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Abstract. Objective. Large channel count surface-based electrophysiology
arrays (e.g. pECoG) are high-throughput neural interfaces with good
chronic stability. Electrode spacing remains ad hoc due to redundancy and
nonstationarity of field dynamics. Here, we establish a criterion for electrode
spacing based on the expected accuracy of predicting unsampled field potential
from sampled sites. Approach. We applied spatial covariance modeling and field
prediction techniques based on geospatial kriging to quantify sufficient sampling
for thousands of 500 ms pECoG snapshots in human, monkey, and rat. We
calculated a Probably Approximately Correct (PAC) spacing based on kriging
that would be required to predict pnECoG fields at <10% error for most cases
(95% of observations). Main Results. Kriging theory accurately explained
the competing effects of electrode density and noise on predicting field potential.
Across five frequency bands from 4-7 Hz to 75-300 Hz, PAC spacing was sub-
millimeter for auditory cortex in anesthetized and awake rats, and posterior
superior temporal gyrus in anesthetized human. At 75-300 Hz, sub-millimeter
PAC spacing was required in all species and cortical areas. Significance. PAC
spacing accounted for the effect of signal-to-noise (SNR) on prediction quality
and was sensitive to the full distribution of nonstationary covariance states. Our
results show that pECoG arrays should sample at sub-millimeter resolution for
applications in diverse cortical areas and for noise resilience.

1. Introduction

Electrocorticography (ECoG) is an intracranial electrophysiology tool often used
clinically in neurosurgery following innovations in epilepsy treatment by Jasper and
Penfield in the late 1940s [1]. The high signal amplitude and spatial precision resulting
from direct cortical contact has provided neurophysiologists with an important tool
for studying speech and skeletomotor systems [2, 3, 4, 5, 6, 7, 8, 9]. The centimeter
scale geometry of ECoG grids has been prioritized for clinical usage. However, there
is extensive evidence that sub-centimeter scale electrode arrays (i.e. millimeter scale
contact size and spacing) can resolve finer topographical detail [10] and provide better
discrimination for sensory input [11, 12|, higher order language processing [13, 14, 15],
and speech and motor output [16, 17, 18, 19].

Application of microfabrication technology has introduced a diverse set of sub-
millimeter scale research electrode arrays collectively referred to as “micro” ECoG
(nECoG) [20, 21, 22, 23, 24, 25, 26, 27]. pECoG arrays are typically produced
with thin film polymers and one or more thin layers of conductive material that can
fit over the curvature of neocortex with lower rigidity and bending stiffness than
traditional silicon or metal microwire electrodes [28, 29]. pECoG arrays sample local
field potential (LFP) at sub-millimeter intervals, revealing fine-scale sensory topologies
consistent with intracortically mapped topologies in rat barrel cortex [30], rat auditory
cortex [31, 23, 32|, non-human primate (NHP) somatosensory cortex [33], cat visual
cortex [34], and rat ocular dominance columns [35]. Improvements in the integration
density of headstage and implanted neural amplifiers are expected to enable orders-
of-magnitude scaling of uECoG sensor counts [27, 36, 37]. However, LFP, including
surface potential, is spatially correlated for physical and physiological reasons, leading
to the concern that high density sampling is redundant. Thus, the appropriate
sampling resolution for yECoG remains an open question.

Prior studies linking primary visual cortex multiunit activity (MUA) to
intracortical LFP through a Gaussian integration (point-spread) model have suggested
Gaussian kernel scales of ~100 pm, measured via voltage sensitive dye [38], and
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between ~100 pm in layer 4 to ~200-300 pm in layers 5 and 2/3 in electrode recordings
[39]. These (planar) integration models suggest that 95% of the sources contributing to
the LFP are within a radius of 250-750 um, and that the full width at half maximum of
the point-spread function for a source is 230-700 pm. Modeling the impact of pairwise
correlations on movement decoding from LFP recorded by arrays of microelectrodes
suggests decoded performance is maximized with sub-millimeter spaced electrodes
[40]. In an anatomically realistic simulation of field potential, the dynamic factor of
synaptic input correlation modulated the spatial reach of source contributions between
100-1000 pm [41, 42].

The spatial reach of cellular sources on the surface potential has been studied
using optogenetic methods. Optical stimulation resulted in yECoG-recorded potential
profiles extending at least 1 mm in rodents and non-human primates [20, 43, 44, 45].
The point spread of surface potential has also been inferred by analyzing the spatial
bandwidth of pECoG signals, with the conclusion that there is little spatial variation
in cycle lengths lower than 0.5-0.7 mm in rat and rabbit, and 1-3 mm in human
[46, 47, 48]. Recent correlogram studies that indexed pairwise correlations (or
frequency-resolved coherence) by electrode distance suggest that the length scale of
spatial correlation varies from 100s to 1000s of microns depending on electrode contact
(epi- versus subdural) and brain state (anesthetized versus awake) [23], and is also
highly dependent on the frequency band in question [49, 50, 51].

Results regarding characteristic length scales and spatial bandwidth have
suggested spatial intervals at which field potential, on average, is no longer redundant.
However, no report has discussed the confounding roles of process nonstationarity
and signal to noise ratio (SNR) when interpreting auto-covariance functions, nor
tested the efficacy of sampling at suggested length scales. We address these topics
by using covariance kernel modeling and spatial prediction in a framework known as
“kriging” in geospatial statistics [52, 53], and Gaussian processes more generally [54].
Kriging predicts the expected value of unobserved spatial field values conditional on
several observed values, under the assumption that all field values are jointly Normal
with spatially dependent covariance. As a statistical predictor, kriging also quantifies
uncertainty in terms of the expected mean square error (MSE) of the predicted value.

We used kriging prediction error as the key figure of merit to delineate when
BECoG spatial fields were sufficiently sampled. Based on analysis of theoretical
kriging error, we established the competing roles of SNR and electrode spacing in
determining the predictability of spatial field details. By manipulating the covariance
model, we proposed sufficient electrode spacings required to predict spatial fields with
an expected error of 10% of process variance. We tested the theoretical results in
vivo with cross-validated analysis of kriging error for anesthetized rat auditory cortex
pECoG recordings, using electrode arrays that were matched in geometry, but differed
in noise levels. The different LFP prediction efficiency for the two arrays confirmed
the theoretical trade-off between SNR and electrode spacing, and corresponded to the
ability to decode sensory information, as measured by a tone frequency classification
analysis. In subsequent results, we analyzed the spatial covariance and kriging error
of pECoG in multiple bandpasses for awake rat, NHP, and anesthetized humans.
Submillimeter electrode spacing was generally required for stable prediction at 10%
error, although electrode spacing from 1-1.5 mm were sufficient for some human and
NHP motor cortex bandpasses. Spacing at 600-850 pm was required in all species and
cortical areas at the highest 75-300 Hz frequency band, even when recording noise
was set to zero in the kriging model. The projected sufficient sampling based on
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expected kriging error accounted for the full range of covariance states surveyed in
our datasets. Sufficient sampling for kriging prediction is easily tunable for stricter or
looser tolerances in other settings, and can be estimated a priori given assumptions
about LFP image statistics and measurement quality.

