

1
2
3 1 **High affinity phosphate binding protein (PBP) for phosphorous recovery: Proof of concept**
4
5 2 **using recombinant *Escherichia coli***
6
7
8
9 3 Yu Yang^a, Wendy Ballent^a, Brooke K. Mayer^{a*}
10
11
12 4 **Affiliations:**
13
14
15 5 ^aDepartment of Civil, Construction and Environmental Engineering, Marquette University,
16
17 6 Milwaukee, Wisconsin, 53233, United States
18
19
20
21 7
22
23
24 8 ***Corresponding Author and Address:**
25
26
27 9 Brooke Mayer, Department of Civil, Construction and Environmental Engineering, Marquette
28
29 10 University, 1637 W. Wisconsin Avenue, Milwaukee, Wisconsin, 53233, United States
30
31
32
33 11 Phone: (414) 288-2161
34
35
36 12 E-mail: brooke.mayer@marquette.edu
37
38
39
40 13
41
42
43 14
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

15 **Graphical Abstract**18 **One Sentence Summary**

19 High-affinity phosphate binding proteins (PBP) offer an opportunity to recover phosphorus, as
20 shown in this study, wherein *E. coli* expressing PBP adsorbed more phosphate from liquid and
21 released more phosphate under controlled conditions in comparison to negative controls.

25 **Abstract**

26 Phosphorus (P) is a critical, nonrenewable nutrient; yet excess discharges can lead to
27 eutrophication and deterioration of water quality. Thus, P removal from water must be coupled
28 with P recovery to achieve sustainable P management. P-specific proteins provide a novel,
29 promising approach to recover P from water. Bacterial phosphate binding proteins (PBP) are able
30 to effectively remove phosphate, achieving extremely low levels in water (i.e., 0.015 mg-P L⁻¹).
31 A prerequisite of using PBP for P recovery, however, is not only removal, but also controlled P
32 release, which has not yet been reported. Phosphate release using recombinant PBP-expressing
33 *E. coli* was explored in this study. *E. coli* was genetically modified to over-express PBP in the
34 periplasmic space. The impacts of ionic strength, temperature, and pH on phosphate release were
35 assessed. PBP-expressed *E. coli* demonstrated consistently superior ability to adsorb more
36 phosphate from liquid and release more phosphate under controlled conditions relative to
37 negative controls (unexpressed PBP *E. coli* and *E. coli* K12). Lower pH (3.8), higher temperature
38 (35°C), and higher ionic strength (100 mM KCl) facilitated increased phosphate release,
39 providing a maximum of 2.1% P recovery within 3 h. This study provides proof-of-concept of
40 the feasibility of using PBP to recover P.

41
42 **Keywords:** Phosphate Binding Protein (PBP), *Escherichia coli* (*E. coli*), Adsorption, Water,
43 Recovery, Phosphorus

45 1. Introduction

46 Phosphorus (P) is a biocritical element in short supply in nature, the modern terrestrial cycling of
47 which is dominated by anthropogenic activity (Filippelli, 2008). Historically, removal of
48 pollutant P from wastewater has been emphasized since excess concentrations can yield
49 extraordinary phytoplankton growth, which can lead to eutrophication and subsequent
50 development of hypoxia and acidification of surface water (Cai et al., 2011; Mayer et al., 2013;
51 Rittmann et al., 2011). Eutrophication is a major water quality problem (Smith et al., 2014), and
52 is the cause of at least 400 coastal dead zones worldwide (Caballero-Alfonso et al., 2015; Diaz
53 and Rosenberg, 2008). In municipal wastewater treatment, enhanced biological phosphorus
54 removal (EBPR) is often employed to achieve effluent concentrations as low as $\sim 0.1 \text{ mg-P L}^{-1}$,
55 which approaches the kinetic and thermodynamic limit (Blaney et al., 2007; Cooper et al., 1993;
56 Jenkins et al., 1971; Jenkins and Hermanowicz, 1991). As P regulations and guidelines specify
57 progressively lower concentrations for surface waters (e.g., below 0.1 mg-P L^{-1} , even as low as
58 $0.005 \text{ mg-P L}^{-1}$) (Mayer et al., 2013), it is imperative to develop innovative strategies suitable for
59 operation in water and/or wastewater that can remove P to these ultra-low levels and also
60 facilitate P recovery. Reuse of the recovered P benefits from highly-selective separation of P
61 (Mayer et al., 2016), making selective P adsorption an attractive treatment approach.

62
63 Removal of P from water using high-affinity phosphate-specific bacterial proteins has recently
64 attracted research interest (Choi et al., 2013; Li et al., 2009). Bacteria import phosphate into their
65 cells using dedicated transport systems. One of these systems, the phosphate-specific transporter
66 (Pst) is primarily responsible for uptake when phosphate is present at low levels, which demands
67 efficient binding and transport of phosphate to meet the cell's metabolic demands (Blank, 2012;

1
2
3 68 Botero et al., 2000; Santos-Beneit et al., 2008; Wanner, 1993). In *E. coli*, the Pst complex
4
5 69 consists of four proteins: a dimeric ATP-binding protein (PstB), two transmembrane proteins
6
7 70 (PstA and PstC), and a periplasmic phosphate-binding protein (PBP, also known as PstS or
8
9 PhoS) (Choi et al., 2013; Santos-Beneit et al., 2008). Pursuant to the Venus flytrap model (Brune
10
11 et al., 1998; Mao et al., 1982), PBP sequesters inorganic P in a deep cleft, using 12 strong
12
13 72 hydrogen bonds to yield exceptional P specificity (Luecke and Quiocho, 1990). Previous
14
15 73 research indicated that recombinant *E. coli* expressing PBP in the periplasmic space can remove
16
17 74 $\geq 97\%$ of phosphate within 6 h from water with an initial concentration of $0.2 - 0.5 \text{ mg-P L}^{-1}$
18
19 75 (Choi et al., 2013). Column tests using PBP immobilized on Sepharose beads showed removal
20
21 76 of ^{32}P -labeled phosphate to below the detection limit of 9.5 ng-P L^{-1} using an influent
22
23 77 concentration of $0.015 \text{ mg-P L}^{-1}$ (Kuroda et al., 2000). Thus, PBP has considerable potential for
24
25 78 applications requiring P removal to ultra-low concentrations. However, beyond efficient removal
26
27 79 (Choi et al., 2013), P recovery by PBP requires controlled desorption of the sorbed phosphate,
30
31 80 regarding which limited information exists (e.g., Brune et al., 1998; Kuroda et al., 2000).
32
33
34 82
35
36
37
38
39
40 83 The objective of this study was to demonstrate that PBP could increase P adsorption, and that the
41
42 84 P could be released under controlled conditions. The focus of this work was on establishing
43
44 85 system capabilities, rather than optimization for maximum P uptake and release. Using common
45
46 86 methods for phosphate analysis (e.g., colorimetric or ion chromatography), large amounts of
47
48 87 purified PBP protein would be needed to quantify P recovery during adsorption/desorption
49
50 88 experiments. Another option is to use a small amount of protein with the ^{32}P isotope (Kuroda et
51
52 89 al., 2000), quantification of which requires specialized analytic equipment. To avoid using P
53
54 90 isotopes or using large quantities of purified proteins, reversible phosphate release was

55
56
57
58
59
60

1
2
3 91 demonstrated using recombinant PBP-expressing *E. coli* (PBP *E. coli*) and conditions favorable
4
5 92 for controlled phosphate release were identified. Genetic modification of *E. coli* can be applied
6
7 93 as a fast and easy approach to establish the feasibility of controlled, reversible phosphate
8
9 94 sorption using PBP proteins.

