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Abstract

Transformation-based methods have been an
attractive approach in non-parametric infer-
ence for problems such as unconditional and
conditional density estimation due to their
unique hierarchical structure that models the
data as flexible transformation of a set of
common latent variables. More recently,
transformation-based models have been used
in variational inference (VI) to construct flex-
ible implicit families of variational distri-
butions. However, their use in both non-
parametric inference and variational infer-
ence lacks theoretical justification. We pro-
vide theoretical justification for the use of
non-linear latent variable models (NL-LVMs)
in non-parametric inference by showing that
the support of the transformation induced
prior in the space of densities is sufficiently
large in the L; sense. We also show that,
when a Gaussian process (GP) prior is placed
on the transformation function, the poste-
rior concentrates at the optimal rate up to
a logarithmic factor. Adopting the flexibil-
ity demonstrated in the non-parametric set-
ting, we use the NL-LVM to construct an
implicit family of variational distributions,
deemed GP-IVI. We delineate sufficient con-
ditions under which GP-IVI achieves optimal
risk bounds and approximates the true pos-
terior in the sense of the Kullback—Leibler
divergence. To the best of our knowledge,
this is the first work on providing theoretical
guarantees for implicit variational inference.
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1 Introduction

Transformation-based models are a powerful class of
latent variable models, which rely on a hierarchical
generative structure for the data. In their simplest
form, these models have the following structure

yi = pl@)+e, €~ N(007),
iid
fori=1,...,n, where y; € R is a real-valued observed

variable, p is the ‘transformation’ function, z; is a la-
tent (unobserved) variable underlying y;, ¢ is a known
density of the latent data (e.g., uniform or standard
normal), and we include a Gaussian measurement er-
ror with variance o2. For simplicity in exposition, we
consider a very simple case to start but one can certain
include multivariate x; and y; and other elaborations.

Model (1) and its elaborations include many popular
methods in the literature. If we choose a Gaussian
process (GP) prior for the function u, then we ob-
tain a type of GP Latent Variable Model (GP-LVM)
(Lawrence, 2004, 2005; Lawrence & Moore, 2007). We
can also obtain kernel mixtures as a special case; for
example, by choosing a discrete distribution for g. The
extremely popular Variational Auto-Encoder (VAE)
is based on choosing a deep neural network for u,
and then obtaining a particular variational approxi-
mation relying on a separate encoder and decoder neu-
ral network (Kingma & Welling, 2013). Refer also to
the non-linear latent variable model (NL-LVM) frame-
work of (Kundu & Dunson, 2014) for a nonparametric
Bayesian perspective on models related to (1).

Providing theoretical justification for ‘transformation’
based models of the form in (1) rests on the answers
to the following two questions: 1) Can this framework
be used to approximate any density with an arbitrarily
high degree of accuracy? 2) Does the accuracy improve
with sample size as the optimal rate for density esti-
mation or conditional density estimation (given fixed
covariates) problems?

These types of questions have been answered elegantly
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for many nonparametric Bayes and frequentist den-
sity estimation methods, especially for the models con-
structed via model (1) with a discrete distribution g
of the latent variable. For example, Dirichlet process
mixture models (DPMMs) have been very widely ap-
plied (Escobar & West, 1995; Ferguson, 1973, 1974;
MacEachern, 1999; Miiller et al., 1996) and studied
in terms of their optimality properties asymptotically
(Ghosal et al., 1999, 2000; Ghosal & van der Vaart,
2007; Kruijer et al., 2010).

When using a continuous distribution g, model (1)
leads to a specific class of continuous transformation-
based model such as the NL-LVM models. Here a GP
prior is a natural choice for the unknown transforma-
tion (Dasgupta et al., 2017; Kundu & Dunson, 2014;
Lenk, 1988, 1991; Tokdar, 2007; Tokdar et al., 2010).
These models can be written as Gaussian convolution
of a continuous mixing measure. Unfortunately the
algorithms developed for discrete mixing measures are
not readily adaptable to their continuous analogs. The
alternative approach uses Markov chain Monte Carlo
methods, which come with theoretical guarantees, but
suffer from computational instability owing to a lack
of conjugacy. This instability propagates through the
posterior distribution of the unknown transformation
requiring expert parameter tuning and vigilance for
guaranteed performance. To mitigate some of these
issues associated with a full-blown MCMC, approxi-
mate Bayesian methods including the variational in-
ference (VI) are proposed (Titsias & Lawrence, 2010).
The success of VI depends largely on two things: 1)
the flexibility of the variational family and 2) the al-
gorithm used to perform the optimization.

Development of flexible variational families using
the reparametrization trick (Figurnov et al., 2018;
Jankowiak & Obermeyer, 2018; Kingma et al., 2015;
Kingma & Welling, 2013) have emerged as a power-
ful idea over the last decade and continues to flour-
ish, often in parallel with latest developments in gen-
erative deep-learning methods. While the overarch-
ing goal of this trick is to find unbiased estimates
of the gradient of the objective function (evidence
lower bound in variational inference), one cannot but
notice its connection with non-linear latent variable
methods. A similar idea is explored as Implicit vari-
ational inference (Huszdr, 2017; Shi et al., 2017) to
construct an implicit distribution, a distribution that
cannot be analytically specified but can be sampled
from. Such a construction brings in certain compu-
tational challenges stemming from density ratio esti-
mation. More recently, implicit VI was extended to
semi-implicit VI (Molchanov et al., 2019; Titsias &
Ruiz, 2019; Yin & Zhou, 2018) which avoids density

ratio estimation by using a semi-implicit variational

distribution ¢4(0) = [¢{0 | g4(u)}q(u)du where the
density ¢{z | go(u)} corresponds to a transformation-
based model with transformation g4 — typically taken
to be a neural network with parameters ¢. Although
VI approaches have shown significant improvements
in computational speed their theoretical properties are
largely a mystery.