2. Methods

2.1. Electrophysiology

2.1.1.  FElectrode arrays We measured epidural pECoG fields in rat with two
types arrays (figure 1 “Rat Arrays”). One was a passively conducting (“passive”)
array fabricated with gold conductors in liquid crystal polymer (LCP) insulator,
manufactured by Dyconex Micro Systems Technologies (Bassersdorf, Switzerland [55]).
The other was a custom fabricated “active” device with NMOS voltage buffering and
multiplexing within the array. Gold electrode pads formed the biotissue interface,
and were conductively coupled to back-side electronics via highly doped silicon
nanomembranes (p " "-Si NM), which also functioned as a biofluid insulation material
in chemical bond with the main insulation layer of thermally grown silicon-dioxide
(t-SiO3) [56]. Both devices had electrodes arrayed on an 8x8 grid. The active array
had 64 rectangular electrodes of 360x360 pm? with 400 pm inter-electrode pitch (one
electrode was excluded due to malfunction). The passive array included 61 channels
(with 3 corners missing) of 229 pm diameter discs with 420 pm pitch. Impedance
could not be measured for the active arrays as a result of their design, but conductor
impedance measured with a test structure was ~450 kQ at 1 kHz [56]. Typical in-vitro
impedance values at 1 kHz for the passive arrays were 21-36 k2 interquartile range
(IQR). A 244-channel LCP and gold nECoG array (also manufactured by Dyconex)
was used in the human and NHP recordings. These 229 pnm disk electrodes were
arrayed in a 16x16 grid with 762 pm pitch with typical in vitro impedance values at
1 kHz of 44-53 kQ IQR (figure 1 “Human Array”).

2.1.2.  Acute auditory cortex recordings All rat procedures were performed in
accordance with National Institutes of Health standards and were conducted under
a protocol approved by the Duke University Institutional Animal Care and Use
Committee. Two female Sprague-Dawley rats weighing 260-280g were anesthetized
with ketamine (80 mg kg! intraperitoneal) and dexmedetomidine (0.125 mg
kgl intraperitoneal), and secured to a custom-built orbital clamp head mount.
Craniotomies of approximately 6x6 mm? were made over temporal cortex, exposing
right hemisphere auditory cortical areas. In acute recordings, active and passive
BECoG arrays were sequentially implanted epidurally. Primary auditory cortex and
anterior auditory field (collectively “auditory cortex”) were targeted by anatomical
landmarks and the reversal of rostrocaudal tonotopic gradients. Neural field potential
data from the active array was sampled and logged with a custom National Instruments
data acquisition system [57] at an effective rate of 780 S/s per channel. Field potential
from the passive rat array was amplified and sampled at 20 kS /s by an Intan RHD2164
64-channel board with high pass filtering at 0.1 Hz, and logged with the Open Ephys
data acquisition system [58].

2.1.3. Chronic auditory cortex implants Four female Sprague-Dawley rats weighing
225-275g were anesthetized with 5% isoflurane at 3L/min for induction and 1-3%
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at 0.5-1.0 L/min for maintenance. An identical surgical procedure to the acute
preparation was carried out in sterile conditions for placement of passive LCP
arrays. Additional procedures regarding surgery and implantation are detailed
in [55]. Dexamethasone (0.3 mg/kg) and Baytril (0.5 mg/kg) were administered
postoperatively for 3 days and 7 days respectively. The awake recordings were made
with the animals awake and freely moving in their home cages and field potential was
acquired in the same manner as acute passive array recordings.

2.1.4. Semi-chronic NHP implant A semi-chronic recording chamber base was
implanted in one adult male NHP (Macaca Mulatta), as described in [59]. In brief, the
NHP was anesthetized during surgical implantation. The base was fixed to the skull
with dental cement (MetaBond, Parknell Inc. and Simplex P, Stryker) and ceramic
bone screws (Rogue Research). After the chamber base was affixed to the skull,
chamber hardware was stacked on top of the base to a height that was tall enough to
allow for seal testing of the chamber in vivo. After confirmation of chamber seals, a
craniotomy and durotomy were performed to provide access to precentral gyrus, and an
artificial dura molded with the 244-channel electrode array was implanted within the
durotomy. All data collection occurred while the NHP was awake and seated quietly
performing a center-out reach task [27]. All animal procedures were performed in
accordance with National Institutes of Health standards and were approved by the
New York University Animal Welfare Committee (UAWC). Neural data were sampled
at 30 kS/s (NSpike NDAQ System, Harvard instrumentation Lab, x1 gain headstage,
Blackrock Microsystems). Recordings were referenced to a metal screw implanted
through the skull to make contact with the dura at a distant location. Of 242 of 244
electrodes that were recorded, we excluded 48 sites that were located across arcuate
sulcus in the frontal eye field, and another 11 malfunctioning channels, leaving 183
precentral gyrus sites remaining that covered portions of dorsal premotor cortex and
primary motor cortex (collectively “motor cortex”).

2.1.5. Human clinical procedure Intraoperative recordings were made in two patients
(subject A, female, age 20; subject B, female, age 22) undergoing resection surgery in
left posterior superior temporal gyrus (pSTG) to treat drug resistant epilepsy. Clinical
procedures were performed in accordance with National Institutes of Health standards
and were conducted under a protocol approved by the Duke Institutional Review
Board. Prior to surgery, each electrode array was pre-selected based on impedance
measurements in saline solution. After selection, the electrode array was cleaned and
impedance measurements were taken again in saline. The electrode array, electrode
holder, and all cables were gas sterilized prior to use in the operating room. In
the operating room, patients underwent general anesthesia with propofol (240 mg
subject A, 150 mg subject B). Prior to resection, the surgeon placed the 244-channel
BECoG electrode (either bare or molded in silicone) to record areas adjacent to the
seizure onset zone. Recordings were made in pSTG for subject A (15 min) and motor
cortex for subject B (6 min) during acoustic stimulation with words and non-words
in vowel-consonant-vowel and consonant-vowel-consonant patterns. Neural responses
were amplified and sampled at 20 kS/s using four Intan RHD2164 amplifiers held by
a 3D printed mount and acquired through Open Ephys software.
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2.2. Covariance modeling and kriging prediction

We modeled the nECoG signal x(s, 7), measured at location s and moment 7, as the
sum of a spatially correlated neural field process n (variance A pV?), uncorrelated
measurement error € (o, pV?), and a common spatial mode %, which may be zero.
Field covariance was estimated using the semivariogram (or variogram) which is half
the variance of the difference in signal measured at two locations:

Yz (8,u) = %var{ms — Ty} (1)

Due to finite signal energy and compact fields of view, we made the common
simplifying assumption of spatially isotropic second-order stationarity, which reduces
the variogram to a function of relative distance h = ||s — ul|. We also assumed
approximate process stationarity over short time windows, to estimate variances over
time samples. Under these conditions, we link a field-plus-noise covariance model
Cz(h) = Cy(h) + 0,0(h) to the variogram

Yz (h) = On(o) - Cn(h) +on(1=35(h)) (2)

neural field noise

We fit empirical variograms with a combination of a constant offset for noise (the
“nugget”, per spatial statistics literature [60]) and the Matérn kernel [61] for the neural
field covariance term. The Matérn kernel is parameterized by a length 6 that scales the
correlation range, and a unit-less shape parameter v influences the smoothness of the
field at short range. We summarized the noise-free spatial scale of neural fields with
the Nyquist pitch, which is the sample spacing that would enable perfect interpolation
for bandlimitted fields that are sampled with exact precision. We defined the effective
Nyquist pitch as the reciprocal of the -30 dB bandwidth of the spatial power spectral
density (Anyq = BW 1), calculated via the Fourier transform of the Matérn kernel.
This interval corresponded to half of the smallest effective cycle length for a field
process. See the supplemental discussion for extended details of the covariance and
power spectrum models.