10
11
12 95 **2. Materials and Methods**

13
14 96 **2.1. Construct and Verify Recombinant *E. coli* Expressing PBP**

15
16 97
17 98 We engineered PBP-expressing *E. coli* following the manufacturer's protocols (PET System
18
19 99 manual 10th edition, Novagen, Madison, WI). The PBP gene was directly synthesized using the
20
21 100 PBP sequence from *Pseudomonas aeruginosa* (GenScript, Piscataway, NJ), as its phosphate
22
23 101 binding protein has demonstrated strong phosphate binding (Neznansky et al., 2014). Plasmid
24
25 102 PET 30 a (Novagen, Madison, WI) and the target PBP gene were double enzyme digested using
26
27 103 NcoI and XhoI (New England BioLabs, Ipswich, MA), followed by gel purification (QIAquick
28
29 104 Gel Extraction Kit, Qiagen, Valencia, CA). Ligation was conducted using a DNA Ligation Kit
30
31 105 (Novagen kit #69838, Madison, WI). The sequence of the inserted gene was confirmed by
32
33 106 Sanger Sequencing. The reconstructed plasmid was introduced into *E. coli* One Shot®
34
35 107 BL21(DE3) cells (Novagen, Madison, WI). A single colony was inoculated into Lysogeny broth
36
37 108 (LB) containing 50 mg L⁻¹ kanamycin (Sigma-Aldrich, St. Louis, MO, USA), and cultures were
38
39 109 incubated at 37°C on a shaker at 200 rpm. After culturing for 2 h, 1 mM isopropyl-β-D-
40
41 110 thiogalactopyranoside (IPTG, Sigma-Aldrich, St. Louis, MO) was added to induce PBP
42
43 111 expression, and the cells were further cultured for another 12 h. Cells were harvested by
44
45 112 centrifugation at 5,000 g for 10 min at 4°C, and then lysed by water bath sonication. The target
46
47 113 PBP protein was obtained by one-step purification using a Ni-NTA agarose column (Qiagen,
48
49 114 Valencia, CA). Fractions were pooled and dialyzed followed by 0.22 μm filter sterilization.

1
2
3 115 Proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
4
5 116 PAGE) and Western blotting using standard protocols for molecular weight and purity
6
7 117 measurements (Sambrook et al., 1989). The primary antibody for Western blot was Mouse-anti-
8
9 118 His mAb (GenScript, Piscataway, NJ).

10
11 119 **2.2. Unexpressed Controls and P Analysis**

12
13 120 Two unexpressed controls were used for comparison against the PBP-over-expressed *E. coli*: a)
14
15 121 *E. coli* K12 (endogenous PBP with the gene in the chromosome) and b) unexpressed
16
17 122 recombinant PBP *E. coli* (PBP gene in both the chromosome and related plasmid). The *E. coli*
18
19 123 were independently inoculated into LB medium at 37°C (Choi et al., 2013). The LB medium for
20
21 124 the recombinant *E. coli* was supplemented with 50 mg L⁻¹ kanamycin. After 2-h incubation,
22
23 125 IPTG was added to one aliquot of the recombinant *E. coli* to induce PBP protein expression
24
25 126 (hereafter called PBP *E. coli*), while the aliquot of recombinant *E. coli* without IPTG addition
26
27 127 was used as a negative control (unexpressed PBP *E. coli*). After overnight incubation, bacteria
28
29 128 biomass was harvested by centrifuging at 5,000 g for 5 minutes at 4°C. The biomass was re-
30
31 129 suspended in 1 mM KCl solution. To minimize residual LB media associated with bacteria
32
33 130 biomass, three consecutive centrifuge and resuspension cycles were conducted using 1 mM KCl.
34
35 131 Prior to tests, the biomass from each of the three groups of bacteria (PBP *E. coli*, unexpressed
36
37 132 PBP *E. coli*, and *E. coli* K12) was diluted to an optical density at a wavelength of 600 nm (OD
38
39 133 600) of 0.50.

40
41 134
42
43 135 Unlike previous studies directed at P removal (Choi et al., 2013), this study focused on the
44
45 136 potential for controlled release of phosphate bound by PBP-expressing *E. coli*. To assess P
46
47 137 sorption, initial total P content (inclusive of P integrated in cell biomass as well as extra P sorbed

1
2
3 138 by the cells) of all cultures was quantified. An aliquot of 5 mL of mixed cell suspension was
4
5 139 collected, digested, and analyzed using a Hach Kit (Phosphorus TNT plus, Hach, CO) with a
6
7 140 detection limit of 0.5 mg-P L⁻¹. To quantify P release, phosphate was measured for each sample
8
9 141 by first collecting 5 mL of cell suspension, and centrifuging it at 5,000 g for 5 min at 4°C. The
10
11 142 supernatant was then filtered using 0.45 µm disc filters (GF, Acrodisc®, Pall Corporation, NY)
12
13 143 to remove the biomass. The phosphate concentration in the filtrate was measured using
14
15 144 PhosVer® 3 Phosphate Reagent Powder Pillows (Hach, CO) with a detection limit of 0.01 mg-P
16
17 145 L⁻¹.

22
23 146 **2.3. Phosphate Release from Recombinant *E. coli* as a Function of Ionic Strength,**

24
25 147 **Temperature, and pH**

26
27 148 The impact of ionic strength was explored by suspending the bacteria in 1 mM, 10 mM, and 100
28
29 149 mM KCl solutions. The suspensions were mixed on an orbital shaker at room temperature (22°C)
30
31 150 for 3 h. Choi et al. (2013) reported efficient removal of P using *E. coli* in 6-h batch-scale
32
33 151 adsorption tests, indicating that cell integrity was maintained throughout the 3-h test used in this
34
35 152 study. We also confirmed integrity of the cell using the Bradford assay, which indicated that the
36
37 153 concentration of proteins released from the cells after 3 h was below the detection limit of 0.125
38
39 154 mg L⁻¹.

