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35 ABSTRACT

36 Rationale: Nontuberculous mycobacteria (NTM) are ubiquitous environmental bacteria that may 

37 cause chronic lung disease and are one of the most difficult to treat infections among persons 

38 with cystic fibrosis (pwCF). Environmental factors likely contribute to increased NTM densities, 

39 with higher potential for exposure and infection. 

40 Objective: To identify water-quality constituents that influence odds of NTM infection among 

41 pwCF in Colorado.

42 Methods: We conducted a population-based nested case-control study using patient data from 

43 the Colorado CF Center NTM database. We associated data from pwCF and water-quality data 

44 extracted from the Water Quality Portal to estimate odds of NTM infection. Using Bayesian 

45 generalized linear models with binomial-distributed discrete responses, we modeled three 

46 separate outcomes; any NTM infection, infections due to Mycobacterium avium complex 

47 species, and infections due to Mycobacterium abscessus group species.

48 Results: We observed a consistent association with molybdenum in the source water and 

49 Mycobacterium abscessus group species infection among pwCF in all models. For every 1-unit 

50 increase in the log concentration of molybdenum in surface water, the odds of infection for those 

51 with Mycobacterium abscessus group species compared to those who were NTM culture-

52 negative increased by 79%. The odds of Mycobacterium abscessus group infection varied by 

53 county; the counties with the highest probability of infection are located along the major rivers.

54 Conclusions: We have identified molybdenum in the source water as the most predictive factor 

55 of Mycobacterium abscessus group infection among pwCF in Colorado. This finding will help 

56 inform patients at risk for NTM of their relative risks in residing within specific regions.  

57
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58 1. INTRODUCTION

59 Pulmonary nontuberculous mycobacterial (NTM) disease among persons with cystic 

60 fibrosis (pwCF) is challenging to treat, requiring prolonged treatment courses (1). Over a recent 

61 5-year interval, nearly 20% of children and adults with CF in the United States who were tested 

62 had positive cultures for NTM, of whom 39% had infections with Mycobacterium abscessus (2), 

63 which is one of the most difficult to treat NTM species (3). Distinct geographic variability of 

64 NTM disease has been demonstrated in both general and CF populations (2, 4, 5). Environmental 

65 determinants of NTM infection and disease include factors related to moisture in the 

66 environment, as well as soil (6) and soil components (4, 7, 8). However, the sources of NTM 

67 infection and exposure risks are poorly understood. Environmental conditions related to soil 

68 properties, natural water, and engineered water system characteristics, including biofilm 

69 formation in premise plumbing, likely contribute to increased NTM densities with higher 

70 potential for NTM exposure and infection.  Prevention of infections with NTM among pwCF is a 

71 critical clinical need (9). 

72 In two previous studies, we explored the role of water exposure in NTM risk. We 

73 identified three high-risk watersheds in Colorado (CO) (10), and further used source water data 

74 (11) to identify factors potentially influencing the higher risk in these watershed regions.  

75 Molybdenum in surface water was a significant contributor to the risk of NTM infection; a 1-unit 

76 increase in the log concentration of molybdenum in surface water was associated with a 17% 

77 increased risk of NTM infection. Research to date suggests a physiological connection linking 

78 molybdenum and essential metabolism of Mycobacterium tuberculosis, a phylogenetically 

79 related organism to NTM, potentially impacting survival, pathogenesis and persistence (12-14). 

80 Given the genetic relatedness of M. tuberculosis and NTM, we hypothesize that higher 
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81 concentrations of specific water-quality constituents, potentially molybdenum, which the 

82 bacteria may require for metabolism and growth, result in higher densities of NTM in surface 

83 water sources in certain regions. Thus, infection rates would be higher in regions with a water 

84 supply from sources with high densities of NTM. In our current study, we hypothesize that 

85 specific water-quality constituents in surface water in Colorado influence the odds of having 

86 NTM infection among pwCF.  To test this hypothesis, we conducted a nested case-control study 

87 using water-quality data from the Water Quality Portal, sponsored by the U.S. Geological 

88 Survey, U.S. Environmental Protection Agency, and National Water Quality Monitoring 

89 Council, together with CF patient data extracted from the Colorado CF Center NTM database.

90 2. METHODS

91 2.1 Data Collection

92 2.1.1 Study Design and Subjects

93 This study was a nested case-control study using demographic and clinical data from the 

94 Colorado CF Center NTM database. The Colorado CF Center comprises the Pediatric CF 

95 Program at The Children’s Hospital Colorado in Aurora, Colorado, and an Adult CF Program at 

96 National Jewish Health in Denver, Colorado. The Colorado CF Center is the only CF Center in 

97 the state and has nearly complete capture of all CF patients in Colorado. This study therefore can 

98 be described as a population-based CF study.

99  The Colorado CF Center NTM database contained data on pwCF resident in Colorado 

100 from January 2007 through January 2019. We extracted patient ZIP code, NTM species, and 

101 demographic information. Because we did not have patient address information and our data 

102 were too sparse at the ZIP code level, we aggregated all patient ZIP codes to the county-level. 

103 Cases were defined as CF patients who had at least one positive NTM culture and were resident 
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104 in Colorado at the time of their first positive culture, as determined by chart review. We excluded 

105 CF patients who had cultured positive only for M. gordonae infection. Controls were defined as 

106 patients with CF who had at least three negative cultures within a single county over a period of 

107 at least three years (“NTM-negative”). Our study population comprised 388 CF patients; 193 

108 cases and 195 controls. This study was approved by the NJH Institutional Review Board (HS-

109 1683). 

110 2.1.2 NTM species

111 Frequencies of NTM species from patient isolates are listed in Supplementary Table 1. 

112 Molecular assays by Line Probe Assay analysis or targeted gene sequencing were used to 

113 differentiate Mycobacterium species. NTM identification was performed by the Advanced 

114 Diagnostics laboratory at NJH, a National Reference Laboratory for NTM. 

115 2.1.3 Water-Quality Data Compilation:

116 We obtained water-quality data from the Water Quality Portal (WQP) (15), a water 

117 quality database collected or hosted by the U.S. Geological Survey, the U.S. Environmental 

118 Protection Agency and the National Water Quality Monitoring Council. Our water-quality 

119 dataset has been described previously (11). Supplementary Table 2 presents the median and 

120 standard deviation values of the water-quality constituents obtained from the WQP that were 

121 used in our analyses.