Once a covariance model was estimated, we could derive kriging predictions and
errors for the pECoG field. Given a vector of pECoG measurements at n electrodes,
r = (v1,...,2,)7, the kriging predictor of a target site s’ is a linear predictor
fls = whz that is optimized for error variance, conditioned on the spatial kernel
model. The prediction error variance

O¢ = E{(WS’ - ﬁs/)z}
=)\— ZwZ:cov{a:nsf} + ijC’wwsr

is minimized by the filter wy = C,'cov{zny}. Noting that the field and noise
components of x are uncorrelated, the cross-covariance vector is computed from the
neural field kernel absent the nugget ¢(s") = (Cy,(||s1 — §'[]), ..., Cp(||sn — s'|))". The
kriging predictor is a weighted sum of the sample data with coeflicients that depend
only on the covariance kernel

iy = c(s) 1O e (3)
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Similarly, the prediction MSE depends only on the covariance model and not directly
on the data sample itself

oo(s') =X —c(s"hTCte(s) (4)

The “simple” kriging predictor is the best unbiased linear predictor (BLUP)
for a zero mean field. However, the presence of a spatial common mode does not
affect the variogram modeling, and can be accommodated in the kriging predictor
by constraining wg to sum to one. The “ordinary” kriging weights are an unbiased
predictor of an unknown field value plus a constant mean, and the error has the
standard form o.(s') = A — 2wl c(s') + wl, Crwy [53]. We used the ordinary kriging
predictor for awake recordings, which tended to have more strongly correlated fields.
We saw no justification for modeling spatially varying deterministic trends.

2.8. Cross-validated kriging

We quantified kriging error and critical sample spacing by modeling the covariance of
nECoG field potential in short-time (500 ms) batches, to better approximate statistical
stationarity on a per-batch basis. Empirical variogram clouds were computed from
the sample variance of all pairwise electrode differences (figure 2(a)-(b)), and signal
and shape parameters {\,o,} U {0, v} of the Matérn-plus-nugget model (eq 2) were
estimated via nonlinear least squares fit to binned semivariance medians, weighted
by bin count. Total signal variance ( = A + o, (the “sill”, per spatial statistics) was
constrained to be within +25% of the total signal sample variance. To account for
a common mode variance, which is poorly estimated with the mean of correlated
samples, total variance was computed after re-referencing the signal batch to the
channel with minimum Euclidean distance to the channel average. Noise power was
determined based on heuristic singular value thresholding [62]. Batches with poorly fit
covariance were identified by smoothness values within 0.1 of the 0.3 < v < 5 bounds,
and were discarded.

Model prediction errors (eq 4) were cross-validated with residual errors from
kriged pECoG fields, which were made by subsampling half of the array rows and
columns and predicting interior sites (avoiding extrapolation, figure 2(c)). With
this scheme, four sets of overlapping predictions could be made. The MSE of cross-
validated residuals was computed using a 0.5% trimmed mean of square errors, which
was robust to heavy-tail outliers [63]. Since the total cross-validated residual MSE
included the noise variance of the reference sites, which was independent of the
prediction error, we adjusted the total expected MSE to include estimated noise

E{liy — (ny +e)*} = 0 + 0 (5)

The expected error was calculated per batch for all kriged sites and summarized by
the median (figure 2(c)).

We used the Bhattacharyya coefficient (BC) to measure overlap of covariance
parameter distributions on a 0-1 scale. Samples were histogrammed into density-
normalized bins {P;} and {Q;} using the Freedman Diaconis rule and BC was
calculated as Zi(PiQi)l/ 2. To find the hypothetical electrode spacing that would
result in 10% kriging error-termed the “kriging resolution™we computed Aqgy =
argmina |0, — 0.1 via line-search along inter-electrode pitch A while holding the
covariance kernel parameters {6, v, 0, /(} constant in eq 4.
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2.8.1. Signal bandpasses All recordings (except from the active array) were anti-
alias filtered offline at 800 Hz and then resampled at 2 kS/s. We applied cross-
validated kriging analysis to multiple commonly defined LFP frequency bands. We
used approximately log-spaced frequency bands (following [50]): theta (4-7 Hz), alpha
(7-14 Hz), beta (15-30 Hz), gamma (30-60 Hz). Additionally, we used a wide high
frequency broadband (HFB) (75-300 Hz) in which power modulation has been linked
to neuronal spiking rates [64, 65], and which includes high gamma (roughly 80-200 Hz)
that is used for measuring stimulus- and behavior-related activity in human ECoG
[2, 3, 4, 5, 6]. While broadband power fluctuations are technically a full-spectrum
phenomenon, we use “HFB” to denote a bandpass generally free of narrow-band
oscillatory activity [66].

A 4-300 Hz band was used to summarized the union of these frequency bands.
However, due to the elevated transistor noise of the “active” electrode array, kriging
analysis for the acute rat auditory cortex recordings was restricted to 5-100 Hz.

2.4. Tone stimulation and classification

Acute rat auditory cortex recordings were carried out in a sound-attenuated chamber.
We played 60 repeats of tone pips for 13 frequencies (0.5-32 kHz, 0.5 octave spacing,
50 ms duration, 2 ms cosine-square ramps) at a rate of 1 s in pseudorandom sequence
(780 trials). Acoustic stimuli were generated with custom MATLAB code through an
NI 6289 DAC card, and delivered at 70 dB SPL through a free-field speaker (CR3,
Mackie) calibrated to have a flat output over the frequency range used.

We analyzed the effect of electrode spacing on predicting auditory stimuli using
a previously reported principal components analysis (PCA) and linear discriminants
analysis (LDA) classification scheme [32, 55]. To vary electrode spacing in a continuous
manner, we used Poisson Disc sampling [67] to generate subsets of the passive rat array
that were approximately periodic in space: 10 subsets for spatial periods between 420-
2000 pm in 25 pm steps. The effective inter-electrode distance was calculated as the
square root of area per electrode: A = (A/n)'/?, where A was derived by the electrode
set’s convex hull (see figure 6(a)). The concatenated response from 50 ms post-stimulus
RECoG on subset channels was used to form feature vector, and the SVD thresholding
heuristic used for noise estimation [62] was used to determine the number of feature
PCs to use in the LDA stage. Six-fold cross-validation was then used to produce tone
frequency predictions for each trial.

3. Results

3.1. Theoretical and in vivo analysis of sampling noise and density

The proposed electrode spacing requirements based on prediction loss followed from
analytical results of kriging theory, which we outline here. We noted that optimal
prediction loss (eq 4) was a function of 1) the length-scale and texture qualities
of a spatial field, 2) the SNR of the measurements, and 3) the electrode array
geometry vis-a-vis the location to be predicted. Since the expected loss was completely
parameterized by the covariance model, we could compute results a priori in response
to the three relevant geospatial and signal factors.

Using the Matérn covariance model (eq 2) with unit variance and zero noise, we
calculated kriging errors on a 10x10 grid geometry with 1 mm pitch over a range
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of length scale and smoothness parameters (figure 3(a)). Error approached high
levels (> 50% of process variance) for fine-scale models having short range and low
smoothness, and was particularly affected by rough texture (low smoothness) fields
at all length scales. Such rough spatial fields would be highly irregular within short-
distance neighborhoods, regardless of the dominant spatial length scale indicated by
0. Error was monotonic with both spatial parameters, and we defined an error of 10%
MSE relative to process variance (0.1 relMSE) to partition the range of covariance
models into predictable and not-predictable subsets. The 1 mm pitch in this geometry
implied that the covariance models along the predictability threshold had a Ajgy
“kriging resolution” of 1 mm.