40
41 155 To facilitate comparison of the P release capabilities of PBP *E. coli* and unexpressed *E. coli*,
42
43 156 concentrations of released P were normalized to that from the unexpressed *E. coli*. In a similar
44
45 157 way, we explored the influences of temperature (22°C and 35°C) and pH (3.8, 6.8, and 8.4) on
46
47 158 phosphate release. All tests were conducted in triplicate (biological replicates). Percent P
48
49 159 recovery was calculated by dividing the concentration of phosphate released by the total P
50
51 160 content of the cells. We also evaluated phosphate release at different pHs as a function of time:

1
2
3 161 0, 0.5, 2, 3, 6, and 9 h. Kinetic data were fit to zero and first order reaction rates for comparison
4
5 162 using Microsoft Excel.
6
7
8 163 **2.4. Statistical Analysis**
9
10
11 164 Differences in released phosphate concentrations due to changes in ionic strength and
12
13 165 temperature were assessed using one-way ANOVA conducted using SPSS 11.5 software for
14
15 166 Windows (SPSS Inc., Chicago, IL, USA). Two-way ANOVA was used to determine the effect of
16
17 167 the contributing factors (i.e., time and pH) on phosphate release kinetics. Tukey post hoc analysis
18
19 168 was performed for all ANOVA analyses. A significance level of 0.05 was used for all tests.
20
21
22
23
24 169 **3. Results and Discussion**
25
26
27 170 **3.1. Confirmation of PBP Expression by SDS-PAGE and Western Blotting Analyses**
28
29
30 171 Expressed PBP isolated from the periplasmic fraction of the PBP *E. coli* was analyzed by SDS-
31
32 172 PAGE and Western Blotting, as shown in Figure 1 (the raw image is shown in Figure S1 in the
33
34 173 supporting information). Both approaches indicated the molecular weight of the purified PBP
35
36 174 was approximately 35 kDa. This result indicated that PBP was successfully expressed as it
37
38 175 agrees with previous reports of 35.6 kDa for PBP (Choi et al., 2013).
39
40
41
42 176 **3.2. Phosphate Release from Recombinant *E. coli* at Different Ionic Strengths and**
43
44
45 177 **Temperatures**
46
47
48 178 To quantify initial sorption (including both absorption for cellular functions and additional
49
50 179 adsorption provided by PBP), we first measured the total P content at the same biomass
51
52 180 concentration (OD 600 = 0.50) for the three groups of *E. coli*. They were 4.54 ± 0.01 , $3.59 \pm$
53
54 181 0.03 , 5.63 ± 0.10 mg-P L⁻¹ for *E. coli* K12, unexpressed *E. coli*, and PBP *E. coli*, respectively.
55
56
57 182 Based on these measures of the total P concentrations of the three types of cells, the over-
58
59
60

1
2
3 183 expressed PBP *E. coli* can clearly sorb more phosphate than the unexpressed controls (one-way
4
5 184 ANOVA, $p < 0.05$). These results provide a basis for comparatively assessing P release as a
6
7 185 function of ionic strength, temperature, and pH.
8
9

10
11 186
12
13

14 187 Figure 2 depicts the percentage of released phosphate from the three different groups of *E. coli*
15
16 188 using different ionic strength solutions, all normalized to the concentration of P released from
17
18 189 unexpressed *E. coli* at 1 mM KCl. The unexpressed *E. coli* and PBP *E. coli* generally showed
19
20 190 increased phosphate release as ionic strength increased. However, *E. coli* K12 released similar
21
22 191 phosphate concentrations across the range of ionic strengths tested ($p > 0.10$). At each ionic
23
24 192 strength evaluated, PBP *E. coli* provided greater phosphate release than the control groups. For
25
26 193 instance, the PBP *E. coli* released nearly two times more P than the unexpressed PBP group.
27
28
29

30
31 194
32
33

34 195 Limited information on the mechanisms of P release from the PBP-P complex is currently
35
36 196 available, but binding is known to vary as a function of ionic strength (Wang et al., 1994).
37
38 197 Ledvina et al. (1998) observed a 20-fold increase in the dissociation constant, K_d , at 0.30 M
39
40 198 NaCl compared to no-salt solution, which agrees with our finding that higher ionic strength
41
42 199 promotes P release. Though the exact mechanism for increased phosphate release by higher ionic
43
44 200 strength is not yet known, there might be two plausible reasons. First, the increase in ionic
45
46 201 strength could also increase the hydrolysis rate of protein-phosphate complexes, as research has
47
48 202 shown that higher conductivity may increase enzymatic hydrolysis (Butre et al., 2012). Second,
49
50 203 the increased ionic strength might also raise the permeability of the outer membrane of the cells
51
52 204 and facilitate phosphate transport from the periplasmic space to the outside of the membrane for
53
54 205 phosphate release (Suzuki et al., 1999).
55
56
57
58
59
60

1
2
3
4
5
206

6 207 The effect of temperature on the release of phosphate is illustrated in Figure S2. At room
7 208 temperature, PBP *E. coli* released about 3.2 times more P than the unexpressed *E. coli*, while at
8 209 35°C, PBP *E. coli* released about 3.1 times more P than the unexpressed *E. coli*. For all three
9 210 types of *E. coli* tested, the elevated temperature improved phosphate release ($p < 0.05$).
10 211 Increased P release as a function of increasing temperature agrees with the expectation that rates
11 212 would increase since the kinetic energy of molecules increases with temperature. Protein stability
12 213 may dictate an upper bound for temperature increases, but as the denaturation temperature for
13 214 most proteins is 41°C (Stoker, 2006), PBP activity is unlikely altered at 35°C. Elevated
14 215 temperature can increase membrane permeability (Bischof et al., 1995; Osborne and MacKillop,
15 216 1987), and the change in permeability of the membrane could ostensibly increase phosphate
16 217 release. For PBP *E. coli*, the elevated temperature may also trigger hydrolysis of the phosphate-
17 218 PBP complex, although further research is needed.

34
35 219 **3.3. Phosphate Release from Recombinant *E. coli* at Different pH Levels**
36
37

38 220 Phosphate release at different pH levels is shown in Figure 3. The PBP *E. coli* and unexpressed
39 221 PBP *E. coli* demonstrated similar trends. The lower pH increased the concentration of phosphate
40 222 released compared to near-neutral conditions for all three *E. coli* ($p < 0.05$), while no significant
41 223 difference was identified between the near-neutral condition and pH 8.4 ($p = 0.27, 0.18, 0.18$ for
42 224 unexpressed PBP *E. coli*, PBP *E. coli*, and *E. coli* K12, respectively). For all three *E. coli*, lower
43 225 pHs appear to facilitate phosphate release while higher pHs (i.e., pH 8.4) have negligible impact.
44
45 226 PBP *E. coli* released more phosphate than the two negative controls at each pH level,
46 227 approximately 2.3 – 3.3 fold and 1.3 – 2.2 fold greater compared to unexpressed PBP *E. coli* and
47 228 *E. coli* K12, respectively, at the pH levels tested here. The interaction between P and PBP is
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 229 dominated by local dipolar interaction (Ledvina et al., 1998). Thus, pH shifts away from neutral
4
5 230 could lead to redistribution of charge on the P-PBP complex, thereby affecting dipolar
6
7 231 interactions. Accordingly, lower or higher pH favors the dissociation of P from the complex, as
8
9 232 indicated by our results.

10
11
12 233 **3.4. Kinetics of Phosphate Release**

13
14 234 Before testing P release kinetics at different pHs, we measured the initial total phosphate content
15
16 in each culture (after diluting each to OD 600 = 0.5), which was 4.9 ± 0.02 , 3.9 ± 0.04 , and $4.0 \pm$
17
18 235 0.2 mg L^{-1} for PBP *E. coli*, unexpressed PBP *E. coli*, and *E. coli* K12, respectively. This shows
19
20 236 that the genetically modified PBP *E. coli* removed more phosphate from LB medium than the
21
22 237 negative controls.

