 09 500 100 0 0 155 0 2,454,870 2,453,669 2,456,071
05 09 5000 100 0 0 155 0 2,454,870 2,453,669 2,456,071
1 0.9 10 100 0 0 315 0 2,100,859 2,100,156 2,101,562
1 0.9 50 100 0 0 315 0 2,100,859 2,100,156 2,101,562
1 0.9 100 100 0 0 315 0 2,100,859 2,100,156 2,101,562
1 0.9 500 100 0 0 315 0 2,100,859 2,100,156 2,101,562
1 0.9 5000 100 0 0 315 0 2,100,859 2,100,156 2,101,562
1 (N-1D/N 10 100 0 0 315 0 1,768,962 1,759,967 1,777,956
1 (N-1/N 50 100 0 0 315 0 1,768,962 1,759,967 1,777,956
1 (N-1/N 100 100 0 0 315 0 1,768,962 1,759,967 1,777,956
1 (N-1/N 500 95.2 1 1 315 0 1,764,836 1,755,568 1,774,104
1 (N-1)/N 5000 952 1 1 315 0 1,764,554 1,755,197 1,773,911

CI - Confidence interval, LLB and ULB as in (20), UT - percentage of up-time of the thermal unit, SUP/SD — number of
startups/shutdowns of the thermal unit, SELLC/BUYC - power sold/bought through contracts.

and {T,T’} to 30, the confidence interval of the lower bound converges
with the confidence interval of the upper bound.

Note that for the optimization replications where the L-Shaped
method did not meet the stopping criteria, the upper bound from the
L-Shaped method is used to evaluate the point estimate on the upper
bound on the true optimal solution. This replacement justifies the larger
range of the confidence interval for the upper bound for Case 1 with
p=1,a=(N-1)/N, N =5000 in Fig. 5c and d, and for Case 2 with
p=1,a=(N-1)/N, N e (10, 5000} in Fig. 6¢ and d.

Overall, the convergence of the bounds for N’ = 25,000, {T,T'} =
30 indicate that high-quality solutions are obtained, which are further
assessed in the next sub-section.

6.4. First-stage solutions

Tables 7 and 8 provide the best first-stage solution and inference
statistics resulting from each set of risk parameters and sample size.

The first stage solutions are given in aggregated form to simplify
their presentation. Therefore, to distinguish between equal aggregated
solutions that correspond to distinct disaggregated solutions, the point
estimates of their lower bounds are provided.

For Case 1, for each set of risk parameters (f,a)¢€
{(0, -),(0.5, 0.9),(1, 0.9)} there is only one distinct solution, inde-
pendently of the sample size for the optimization. However, g =1,
a = (N —1)/N has three distinct solutions, which are identified by the
three distinct values of LBy, 7+, see Table 7.

For Case 2 with g = 0, the same first-stage solution is obtained in-
dependently of the sample size for optimization, while for the other set
of risk parameters, within each set there are slight variations on the
power bought through contracts. The slight variations in this variable
lead to small variations in the lower bound and confidence interval for
the point estimate of the lower bound on the true optimal objective
function value.

These results explain why the confidence interval on the point esti-
mate for the lower bounds in Figs. 5 and 6 are represented by (almost)
horizontal dashed lines.
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6.5. Gap between w* and E;[¢p(%y,y. 2y &)]

We further evaluate each distinct solution using a point estimate on
the upper bound on the gap between w* and E, [#En.y. 25, 8)]. as de-
scribed in Section 4.4. Tables 9 and 10 show this point estimate for
N =500 and N = 5000, for Cases 1 and 2, respectively.

For Case 1, a gap of zero is obtained for the solutions with g = 0 and
p = 0.5, independently of N, and for N = 5000 for # = 1, « = 0.9. For the
other risk parameters, the maximum relative gap is 1.5%.

For Case 2, the solution obtained for § = 0 has a gap of zero for both
values of N. The remaining gaps are relatively small, as the maximum
relative gap is 1.1%.

We also present the wall-clock time required, which consists of the
time for the optimization and lower bound estimation. It is clear that the
formulations with g = 1, « = (N — 1)/ N are more demanding, in partic-
ular for N = 5000. The limiting step in this procedure is the optimization
stage, which in Case 1 with f =1, « = (N — 1)/N and in Case 2 is much
more demanding than the lower bound estimation, as it can be noticed in
Figs. 3a, b and 4 a, b. For example, in Case 2 with N = 500, the optimiza-
tion stage requires on average 1216 s and 20,998 s for a < (N — 1)/N
and a« = (N — 1)/ N, respectively, while the lower bound estimation on
average only requires 73 s.