We then repeated the prediction MSE calculations while introducing noise in the
covariance kernel. Figure 3(b) depicts the predictability thresholds for noise levels
at 10% increments overlaid in Matérn parameter space. The subset of predictable
models at 1 mm spacing (equivalent to panel (a) at 0% noise) became increasingly
lower resolution (smoother and longer range) with higher noise. In other words, 1 mm
spacing had the same prediction efficiency for a finely featured (high resolution) field
in low noise and a coarsely featured (low resolution) field in high noise.

We next explored how sample spacing affected the coverage of predictable models.
Holding noise at 20%, we calculated prediction MSE for a 10x10 grid arrangement
with electrode pitch in 0.5 mm increments. Predictability thresholds for all spacings
are overlaid in figure 3(c). Comparing 3(b)-(c), increased noise and increased density
(larger pitch) moved the predictability threshold in competing directions, such that
the loss of coverage in higher noise was almost directly counteracted by higher density.
Approximately the same subset of field models predictable at 10% MSE or lower in
noiseless conditions was predictable in 20% noise by reducing electrode spacing from
1 mm to 0.5 mm.

We confirmed the theoretical effects of covariance model parameters on cross-
validated prediction errors made from four paired epidural pECoG recordings of
auditory cortex in two rats, using “active” and “passive” arrays that had similar
geometry but different noise properties. Covariance modeling and kriging were carried
out on 6540 (3459 active and 3081 passive) short-time 500 ms batches of signal in the 5-
100 Hz bandpass (outlined in figure 2 and section 2.3). Extensive evaluation of kriging
prediction with in vivo pnECoG and simulated noise can be found in the supplemental
materials (supplemental figure S3).

The spatial field and measurement signal statistics highlighted in the previous
section accurately delineated predictable versus non-predictable pECoG batches. See
figure 4 and supplemental videos S1-S4 for specific examples. In aggregate, the
expected kriging errors based on covariance models were highly consistent with
cross-validated kriging prediction errors. Ordinary least squares (OLS) regression of
expected error (eq 5) from observed relMSE, normalized by the sill variance, resulted
in slopes of 0.99 and 0.98 for active and passive batches, respectively (r2 = 0.989,
combined model using slopes only).

The covariance model parameters illustrated the distinction between “field” and
“signal” properties of the two arrays (figure 5(a)-(c)). Statistics corresponding to the
neural potential field, i.e. correlation range, smoothness, and field variance, were
largely overlapping (smoothness BC=0.99; range BC=0.95; noise-compensated field
variance BC=0.98). The larger covariance range estimated for the active array (1.65
mm median) versus passive array (1.38 mm median) may be explained by shorter
edge-to-edge distances in the active array, which were 140 pm less than that of the
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passive array, and would likely increase correlation and bias the Matérn length scale.

The buffering and multiplexing transistors in active arrays introduce 1/f and
aliased wideband noise [27]. Median noise estimated by SVD [62] was 1037 pV? for
the active array used here, which agreed with bench-top measurements of 992+308
1nV? (mean 4 SD, 5-100 Hz). The noise level was also consistent with the 870 pV?
difference in median sill variance between active array and passive array batches. The
separability of field and signal qualities was summarized by the average variograms
for each device, which differ mainly by the vertical offset representing the noise floor
of the active array (figure 5(d)).

Figure 5(e) depicts the inverse relationship between the Nyquist pitch Apyq, and
the noise-compensated prediction relMSE that is attributed to kriging prediction error.
The increased error for smaller pitches echoed the tendency towards higher error for
smaller model parameters in figure 3(a). Increased noise in the active array resulted
in uniformly higher compensated relMSE, which shifted the 10% relMSE threshold to
lower resolution fields, as in figure 3(b). Figure 5(e) also shows the extent to which
imperfect measurement and lack of bandlimitting prevented lossless interpolation even
when the subsampled electrode spacing was equal to or less than the effective Nyquist
pitch. However, the prediction relMSE for active array fields (median 9.3%) was
lower than the noise error (median 18.5%) in 3290/3459 (95.1%) of field snapshots,
indicating that the interpolated fields were a better approximation of true cortical
potential than the original measurements. We further validated denoising results for
interpolated and in situ field prediction using controlled amounts of additive Gaussian
white noise, summarized in supplemental figures S3 and S4.

We computed the empirical predictability “coverage”, at 0.1 compensated relMSE,
for the two sub-sampled pECoG arrays. 95.2% of passive array snapshots were
predictable at 840 pm, compared to 33.0% of active array snapshots at 800 pm.
By manipulating the electrode spacing term in eq 4, we calculated the kriging
resolution (Ajgy) that would normalize prediction error to 10% MSE for each pECoG
batch (Figure 5(f)). Due to the competing roles of electrode spacing and SNR,
shorter electrode spacings would be needed for stable interpolation from active array
measurements.

To concisely summarize uncertainty in both the range of model statistics and
kriging prediction quality, we adopted the terminology Probably Approximately
Correct to specify a single target for electrode spacing and prediction error (loosely
based on the rigorous PAC learning theory, see [68] for a definition). For potential
fields recorded with very low noise in anesthetized, epidural rat auditory cortex,
840 pm electrode spacing had a high probability (795% empirical rate) of enabling
approximately correct (< 10% error) prediction of unseen field potential. However, the
95%-10% PAC electrode spacing for the same potential fields in a high noise scenario
was projected at 414 nm, based on the 5th percentile of Ajgy in active array batches.
The projected expansion of predictability coverage from 800 pm to 414 pm is shown
in Figure 5(g), echoing the recovery of predictability in the simulated results in Figure

3(c).

3.2. Field predictability and stimulus information content

We have observed previously [27] that, despite similar electrode geometry and
recording conditions, auditory stimulus classification accuracy is lower using active
array recordings compared to passive, due to increased noise. Here we used tone



Sufficient sampling for kriging prediction of cortical potential 11

classification to test whether the hypothetical equivalence in active- and passive array
sampling predictability corresponded to equivalent information content in the signals.
We gradually reduced the effective inter-electrode distance of the passive array from
420 pm to “2000 pm to compare classifier accuracy with that from active arrays
sampled at 400 pm (53.6% for rat 1 and 60.9% for rat 2, figure 6).

As expected, passive array classifier accuracy at full sampling (72.4% for rat
1 and 78.2% for rat 2) outperformed corresponding active arrays, and decreased
fairly regularly as fields were sampled more sparsely. To determine where the
subsampled accuracy rates intersected with the corresponding active array baselines,
we binned results at every 50 pm and used the large-sample Normal approximation
(with 02 = p(1 — p)/780) to calculate z-scored accuracy differences. The smallest
electrode spacing bin with no significant difference in accuracy rates was 845 pm for
rat 1 and 895 pum for rat 2 (one-sided Z-test, p < 0.003 with false detection rate
controlled at 0.05). The equivalent spacing for stimulus information content agreed
the hypothesized equivalent PAC spacings of 840 pm and 414 pm.