Thus the aim of this work is to address one of the
fundamental questions in latent variable transforma-
tion methods, namely, under what conditions are these
methods “flexible” enough? The central idea is to rec-
ognize that such models can be written as Gaussian
convolution of a continuous mixing measure. Such a
construction serves as a flexible family for inference in
either the latent variable semi-parametric density es-
timation setting or density estimation using implicit
variational inference. The traditional approach to the
density estimation problem is through the use of dis-
crete mixtures, whose approximation properties have
been well-studied (Ghosal et al., 1999, 2000; Ghosal &
van der Vaart, 2007; Kruijer et al., 2010). However,
the well-known transformation based methods such as
GP-LVM and IVI, are based off of continuous mixtures
rather than discrete ones. Unfortunately, the existing
tools for studying properties of these models for dis-
crete mixtures do not readily extend to the continu-
ous mixture case which requires different techniques
to quantify the accuracy of approximation. Because
of this, there has been, to the best of our knowledge,
no results pertaining to properties of continuous mix-
ture models in either the non-parametric or variational
settings. There are no results that specify for which
class of functions F these continuous mixture models
are capable of estimating the true data distribution
fo € F arbitrarily well. Similarly, there are no results
pertaining to risk bounds or convergence properties of
any implicit variational inference framework. The clos-
est related works in either case are those that address
these questions for discrete mixture models. Lastly, we
have chosen to exclude detailed empirical illustration,
but provide a sketch of the algorithm in the supple-
mentary material, as there is a relatively large body of
existing work delineating algorithms and demonstrat-
ing the empirical performance of these continuous mix-
ture models in both the non-parametric setting using
GP-LVM (Ferris et al., 2007; Lawrence, 2004, 2005;
Lawrence & Moore, 2007) and the variational setting
using IVI (Huszdr, 2017; Molchanov et al., 2019; Shi
et al., 2017; Titsias & Ruiz, 2019; Yin & Zhou, 2018).

A summary of our contributions. Our results are the
first to provide a concrete theoretical framework for
transformation-based models widely used in Bayesian
inference and machine learning. By establishing a con-
nection between NL-LVM with implicit family of dis-
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tributions, we provide statistical guarantees for im-
plicit variational inference. Motivated by our find-
ings, transformation-based models have the potential
to provide machine learning with a rich class of implicit
variational inference methods that come with strong
theoretical guarantees.

We close the section by defining some notations in
§1.1 used throughout the paper. In §2 we present an
overview of the NL-LVM model as well as several prop-
erties of the model. In section §3 we discuss our two
main results for non-parameteric inference using NL-
LVM. In §4 we introduce GP-IVI. We then show that
that the KL divergence between the variational pos-
terior and the true posterior is stochastically bounded
and argue why this is optimal from a statistical per-
spective. Inspired by Yang et al. (2020), we addition-
ally present parameter risk bounds of a version of im-
plicit variational inference, which we term as a-GP-
IVI which is obtained by raising the likelihood to a
fractional power « € (0, 1).

1.1 Notation

We denote the Lesbesgue measure on R? by A. The
supremum norm and Lj;-norm are denoted by |||
and ||-||;, respectively. For two density functions
p,q € F, let h denote the Hellinger distance defined
as h2(p,q) = [(p*/? — q*/?)2d\. Denote the Kullbeck-
Leibler divergence between two probability densities
p and ¢ with respect to the Lebesgue measure by
D(pllg) = [plog(p/q)dX. We define the additional
discrepancy measure V (p||q) = [ plog®(p/q)d), which
will be referred to as the V-divergence. For a set A we
use I4 to denote its indicator function. We denote
the density of the normal distribution N(t;0,0%1,)
by ¢,(t). We denote the convolution of f and g by
f*g(y) = [ fly — x)g(x)dz. Absolute continuity of ¢
with respect to p will be denoted ¢ < p. We denote
the set of all probability densities f < A by F. The
support of a density f is denoted by supp(f). For a set
X, let C(X) and CP(X), B > 0 denote the spaces of
continuous functions and S-Hoélder space, respectively.
We write ” 2" for inequality up to a constant multiple.
For any a > 0 denote |a| the largest integer that is no
greater than a.

2 A specific transformation-based
model

In this section, we focus on an NL-LVM model (Kundu
& Dunson, 2014) in which the response variables are
modeled as unknown functions (referred to as the
transfer function) of uniformly distributed latent vari-
ables with an additive Gaussian error. We start from

the model formulation and then present a general ap-
proximation result of NL-LVM model to the true den-
sity under mild regularity conditions. A review of the
necessary background material for this section can be
found in the supplementary file section S1.