23
24 239
25
26 31 240 The results shown in Figure 3 indicated that there was negligible impact on P release using the
27
28 32 241 basic solution. Therefore, the kinetics of phosphate release were evaluated at near-neutral and
29
30 34 242 acidic conditions. Figure 4a depicts the kinetics of phosphate release within 9 h at near-neutral
31
32 36 243 conditions (pH 6.8). In terms of P release, the PBP *E. coli* released more phosphate at each time
33
34 39 244 point, yielding a final phosphate concentration of $0.07 \pm 0.005 \text{ mg L}^{-1}$ after 9 h. However, both
35
36 41 245 unexpressed PBP *E. coli* and *E. coli* K12 reached the highest phosphate concentrations after 0.5
37
38 43 246 h. Two-way ANOVA between unexpressed PBP *E. coli* and *E. coli* K12 indicated no significant
39
40 46 247 effects due to group ($p = 0.68$), meaning unexpressed PBP *E. coli* and *E. coli* K12 were
41
42 48 248 essentially the same in terms of phosphate release. There was also no significant effect due to
43
44 51 249 joint factors (group \times time, $p = 0.23$); however, time did have a significant impact on phosphate
45
46 53 250 release ($p < 0.05$). The change in P concentration over time was well represented using a zero
47
48 55 251 order reaction for PBP *E. coli* ($R^2 = 0.85$), yielding a reaction constant of $0.006 \text{ mg L}^{-1} \text{ h}^{-1}$. The

1
2
3 252 unexpressed *E. coli* and *E. coli* K12 produced reaction constants of 0.001 and 0.002 mg L⁻¹ h⁻¹,
4
5 253 respectively. Clearly PBP *E. coli* not only released more P than the controls, but also
6
7 254 demonstrated a faster P release rate at pH 6.8.
8
9

10 255
11
12
13

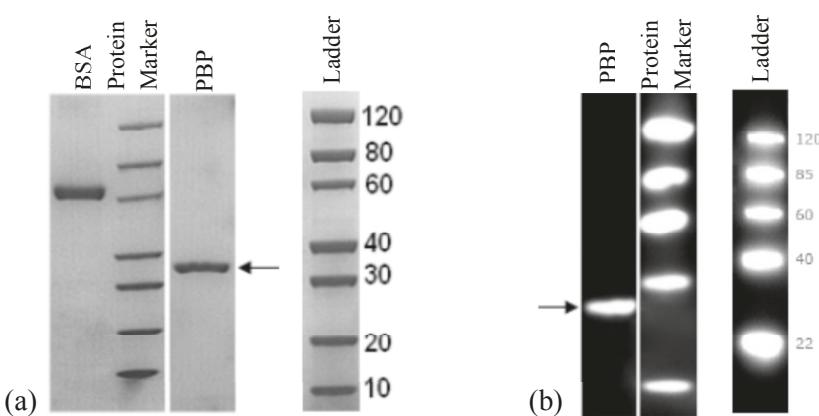
14 256 All three groups of *E. coli* showed an increasing trend of phosphate release as a function of time
15
16 257 in acidic conditions (Figure 4b). All samples released more phosphate compared to near-neutral
17
18 258 conditions, and PBP *E. coli* consistently released more phosphate than the negative controls. To
19
20 259 analyze the difference between unexpressed PBP *E. coli* and *E. coli* K12, two-way ANOVA
21
22 260 analysis was conducted. The analysis showed no significant effects due to groups and time ×
23
24 261 groups (p values = 0.45, 0.10, respectively), while a significant effect was observed due to time
25
26 262 (p < 0.05). Pseudo first order kinetics provided a better fit to the data than zero order, providing
27
28 263 reaction rate constants of 1.04, 0.48, and 0.27 h⁻¹ for PBP *E. coli*, *E. coli* K12, and unexpressed
29
30 264 *E. coli* (R^2 = 0.8, 0.2, 0.4), respectively. Thus, PBP *E. coli* always released statistically greater
31
32 265 levels of phosphate at a faster rate than the controls.
33
34
35
36
37

38 266 **3.5. Phosphate Recovery Potential using PBP *E. coli*** 39 40

41 267 Implementation of recombinant-plasmid bacteria systems in actual wastewater treatment
42
43 268 applications introduces challenges such as expulsion of the plasmid in the absence of antibiotic
44
45 269 pressure (Clark, 2009; Palomares et al., 2004). However, this study provides proof-of-concept
46
47 270 for the use of PBP for P recovery by demonstrating controlled P release. The results clearly
48
49 271 indicate the feasibility of using PBP for P recovery in that: a) bacterial expression of PBP
50
51 272 proteins enables greater phosphate adsorption, and b) PBP-bound phosphate can be released
52
53 273 using environmental stimuli, with lower pH, higher ionic strength, and higher temperature
54
55 274 promoting desorption. The highest observed recovery of adsorbed P in this 3-h study was 2.1%.

1
2
3 275 Although the concentrations of P released to the water were low, optimized release of the
4 phosphate sorbed by PBP *E. coli* into smaller volume “regenerant” solutions could facilitate
5
6 276 subsequent use as a liquid fertilizer or solid fertilizer following precipitation of phosphate-rich
7
8 277 solids. Successful construction of recombinant *E. coli* in this study not only demonstrated an
9
10 278 efficient means of producing PBP, but also provides a solid preliminary basis for future work
11
12 279 using PBP for phosphate removal. Future research is needed to address the many fundamental
13
14 280 thermodynamic questions that remain, including what are the important cofactors for the
15
16 281 dissociation reaction, and how do pH and ionic strength impact PBP-P complex configuration
17
18 282 and binding? Phosphate recovery may be greatly improved through direct exposure of PBP to the
19
20 283 water matrix, rather than expressing it in the cell’s periplasmic space. Ultimately, an
21
22 284 immobilized PBP system will be investigated to improve understanding of phosphate-PBP
23
24 285 sorption and desorption potential.
25
26
27
28
29
30
31

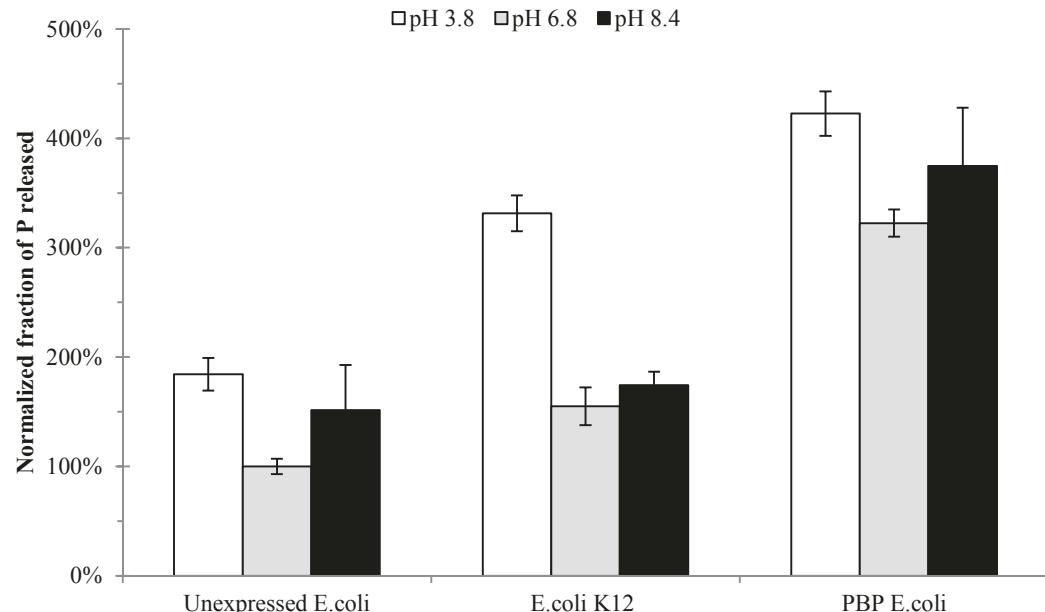
32 287 **Funding**
33
34


35 288 This project is part of CAREER award [1554511] from the National Science Foundation (NSF).
36
37 289 B.K.M. acknowledges support from the NSF Research Coordination Network Science,
38
39 290 Engineering, and Education for Sustainability Program [Award 1230603]. Additionally, this
40
41 291 work was partially supported by the Undergraduate Research Program at Marquette University.
42
43
44 292 All opinions expressed in the paper are the authors’ and do not necessarily reflect the views of
45
46 293 NSF.
47
48
49