3.3. Kriging resolution in rat, NHP, and human pECoG

We analyzed spatial covariance in multiple bandpasses for pECoG recordings from
one semi-chronically implanted NHP performing a center-out reach task, two intra-
operatively implanted humans listening to word /non-word acoustic stimulation under
anesthesia, and four chronically implanted rats listening to tone pips while awake and
freely moving. We used four commonly defined oscillatory bandpasses (theta: 4-7 Hz,
alpha: 7-14 Hz, beta: 15-30 Hz, gamma: 30-60 Hz) and a high frequency broadband
(75-300 Hz) characterized by wide spectrum power fluctuations.

3.8.1. NHP motor cortex We recorded neural potentials from 183 of 244 electrodes
with 762 mm pitch in motor cortex of a macaque performing a center-out reach task
(figure 7(a) inset). Bandpassed and broadband spatial variance modeling of 4161
500 ms batches accurately predicted cross validated kriging error, with b = 0.99 in
broadband signal and 0.96 < b < 1.05 among bandpasses. There was a lower degree
of precision in the expected model error for broadband signal (r?> = 0.842) versus
bandpasses (r? = 0.952).

Broadband fields in awake NHP motor cortex had longer correlation range
and rougher texture compared to anesthetized rat auditory cortex, with median
Anyq = 1.61 mm. The larger subsampled electrode spacing of 1.52 mm predicted
62.3% of field batches at 10% MSE or lower. The hypothetical kriging resolution for
95%-10% PAC coverage was 1.22 mm. At 2.1% median noise, the PAC sample spacing
compared closely to the same 5% quantile of Nyquist pitch, which was 1.33 mm (figure
7(a)-(b)).

The spatial properties of bandpassed pECoG fields from theta to gamma were
extremely consistent (note the overlapping sets in figure 7(c)). The Nyquist pitch
distributions from theta to gamma (pairwise BC> 0.91) had median values highly
consistent with the broadband 1.6 mm median. Noise was also similar at 1.4%-2.2%
levels, but the actual 10% MSE predictability coverage at 1.52 mm was higher for
alpha and beta bands (77.0% and 74.6%, respectively) than for theta and gamma
(41.1% and 55.9%, respectively). PAC sample spacing was 0.93-1.18 mm in the theta
to gamma bandpasses (figure 7(d)).
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The combination of finer spatial scale (median A,y,q = 1.24 mm) and higher
noise (median 6.3%) in HFB had a significant impact on kriging prediction error.
The minimum compensated relMSE was 12.4%, meaning there was no predictability
coverage at the 1.52 mm electrode spacing. We projected the 95%-10% PAC to be
502 pm in the HFB bandpass.

3.83.2. Human pSTG and motor cortex We applied the kriging experiment to pECoG
recorded from motor cortex in two human volunteers undergoing surgery for drug
resistant epilepsy. The 244-channel electrode was implanted intraoperatively and field
potential was recorded outside the seizure onset zone while subjects were anesthetized.
Recordings were split into short-time batches (1560 subject A pSTG, 662 subject B
motor). Model-based expected error was generally accurate explaining cross-validated
kriging error for broadband (b = 1.00 for both subjects) and bandpassed fields
(0.95 < b < 1.11 subject A, 0.92 < 1.03 subject B), with a difference in precision
as noted in NHP fields (broadband 2 = 0.898, bandpass r? = 0.982, combined factors
models).

Examples of 4-300 Hz broadband fields from subject B with three different
covariance characteristics are shown in figure 8(a)-(c) (and in animated form in
supplemental videos S5-S7). The most predictable fields were those with smooth
texture and large extents of equal polarity (e.g. figure 8(a)). As indicated by the
analytical results, texture strongly affected the error of kriging predictors. Two field
batches in figure 8(b)-(c) had dominant spatial cycle limits (Ayyq) of 1.16 mm and 1.25
mm, respectively, less than the subsampled pitch of 1.52 mm. However, the smoother
texture in figure 8(b) led to recovery at 7.2% MSE, while more granular features in
figure 8(c) were considered “not predictable,” at 10.7% MSE. In figure 8(a)-(c), the
divergence of the empirical semivariogram from an asymptotic variance at long range
is likely due to these points being the least reliable estimates of semivariance [69].
These points were down-weighted in the model fit, as indicated by the visual weight
in the figures.

Broadband motor cortex fields were of similar spatial scale in human (median
Apyq = 1.50 mm) as in NHP, while pSTG fields were smaller scale (median A,yq = 1.13
mm). The difference in Nyquist pitch corresponded to 91.8% predictability coverage
in motor cortex at the actual 1.52 mm electrode spacing, but only 42.7% predictability
coverage in pSTG (figure 8(d)). PAC spacings were 1.43 mm and 829 pm respectively
(figure 8(e)).

As a group, bandpassed human nECoG fields were predicted less effectively at
smaller length scales (figure 8(e)). There was also greater variability between bands
in both brain areas, compared to NHP motor cortex. Median Nyquist pitch peaked
in the alpha band (1.27 mm, subj. A, 1.72 mm, subj. B), which may have been
influenced by a moderate increase of coherent alpha rhythms in temporal areas during
general anesthesia under propofol [70]. Median kriging resolution spacings exceeded
the subsampled electrode spacing of 1.52 mm in bands with larger Nyquist pitches and
lower noise proportions (figure 8(g). For generally stable prediction, we estimated the
PAC spacing in pSTG to be between 902 pm (alpha band) and 240 pm (HFB), and
in motor cortex between 1.49 mm (beta band) and 324 pm (HFB). See figure 9 for
detailed PAC spacing and noise results. Supplemental videos S8-S13 show recorded,
kriged, and filtered human pECoG snapshots for each bandpass.
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3.8.8. Combined effects of spatial scale and noise To incorporate fields recorded in a
chronic implantation setting, we also analyzed spatial field characteristics for a cohort
of four rats implanted with the passive electrode array in auditory cortex [55]. We used
recordings made in the first week and the eighth week of implantation, at which point
the acute tissue response was presumed to have stabilized and electrode impedance
was near peak levels.

In figure 9, we summarized the PAC sampling results in rat, NHP, and human
in the context of the particular SNR that we observed in those recordings. After
manipulating the electrode spacing term for the expected kriging error to find the PAC
predictability boundary, we also varied the share of noise in covariance models on the
boundary to project PAC spacings for 0-50% noise levels. PAC electrode spacings in
the ideal scenario were uniformly submillimeter for HFB fields in all cortical areas and
species. Spacings were approximately 1 mm or lower for auditory cortex in rat and
pSTG in anesthetized human. Except in HFB and theta bands, motor cortex fields
in both NHP and human were projected to be predictable at spacings between ~1-1.5
mm.

In all cases, the compensatory balance of spatial oversampling in the presence
of noise reduced estimation of the 95%-10% PAC spacing. Values for “new” implants
(intraoperative human, semi-chronic NHP, and early rat electrodes) were within an
average of 115 pm of ideal PAC spacings across bands. However, anesthetized human
fields showed notable deviations from ideal PAC spacings at HFB of 371 nym (pSTG)
and 354 pm (motor).

In the chronic implant setting, field statistics were relatively stable between week
1 and week 8, with overlap in Nyquist pitch having mean BC=0.90. By week 8, 1/f
thermal noise from increased electrode impedance deteriorated signal quality at lower
frequencies, raising median noise proportion from 1.2% to 9.2% mean across bands
(mean BC=0.11). The signal properties had a significant effect on predictive sampling.
At the first week of implantation, very low noise fields could be sampled effectively
with 635-846 pm PAC spacing across bands, similar to results in anesthetized auditory
cortex during the same acoustic tone stimulation. The PAC kriging resolution for week
8, as a product of SNR and field resolution, was 243-612 pm, which was lower than
ideal by 200-700 pm (365 pm mean).