122 2.2 Statistical Analysis

123 All water-sample sites were aggregated by county. Subsequently, we calculated the 

124 median value of each water-quality constituent for each county.  Apparent concentration-unit 

125 reporting errors were corrected (for example, three orders of magnitude deviations for individual 

126 values were multiplied by 1,000 to align them with the range of the remaining source-specific 
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127 data). Water-quality constituents were eliminated if data were not available for more than 50 

128 percent of counties. Following these curation steps, seventeen remaining water-quality 

129 constituents remained for analysis (Supplementary Table 2). We used a natural log 

130 transformation of all county-median variables (17 variables). We standardized all the water-

131 quality constituents’ log concentrations to have a mean of 0 and standard deviation of 1. For 

132 counties with missing data, we imputed the median value of all water-quality constituents. We 

133 also calculated drive time between county centroids and NJH. For patients with any NTM 

134 infection, thirty-one counties were dropped from the analysis because there was not at least one 

135 case or one control resident in those counties, with thirty-three remaining counties (51.6%) 

136 available for analysis. For patients with MAC and M. abscessus infection, thirty-one counties 

137 (48.4%) and twenty-nine counties (45.3%), respectively, were available for analysis. Each 

138 patient was assigned the water quality value for his or her respective county of residence. The 

139 counties with available data are shown with non-gray coloring in Figure 1.

140 2.2.1 Variable Reduction using Principal Component Analysis (PCA)

141 Principal component analysis (PCA) was used to reduce the number of predictors 

142 considered in our subsequent models. PCA is used to determine orthogonal “components” that 

143 explain the most variation in the data, where each component is a weighted combination of the 

144 predictor variables. For the components explaining the most variation, the variables with the 

145 most weight in these components were identified for use in future models. PCA was performed 

146 on 17 water-quality constituents summarized at the county-level (after these values were natural 

147 log transformed, scaled, and imputed).

148 Principal components 1 and 2 explained 58.9% of the data variability. Any constituent in 

149 the first two components that had a greater contribution than what is expected under equal 
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150 contribution were identified as important contributors (16, 17). This process is illustrated 

151 graphically in Supplementary Figure 1, where the dashed red line represents what is expected 

152 under equal contribution. This threshold captured 11 out of 17 constituents: cadmium, calcium, 

153 chloride, magnesium, molybdenum, manganese, potassium, selenium, sodium, sulfate, and zinc. 

154 2.2.2 Parameters used in Bayesian Binomial Regression Models

155 We used Bayesian generalized linear models (GLMs) to model the relationship between 

156 NTM infection and demographic and water quality variables.  In these models, the dependent 

157 variable is NTM infection status, and the predictors are demographic and water quality variables. 

158 Diagnostic tools were used to confirm that the fitted models adequately represented the observed 

159 pattern of the data. Because age, sex, and race\ethnicity are associated with the risk of NTM 

160 infection (2, 18, 19), and could also influence county of residence, we included these as 

161 confounders in our model. These relationships are depicted in a Directed Acyclic Graph (DAG) 

162 in Supplementary Figure 2. 

163  For each subject, county-level median values of each water-quality constituent 

164 (standardized, imputed) were included.  In addition, we included a binary variable indicating 

165 whether a county’s centroid center was within a 1-hour drive to NJH. To control for a higher 

166 proportion of patients residing in counties located in the Front Range with greater access to 

167 treatment, we categorized counties based on whether their centroid center was within a 1.0-hour 

168 drive to NJH. We also performed sensitivity analyses to exclude the drive- time variable from 

169 our models (Supplementary Table 3).

170 2.2.3 Bayesian Binomial Regression Models with Individual Metals from Principal Components 

171 1 & 2 
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172 We modeled three separate outcomes (any NTM infection, infections due to 

173 Mycobacterium avium complex (MAC) species, and infections due to M. abscessus group 

174 species as a function of water-quality constituents and demographic variables (Supplementary 

175 Table 4). Then, for each outcome, we constructed a subsequent model (Model 1) that included 

176 only those water-quality constituents whose variance inflation factor was less than 10 to mitigate 

177 the potential impact of collinear covariates. For the three models, we sequentially removed the 

178 constituent with the highest variance inflation factor. The constituents with variance inflation 

179 factors over 10 included magnesium, sodium, potassium, and sulfate, resulting in a final model 

180 (Model 1) with the following water-quality constituents:  cadmium, calcium, chloride, 

181 manganese, molybdenum, selenium, zinc. The correlation matrix for water-quality constituents 

182 are shown in Supplementary Table 5. Finally, we constructed separate single-constituent 

183 Bayesian GLMs for the water-quality constituents which were significant in Model 1 (as 

184 assessed by having a 90% central credible interval (CI) which did not include 1) (Model 2). We 

185 estimated the odds of NTM infection among pwCF given exposure to water-quality constituents 

186 in surface water sources. 

187 We present an odds ratio and 90% central CI for each model variable. CIs were used to 

188 assess the posterior probability of an association between each model variable and a change in 

189 the odds of NTM infection. 90% CIs were reported owing to greater computational stability than 

190 the 95% CIs in the rstanarm package  (20). 

191 We predicted the probability that an unobserved CF patient living in a county will have 

192 an NTM infection and displayed the results as a probability map across Colorado counties 

193 (Figure 1). The software used to perform the analysis are discussed in the Supplementary 
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194 Materials. Reproducible source code for the analyses is also provided in the Supplementary 

195 Materials.

196 3. RESULTS

197 3.1 Study Population Characteristics

198 Our study population comprised pwCF who received medical care at the Colorado CF 

199 Center, and included 195 CF NTM culture-negative patients and 193 pwCF who had at least one 

200 positive culture, of whom 147 (76.2%) had MAC infection (M. avium, M. intracellulare, M. 

201 chimaera) and 82 (42.3%) had M. abscessus complex infection (M. abscessus/chelonae, M. 