50 294 **References**
51
52


53 295 Bischof, J.C., Padanilam, J., Holmes, W.H., Ezzell, R.M., Lee, R.C., Tompkins, R.G., Yarmush,
54
55 296 M.L. and Toner, M. (1995) Dynamics of cell membrane permeability changes at
56 297 supraphysiological temperatures. *Biophysical Journal* 68(6), 2608-2614.
57
58
59
60

1
2
3 298 Blaney, L., Cinar, S. and Sengupta, A. (2007) Hybrid anion exchanger for trace phosphate
4 299 removal from water and wastewater. *Water Research* 41(7), 1603-1613.
5 300 Blank, L.M. (2012) The cell and P: From cellular function to biotechnological application.
6 301 *Current Opinion in Biotechnology* 23(6), 846-851.
7 302 Botero, L.M., Al-Niemi, T.S. and McDermott, T.R. (2000) Characterization of two inducible
8 303 phosphate transport systems in *Rhizobium tropici*. *Applied and Environmental Microbiology*
9 304 66(1), 15-22.
10 305 Butre, C.I., Wierenga, P.A. and Gruppen, H. (2012) Effects of ionic strength on the enzymatic
11 306 hydrolysis of diluted and concentrated whey protein isolate. *Journal of Agricultural and Food
12 307 Chemistry* 60(22), 5644-5651.
13 308 Brune, M., Hunter, J.L., Howell, S.A., Martin, S.R., Hazlett, T.L., Corrie, J.E.T., and Webb,
14 309 M.R. (1998) Mechanism of inorganic phosphate interaction with phosphate binding protein
15 310 from *Escherichia coli*. *Biochemistry* 37, 10370-10380.
16 311 Caballero-Alfonso, A.M., Carstensen, J. and Conley, D.J. (2015) Biogeochemical and
17 312 environmental drivers of coastal hypoxia. *Journal of Marine Systems* 141, 190-199.
18 313 Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M.C., Lehrter, J.C., Lohrenz, S.E., Chou, W.-C., Zhai,
19 314 W., Hollibaugh, J.T. and Wang, Y. (2011) Acidification of subsurface coastal waters
20 315 enhanced by eutrophication. *Nature Geoscience* 4(11), 766-770.
21 316 Choi, S., Lee, H., Ha, J., Kang, D., Kim, C., Seo, J. and Cha, H. (2013) Biological removal of
22 317 phosphate at low concentrations using recombinant *Escherichia coli* expressing phosphate-
23 318 binding protein in periplasmic space. *Applied Biochemistry and Biotechnology* 171(5), 1170-
24 319 1177.
25 320 Clark, D.P. (2009) Molecular biology: Academic cell update edition, Elsevier Science.
26 321 Cooper, P., Dee, T. and Yang, G. (1993) Nutrient removal methods of meeting the EC Urban
27 322 Wastewater Directive, Esher, Surrey, England.
28 323 Copeland, R.A. (2000) Enzymes: A practical introduction to structure, mechanism and data
29 324 analysis, 2nd Ed. Wiley, New York.
30 325 Diaz, R.J. and Rosenberg, R. (2008) Spreading dead zones and consequences for marine
31 326 ecosystems. *Science* 321(5891), 926-929.
32 327 Filippelli, G.M. (2008) The global phosphorus cycle: Past, present, and future. *Elements* 4(2),
33 328 89-95.
34 329 Jenkins, D., Ferguson, J.F. and Menar, A.B. (1971) Chemical processes for phosphate removal.
35 330 *Water Research* 5(7), 369-389.
36 331 Jenkins, D. and Hermanowicz, S.W. (1991) Phosphorus and nitrogen removal from municipal
37 332 wastewater: Principles and practice, Lewis, Chelsea, MI.
38 333 Kuroda, A., Kunimoto, H., Morohoshi, T., Ikeda, T., Kato, J., Takiguchi, N., Miya, A. and
39 334 Ohtake, H. (2000) Evaluation of phosphate removal from water by immobilized phosphate-
40 335 binding protein PstS. *Journal of Bioscience and Bioengineering* 90(6), 688-690.
41 336 Ledvina, P.S., Koehl, E., Tsai, A.L., Wang, Z. and Quiocho, F.A. (1998) Dominant role of local
42 337 dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge
43 338 surface: Equilibrium, kinetic, and crystallographic studies. *Protein Science* 7(12), 2550-2559.
44 339 Ledvina, P.S., Yao, N., Choudhary, A., and Quiocho, F.A. (1996) Negative electrostatic surface
45 340 potential of protein sites specific for anionic ligands. *Proceedings of the National Academies
46 341 of Science* 93, 6786-6791.
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 342 Levitz, R., Friedberg, I., Brucker, R., Fux, A. and Yagil, E. (1985) The effect of the locus *pstB*
4 343 on phosphate binding in the phosphate specific transport (PST) system of *Escherichia coli*.
5 344 Molecular and General Genetics 200(1), 118-122.
6
7 345 Li, Q., Yu, Z., Shao, X., He, J. and Li, L. (2009) Improved phosphate biosorption by bacterial
8 346 surface display of phosphate-binding protein utilizing ice nucleation protein. FEMS
9 347 Microbiology Letters 299(1), 44-52.
10 348 Luecke, H. and Quiocho, F.A. (1990) High specificity of a phosphate transport protein
11 349 determined by hydrogen bonds. Nature. 347, 402-406.
12
13 350 Mao, B., Pear, M.R., and McCammon, J.A. (1982) Hinge-bending in L-Arabinose-binding
14 351 protein. Journal of Biological Chemistry 257(3), 1131-1133.
15 352 Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran,
16 353 P., Stoltzfus, J., Westerhoff, P. and Rittmann, B.E. (2016) Total value of phosphorus
17 354 recovery. Environmental Science & Technology 50, 6606-6620.
18
19 355 Mayer, B.K., Gerrity, D., Rittmann, B.E., Reisinger, D. and Brandt-Williams, S. (2013)
20 356 Innovative strategies to achieve low total phosphorus concentrations in high water flows.
21 357 Critical Reviews in Environmental Science and Technology 43(4), 409-441.
22
23 358 Neznansky, A., Blus-Kadosh, I., Yerushalmi, G., Banin, E. and Opatowsky, Y. (2014) The
24 359 *Pseudomonas aeruginosa* phosphate transport protein *PstS* plays a phosphate-independent
25 360 role in biofilm formation. The FASEB Journal 28(12), 5223-5233.
26
27 361 Osborne, E.J. and MacKillop, W.J. (1987) The effect of exposure to elevated temperatures on
28 362 membrane permeability to Adriamycin in Chinese hamster ovary cells in vitro. Cancer
29 363 Letters 37(2), 213-224.
30
31 364 Palomares, L.A., Estrada-Moncada, S. and Ramírez, O.T. (2004) Production of recombinant
32 365 proteins: Challenges and solutions. Methods in Molecular Biology: Recombinant Gene
33 366 Expression: Reviews and Protocols (v. 267), Humana Press, Totowa, NJ, pp. 15-51.
34
35 367 Rittmann, B.E., Mayer, B., Westerhoff, P. and Edwards, M. (2011) Capturing the lost
36 368 phosphorus. Chemosphere 84(6), 846-853.
37
38 369 Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning, Cold Spring Harbor
39 370 Laboratory Press, New York.
40
41 371 Santos-Benite, F., Rodriguez-Garcia, A., Franco-Dominguez, E. and Martin, J.F. (2008)
42 372 Phosphate-dependent regulation of the low- and high-affinity transport systems in the model
43 373 actinomycete *Streptomyces coelicolor*. Microbiology 154(8), 2356-2370.
44
45 374 Smith, V.H., Dodds, W.K., Havens, K.E., Engstrom, D.R., Paerl, H.W., Moss, B., and Likens,
46 375 G.E. (2014) Comment: Cultural eutrophication of natural lakes in the United States is real
47 376 and widespread. Limnology and Oceanography 59(6), 2217-2225.
48
49 377 Stoker, H.S. (2006) General, organic, and biological chemistry, Cengage Learning.
50
51 378 Suzuki, I., Lee, D., Mackay, B., Harahuc, L. and Oh, J.K. (1999) Effect of various ions, pH, and
52 379 osmotic pressure on oxidation of elemental sulfur by *Thiobacillus thiooxidans*. Applied and
53 380 Environmental Microbiology 65(11), 5163-5168.
54
55 381 Wang, Z., Choudhary, A., Ledvina, P.S. and Quiocho, F.A. (1994) Fine tuning the specificity of
56 382 the periplasmic phosphate transport receptor. Site-directed mutagenesis, ligand binding, and
57 383 crystallographic studies. Journal of Biological Chemistry 269(40), 25091-25094.
58
59 384 Wanner, B.L. (1993) Gene regulation by phosphate in enteric bacteria. Journal of Cellular
60 385 Biochemistry 51(1), 47-54.
386
387