For the assessment of multiple solutions of the same problem,
Procedure 2 can be improved by noting that the optimization stage is
independent of the solution to assess. Therefore, to assess multiple so-
lutions, it is necessary one optimization stage (valid for all solutions)
plus one lower bound estimation stage per solution. In this way, and
given the computing times for the optimization stage mentioned in the
previous paragraph, the computing time required by Procedure 2 could
be significantly reduced.

Conceptually, Procedure 1 is oriented to the generation of solutions
and specific inference statistics, whereas the objective of Procedure 2 is
to assess the solution quality of a given solution. The optimization stage
is similar in both procedures, however, the lower bound estimation in
Procedure 1 is made for each new solution, whereas in Procedure 2 it is
only for the single input solution of the procedure. The common parts
between the procedures suggest that they can be merged to take ad-
vantage of these similarities to reduce the overall computing time. A
merging would require Procedure 1 to be adapted so that during the
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Table 8
Case 2. First-stage solutions and point estimates of the lower bound on the true optimal objective function value (L By, 1)
with confidence intervals. N’ = 25,000, {M,T, T’} = 30.

First-stage solutions (aggregated) CI, [LLB,ULB]
p a N UT (%) SUP SD SELLC (MW) BUYC (MW) LBy 7 (€) LLB (€) ULB (€)
0 - 10 100 1 0 0 160 418,652 417,656 419,648
0 - 50 100 1 0 0 160 418,652 417,656 419,648
0 - 100 100 1 0 0 160 418,652 417,656 419,648
0 - 500 100 1 0 0 160 418,652 417,656 419,648
0 - 5000 100 1 0 0 160 418,652 417,656 419,648
0.5 0.9 10 100 1 0 100 50.89 260,050 259,967 260,132
0.5 0.9 50 100 1 0 100 50.81 260,048 259,966 260,130
0.5 0.9 100 100 1 0 100 51.15 260,055 259,971 260,138
0.5 0.9 500 100 1 0 100 52.00 260,061 259,975 260,146
0.5 0.9 5000 100 1 0 100 50.99 260,052 259,969 260,134
1 0.9 10 100 1 0 100 38.24 239,852 239,795 239,910
1 0.9 50 100 1 0 100 38.68 239,869 239,811 239,927
1 0.9 100 100 1 0 100 38.84 239,865 239,807 239,923
1 0.9 500 100 1 0 100 38.64 239,869 239,811 239,927
1 0.9 5000 100 1 0 100 38.64 239,869 239,811 239,927
1 (N-1/N 10 100 1 0 100 38.22 217,371 216,616 218,127
1 (N-1/N 50 100 1 0 100 38.31 217,361 216,610 218,113
1 (N-1/N 100 100 1 0 100 38.00 217,389 216,617 218,161
1 (N-1)/N 500 100 1 0 100 38.04 217,387 216,619 218,156
1 (N-1)/N 5000 100 1 0 100 38.05 217,387 216,619 218,155

CI - Confidence interval, LLB and ULB as in (20), UT - percentage of up-time of the thermal unit, SUP/SD — number of
startups/shutdowns of the thermal unit, SELLC/BUYC — power sold/bought through contracts.

Table 9
Case 1. Distinct first-stage solutions and the upper bound on the absolute gap (UG ,,) obtained from Procedure 2.
M =30.
First-stage variables (aggregated) N =500 N =5000
p a UT (%) SUP SD SELLC (MW) BUYC (MW) UGy m Time (s) UGy Time (s)
0 - 100 0 0 0 160 0 254 0 3304
0.5 0.9 100 0 0 155 0 0 277 0 3312
1 0.9 100 0 0 315 0 563 268 0 3312
1 (N -1)/N 100 0 0 315 0 4921 1665 10,618 93,279
1 (N-1)/N 95.2 1 1 315 0 27,188 1680 16,127 92,788
1 (N-1)/N 95.2 1 1 315 0 27,977 1667 16,646 92,012

UT - percentage of up-time of the thermal unit, SUP/SD — number of startups/shutdowns of the thermal unit,
SELLC/BUYC - power sold/bought through contracts.

Table 10

Case 2. Distinct first-stage solutions and the upper bound on the absolute gap (UG, ,,) obtained from Procedure 2.

M =30.