202 massiliense, M. bolletti). Forty-six (23.7%) patients had both MAC and M. abscessus infections 

203 at any time. Patients with both MAC and M. abscessus infections were included in both subsets 

204 of patients.  Demographic characteristics of cases and controls are shown in Table 1. We 

205 observed a younger mean age and a higher proportion of males among pwCF with M. abscessus 

206 infection compared to those with MAC infection. Given well-understood growth rate differences 

207 (21), distinct ecological niches (22) and specialized medical treatments (23) for MAC and M. 

208 abscessus infections, we modeled three separate outcomes: Any NTM infection, infections due 

209 to MAC species, and infections due to M. abscessus species.

210 3.2 Bayesian Binomial Regression Models with Individual Metals from Principal 

211 Components 1 & 2

212 Molybdenum was the only constituent significantly associated with increased odds of 

213 infection (i.e., 90% CI failed to include 1) (Table 2; Model 1). The results of these models 

214 indicate that for every 1-log unit increase in molybdenum concentrations in surface water, the 

215 odds of having NTM infection is 1.7, 1.9, and 2.5 times higher for infections caused by all NTM 
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216 species, MAC species, and M. abscessus species, respectively, after controlling for other water-

217 quality constituents. 

218 We then examined the 90% CI for exponentiated parameters of Model 1. The parameters 

219 whose 90% CI failed to include 1 were included in separate single-constituent models (Table 3; 

220 Model 2). For All NTM species and M. abscessus species, the credible intervals for molybdenum 

221 were entirely above 1, indicating a significantly higher odds of infection. Even more 

222 convincingly, the posterior probability that the molybdenum coefficient is positive (i.e., 

223 associated with increased odds of NTM for pwCF) is 96.96% for All NTM species, 94.15% for 

224 MAC species, and 99.96% for M. abscessus species (Supplementary Table 6). Our results 

225 indicate that for every 1-log unit increase in molybdenum concentration in surface water sources 

226 at the county-level, the odds of having NTM infection caused by M. abscessus species increased 

227 by 79% compared with pwCF who were NTM-negative. When modeling all NTM species, we 

228 observed a weaker association for molybdenum. We did not observe an association between 

229 molybdenum and MAC infections. We also estimated these associations without including drive-

230 time in the models (Supplementary Table 3). The association that we observed between 

231 molybdenum and M. abscessus infections remained significant (OR = 1.60), although slightly 

232 attenuated compared to our main results (OR= 1.79). The association between molybdenum and 

233 all NTM infections did not retain significance without including drive-time. Therefore, our 

234 results indicate that increasing concentrations of molybdenum in surface water increases the odds 

235 of M. abscessus infection.

236  In Figure 1, we calculated the predicted probability that an unobserved pwCF living in a 

237 county will have a M. abscessus infection based on a model using molybdenum as an 

238 independent predictor while controlling for drive time, age race, and gender. The counties with 
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239 the highest probability of M. abscessus infection are located along the major rivers; the South 

240 Platte River flowing through Denver, Logan, Sedgwick, and Weld counties, the Colorado River 

241 flowing through Mesa county, and the Arkansas River flowing through Pueblo county.

242 DISCUSSION

243 We found that molybdenum in surface water sources was associated with increased odds of 

244 NTM infection among pwCF, specifically for those with M. abscessus group infections. For 

245 every 1-log unit increase in molybdenum concentration in surface water among pwCF, the odds 

246 of NTM infection caused by M. abscessus species increased by 79% compared with those who 

247 were NTM-negative (Table 3; Model 2). 

248 As discussed previously (11), molybdenum is involved in the essential metabolism of 

249 Mycobacterium tuberculosis (12-14), and, given the genetic relatedness of these organisms, it is 

250 biologically plausible that it may play a similar role in NTM metabolism (24). In this study, we 

251 replicated the molybdenum-NTM infection association in a CF population with water-quality 

252 constituent median values calculated for county line boundaries (instead of watershed boundaries 

253 (11)). This study also goes a step further to suggest that molybdenum in surface water may 

254 increase the odds of acquiring NTM, specifically for M. abscessus infection, rather than for 

255 MAC infection, in a CF population. 

256 Molybdenum may promote NTM growth in surface water, thereby increasing the risk of 

257 exposure and infection. Because we did not have access to environmentally-measured NTM 

258 densities, we used infection prevalence as a proxy for NTM abundance, assuming that higher 

259 NTM abundance increases the risk of NTM exposure and infection.  A recent study (25) 

260 demonstrated  that NTM abundance from premise plumbing samples as measured by 16S rRNA 

261 gene sequencing approach was significantly correlated with higher disease prevalence in 
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262 population-based epidemiological studies (4). This approach assumes that regions with high 

263 disease prevalence correlate with regions of high NTM densities (or more pathogenic species 

264 (25)), where certain regional environmental factors create a hospitable environment for NTM to 

265 persist. While previous literature has not identified molybdenum in soil or water as a risk factor 

266 for NTM, other surveyed metals have been identified as potential risk factors for NTM growth in 

267 the environment. In the coastal swamps of the southeastern U.S., high numbers of 

268 Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum 

269 (MAIS) were correlated with high zinc concentrations in water samples (26).  Although we did 

270 not observe an association between zinc concentrations in surface water and MAC infections, 

271 different NTM species may require specific environmental conditions for growth in different 

272 habitats, and thus discrepant findings are not unexpected. By analyzing water-quality data across 

273 diverse geographic regions, we hope to identify factors that are necessary in promoting NTM 

274 growth in water sources, as well as identifying whether these factors differ for MAC and M. 

275 abscessus species.

276 Figure 1 presents the predicted probability of M. abscessus infection by county. The more 

277 highly populated of these counties with the highest probability of M. abscessus infection, 

278 Denver, Mesa, Pueblo, and Weld, have public water supplies with centralized water distribution 

279 systems that come almost entirely from surface water sourced primarily from these rivers (27). 

280 Among the rural counties with high probabilities of infection located along the South Platte 

281 River, the public water supply for Logan county is primarily from surface water, while Sedgwick 

282 county relies heavily on groundwater (27). Many of the counties located along the major 

283 Colorado rivers also use water from these rivers for crop irrigation (27). These county-level 

284 probabilities of infection suggest that potential sources of NTM exposure may come through 
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285 municipal water systems that take water from these rivers as well as possibly from crop 

286 irrigation. The results shown in this map reflect the same high-risk regions that we have reported 

287 previously (11). 