2.1 The NL-LVM model

Suppose we have IID observations Y; € R for i =
1,...,n with density fo € F, the set of all densities on
R absolutely continuous with respect to the Lebesgue
measure A. We consider a non-linear latent variable
model

e ~N(0,0%),i=1,...,n

Yi = p(ni) + e,
p~ I, o~ 1,
where 7),’s are latent variables, p € C[0,1] is a transfer
function relating the latent variables to the observed
variables and ¢; is an idiosyncratic error. Marginaliz-
ing out the latent variable, we obtain the density of y
conditional on the transfer function p and scale o

Fi.0) S faly) = / boly — p(@))dz.  (3)
0

Remark 2.1. While p and n are not identifiable in
(2), our goal is to estimate fo using f,, which is an
identifiable quantity itself. The flexibility of the in-
duced model is guaranteed via the GP prior over the
transformation function p without the need to identify
the corresponding latent variable 7. The presence of
the latent variable n simply ensures flexibility of the
induced density and allows for straightforward compu-
tation via Gibbs sampler or variational techniques.

It is not immediately clear whether the class of den-
sities {f.,,} encompasses a large subset of the den-
sity space. The following intuition relates the above
class with continuous convolutions which plays a key
role in studying theoretical properties for models re-
lated to NL-LVMs. Within the support of a continuous
density fy, its cumulative distribution function Fj is
strictly monotone and hence has an inverse Fj; ' satis-
fying Fo{F, '(t)} =t for all t € supp(fy). Now letting
pio(x) = Fy (), one obtains f,, »(y) = do * fo, the
convolution of fy with a normal density having mean
0 and standard deviation o. This provides a way to
approximate fy by the NL-LVM with optimal approx-
imation accuracy. We summarize the approximation
result in section 2.3.

Let A denote the Lebesgue measure on [0, 1] and denote
the Borel sigma-field of R by B. For any measurable
function g : [0,1] — R, let v, denote the induced
measure on (R, B), then, for any Borel measurable set

B, v,(B) = Mu~'(B)). By the change of variable
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theorem for induced measures,

/O 6o (y — p(x))dz = / 6o (y — )iy (1), (4)

so that f, o, in (3) can be expressed as a kernel mix-
ture form with mixing distribution v,. It turns out
that this mechanism of creating random distributions
is very general. Depending on the choice of i, one can
create a large variety of mixing distributions based on
this specification. For example, if p is a strictly mono-
tone function, then v, is absolutely continuous with
respect to the Lebesgue measure, while choosing p to
be a step function, one obtains a discrete mixing dis-
tribution.

2.2 Assumptions on true data density fj

It is widely recognized that one needs certain smooth-
ness assumptions and tail conditions on the true den-
sity fo to derive posterior convergence rates. We make
the following assumptions:

Assumption F1 We assume log fo € C?[0,1]. Let
lj(x) = d7 /dz’{log fo(x)} be the jth derivative for j =
1,...,r with r = |8]. For any 8 > 0, we assume that
there exists a constant L > 0 such that

() = L (y)| < Lle —y[P~", forallz #y. ()

The smoothness assumption in the log scale will be
used to obtain an optimal approximation error of the
GP-transformation-based model to the true fy, pro-
viding a key piece in managing the KL-divergence be-
tween the true and the model for posterior inference.
Similar assumption on the local smoothness appeared
in Kruijer et al. (2010), while in our case a global
smoothness assumption is sufficient since fj is assumed
to be compactly supported.

Assumption F2 We assume fy is compactly sup-
ported on [0,1], and that there exists some interval
[a,b] C [0,1] such that f; is non-decreasing on [0, a],
bounded away from 0 on [a,b] and non-increasing on

b, 1].

Assumption F2 guarantees that for every § > 0, there
exists a constant C' > 0 such that fy x ¢, > Cfy for
every o < §. Also see Ghosal et al. (1999) for similar
assumption in density estimation.

2.3 Approximation property

As mentioned above, the flexibility of f, , comes from
a large class of the induced density measure v,. Now
we quantify the approximation of f,, , to the true fy
by utilizing its equivalent form as a convolution with a
Gaussian kernel. It is well known that the convolution
o, * fo can approximate fy arbitrary closely as the

bandwidth ¢ — 0. For Hoélder-smooth functions, the
order of approximation can be characterized in terms
of the smoothness. If fy € C?[0,1] with 3 < 2, the
standard Taylor series expansion guarantees that ||¢q *
fo — follee = O(c®). However, for B > 2, it requires
higher order kernels for the convolution to remain the
optimal error (Devroye, 1992; Wand & Jones, 1994).
Kruijer et al. (2010) proposed an iterative procedure
to construct a sequence of functions {f;},;>0 by

fiv1="Ffo—Dofjy Dofj=¢oxfi—fi, 72>0. (6)
We define fg = f; with integer j such that
B € (24,25 + 2]. Under such construction, for

fo € CP[0,1] the convolution ¢, * fs preserves the
optimal error O(c”) (Lemma 1 in Kruijer et al.
(2010)). We state a similar result in the following.

Proposition 2.1. For f, € C?[0,1] with 3 € (24,2 +
2] satisfying Assumptions F1 and F2, for fsz defined
as from the iterative procedure (6) we have

||¢U * f,@ - fOHOO = O(Oﬁ)a

and
o * f5(x) = fo(a)(1 + D(x)O (o)), (7)
where .
D() = Y- ally@)] " + v,
i=1
for non-negative constants ¢;,i =1,...,r+ 1, and for
any x € [0,1].

The proof can be found in the supplementary file sec-
tion S2.2. The ability to represent the model in terms
proportional to true density plays an important role
in bounding the KL-divergence between f, , and fo.