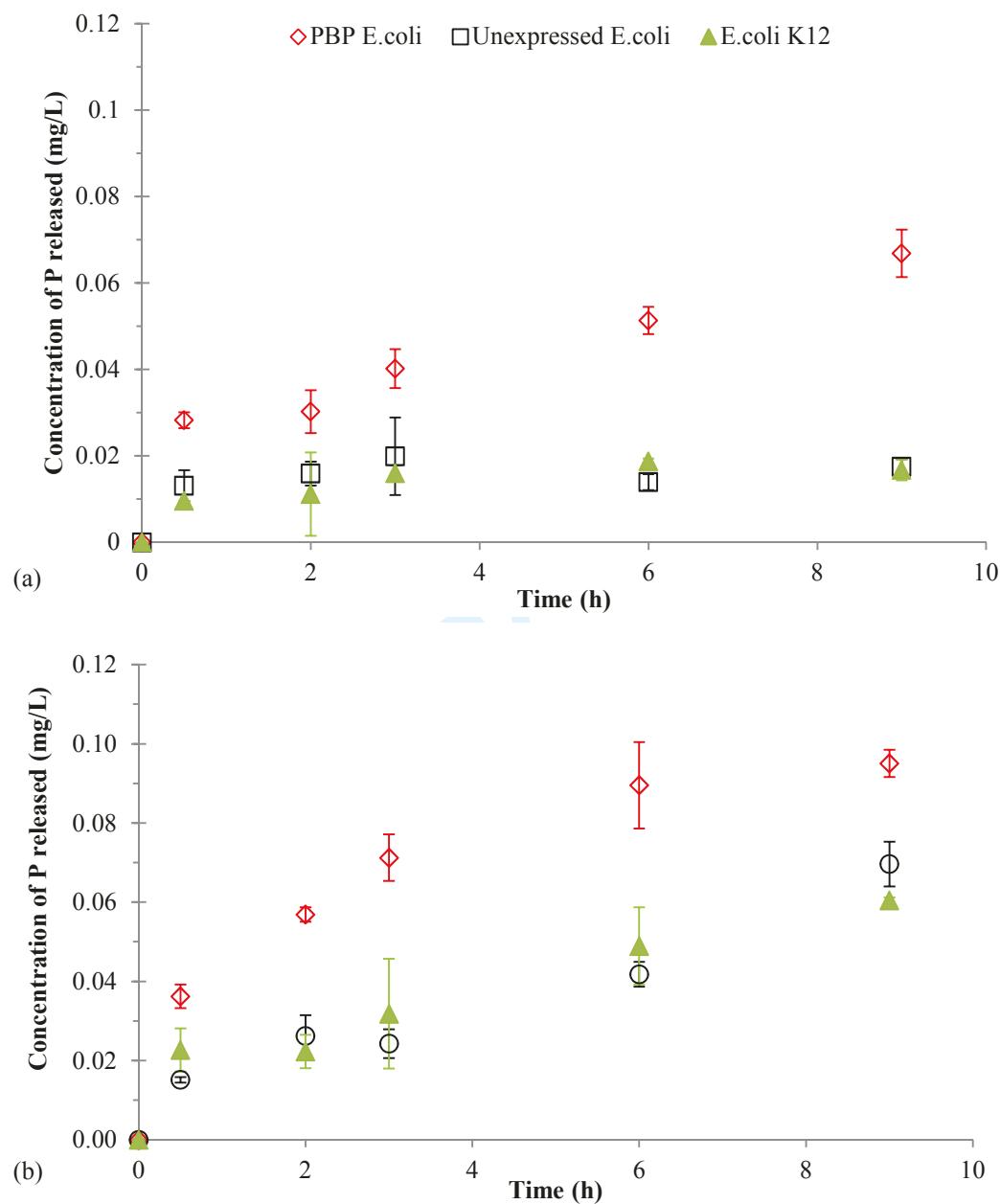
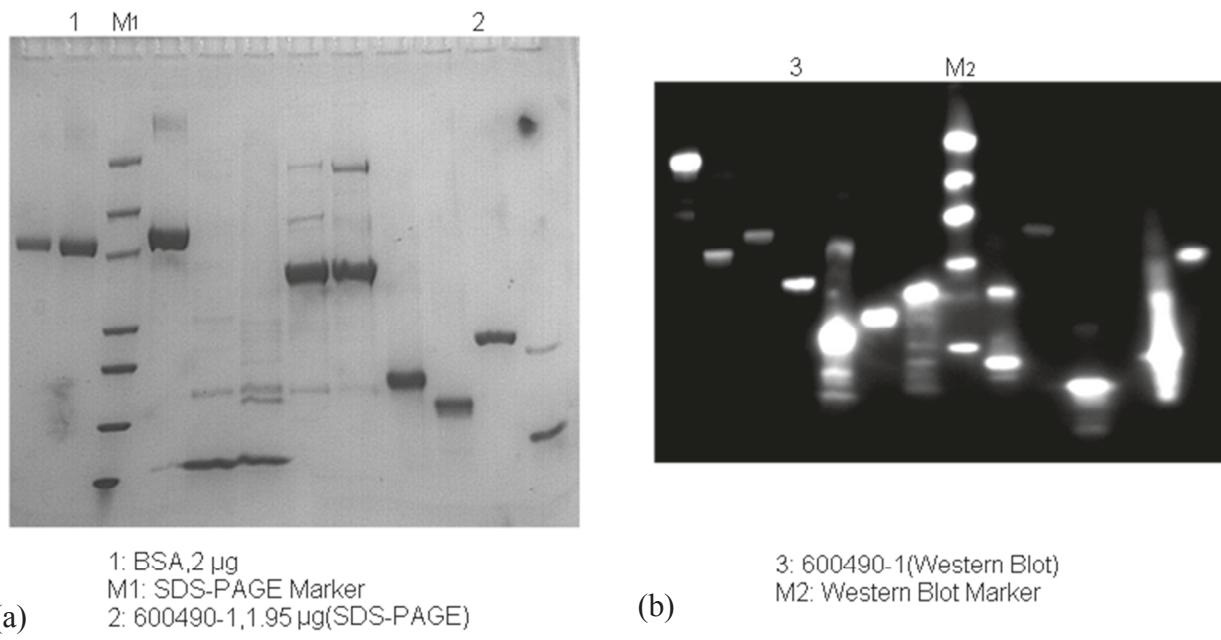
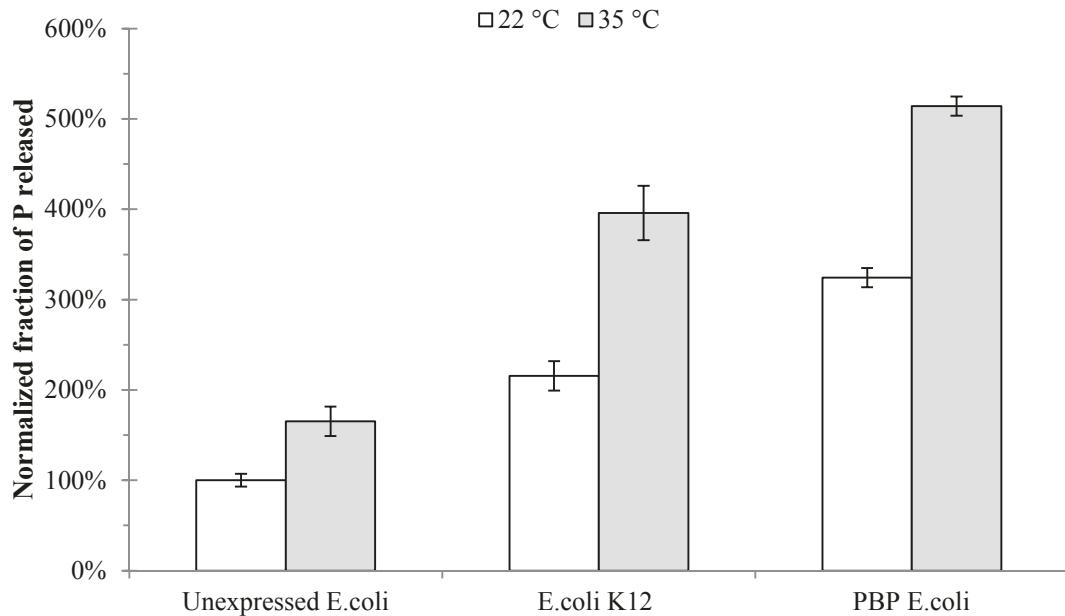