288 This study reports an important finding for the CF population. MAC and M. abscessus 

289 are the two most clinically relevant NTM species, which comprise 95% of NTM infections 

290 among pwCF  (2, 3, 9, 28, 29). Adjemian et al. observed significant increases for M. abscessus 

291 between 2010-2014 in the Mountain states among pwCF (2). Rendering a framework of the 

292 necessary environmental factors that predict NTM exposure and infection is crucial for the 

293 development of prevention strategies. 

294 STRENGTHS AND LIMITATIONS

295 In our previous studies (10, 11), we did not have sufficient data to identify and exclude 

296 individuals who had moved to Colorado after their initial infection diagnosis. The data used in 

297 this study ensured that a subject’s first positive culture occurred in Colorado, which prevented 

298 selection bias from influencing our results. 

299 Only a subset of the water-quality constituent dataset for the state of Colorado was used 

300 in our analysis due to constraints in our study design. Counties were dropped from the analysis if 

301 no pwCF resided there. As a result, our findings were based on approximately half of Colorado’s 

302 counties. While our patient population included nearly all pwCF in Colorado, our results may 

303 therefore be generalizable to all pwCF in Colorado but only to the counties included in the 

304 analysis. In addition, some limitations are inherent to our water-quality constituent dataset (11). 

305 Water sampling locations were not from random or systematically representative locations and 

306 the number of sites sampled across counties were variable. Additionally, data were imputed to 

307 some counties with missing information. Therefore, we do not know the degree of bias in the 
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308 resulting median concentration values for each county. If exposure misclassification with respect 

309 to water-quality constituents were present, we would assume it to be nondifferential with respect 

310 to cases and controls. This type of misclassification would bias the odds ratio toward the null. 

311 Finally, since source water samples were used in these analyses rather than tap water, our 

312 findings may not be representative of the water that people are exposed to in their homes after 

313 filtration and treatment. 

314 CONCLUSIONS

315 This study has identified molybdenum in surface water as the most predictive 

316 environmental factor of NTM infection among pwCF in Colorado, specifically for M. abscessus 

317 infection. We are too early in this discovery process to make specific recommendations, although 

318 if future studies confirm that molybdenum is in fact a necessary or sufficient factor for growth of 

319 M. abscessus species in water sources, these findings could inform patients at risk for NTM of 

320 their relative risks in residing within specific regions. Analyzing water-quality data across 

321 diverse geographic regions may render a framework of factors that are necessary for NTM 

322 growth, specifically factors that may differ for MAC and M. abscessus species. Investigating 

323 whether molybdenum metabolism in the (human) host affects NTM susceptibility will also have 

324 important implications for at-risk populations.  

325
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414 Figure Legend.
415
416 Figure 1. Predicted probability of M. abscessus infection for counties where pwCF resided. Gray 
417 lines represent county line boundaries in Colorado. County names are printed in black. Blue 
418 areas indicate lakes, reservoirs, and rivers.
419
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420 Table 1. Descriptive statistics of cases (NTM culture positive) and controls among a Colorado 
421 CF patient population.  
422

423
424
425

Characteristic Controls

(CF only)

n = 195

Patient infection 

from 

all NTM species

n = 193

Patient infection from 

MAC species

n = 147

Patient infection from 

MABSC species

n = 82

Age, yr, mean±SD 35.66±11.90 37.30±13.37 37.66±13.93 35.20±10.80

Female sex, n (%) 95 (48.7) 109 (55.9) 86 (58.5) 36 (43.9)

White race, n (%) 187 (95.9) 187 (96.9) 143 (97.3) 80 (97.6)
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426 Table 2. Model 1. Bayesian binomial regression model examining water-quality constituents 
427 (with VIF values less than 10 from Model 1) associated with odds of NTM infection among 
428 pwCF. Bolded estimates have 90% Cis that fail to include 1. CI = Credible Interval.
429

430 *Reference group is White Alone

All NTM species

      Variable                    Odds 

Ratio

                                        (90% CI)

MAC species

Variable                    Odds Ratio

                                    (90% CI)

MABSC species

        Variable                       Odds 

Ratio

                                        (90% CI)

Age:

(1 Year)

1.01

(1.00, 1.03)

Age:

(1 Year)

1.01

(1.00, 1.03)

Age:

(1 Year)

1.00

(0.98, 1.03)

Gender:

Male

0.77
(0.54, 1.11)

Gender:

Male

0.70
(0.48, 1.03)

Gender:

Male

1.33
(0.84, 2.10)

Race:

Non-White*

0.75

(0.29, 1.93)

Race:

Non-White*

0.72

(0.21, 1.93)

Race:

Non-White*

0.40

(0.07, 1.43)

Drive-time
(>1.0 hours to 

NJH)

1.52
(0.90, 2.56)

Drive-time
(>1.0 hours to 

NJH)

1.67
(0.96, 2.92)

Drive-time
(>1.0 hours to 

NJH)

1.93
(0.93, 4.10)

Cadmium
(1-log unit)

1.15
(0.84, 1.57)

Cadmium
(1-log unit)

1.20
(0.86, 1.68)

Cadmium
(1-log unit)

1.22
(0.80, 1.88)

Calcium
(1-log unit)

0.89
(0.54, 1.45)

Calcium
(1-log unit)

0.80
(0.47, 1.36)

Calcium
(1-log unit)

0.54
(0.25, 1.13)

Chloride
(1-log unit)

1.05
(0.73, 1.51)

Chloride
(1-log unit)

1.06
(0.72, 1.60)

Chloride
(1-log unit)

1.10
(0.67, 1.84)

Manganese
(1-log unit)

0.88
(0.57, 1.30)

Manganese
(1-log unit)

0.98
(0.64, 1.52)

Manganese
(1-log unit)

0.84
(0.45, 1.49)

Molybdenum
(1-log unit)

1.69
(1.04, 2.80)

Molybdenum
(1-log unit)

1.87
(1.09, 3.25)

Molybdenum
(1-log unit)

2.47
(1.28, 4.90)

Selenium
(1-log unit)

0.85
(0.54, 1.32)

Selenium
(1-log unit)

0.81
(0.51, 1.28)

Selenium
(1-log unit)

1.16
(0.61, 2.25)

Zinc
(1-log unit)