First-stage variables (aggregated) N =500 N = 5000

p a UT (%) SUP SD SELLC (MW) BUYC (MW) UGy m Time (s) UGy y Time (s)
0 - 100 1 0 0 160 0 784 0 7488
0.5 0.9 100 1 0 100 50.89 160 1341 43 15,587
0.5 0.9 100 1 0 100 50.81 160 1381 45 15,033
0.5 0.9 100 1 0 100 51.15 160 1365 35 15,165
0.5 0.9 100 1 0 100 52.00 182 1447 24 15,595
0.5 0.9 100 1 0 100 50.99 160 1444 40 15,332
1 0.9 100 1 0 100 38.24 79 1368 35 13,320
1 0.9 100 1 0 100 38.68 56 1333 13 13,286
1 0.9 100 1 0 100 38.84 64 1306 18 13,543
1 0.9 100 1 0 100 38.64 55 1225 13 13,075
1 0.9 100 1 0 100 38.64 55 1198 13 13,000
1 (N -1)/N 100 1 0 100 38.22 2412 20,984 1365 82,972
1 (N -1/N 100 1 0 100 38.31 2434 21,362 1351 84,861
1 (N -1/N 100 1 0 100 38.00 2371 21,144 1422 81,950
1 (N-1)/N 100 1 0 100 38.04 2377 20,910 1407 82,132
1 (N -1/N 100 1 0 100 38.05 2379 20,945 1403 82,635

UT - percentage of up-time of the thermal unit, SUP/SD - number of startups/shutdowns of the thermal unit,
SELLC/BUYC - power sold/bought through contracts.
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lower bound estimation, the required information can be extracted to
evaluate the upper bound on the gap defined in (22).

7. Conclusions

We presented and applied a methodology based on SAA to generate
first-stage solutions and inference statistics for the optimal operation of
a VPP. To cope with the computational complexity of the problems ad-
dressed, new strategies were developed to reduce the computing time
of the optimization replications and innovations on managing the repe-
tition of sampling, optimization, and evaluation of first-stage solutions.

We performed a detailed characterization of the overall solution by
providing point estimates and confidence intervals for the main quanti-
ties of interest, including a) upper and lower bounds for the true optimal
objective function value; and b) an upper bound on the gap between the
true optimal objective function value and the optimal objective func-
tion value for a given first-stage solution. This methodology is applied
to formulations involving a parameterized combination of the expected
profit and the CVaR of the profit. The results and discussions focus on
the extremes of the parameterization — the risk-neutral and risk-averse
solutions.

For specific conditions, we identified a relevant trade-off between the
size of the sample used in the optimization and the time spent on the
lower bound estimation; specifically, increasing the size of the sample
for the optimization reduces the time spent in the lower bound estima-
tion and the overall required time. Two reasons justify this behavior:
1) the lower bound estimation is only performed for new first-stage so-
lutions; and 2) increasing the sample size for the optimization reduces
the number of distinct first-stage solutions. There is one exception to
this behavior, which occurs for specific instances of the maximization
of the CVaR with a = (N — 1)/ N, where each optimization replication
provides one distinct first-stage solution.

For the present setup, computational experiments indicated that with
the number of replications performed, the five sample sizes tested con-
verge to the same solution or a neighboring solution. These results in-
dicate that the replications with samples of ten elements can generate
first-stage solutions that are the same or close to the best solutions gen-
erated from samples of 500 elements. However, the variance of the solu-
tions obtained with samples of 10 elements makes it difficult to identify
whether the best solution has been obtained.

The inference statistics indicate that some of the optimal first-stage
solutions of the SAA problem are relatively close to the true optimal
solution.

Although the definition of the sample size and the number of replica-
tions that guarantee specific bounds or convergence is problem depen-
dent, some practical insights are in order. As general guidelines, given
limited time and computational resources, the first issue to address is
the sample size for the optimization. On the one hand, if the optimiza-
tion replications are relatively efficient, then larger samples should be
used to reduce the variance of the solutions, eventually avoiding the
lower bound estimation for repeated solutions. On the other hand, more
difficult optimization problems may require smaller samples for the op-
timization, which increase the variance. However, our results indicate
that among the solutions found, there is a high probability of identifying
an excellent first-stage solution that can be further evaluated with the
lower bound estimation.

Future work can evolve in two directions: 1) a comparison between
risk-averse stochastic programming and robust optimization; and 2) the
study of alternative risk metrics. Regarding the comparison, the first-
stage solutions and point estimates of the expected profit and the CVaR
of the profit obtained in this work can be contrasted with the solutions
from a robust optimization approach. Additionally, it would be rele-
vant to explore alternative risk metrics, such as stochastic dominance
(Escudero and Monge, 2018), and to assess the quality of the solu-
tions and the overall SAA methodology performance with alternative
risk metrics.
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