Figure 1. (a) SDS-PAGE and (b) Western blotting analyses of purified PBP protein. Bovine serum albumin (BSA) was used as a PBP-negative control for SDS-PAGE.

Figure 2. Phosphate release from PBP *E. coli*, unexpressed *E. coli*, and *E. coli* K12 suspension within 3 h at different ionic strengths (1 mM, 10 mM, and 100 mM KCl). All concentrations were normalized to the P concentration released from unexpressed *E. coli* at 1 mM KCl. Experiments were performed at room temperature (22°C), and the pH of all samples was initially 6.8. The initial concentration of all bacterial suspensions was OD 600 = 0.50. Bars and error bar represent mean \pm one standard deviation of triplicate experiments.

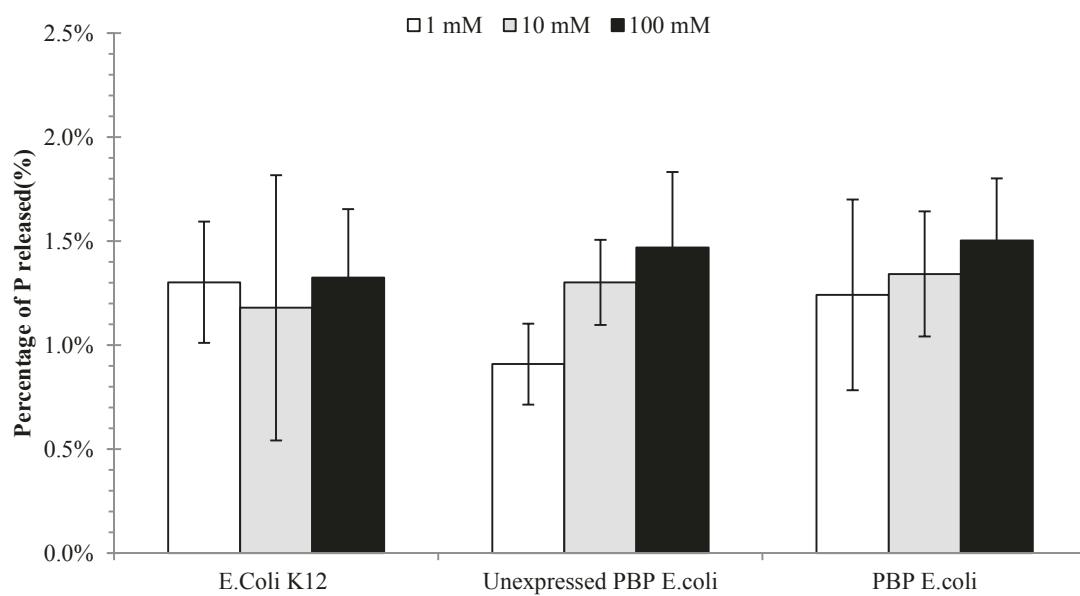
Figure 3. Phosphate concentration released from PBP *E. coli*, unexpressed *E. coli*, and *E. coli* K12 suspension within 3 h at different pHs. All concentrations were normalized to the P concentration released from unexpressed *E. coli* at pH 6.8. All tests were performed at room temperature 22°C and 1 mM KCl was used for all samples. The initial concentration of all bacterial suspensions was OD 600 = 0.50. Bars and error bar represent mean \pm one standard deviation of triplicate experiments.