1.37
(0.82, 2.32)

Zinc
(1-log unit)

1.00
(0.57, 1.75)

Zinc
(1-log unit)

2.14
(0.99, 5.42)
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431 Table 3. Model 2. Single-exposure Bayesian binomial regression model examining significant metals 
432 from Model 1 associated with odds of NTM infection among pwCF. 
433 Bolded estimates have 90% CIs that fail to include 1. CI = Credible Interval. 
434

435 *Reference group is White Alone

All NTM species

      Variable                    Odds 

Ratio

                                        (90% CI)

MAC species

Variable                    Odds Ratio

                                    (90% CI)

MABSC species

      Variable                    Odds 

Ratio

                                        (90% 

CI)

Age:

(1 Year)

1.01

(1.00, 1.02)

Age:

(1 Year)

1.01

(1.00, 1.02)

Age:

(1 Year)

1.01

(0.98, 1.02)

Gender:

Male

0.76
(0.54, 1.06)

Gender:

Male

0.68
(0.47, 0.99)

Gender:

Male

1.21
(0.77, 1.92)

Race:

Non-White*

0.76

(0.29, 1.95)

Race:

Non-White*

0.67

(0.21, 1.88)

Race:

Non-White*

0.76

(0.09, 1.49)

Drive-time
(>1.0 hours to 

NJH)

1.28
(0.88, 1.92)

Drive-time
(>1.0 hours to 

NJH)

1.32
(0.89, 1.99)

Drive-time
(>1.0 hours to 

NJH)

1.28
(1.05, 2.75)

Molybdenum
(1-log unit)

1.29
(1.03, 1.62)

Molybdenum
(1-log unit)

1.26
(0.99, 1.61)

Molybdenum
(1-log unit)

1.79
(1.34, 2.44)
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Supplementary Table 1. Frequencies of NTM group species from patient isolates
Species groups diagnosed from patient isolates. Culture-positive CF patients

n=193
M. abscessus, M. bolletii, M. chelonae 2

M. abscessus, M. chelonae 32

M. abscessus, M. chelonae, M. chimaera 1

M. abscessus, M. chimaera, M. chelonae, M. xenopi 1

M. abscessus, M. massiliense, M. chelonae 2

M. avium_complex 65

M. abscessus, M. avium_complex, M. chelonae 30

M. abscessus, M. avium_complex, M. chelonae, M. chimaera, M. massiliense 1

M. abscessus, M. avium_complex, M. chelonae, M. fortuitum 1

M. abscessus, M. avium_complex, M. chelonae, M. massiliense 4

M. avium_complex, M. chimaera 4

M. avium_complex, M. gordonae 5

M. avium_complex, M. gordonae, M. intracellulare 1

M. avium_complex, M. intracellulare 12

M. abscessus, M. avium_complex, M. chelonae, M. intracellulare 3

M. abscessus, M. avium_complex, M. chelonae, M. intracellulare, M. yongonense 1

M. avium_complex, M. intracellulare, M. chimaera 1

M. avium_complex, M. intracellulare, M. yongonense 2

M. avium_complex, M. lentiflavum 2

M. avium_complex, M. simiae 1

M. avium_complex, M. thermoresistible 1

M. avium_complex, M. chimaera, M. yongonense 3

M. abscessus, M. avium_complex, M. chelonae, M. chimaera, M. gordonae, M. lentiflavum 1

M. chimaera 2

M. abscessus, M. chelonae, M. gordonae 1

M. intracellulare 3

M. intracellulare, M. yongonense 1

M. kansasii 4

M. lentiflavum 2

M. abscessus, M. chelonae, M. lentiflavum 1

M. mucogenicum 1

M. abscessus, M. avium_complex, M. chelonae, M. fortuitum, M. massiliense, M. simiae, M. szulgai 1

M. chimaera, M. yongonense 1
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Supplementary Table 2. Median and standard deviation (SD) values of water-quality constituents* 
obtained from the Water Quality Portal (WQP) used in PCA. 

Exposure Characteristics Median ± SD (µg/L)

Aluminum 18 ± 4371.6

Arsenic <0.5 ± 49.9

Cadmium 0.1 ± 50.6

Calcium 32110 ± 70745.7

Chloride 2230 ± 219285.6

Copper 1.6 ± 440.8

Iron 38 ± 26245.6

Lead <0.5 ± 326.4

Magnesium 6691 ± 40822.9

Manganese 22.6 ± 7406.7

Molybdenum 4.3 ± 18.8

Nickel 1.2 ± 37.2

Potassium 1347 ± 6884.6

Selenium 0.06 ± 48.0

Sodium 6100 ± 123203.3

Sulfate 19000 ± 598707.4

Zinc 17 ± 5951.9

*The filtered portion (means the water was passed through a 0.45 micrometer filter) of the water-sample 
fractions were used.
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Supplementary Table 3. Sensitivity analyses. Single-exposure Bayesian binomial regression 
model examining significant metals from Model 1 associated with odds of NTM infection among 
pwCF, excluding drive time. Bolded estimates have 90% CIs that fail to include 1. CI = Credible 
Interval.

*Reference group is White Alone 

All NTM species

      Variable                 Odds Ratio

                                     (95% CI)

MAC species

Variable                 Odds Ratio

                                 (95% CI)

MABSC species

      Variable               Odds Ratio

                                   (95% CI)

Age:

(1 Year)

1.01

(1.00, 1.02)

Age:

(1 Year)

1.01

(1.00, 1.03)

Age:

(1 Year)

1.00

(0.98, 1.02)

Gender:

Male

0.77
(0.54, 1.07)

Gender:

Male

0.70
(0.48, 1.00)

Gender:

Male

1.26
(0.81, 1.97)

Race:

Non-White*

0.78

(0.30, 1.97)

Race:

Non-White*

0.69

(0.22, 1.92)

Race:

Non-White*

1.26

(0.09, 1.51)

Molybdenum
(1-log unit)

1.22
(0.99, 1.52)

Molybdenum
(1-log unit)

1.19
(0.95, 1.48)

Molybdenum
(1-log unit)

1.60
(1.22, 2.12)
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Supplementary Table 4. Bayesian binomial regression model examining the 11-contributing water-quality 
constituents from principal components 1 and 2 and other covariates associated with odds of NTM infection 
among pwCF. Bolded estimates have 90% CIs that fail to include 1. CI = Credible Interval.