Remark 2.2. The approximation result can be ex-
tended to the isotropic B-Hélder space CP[0,1]¢ under
similar regularity assumptions. The extended approxi-
mation result can be applied to more general cases.

3 Posterior inference for NL-LVM

Most of the existing literature on non-parametric
Bayesian approaches to the density estimation prob-
lem are centered around DP mixture priors (Fergu-
son, 1973, 1974), which are simply transformation-
based models with a discrete distribution for the latent
variables. On the other hand, the theoretical proper-
ties of continuous transformation-based models remain
largely unknown.

In this section, we provide theoretical results for pos-
terior inference of the transformation-based model for
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unconditioned density estimation in the context of NL-
LVM. Our results are two-fold: (1) We first show that
a large class of transfer function p leads to L; large
support of the space of densities induced by the NL-
LVM; (2) We obtain the optimal frequentist rate up
to a logarithmic factor under standard regularity con-
ditions on the true density using the transformation-
based approach with induced GP priors.

3.1 [, large support

One can induce a prior II on F via the mapping f, » by
placing independent priors II,, and II, on C[0, 1] and
[0, 00) respectively, as IT = (1T, ® II) o f, ). Kundu
& Dunson (2014) assumes a Gaussian process prior
with squared exponential covariance kernel on p and
an inverse-gamma prior on ¢2. Given the flexibility
of fu. upon the choices of u, placing a prior on u
supported on the space of continuous functions C10, 1]
without further restrictions is convenient and Theorem
3.1 assures us that this specification leads to large L
support on the space of densities.

Suppose the prior II,, on p has full sup-norm support
on C10,1] so that IL, (|4 — p*|lec < €) > 0 for any
e >0 and p* € C[0,1], and the prior II, on o has full
support on [0,00). If fy is compactly supported, so
that the quantile function pg € C[0, 1], then it can be
shown that under mild conditions, the induced prior
IT assigns positive mass to arbitrarily small L; neigh-
borhoods of any density f;. We summarize the above
discussion in the following theorem, with a proof pro-
vided in the section S2.3 of supplementary file.

Theorem 3.1. If II,, has full sup-norm support on
C[0,1] and I, has full support on [0,00), then the Ly
support of the induced prior Il on F contains all den-
sities fo which have a finite first moment and are non-
zero almost everywhere on their support.

Remark 3.1. The conditions of Theorem 3.1 are sat-
isfied for a wide range of Gaussian process priors on
w (for example, a GP with a squared exponential or
Matérn covariance kernel).

Remark 3.2. When fy has full support on R, the
quantile function pg is unbounded near 0 and 1, so that
ltollow = c0. However, [ uo(t)]dt = fy 2| fo(z)dz,
which implies that po can be identified as an element
of L1[0,1] if fo has finite first moment. Since C[0, 1]
is dense in L1[0,1], the previous conclusion regarding
L1 support can be shown to hold in the mon-compact
case too.

3.2 Posterior contraction results

Gaussian process priors have been widely used in
non-parametric Bayesian inference as well as machine

learning due to their modeling advantages and proper
theoretical grounding (van der Vaart & van Zanten,
2007, 2008, 2009). Considering a Gaussian process
as the transfer function over the latent variable, the
transformation-based model essentially aligns with a
Gaussian process latent variable model (GP-LVM)
(Ferris et al., 2007; Lawrence, 2004, 2005; Lawrence
& Moore, 2007). Theoretical work of GP-LVM such
as Kundu & Dunson (2014) showed a KL large sup-
port of the induced prior process, and also showed
the posterior consistency to the true density func-
tion. However a straightforward description of the
space of densities induced by the proposed model is
not clear. Additionally, the posterior contraction rate
of the proposed model, an important property char-
acterizing how fast the posterior distribution concen-
trates around the truth, is still unknown for finite data.

We now present the posterior contraction result for
transformation-based model with NL-LVM. To that
end, we first review its definition, more details are
deferred to the supplementary file section S1. Given
independent and identically distributed observations
Y™ = (Y3,...,Y,) from a true density fo, a posterior
II,, associated with a prior II on F is said to contract
at a rate ¢,, if for a distance metric d,, on F,

E oI {dn(f, fo) > Meyn | Y} =0 (8)

for a suitably large integer M > 0. Unlike the treat-
ment in discrete mixture models (Ghosal & van der
Vaart, 2007) where a compactly supported density is
approximated with a discrete mixture of normals, the
main idea is to first approximate the true density fy by
a Gaussian convolution with fz defined as in (6), then
allow the GP prior on the transfer function to appro-
priately concentrate around pg, the inverse c.d.f. of
the defined fg. We first state our choices for the prior
distributions II,, and 1I,.

Assumption P1 We assume p follows a centered
and rescaled Gaussian process denoted by GP(0, ),
where A denotes the rescaled parameter, and assume
A has density g satisfying for a > 0,

CiaP exp (—Dialog?a) < g(a)
< Cya” exp (—Daalog? a).

Assumption P2 We assume o ~ IG(ae, by ).

Note that contrary to the usual conjugate choice of
an inverse-gamma prior for o2, we have assumed an
inverse-gamma prior for ¢. This enables one to have
slightly more prior mass near zero compared to an
inverse-gamma prior for o2, leading to the optimal
rate of posterior convergence. Refer also to Kruijer et
al. (2010) for a similar prior choice for the bandwidth
of the kernel in discrete location-scale mixture priors
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for densities.