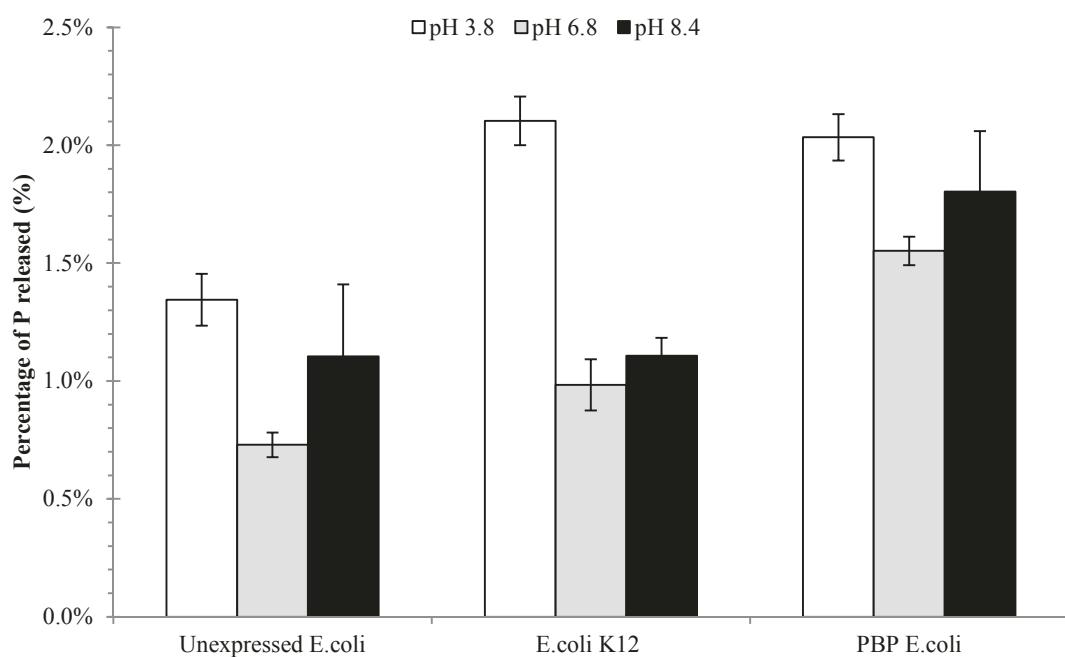

Figure 4. The change in phosphate concentration released from PBP *E. coli*, unexpressed *E. coli*, and *E. coli* K12 as a function of time at (a) pH 6.8 and (b) pH 3.8. All cell suspensions were adjusted to the same bacteria concentration of OD 600 = 0.50. Data points and error bars represent mean ± one standard deviation of triplicate experiments.

1
2
3 **High affinity phosphate binding protein (PBP) for phosphorous recovery: Proof of concept**
4
5 **using recombinant *Escherichia coli***
6
7
8
9
10
11


12 Yu Yang^a, Wendy Ballent^a, Brooke K. Mayer^{a*}
13
14

15 **Affiliations:**
16
17
18 ^aDepartment of Civil, Construction and Environmental Engineering, Marquette University,
19
20 Milwaukee, Wisconsin, 53233, United States
21
22
23
24
25
26
27


28 ***Corresponding Author and Address:**
29
30
31 Brooke Mayer, Department of Civil, Construction and Environmental Engineering, Marquette
32
33 University, 1637 W. Wisconsin Avenue, Milwaukee, Wisconsin, 53233, United States
34
35
36 Phone: (414) 288-2161
37
38
39 E-mail: brooke.mayer@marquette.edu
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


Figure S1. Original images for (a) SDS-PAGE analysis and (b) Western blotting using the purified PBP protein. In Figure S1a, lanes 1, M1, and 2 represent bovine serum albumin (BSA), protein marker, and purified protein PBP, respectively. In Figure 1b, lanes 3 and M2 represent purified protein PBP and protein biomarker, respectively.

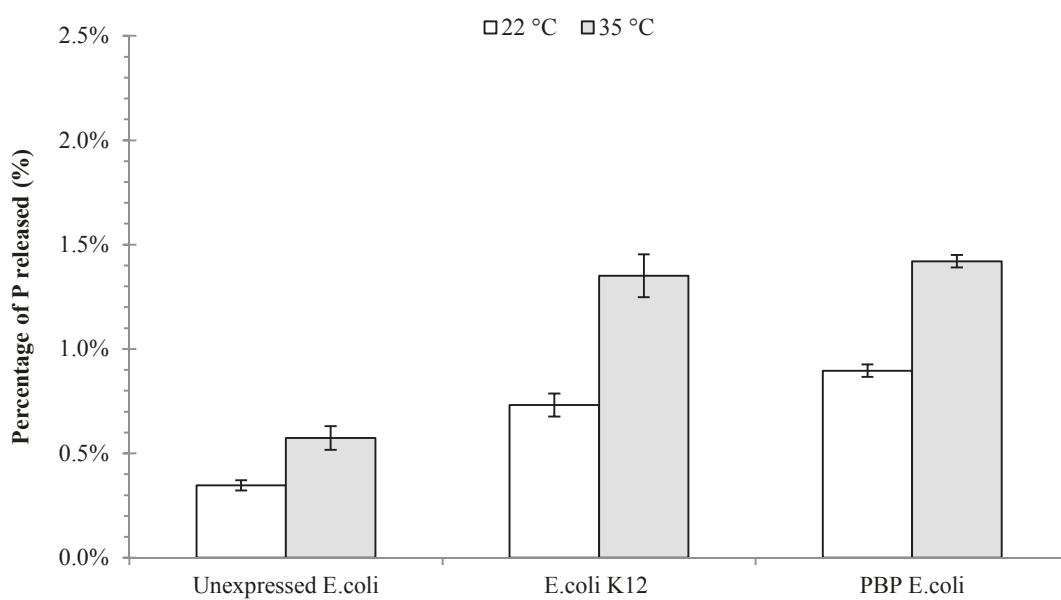

Figure S2. Phosphate concentrations released from PBP *E. coli*, unexpressed *E. coli*, and *E. coli* K12 suspensions within 3 h as a function of temperature. All concentration values were normalized to the P concentration released from unexpressed *E. coli* at 22°C. All suspensions had a bacteria concentration of OD 600 = 0.50. Bars and error bars represent mean \pm one standard deviation of triplicate experiments.

Figure S3. Percentage of phosphate released from PBP *E. coli*, unexpressed *E. coli*, and *E. coli* K12 suspension within 3 h at different ionic strengths (1 mM, 10 mM, and 100 mM KCl). All concentration values were normalized to the total P of the cell suspension. The initial pH of all samples was 6.8 and the initial concentration of all bacterial suspensions was OD 600 = 0.50. Bars and error bar represent mean \pm one standard deviation of triplicate experiments.

Figure S4. Percentage of phosphate released from PBP *E. coli*, unexpressed *E. coli*, and *E. coli* K12 suspension within 3 h at different pHs. All concentrations were normalized to the total P concentration of each cell suspension at pH 6.8. 1 mM KCl was used for all of tests. The initial concentration of all bacterial suspensions was OD 600 = 0.50. Bars and error bar represent mean \pm one standard deviation of triplicate experiments.

Figure S5. Percentage of phosphate released from PBP *E. coli*, unexpressed *E. coli*, and *E. coli* K12 suspensions within 3 h as a function of temperature. All concentrations were normalized to the total P of the cell suspension at 22 °C. All suspensions had a bacteria concentration of OD 600 = 0.50. Bars and error bar represent mean \pm one standard deviation of triplicate experiments.