All NTM species

      Variable                    Odds 

Ratio

                                        (95% CI)

MAC species

Variable                    Odds Ratio

                                    (95% CI)

MABSC species

        Variable               Odds Ratio

                                      (95% CI)

Age:

(1 Year)

1.01

(1.00, 1.03)

Age:

(1 Year)

1.01

(1.00, 1.03)

Age:

(1 Year)

1.00

(0.98, 1.02)

Gender:

Male

0.75
(0.53, 1.06)

Gender:

Male

0.69
(0.47, 1.01)

Gender:

Male

1.27
(0.79, 2.05)

Race:

Non-Whitea

0.82

(0.30, 2.12)

Race:

Non-Whitea

0.75

(0.23, 2.16)

Race:

Non-Whitea

0.38

(0.08, 1.46)

Drive-time
(>1.0 hours to 

NJH)

1.37
(0.69, 2.64)

Drive-time
(>1.0 hours to 

NJH)

1.57
(0.77, 3.06)

Drive-time
(>1.0 hours to NJH)

1.26
(0.48, 3.10)

Calcium
(1-log unit)

0.15
(0.02, 0.99)

Calcium
(1-log unit)

0.22
(0.02, 1.57)

Calcium
(1-log unit)

0.02
(0.001, 0.22)

Cadmium
(1-log unit)

0.88
(0.52, 1.46)

Cadmium
(1-log unit)

0.91
(0.53, 1.54)

Cadmium
(1-log unit)

0.93

(0.42, 2.12)

Chloride
(1-log unit)

0.42

(0.20, 0.81)

Chloride
(1-log unit)

0.43

(0.20, 0.90)

Chloride
(1-log unit)

0.41

(0.16, 1.02)

Magnesium
(1-log unit)

1.91
(0.21, 19.5)

Magnesium
(1-log unit)

1.07
(0.10, 12.4)

Magnesium
(1-log unit)

11.48

(0.65, 247.2)

Manganese
(1-log unit)

0.68
(0.35, 1.27)

Manganese
(1-log unit)

0.64
(0.31, 1.23)

Manganese
(1-log unit)

0.97

(0.41, 2.36)

Molybdenum
(1-log unit)

2.89
(1.32, 6.89)

Molybdenum
(1-log unit)

2.54
(1.08, 6.49)

Molybdenum
(1-log unit)

7.11

(2.16, 25.5)

Potassium
(1-log unit)

5.56
(1.20, 30.9)

Potassium
(1-log unit)

5.75
(1.23, 33.1)

Potassium
(1-log unit)

7.69

(0.92, 76.7)
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Selenium
(1-log unit)

0.60
(0.33, 1.07)

Selenium
(1-log unit)

0.55
(0.30, 0.98)

Selenium
(1-log unit)

0.96

(0.40, 2.32)

Sodium
(1-log unit)

0.24
(0.03, 1.51)

Sodium
(1-log unit)

0.43
(0.05, 3.16)

Sodium
(1-log unit)

0.04
(0.002, 0.60)

Sulfate
(1-log unit)

8.23
(2.27, 37.3)

Sulfate
(1-log unit)

6.17
(1.54, 29.4)

Sulfate
(1-log unit)

20.0
(2.89 170.7)

Zinc
(1-log unit)

1.59
(0.79, 3.29)

Zinc
(1-log unit)

1.36
(0.68, 2.83)

Zinc
(1-log unit)

1.56
(0.54, 5.26)
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Supplementary Table 5.  Correlation matrix (Pearson’s Correlation Coefficient, ) for the water-
quality constituents contributing to Principal Components 1 & 2.

Cd Ca Cl Mg Mn Mo K Se Na SO4
2- Zn

Cadmium
(Cd)

1.00

Calcium 
(Ca)

0.22 1.00

Chloride
(Cl)

0.13 0.78 1.00

Magnesium
(Mg)

0.31 0.96 0.77 1.00

Manganese
(Mn)

0.50 0.59 0.46 0.53 1.00

Molybdenum 
(Mo)

-0.06 0.70 0.69 0.69 0.38 1.00

Potassium 
(K)

0.28 0.88 0.80 0.88 0.65 0.76 1.00

Selenium
(Se)

-0.17 0.72 0.68 0.70 0.32 0.78 0.75 1.00

Sodium 
(Na)

0.25 0.88 0.82 0.91 0.59 0.82 0.95 0.76 1.00

Sulfate
(SO4

2-)
0.22 0.90 0.88 0.90 0.52 0.64 0.82 0.67 0.87 1.00

Zinc
(Zn)

0.58 0.27 0.26 0.26 0.60 0.14 0.25 0.07 0.26 0.28 1.00
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Supplementary Table 6. Summary of posterior probability that the Molybdenum covariate is associated 
with increased odds of NTM infection among pwCF. 

All NTM species MAC species MABSC species

96.96% 94.15% 99.96%
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Supplementary Figure 1. Contribution of water-quality constituents to principal components 1 
and 2.
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Metal concentrations
in surface water

Exposure to NTM NTM infection

County of patient
residence

• Race
• Age
• Gender

Supplementary Figure 2. Directed Acyclic Graph (DAG) depicting the relationship between 
confounders, exposure and dependent variables.
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Supplementary Methods

2.2 Statistical Analysis

Analysis of data was performed using the R packages: rgdal (1),  sp (2), rstanarm (3), dplyr 

(4), standardize (5), missMDA (6),gmapdistance (7), FactoMineR (8), and factoextra (9). All 

water-sample sites were aggregated by county using the sp package. We calculated the median 

value of each water-quality constituent for each county using the dplyr package.  The R source 

code that we created to calculate the county medians is available in the Supplementary Materials. 

Using the scale function from the standardize package, we standardized all the water-quality 

constituents’ log concentrations to have a mean of 0 and standard deviation of 1. Using the scale 

function from the standardize package, we standardized all the water-quality constituents’ log 

concentrations to have a mean of 0 and standard deviation of 1.  For counties with missing data, 

we imputed the median value of all water-quality constituents using the imputePCA function in 

the missMDA package. Drive time between county centroids and NJH were calculated using the 

R gmapsdistance package.