Theorem 3.2. If fy satisfies Assumptions F1 and F2
and the priors I1,, and I, are as in Assumptions P1
and P2 respectively, the best obtainable rate of poste-
rior convergence relative to Hellinger metric h is

€ = nfﬁ(log n)t, 9)
where t = 52V q)/(28+ 1)+ 1.

We provide a sketch of the proof below, the full proof
is deferred to the supplementary file section S2.4. It
suffices to check sufficient conditions (prior thickness,
sieve construction, entropy condition) for posterior
contraction result in Ghosal et al. (2000) (See Theo-
rem S1 in the supplementary file for details.) We first
verify the prior thickness condition. From Lemma 8 of
Ghosal & van der Vaart (2007), one has

[ wtoe () < 2o o (1108 | L] )
fu,o fMaU 00
for ¢ = 1,2 By Lemma S3.4, we have
log || fo/ fuollec < Il = pplloc/0®, and by Lemma

S3.1 and Lemma S3.8, we bound h2(fo, fu.o) 3 |lu—
8llso/0? + O(0%P). Then we have

{U € [UnaQUn]aHM - /‘ﬁ”oo 3 UrBz+1} C
{D(fOHf/hU) =2 UZB7 V(fOHfu,o) N ‘7721[3}-

Under assumptions P1 and P2 the prior thickness is
guarantee by upper bounding H{J € [on,20,], |n —
1alloe 3 0B}, We construct the sieve

Fon={fuo:p€Bp,l, <o <h,}.

where B,, denotes the sieve for a GP prior on u as de-
fined in van der Vaart & van Zanten (2009). Further
we calculate the entropy of F,; the logarithm of num-
ber of small balls in L; norm with radius at least ¢,
covering F,,; by observing that for o9 > o1 > 09/2,

2\ "2 [lp1 — pzllos | (02— o1)
||fu17<71 - fu2702‘|1 S (;) o1 = + o1 .

The entropy condition can be verified by applying
Lemma S3.9. Finally, the sieve compliment condition
is easily verified by combining the results on GP priors
in van der Vaart & van Zanten (2009) and tail prop-
erties of inverse-gamma distribution of o.

4 Gaussian Process Implicit
Variational Inference

Motivated by the flexibility we have demonstrated for
transformation-based models in the non-parametric

setting, we construct a flexible implicit variational
family of distributions, deemed Gaussian process im-
plicit variational inference (GP-IVI). We provide suffi-
cient conditions under which GP-IVI achieves optimal
risk bounds and approximates the true posterior in
the sense of the Kullback—Leibler divergence. We be-
gin by defining common terminology used throughout
the section and defining GP-IVI.

4.1 Preliminaries

We consider IID observations Y; € RP, fori=1,...,n.
Let Pén) be the distribution of the observations with

parameter # € © C R? that admits a density pén)

relative to the Lebesgue measure. Let Py denote the
prior distribution of 8 that admits a density py over ©.
With a slight abuse of notation, we will use p(Y'(™) | 6)

to denote ]P’(g") and its density function. We adopt a
frequentist framework and assume a true data generat-

ing distribution P and a true parameter 6. Denote
the negative log prior U(6) = —log pe(8) and the log-
likelihood ratio of Y;, for i =1,...,n, by

€:(0,607) = log[p(Yi | 0)/p(Yi | 07)]. (10)

We denote the first two moments of the log-likelihood
by

D(6"]10) = ~Ey2[61(6,67)], ua(67(16) = Eé?[el(e,e*)g.l |

Lastly denote the appropriate neighborhood around
the true parameter 6%,

Bn(0%,¢) = {0 | Dlp(Y™ | 07)|Ip(Y ™ | 0)] < ne”,
Vip(Y™ | 09)|lp(Y ™ | 9)] < ne}. (12)

4.2 Gaussian Process Implicit Variational

Inference

Using the NL-LVM model, we can define the varia-
tional family of € conditioned on the latent variable 7,
with parameters p € C[0,1] and o € (0, 00),

Qu,o (03 | 1i) = G0 (05 — p1(n;))
m~U0,1),i=1,....d

Marginalizing over the latent n gives us the implict
variational distribution,

1
Qo (6) = /0 600 — u(n))dn.

Together this defines the Gaussian process implict
variational inference (GP-IVI) family,

Qcr = {.0(0) = [ 6e0=ntain e Clo.1) 0 > o}
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4.3 Approximation Quality of GP-IVI

In this section, we show that KL divergence between
the true posterior and its optimal GP-IVI approxima-
tion is Op(1). Using a simple example, we show that
without further assumptions this bound cannot be im-
proved. We begin the section with said example.

Consider the following one-dimensional Gaussian-
Gaussian Bayesian model for inference of an unknown
true mean 6* using the model

Yi,...,Y, ~ N(0,0%), 6~ N(uo,0?)

in which j, 09, o are all known. Let Y, i, 02 denote
the sample mean, the posterior mean, and variance,
respectively. Straight forward calculations show

D [N(0*,n ' 0®)|IN(pn,02)] — X7, weakly.

Even in the simple case of a normal-normal model,
we see that the KL divergence between the true data
generating distribution and the true posterior does not
converge weakly to 0 but instead converges weakly to
a stochastically bounded random variable.