4. Discussion

In the preceding results, we analyzed sufficient spatial sampling of cortical surface
potential with the objective of predicting continuous voltage fields with constrained
loss of detail. From basic analytical results, we expected that predictability should
depend on three independent factors: 1) the natural image statistics of the cortical
field potential (the “field”), 2) the precision of measuring those potentials (the “signal”),
and 3) the electrode sampling geometry. In particular, this analysis suggested that
prediction loss induced by substantial noise or fine feature scale can be corrected with
greater sampling density.

We established through covariance modeling and cross-validated predictions that
the theoretically expected kriging error accurately explained prediction MSE across
a range of field, signal, and electrode spacing conditions. Next, we extrapolated
electrode spacings for each short-time batch that would normalize expected kriging
error to 10% of the process variance (although a lower tolerance could be used
in practice). Based on the distributions of spatial field statistics in a variety of
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regimes, we proposed electrode spacings that were “probably approximately correct”,
i.e. resulting in <10% approximation error for >95% of the observed fields. The
mathematically rigorous PAC learning framework [68] was only loosely adapted here,
but the “probable” and “approximate” concepts succinctly described the task of seeking
a sufficient sampling density to constrain loss under nonstationary conditions. In an
experiment with controlled neural field statistics and electrode geometry, we found
that different ptECoG sampled at 95%-10% PAC predictability spacings generated
approximately equivalent stimulus classification accuracy.

For the fields we observed, PAC sample spacing in ideal (noiseless) conditions
was between about 570-1050 pm across bandpasses for rat auditory cortex. NHP and
human motor cortex fields in the alpha, beta, and gamma bands could be predictably
sampled in the 1-1.5 mm range, while human pSTG fields required sampling at
approximately 600-1000 pm. HFB required sampling between 600-850 pm for all
cortical areas and species, assuming noiseless conditions, while the 4-7 Hz theta band
also required ~500 pm sampling for human fields and rat fields at week 8, after implants
had stabilized. Adjusted to the noise levels we observed, PAC sample spacing was, on
average, 115 pm smaller than the ideal case for intraoperative or semi-chronic electrode
placements, with the largest deviations occurring in HFB. In the long-term chronic
case, increased thermal noise reduced PAC sampling 365 pm on average relative to
the noiseless ideal.

Optimal linear combination techniques based on sensor covariance are commonly
used for inverse problems in electro- and magnetoencephalography [71, 72, 73], and
other spatial filters have been proposed to maximize spatial contrast [74]. To the
best of our knowledge, this is the first study to rigorously apply optimal linear
prediction methods to interpolate field potential based on spatial statistics. While
other interpolation methods may yield a similar quality of predictions, a statistical
interpolator forecasts the uncertainty of its prediction, i.e. eq 4. The model-
based kriging error was the basis of our determination of sufficient sampling, but
it also revealed the denoising benefit of correlated sampling. The kriging error for
interpolated fields was often smaller than the estimated noise in the original recording.
This result indicated that electrode spacing can be tuned for small approximation
errors, even below the sensor noise limit, by sufficient over-sampling of correlated field
potential.

We also made use of in situ prediction, as opposed to interpolation, to produce
denoised views of neural fields (e.g. figure 8(a)-(c)). Any linear filter (e.g. Gaussian
smoothing, spatial averaging, etc.) may enhance SNR in a correlated field with
spatially independent noise. Kriging produces the best linear unbiased predictor,
optimized conditional on the variance model, which tend to perform well compared to
deterministic interpolators such as splines or inverse-weighted prediction [75]. Kriging
is also adaptive to the field statistics, which vary in time. A more thorough analysis
of denoising performance based on the approximately noise-free rat auditory field
recordings is available in the supplemental material (supplemental figures S3 and
S4). Since measurement noise may be an unavoidable consequence of electronics
miniaturization, intentional spatial over-sampling coupled with spatial filtering is a
promising strategy to recover high fidelity neural fields. Curves for hypothetical field
coverage vis-a-vis electrode spacing and noise (as in figure 3(a)-(c)) could help guide
electrode array design.

Prior investigations of neural signal correlation have made length scale inferences
from either the correlogram or its dual, the spatial power spectrum. However, the
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analyses in these studies were device dependent. Recent results for ECoG in awake
humans found electrode spacings at which correlation crossed a threshold of 1/2.
One, using a parametric model, revealed length scales in STG ranging from 1.5 mm
for gamma and high-gamma to > 4 mm for the lowest theta band [50]. Another,
using spectral coherency profiles of microwire ECoG in motor cortex resulted in
length scales from 0.8-1 mm at 150 Hz, and rising to 2.13-3.45 mm at low frequencies
[49]. Raw correlogram profiles in STG recordings cross the 1/2 threshold between 1-3
mm in descending frequency bands [51]. Using device-independent covariance kernels
(not scaled to signal or noise), we observed average half-correlation lengths with a
minimum of 71.15 mm in the HFB range for both brain areas, and a maximum in
the alpha band of "3 mm in pSTG and ~4.25 mm in motor cortex. The discrepancy
between motor area findings may partially be due to the lack of distinction between
“field” and “signal” in the correlation coefficient and coherency estimators. Spatially
independent noise lowers normalized correlation values at all inter-electrode distances.
Correlograms from the same neural field, but measured with different noise power,
would show threshold crossings at different inter-electrode distances. Another factor
in the present results that likely impacted correlation range in alpha and HFB was
the state of general anesthesia under propofol [70]. Spatial correlation profiles are also
highly variable across time, as observed in [51] and confirmed in this study.

Previous spatial spectra analyses identified effective bandwidths where
physiological spectra intersected noise floors, and determined sufficient sampling
densities in terms of the bandwidth reciprocal. Our median results for spatial
bandwidth resolution were similar to previous findings in human [47] and rat
[48]. However, we found that a field’s texture, which had a large impact on
predictability, had only a subtle impact on the power spectrum, making bandwidth an
unreliable estimator of sufficient sample spacing. In addition, the bandwidth selection
methodology in this report eliminated device dependence by discarding the noise floor.
Estimating bandwidth based on the intersection of field and noise spectra leads to the
counter-intuitive result of decreased bandwidth/increased electrode spacing in low
SNR scenarios and increased bandwidth/decreased spacing for higher SNR, when the
underlying field spectrum might be equal. Our basic results suggest the opposite result
(see figure 3(b)-(c)). The same neural field can be predicted to the same accuracy in
low noise using larger electrode spacing, or in high noise with smaller spacing.

The methodology we employed pre-supposed a need for correlated sampling,
which is a requirement for spatial prediction. Another functional utility of redundant
electrode signals was recently studied through the use of shared trial-to-trial variability
in discriminating visual stimuli from V4 activity in NHP. Rather than being a nuisance,
shared variability in LFP contributed substantially to decoding accuracy [76]. The
logic of avoiding redundancy by setting electrode spacing based on spatial cycle limits
was also challenged through a detection theory model that elucidated the impact of
redundancy in both event-related signals of interest and background processes. High-
density grids have greater detection power for spatially redundant event-related signals
buried within a high-amplitude, low-correlation background process, or can conversely
pick out spatially focal signals in the presence of highly correlated background activity
[77]. The first result is directly analogous to our finding that field potential can be
predicted to nominal precision in high noise with sufficiently dense sampling. The
second result also relates to the need for dense sampling for highly textured (low
smoothness) fields, even if the dominant correlation length scale is long range.