2.2.1 Variable Reduction using Principal Component Analysis (PCA)

PCA was performed using the PCA function in the FactoMineR package on 17 water-

quality constituents summarized at the county-level (after these values were natural log 

transformed, scaled, and imputed). We used the fviz_contrib function in the factoextra package 

to identify the most important variables in explaining variability of principal components 1 and 

2.

2.2.3 Parameters used in Bayesian Binomial Regression Models
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We used Bayesian generalized linear models (GLM) to model the response as Binomial, which 

links the logit of the probability of NTM occurrence to a weighted linear combination of the 

predictors via the rstanarm package (3). 

For the prior distribution of the intercept, we used a Student’s t distribution with a 1 degree of 

freedom, a location parameter of 0 and a scale parameter of 2.5 For the prior distributions of the 

remaining regression coefficients, we used independent and identically-distributed normal 

distributions with a mean of 0 and a standard deviation of 5. Our models assumed overdispersed, 

binomial-distributed discrete responses and used the logit link function; the posterior 

distributions were approximated using 10,000 Markov chain Monte Carlo (MCMC) iterations, 

which includes a default warmup period of 5,000 iterations.

2.2.4 Bayesian Binomial Regression Models with Individual Metals from Principal Components 

1 & 2.

The posterior probabilities shown in Table 4 (Model 3) were calculated using the 

rstanarm and rstan packages (3, 10).  We used the posterior_linpred function from the 

rstanarm R package to predict the probability that an unobserved CF patient living in a county 

will have an NTM infection and displayed the results as a probability map across Colorado 

counties (Figure 1).  
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Documentation from raw data download to cleaned water chemistry dataset

A.  The key words entered into the Water Quality Portal (WQP):

For metals and nonmetals:

Country: “US”
State: “US:CO”
Site Type: “Aggregate surface-water-use”, “Lake, Reservoir, Impoundment”, “Stream”, 
“Wetland”.
Sample Media: “Water (NWIS, STORET)” 
Characteristic Group: “Inorganics, Major, metals (NWIS, STORET)”, “Inorganics, Minor, 
metals (NWIS, STORET)”, “Inorganics, Major, Non-metals (NWIS, STORET)”, “Inorganics, 
Minor, Non-metals (NWIS, STORET)” 
Date range – from: “01-01-2000” to: “12-31-2018” 

B. We download the files “Sample results (narrow)” (downloaded as “narrowresult“) and “Site 
data only” (downloaded as “station”). 
The spreadsheets were merged based on the  “MonitoringLocationIdentifier”.

C. Cleaning procedures
The following steps were performed on the 4 datasets -- major metals, minor metals, major 
nonmetals, minor nonmetals, pH and total coliform:

1. All measurement values with less than sign (“ < ”) listed in the “ResultMeasureValue” column 
were eliminated from the dataset.
For the Monitoring Location Identifier "LEWWTP-BEAR CR", the longitude was entered as  “-
104.03298”, this was changed to the correct longitude, “-105.03298”.
2. We removed any entries with following unit codes: “%”, “lb/day”, “ueq/L”
3. We used only filtered (Dissolved) sample fractions. We excluded any sample fractions labeled 
as “Fixed”, “Suspended”, “Bed Sediment”, “Comb Available”, “Unfiltered”, “Acid Soluble”, 
“Recoverable”, “Total Recovrble”, “Total”, “Pot. Dissolved”, or missing.
4. We removed the following entries with the following Monitoring Location Identifiers from the 
dataset: “0801478-EME”, “0801478-EMET SHAFT”, “0801478-EMET-SP”, “0801478-EM-1”, 
“0801478-MAR-01”, “0801478-MARION”, “0801478-OG1TMW3”, “0801478-PRP-01”, 
“0801478-PRP-01 MS”, “0801478-PRP-01 MSD”, “0801478-YT”, “"0801478-YT-1", 
“0801478-YTBH”, “0801478-YTPD”, “0801478-SDDS”, “0801478-SDDS-1”, “0801478-
SDDS-2”, “0801478-SD-1A”, “0801478-SD1A40”, “0801478-MRP-01”, “0801478-SHG-
EMSP”, “USGS-410039105374401”, “USGS -40480010546000”, “USGS-390500106323000”, 
“USGS-372900106470000”, “UTEMTN-HAYFIELD_RESVR”, “UTEMTN-4000 BLOCK 
POND”, “UTEMTN-MBLWWELL 1”. 
These locations are either in mine shafts, are snow collections sites, or groundwater mistakenly 
labeled as surface water.
5. We deleted the measurement taken at Monitoring Location Identifier “0800257-CC-26” on 
date “2000-08-17” because the values for all metals and nonmetals were suspiciously high.
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Specific changes made to each dataset.

For the major metals dataset:
1. Units labeled as “mg/l CaCO3” were relabeled as “mg/l”
2. Calcium: Measures > “1000” and labeled “mg/l”, were relabeled as “ug/l” 

(18 measurements)
3. Sodium: The measure = “0.5” labeled “ug/l”, was relabeled as “mg/l”.

The measure = “17800” labeled as “mg/l”, was relabeled as “ug/l”.
4. Magnesium:The measure = “2500” labeled as “mg/l”, was relabeled as “ug/l”.
5. Potassium: No changes were necessary

For the minor metals dataset:
1. Units labeled as “mg/l Cr” were relabeled as “mg/l”
2. Units labeled as “ppb” were relabeled as “ug/l”
3. Copper: Measures < “0.19” labeled as “ug/l”, were relabeled as “mg/l”

Measures with the Monitoring Location Identifiers of “LEWWTP-BEAR CR”, 
“LEWWTP-DOWN”, “LEWWTP-UP”, where the values were > “0” labeled “mg/l”, were 
relabeled as “ug/l”.
4. Aluminum: Measures < “0.8” labeled as “ug/l”, were relabeled as “mg/l”
5. Nickel: Measures < “0.03” labeled as “ug/l”, were relabeled as “mg/l”

Measures > “1” labeled as “mg/l”, were relabeled as “ug/l”
6. Molybdenum: Measures > “0.8” labeled as “mg/l”, were relabeled as “ug/l”. This included 
only Monitoring Location Identifiers “LEWWTP-UP”, “LEWWTP-DOWN”, “LEWWTP-
BEAR CR”.
7. Manganese: Measures > “19” labeled “mg/l” at Monitoring Location Identifier “SACWSD-
MCKAY”, were relabeled “ug/l”.