The Op(1) bound is achieved over a rather small sub-
family of GP-IVI. Define the restricted Gaussian fam-

ily
Ty = {N (1, 7La) | lulls < M. 0 < 0 < 7 < /%0,
and let iy denote the quantile function corresponding

to f € I';,. We define the corresponding small band-
width convolution Gaussian (variational) family

0, = {qu,aw) | o

The following assumptions are required to show the
0,(1) bound for the KL-divergence.

Assumption B1 The true parameter 6* satis-

fies ||0*]]2 < M.

Assumption B2 The variance bound o, satis-
fies 0 < o, <n 12 < cé/Qan, for all n > 1.

Assumption B3 The quantities D(6*||f) and

p2(6%]10) are finite for all 6§ € R

Assumption B4 The matrices of the second
derivatives, D (6*]6), uéZ)(G*HH), U () exist on
R? and satisfy for any 6,6 € R?,

Smaz (D@ (07[10) = DD (6"(16)) < Cllo - /I3
Smaa (157(071/0) = S
Smaz (U (0) = U (@) < €0 -0 I5°

©*110) < Cllo - ¢/ll5*,

0= [ 6a0 = pstuin, 1 e r.}.

for some «ai,a9,a3 > 0. Here $,,4, denotes the
maximum eigenvalue of the matrix.

Assumption B5 D(0*||0) > C||0 — 0*|2.

Assumption B1 is needed so that a normal distribution
centered at the true parameter is contained in I';,. As-
sumptions B2-B4 are technical assumptions needed in
order to achieve convergence of certain bounds used in
the proof. Assumption B5 is a standard identifiability
condition.

Theorem 4.1. Under assumptions B1 through B5
it holds that m}(Q,) = mingeo, {Dlq|lp(- | Y™)]} is
bounded in probability with respect to the data gener-
ating distribution P(erf). Formally, given any € > 0,
there exists M., N. > 0 such that for n > N., we have
Py (my(Qn) > M) <

Again, we provide a sketch of the proof below and
provide a full proof in section S2.5 of the supple-
mentary file. Under assumptions B1-B2, ¢,(0) =
N(6;0*,0% + 02) belongs to Q,. By definition,
m5(Qu) < Dlgallp(- | Y)]. We show Dlgallp(- |
Y™)] is O,(1) by showing that it is a sum of
Op(1) terms. Letting E, denote the expectation
with respect to ¢, Dlgn|lp(- | Y)] can be bro-
ken into four parts E,[log¢,], logm (Y ™), E,[U(6)],
and E, 37" ¢;(0,0%)]. The first term E,[logg,] is
a constant, hence 0O,(1). Noting E((;f) [m(Y(™)] =
1, an application of Markov’s inequality shows that
logm(Y(™) is O,(1). Taking a (multivariate) Tay-
lor expansion of the functions U(#), D(0*||¢), and
u2(0*]|0) about #* and applying assumption B4 and
B5 gives us the bounds

Co(0? + 02) <E,[D(6*|0)] < Culo? + 02),
En[p2(07]10)] < Ca(0® +07),  (13)

E,[U(9)] < C1(0® + 7).
Markov’s inequality shows that U(6) is O,(1). It re-
mains to show E, [Y.© , ¢;(0,60%)] is O ( ). Given

e > 0, choose § = [Caco/(eCy)?| 12, Applying Cheby-
chev’s and Jensen’s inequalities together with (13) we
have,

Py {En [ana(e,e*)] < —Cu(1 + 8)n(o? +ai)}

Enlpa(0ll0))  _ _ Ca
20 (EA[D(0°]]0)))° ~ Ced?no?

IN

Finally by assumption B2 we have con < o, 2. Thus

Pg@{En [igi(e,e*)} < -2C, (1+ [Caeo/(C0)°) ) }

<e,
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which shows E,, [}, £;(6,60%)] is Op(1). Combining
the four bounds completes the proof.

4.4 «-Variational Bayes Risk Bound for
GP-1VI

In developing risk bounds for parameter estimation, we
use a slight variation of the standard variational ob-
jective function for technical simplicity. «-variational
Bayes (a-VB) (Yang et al., 2020) is a variational in-
ference framework that aims to minimize the KL di-
vergence between the variational density and the a-
fractional posterior (Bhattacharya et al., 2019), de-
fined as

_ sl (Y™ 1 9)]*pe(6)dd
Jolp(Y (™) | 0)]2pg(6)do

This leads to the following a-VB objective

P.(f € B|Y™)

q(0) = argmin D(q||pa(- | Y™)) = argmin a¥(q), (14)
qeQ q

where

p(Y ™ [6%)

U(q) = /@q(t‘?) log {7})(5,(”) )

| a0~ @Dl
The variational expected log-likelihood ratio will be
hence referred to as the model-fit term and the re-
maining KL term will be hence referred to as the reg-
ularization term.

The importance of the a-VB framework comes from its
ability to upper bound the variational Bayesian risk,
the integral of r(0,0*) = n='D, ((,n)HP((;T)] with re-
spect to q(#), by the variational objective ¥(q). Mini-
mizing the variational objective in turn minimizes the
variational risk.