We attempted to adapt to nonstationarities in the field structure and SNR by
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operating in short-time batches. But there can be little doubt that our analysis
smoothed over the most transient neural events such as evoked responses. We
observed comparatively low fitness of our spatial prediction framework when kriging
evoked response transients directly. Such events may plausibly be described by a the
superposition of uncorrelated background and response field process with different
spatial covariance kernels, and thus may benefit from a nested variogram model [53].

The present analysis was indifferent to spatio-temporal interactions in the
covariance kernel, which were clearly demonstrated empirically in [49] and are also
indicated by the cortical traveling wave phenomenon [78|. The framework of spatial
prediction can be expanded using appropriate spatio-temporal covariance kernels
[79, 80]. It is quite likely that coupled structure in space and time may provide more
efficient field potential prediction and reduce the sufficient sampling density indicated
in this study.

The 95% "probable" and 10% "approximate" figures were chosen as intuitively
grasped quantities for the purpose of exposition. However, in light of the results
relating sampling predictability to mutual information with sensory stimulation (figure
6), the 10% error tolerance may be too large for most applications. In fact, tone
classification accuracy from the passive arrays continued to improve until the smallest
testable electrode spacing (i.e. the fully sampled grid). Expected error for 95% of
the observed fields at 420 pm spacing would be 3% or less, and the corresponding
95%-3% PAC sample spacing on the active array would be 69 pm. With these caveats
in mind, the PAC sampling densities stated for multiple scenarios might be considered
minimum starting points for electrophysiology in practice.

5. Conclusion

The present study attempted to rigorously address the problem of sufficient sampling
in pECoG in terms of minimum MSE prediction of field potential. We introduced 1) a
set of field covariance estimation techniques that improved upon common methodology
in electrophysiology, and 2) a framework that quantified the relationship between
prediction efficiency versus electrode spacing over a distribution of covariance and
SNR conditions. Our prediction results suggested that sampling based on spatial
bandwidth, as suggested in prior literature, can be a good rule of thumb for low
frequency field potential and low noise conditions. However, using an single point
estimate of bandwidth (i.e. the average) does not expose the full range of field
statistics. Additional spatially over-sampling of the bandwidth-based pitch is required
for rough textured fields, and can recover bandwidths beyond the noise floor in higher
noise settings. We found that natural image statistics and SNR of field potential varied
significantly within single recordings. Based on these distributions, we recommended
sufficient sampling based on a high probability of low error predictions. These findings
suggested that sufficient sample spacing for <10% MSE predictability in noiseless
conditions ranged from lows of “500 pm across species, up to 1.5 mm in low frequency
human and NHP motor cortex. Accounting for the most adverse chronic implant noise
conditions, sufficient sample spacings were reduced by 200-700 pm. Importantly, the
observed prediction errors were matched by the expected error, allowing sufficient
sampling inferences to be made based on reasonable parameter assumptions prior to
future electrode design.
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Rat Arrays Human/NHP Array
Passive
1420 pm 1400 pm 1762 pm
d

3.2mm 3.2mm
LCP insulator Pl and t-SiO, insulator LCP insulator
Au contacts and conductors Au contacts with p**-Si NM coupling ~—m™M@mM8M8M8m Au contacts

Active buffer and MUX 1.7 mm and conductors

Figure 1. pECoG electrode arrays. Two pECoG arrays were designed for use
in rat auditory cortex. The passively conducting array was fabricated with gold
contacts (229 pm diameter) and interconnects insulated in liquid crystal polymer
(LCP). The active array had gold contacts (360x360 pm2) insulated by conductive
silicon nanomembranes (p ™+ Si NM). It was fabricated with active powered silicon
transistors within the array that buffered and multiplexed field potential. The 61
passive electrodes and the 64 active electrodes were both arranged in an 8x8 grid
with approximately 400 pm pitch. A second passive electrode array (shown at
1/2 the scale of the rat arrays) was designed for use in humans and non-human
primates. This array was fabricated with LCP and gold using the same process
as the rat array, and had an electrode pitch of 762 pm.
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Spatial variography and cross-validated kriging of inter-electrode

(a) Squared difference of cortical potential between a corner

electrode (black) and electrodes along a diagonal transect of an 8x8 pECoG
array. The physical distance of subtracted electrodes increases from bottom to
top. (b) Semivariance (one-half the variance of differences) between all electrode
pairs, ordered by inter-electrode distance. A Matérn variogram kernel (solid line)
was fit with estimates for range (), smoothness (v), noise (0,) and total signal
variance (¢). (c) One sampling-prediction pattern used for cross-validated kriging

and the expected kriging error based on the variogram kernel in (b).

Cortical

potential was predicted (kriged) at the sites of the dropped electrodes without
extrapolating. The electrode in position (1, 7) was excluded due to malfunction.
(d) A ECoG frame (left) and the composite frame kriged from subsamples at
alternate rows and columns (right). The cross-validation residual variance for this
500 ms batch was 1756 pV? MSE, or 23.4% MSE relative to the total power. The
median expected value was 1754 nV2 MSE, which included 717 pV? (9.5%) kriging
error plus uncorrelated 1037 pV? (13.8%) noise power (eq 5). In this example,
the kriging error for the interpolated frames is lower than the noise error in the
raw frames, meaning the predicted frames were nearer to the true field potential
than direct measurement.
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Figure 3. Effects of covariance model parameters on expected prediction loss.
(a) Kriging MSE (eq 4) was calculated for 1 mm spacing, unit variance, and
zero noise over a Matérn parameter space. MSE was monotonic in both range
and smoothness parameters. Our threshold for predictability was 10% MSE
relative to process variance (blue isocontour). Predictability was limited by a
low value of either parameter. Smoothness had a weak influence on predictability
when range was below a limit, and vice-versa. (Exact limits depended on the
sampling geometry.) (b) The 10% predictability threshold for 1 mm grid pitch was
computed under increasing levels of sample noise. In higher noise, predictability
was restricted to smoother and longer range fields. (c) Predictability thresholds
at 20% noise and varied grid pitch from 0.5 to 2.5 mm. Increasing or decreasing
pitch had a similar effect on predictability as increasing or decreasing noise. By
reducing pitch to 0.5 mm, approximately the same fields were predictable in 20%
noise as were predictable in 0% noise and 1 mm pitch.
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Figure 4. Predictable and non-predictable frames in anesthetized rat auditory
cortex. Variograms were binned at ~0.4 mm intervals. Squares and vertical stripes
are bin median and IQR scaled to bin count. (a)-(b) Longer range and smooth
fields were predicted with errors of less than 10% of the signal variance in the
spatially sub-sampled passive electrode (840 pm, a) and active electrode (800 pm,
b). The kriging error (residual relMSE minus estimated noise) here was 4.1%
and 5.1% for passive- and active-electrode, respectively. Interpolated frames in
(a)-(b) were visually similar to the optimal prediction from all electrodes, i.e.
filtered voltage. (Note that errors marked "{" are estimated since the true field
potential was unknown.) (c) A rough field with (lower smoothness index) was
not accurately predicted at 840 pm (passive array). The residual relMSE was
13.3%, with 12.5% due to kriging error. (d) A rough field with lower SNR was
not predictable at 800 pm (active array), despite having a long covariance range.
Residual error was 29.0% (12.9% kriging error and 16.1% noise). Kriging error in
(c)-(d) was characterized by oversmoothing, compared to the optimally filtered