For Monitoring Location Identifiers “LEWWTP-UP”, “LEWWTP-DOWN”, 
“LEWWTP-BEAR CR” where values > “0”, and for Monitoring Location Identifiers “ARR-
SWSC-1”, “ARR-SWSC-2”, “ARR-SWSC-3”, “ARR-SWSC-4” where values are > “1” labeled 
as “mg/l”, were relabeled “ug/l”.
8. Cadmium: Measures < “0.008” labeled as “ug/l”, were relabeled as “mg/l”

The measure = “3730” labeled as “mg/l”, were relabeled as “ug/l”
9. Iron: Measures between “0.02” & “0.16 labeled as “ug/l”, were relabeled as “mg/l”
10. Lead: No changes were made.
11. Zinc: No changes were made.

For the major nonmetals dataset:
1. Units labeled as “mg/l CaCO3” were relabeled as “mg/l”
2. We omitted Silica from the analysis. Since Silica can be reported as SiO2 in water, but is 

often reported as Si. The conversion factor from SiO2 to Si is 0.467. Some people do not 
know about this issue and may have entered values incorrectly. As a result, the median 
values could be twice as high or half as large as they should be. This would be an artifact 
in the data and there is no systematic way to distinguish the correct entry.
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3. Chloride: Measures < “10” labeled as “ug/l”, were relabeled as “mg/l”
4. Sulfate: “Sulfate as S_Dissolved” was relabeled as “Sulfate_Dissolved”. 
5.

For the minor nonmetals dataset:
1. Units labeled as “ppb” were relabeled as “ug/l”
2. The Longitude entered as “-17.74332” was changed to “-107.74332”
3. Selenium: Measures < “0.01” labeled as “ug/l”, were relabeled as “mg/l”

For all datasets, measurements with units labeled as “mg/l” were multiplied by 1000 so all 
measurements are in ug/l.



## read county and zipcode information
zcta <- readOGR(dsn="Colorado_ZCTA/Colorado_ZCTA.shp")
counties <- readOGR(dsn="Colorado_County_Boundaries/Colorado_County_Boundaries.shp")

zcta <- readOGR(dsn="OregonZipcodes/ORE_zipcodes.shp")
counties <- readOGR(dsn="OregonCounties2015/orcntypoly.shp")

### Major metals
# read data of interest
dat1 = read.csv("X.csv", header = TRUE) 

lon1 = dat1$LongitudeMeasure
lat1 = dat1$LatitudeMeasure

# convert coordinates to SpatialPoints object
# the first part of the coordinates
# the second part is the coordinate reference system
# and ensures sp_pts has the same CRS as zcta
coords_SpatialPoints = sp::SpatialPoints(cbind(lon1, lat1), CRS(projargs = proj4string(zcta)))

# determine which region each coordinates falls into
match_coords_to_zcta = over(coords_SpatialPoints, zcta)
# OBJECTID is the index of the ZCTA each coordinate falls into
# e.g., 336 means the 336th ZCTA
# ZCTA5CE10 and GEOID10 seem to both be the actual zip code
match_coords_to_counties = over(coords_SpatialPoints, counties)

# identify the coordinates not in a zcta
no_match_zcta = which(is.na(match_coords_to_zcta$OBJECTID))
length(no_match_zcta)
match_coords_to_zcta = apply(match_coords_to_zcta, 2, forcats::fct_explicit_na)
# identify the coordinates not in a county
no_match_counties = which(is.na(match_coords_to_counties$OBJECTID))
length(no_match_counties)

# plot zcta with coordinates that didn't match
#plot(zcta)
#points(coords_SpatialPoints[no_match_zcta,], pch = 20, col = "orange")

# update names of match* objects
names(match_coords_to_zcta)[1] = "zcta_idx"
names(match_coords_to_counties)[1] = "counties_idx"

# add zcta and countys ids to each observations in dat1



dat1 = cbind(match_coords_to_zcta, match_coords_to_counties, dat1[, -(1:2)])

# save for later use
save(dat1, file = "dat1_merged.rda", compress = "bzip2")
load("dat1_merged.rda")

## ElementRSFT3 is the variable name for the metals in my dataset
### zctas
r = dat1 %>% # on dat1
  group_by(ZCTA5CE10, ElementRSFT3) %>%
  summarize(median50 = median(Measure)) %>% # for each huc8id and ElementRSFT, compute 
statistic in observed values
  gather(key = item, value = value, -c(ZCTA5CE10, ElementRSFT3)) %>% # Add Season here # 
place each statistic in a separate row with appropriate measurement name
  arrange(ZCTA5CE10, ElementRSFT3) #Add season here # order th

r = tibble::add_column(r, ElemMeasure = paste0(r$ElementRSFT3, r$item)) %>% # Add 
r$Season here # add a new column that combines ElementRSFT and statistic name
  dplyr::select(-c(ElementRSFT3, item)) %>% #Maybe add Season here. try without it. # then 
remove ElementRSFT and item columns
  tidyr::spread(ElemMeasure, value)

# write this to file
write.csv(r, file = "datzcta_X.csv")

### counties
r = dat1 %>% # on dat1
  group_by(COUNTY, ElementRSFT3) %>% # #Add Season here #group data by huc8id and 
ElementRSFT3
  summarize(median50 = median(Measure)) %>% # for each huc8id and ElementRSFT, compute 
statistic in observed values
  gather(key = item, value = value, -c(COUNTY, ElementRSFT3)) %>% # Add Season here # place 
each statistic in a separate row with appropriate measurement name
  arrange(COUNTY, ElementRSFT3) #Add season here # order them for convenience

r = tibble::add_column(r, ElemMeasure = paste0(r$ElementRSFT3, r$item)) %>% # Add 
r$Season here # add a new column that combines ElementRSFT and statistic name
  dplyr::select(-c(ElementRSFT3, item)) %>% #Maybe add Season here. try without it. # then 
remove ElementRSFT and item columns
  tidyr::spread(ElemMeasure, value) # then spread the values by ElemMeasure

write.csv(r, file = "datcounties_X.csv")