Before proceeding we motivate the form of our opti-
mal risk bound. Consider preforming VI over the unre-
stricted class of densities over ©. Minimizing the a-VB
risk bound is achieved by balancing the two terms in
terms in ¥(q). By choosing

4(0) = pQ(H)IBn(Q;‘,E) (9)’
Py [B,(0*,¢)]

where B, (6*,¢) is defined in (12), the model-
fit term can be shown to be of order O,(ne?)
and the regularization term can be shown to be
a tog[Pe{B,(6%,¢)} '], a multiple of the local
Bayesian complexity. This is the optimal risk
bound for variational inference considering the class
of all distributions as the variational family (Yang
et al., 2020). We summarize this in the theorem below.

Theorem 4.2. Assume g, , satisfies (14) and g, » <

pg. It holds with Péz)—pmbability at least 1 —2/[(D —
1)2n(1 +n=2)e?] that,

/%ng(e,e*)aﬂ,a(e)da
Da 2

717a€ +

n(lia) log {Pe [Bn(a*,s)]_l} +0(n™h).

We provide a sketch of the proof below. The full proof
can be found in section S2.6 of the supplementary file.
Following our above motivation, we aim to show that
there is a member of the GP-IVI family Q¢ p such that
the model-fit term is of order O,(ne?) and the regu-
larization term is proportional to the local Bayesian
complexity. We leverage the approximation properties
from §3 to construct an approximation that achieve
this balance. We construct this variational distribu-
tion as follows.

Let the prior distribution of 6 is given by the density
pg(g) = fO(G) € Cﬂ[ov 1]; B € (2‘732] +2] Let fﬂ = fj
be the density constructed as in (6) satisfying ||¢, *
fs — folloo = O(6”). Define the density function

= f8(t) 1B, (6% )

fs(t) = W (15)

and its corresponding variational density
05,,0) = [ 0:(0 - 0T (16)

The model-fit term is bounded in high probability
using a straight forward application of Chebychev’s
inequality. Using (7), we bound the regularization
term proportional to the local Bayesian complexity.
Combining these and using Theorem 3.2 of Yang et
al. (2020) finishes the proof.

Assumption Al Prior satisfies

log[Pe{B,(0*,)} 1] < —ne?.

density  pg

Remark 4.1. Let {py,0 € O} be a parametric family
of densities. Assume for 0,601,05, there exists a > 0
such that D(0*]|0) 3 (10" 011>, u2(0*(10) < 116" —0]1>,
and ||01 — 02“0‘ j h(91,92) j H91 — 92”04‘ Then Zf
the prior measure possesses a density that is uniformly
bounded away from zero and infinity on ©, then As-
sumption Al is satisfied. Assumptions of this form
are common in the literature; refer to pg 517 (Ghosal
et al., 2000).

Corollary 4.1. Suppose the prior density pe satis-
fies Assumption A1 and q satisfies (14). It holds with
probability tending to one as n — oo that,

1/2
{ [rpe 1006 1690a, 010} <067,
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demonstrating that the risk bound is parametric even
when a flexible class of variational approximation is
used.

5 Conclusion

To summarize, we have provided theoretical properties
of transformation-based models in non-parametric and
variational inferences in the context of NL-LVM. Fur-
ther work is needed to generalize some of our results
to higher dimensional models as several of the techni-
cal lemmas in the appendix hold only for dimension
d = 1. A natural follow-up to this work would be to
study the asymptotic distribution of the parameters of
interest or a finite dimensional functional of densities
arising from the estimates. These results would be in-
line with Bernstein-von Mises type theorems for the
GP-LVM and GP-IVI.
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S1 A brief introduction to nonparametric Bayes

S1.1 Posterior contraction in nonparametic setting

We first give a brief review of the contraction rate of a posterior distribution under a general nonparametric
regression setting. Given independently and identically distributed samples Y (™) generated from the true density
fo, a regular nonparametric model considers Y; | f S f(+) for some unknown density f € F, where F denotes
a suitable class of the density functions that are absolutely continuous with respect to the Lebesgue measure.
Assigning a nonparametric prior I1(-) over the set F and multiplying it with the likelihood denoted by P(Y (™ | f)

produces the posterior distribution IT,,(- | Y(™)) defined as

Jp PY™ | £)dII(f)
JP( Y<" | F)dII(f)

IL,(fe B|Y™) =

for any set B C F. As the posterior distribution is a random measure conditioning on the given data, we are
interested in studying frequentist properties of such posterior distribution such as the consistency and convergence
rate to the true data generating function fy. In particular, the convergence rate characterizes how fast a posterior
distribution concentrates on the true density fy as n increases, measured by the decreasing rate of the radius
of a neighborhood centered at the true fy that received posterior probability converging to 1. We define the
posterior distribution contracts at a rate €, to the true function fy with respect to certain metric d(-,-) almost
surely under the true probability measure denoted by Ey,, if

Efo{H( f7f0)>M6n|Y(n )}_>O as mn — o9,

for some sufficiently large integer M > 0. Ghosal et al. (2000) derived a general approach to obtain the optimal
rate (up to a logarithmic factor) by verifying sufficient conditions regarding the prior measure and the considered
density space F. We now restate Theorem 2.1 of Ghosal et al. (2000).