frames.
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Figure 5. Kriging results for low and high noise recordings in anesthetized
rat auditory cortex. (a)-(c) Variogram kernel parameter distributions from
four paired auditory cortex recordings in two rats with low noise “passive” and
high noise “active” electrodes (n=3081 passive signal batches, n=3459 active
batches). Kernel parameters pertaining to the LFP process were consistent
between devices (BC=0.98 noise-compensated field variance, BC=0.95 range,
BC=0.99 smoothness). (d) Median variogram kernels are primarily distinguished
by their noise floors: active 1037 pV?2 (18.5% signal power) and passive 26.5 nv?2
(0.5% power). (e) Noise compensated prediction relMSE was inversely related
with spatial scale (summarized by Nyquist pitch A,yq), and agreed with expected
kriging error based on kernel parameters (OLS slope 0.99 and 0.98 for active and
passive batches, respectively, 72 = 0.989 combined). Error-bar plots show eq 4
kriging error median and IQR per decile of Apyq. (f) Distributions of the projected
spacing for 10% error (Ao "kriging resolution") for each pECoG snapshot. The
5th percentile probably approximately correct (PAC) spacing was 414 pm (active)
and 844 pm (passive). (g) Predictability coverage over field batches is depicted in
the Matérn parameter space. Green/gray dots mark fields at < 10% and > 10%
relMSE, respectively, at subsampled spacing. Red dots mark fields projected to
become predictable with PAC spacing (414 pm) for the active electrode.



Sufficient sampling for kriging prediction of cortical potential

a

A =0.6 mm A=12mm

o /e o @ o o O 0 0 0o 0o 0 0O
®@ o o o @ o o ®@ 0 0o 0o o @
@ 0O e 00 [ ] o 0O 0 0 0 0 O
o o @ o e o o 0O 0 0 0 0 o
o @ o @ o o o 0O 0 0o @ 0 o
@ O @ 0o @ o o 6 0 0 0 0 O
o @ o e e ] ] o oo o e
® O @ o @ o o o\@ o~0

0.8 A
> 0.7 A
9]
o
3 06 1
(8]
®
5 0.5 -
% * Active full array (1)
& 041 «++ Active full array (2) Y W
O .
B Passive subsampled (1
03 1 , pled (1) !
Ml Passive subsampled (2)
0.4 0.6 0.8 1.0 1.2 1.4 1.6

Average spacing (mm)

Figure 6. Field predictability and pECoG information content.

23

We created

nearly periodic spatial samples of passive recordings, and computed tone
frequency classification accuracy for each sample. (a) Three examples of

subsampled electrodes (solid red) are shown at different spatial periods.

The

average spacing was calculated as (A/n)'/2 for area A of the convex hull (traced
in black) and n electrodes. (b) The reference accuracies based on fully sampled
active arrays were 53.6% (rat 1) and 60.9% (rat 2). Chance accuracy was 7.7% for
13 frequencies. Purple and green points show classifier accuracy at each passive
array subsample for rat 1 and rat 2, respectively. Accuracy results binned in 50
pm intervals (squares) were compared to reference accuracy (filled squares are
significantly higher). Accuracy was not significantly higher than 400 pm spaced
active electrodes starting at 845 pm for rat 1 and 895 pm for rat 2 (one-sided
Z-test with binomial large sample Normal approximation, p = 0.003 threshold,

false detection rate controlled at 0.05).
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Figure 7. Broadband and bandpass kriging results in awake NHP motor cortex
(183 motor cortex electrode sites are shown inset). (a) Prediction relMSE
worsened for fields with fine spatial pitch. Parametric kriging error explained
residual errors with a slope of b = 0.99, r? = 0.842. (b) Nyquist pitch (1.61 mm
median, 1.54-1.70 mm IQR) and kriging resolution (1.63 mm median, 1.44-1.87
mm IQR). The 5th percentile of kriging resolution (PAC electrode spacing) was
1.22 mm. (c) Prediction relMSE in bandpassed pECoG snapshots tended higher
for decreasing Nyquist pitch and SNR (especially HFB). Expected kriging error
was accurate within 5% of unity slope (2 = 0.952 combined). (d) Nyquist pitch
(gray line) was consistent in theta through gamma bands (BC>0.97 successive
bands), but shifted to smaller values HFB (BC=0.84 gamma-HFB). Central
tendency kriging resolution (black line, median and IQR) was similar to Nyquist
pitch (gray line) in theta-gamma bands with median noise of 1.4-2.2%, but
deviated in HFB due to higher 6.3% noise proportion. PAC spacing (black dots)
was ~1 mm for theta-gamma and 502 pm in HFB.
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Figure 8. Kriging results in anesthetized human pSTG and motor cortex. (a)
Variography and prediction results for a low resolution/low error motor cortex
field. Optimal predictions are also shown ("{" per figure 4). Long range and
locally-regular (high smoothness index) patches of similar polarity were accurately
predicted 1.52 mm subsampled spacing. Cross-validated kriging relMSE was 6.5%
relMSE (1.0% noise and 5.5% kriging error). (b) A shorter range, but smooth field
batch was predicted with 8.7% reIMSE (1.5% noise and 7.2% kriging error). (c)
A rough field batch was predicted at 13.7% relMSE (3.0% noise, 10.7% kriging
error), which was above the 10% predictability threshold. The low smoothness
index indicated texture detail that was lost to interpolation. (d) Noise-subtracted
prediction error for broadband (4-300 Hz) fields was inversely related to spatial
scale (Anyq). The three snapshots in (a)-(c) are marked. Expected kriging error
explained relMSE error with linear slopes of b = 1.00 (each subject), 72 = 0.898
(combined). (e) Central tendencies of kriging resolution (pSTG: 1.48 mm median,
motor: 1.87 mm median) exceeded Nyquist pitch (pSTG: 1.13 mm median, motor:
1.50 mm median), but approached similar values at the lower tails. PAC spacing
was 829 pm in pSTG and 1.43 mm in motor cortex. (f) Grouped prediction error
(relMSE combined subjects) for bandpass fields depended on Nyquist pitch, but
tended higher in theta band due to rough texture, and at higher frequencies due to
falling SNR. Per band and per subject, expected relMSE regressed actual kriging
error with slopes 0.93 < b < 1.11 (combined model 2 = 0.982). (g) Nyquist pitch
(light lines, median and IQR) underestimated kriging resolution (dark lines) in
bands with smoother fields and high SNR. PAC spacing was 240-902 pm in pSTG
and 498 pm-1.49 mm in motor cortex.
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Figure 9. PAC spacing and signal statistics for human, NHP, and chronically
implanted rat summarized across temporal bandpasses. PAC spacings per
frequency band based on the observed noise conditions (dots) are placed in the
context of the sufficient sampling projected for 0-50% noise (vertical gradients).
PAC spacing was within 115 pm (mean) of the ideal case for electrodes that were
placed per-session (human and NHP) or were recently implanted (rat week 1).
Deteriorated SNR conditions at week 8 of implantation (near the peak of electrode
impedance) decreased actual PAC sampling by 365 pm (mean) compared to zero
noise. At 50% noise (gradient gray levels), all fields required sampling below 375
pm.
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