Theorem S1. If there exist sequences &,,¢, — 0 with nmin{éZ,e2} — oo such that there exist constants
C1,C5,C3,C4 > 0 and a sequence of sieve F,, C F so that,

(Entropy condition) log N (&,, Fp,d) < C1né2, (S1.1)
(Sieve condition) II(F;) < Cs exp{—nE2 (Ca+4)}, (S1.2)
(Prior thickness condition) < /fo log 2 < & /fo log <f0> <€ ) > Cyexp{—Cyne2}. (S1.3)

then we have
E¢ {11, (d(f, fo) > Me, | Y("))} —0, as. as n— oo,

for some sufficiently large constant M > 0.
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S1.2 Gaussian process and its reproducing kernel Hilbert space

We first review the definition of Gaussian process. A Gaussian process defined on a probability space (2,U, P)
is a collection of random variables {X(t),t € T} indexed by some arbitrary set T such that each finite
dimensional subset of random variables has a joint multivariate normal distribution with mean function
wu(t) = E(X(t)) and convaraince kernel function K(s,t) = Cov(X(s), X(t)). For some univaraite function
f R — R, we endow it with a Gaussian process prior denoted by f ~ GP(u(-), K(-,-)) with u(z) = E(f(z))
and K (z,2") = Cov(f(z), f(2')) for any =, 2’ € R. The mean function reflects the expected center of realizations
and the covariance kernel function controls the smoothness of the realizations and correlations of the realization
across covariates. Refer to Rasmussen (2003) for a detailed introduction to Gaussian processes.

We now briefly recall the definition of the reproducing kernel Hilbert space of a Gaussian process prior; a
detailed review can be found in van der Vaart & van Zanten (2008). A Borel measurable random element W
with values in a separable Banach space (B, ||-||) (e.g., C[0,1]) is called Gaussian if the random variable b*W
is normally distributed for any element b* € B*, the dual space of B. The reproducing kernel Hilbert space
(RKHS) H attached to a zero-mean Gaussian process W is defined as the completion of the linear space of
functions ¢t — EW (t)H relative to the inner product

<EW()H1, EW()H2>H = EHlHQ,

where H, Hy and Hy are finite linear combinations of the form >, a;W (s;) with a; € R and s; in the index set
of W.

Let W = (W, : t € R) be a Gaussian process with squared exponential covariance kernel. The spectral measure
m,, of W is absolutely continuous with respect to the Lebesgue measure A on R with the Radon-Nikodym
derivative given by

dm 1 2
w _ —x%/4
o )= g

Define a scaled Gaussian process W = (W, : t € [0,1]), viewed as a map in C[0,1]. Let H* denote the RKHS
of W, with the corresponding norm ||-||g.. The unit ball in the RKHS is denoted H{.

S2 Proofs of results in the main document

S2.1 Conventions

Equations in the main document are cited as (1), (2) etc., retaining their numbers, while new equations defined
in this document are numbered (S1), (S2) etc. In this section we collect the proof of Proposition 2.1, Theorems
3.1, 3.2, 4.1 and 4.2.

S2.2 Proof of Proposition 2.1
In this section we prove the results in Proposition 2.1.

Proposition 2.1 For f, € C?[0,1] with B € (24,2j + 2] satisfying Assumptions F1 and F2, for fz defined as
from the iterative procedure (6) we have

I¢a * f5 = folloc = O(a”),

and
¢o * f3(z) = fo(x)(1 4+ D(x)O(a")), (52.1)

where

- s
D(x) = Zci‘lj(x” bt Gt
i=1
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for non-negative constants ¢;,i = 1,...,r + 1, and for any z € [0, 1].

Proof.  We now show equation (S2.1). Following the proof of Lemma 1 in Kruijer et al. (2010), for any
z,y € (0,1,

g fuly) < log fo(o) + Y Uy )+ Lly s
=1 .

log fo(y) > log fo(z) + ZT: ljf) (y— ) — Lly — |’
=1
Define
B}Lo,r(xvy) = T ljj‘;b) (y - 1.)] + L|y - x|ﬁa
=1 !
Bl o) = 3 20y 0y ply P
=1

Then we have

u 1
erO’T <1+ B?oﬂ‘ + E(B}LO,T)Q +ooe Tt MlB}LO,TV-H’
1

ePior > 14 BL  + o

(B;OJ“)Q +oe = M‘B§”07T|r+l'

where

>y

j=1

+ly-a)}.

Note that fy is bounded on [0, 1], we consider the convolution on the whole real line by extending fy analytically
outside [0, 1]. For 8 € (1,2],7 =1 and = € (0,1),

exp sup
(T + 1)' { z,y€[0,1],x72y (

6o+ fol) < folx) / ePlor @) g, (y — 2)dy

< fo(fv)/R%(y — o)1+ Lly — 2’ + M{}(z)(y — 2)* + 2LL (2)(y — 2)|y — 2|’ + L?|y — x[** }]dy.
(52.2)

Since 1 (x)’s are all continuous on [0, 1], there exist finite constants M; such that |I;| < M; and |y — x| < 1. The
integral in the last inequality in (S2.2) can be bounded by

/Rcbo(y*fv)[l+L|y*1?|ﬁ+M{M127ﬁ|11(1’)(y*x)|ﬁ+(L2+2M1)|yfwlﬁ}}dy

Therefore,
0o * fo(x) < fo(x){1 + (1|l ()" +r2)0”},

where r; = MMlziﬁB/J,/ﬁ, re = L(1+ ML +2MM)pj, and pjy = E{[y — x|},
In the other direction,

b0 * folz) > fo(x)/cég(y —2)[{1 - Lly — 2|® — M{I3(z)(y — 2)? — 2Ll (2)(y — @)y — 2| + L2y — 2|**}]dy.

Thus we achieve expression of ¢, * fz in Proposition 2.1.
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For any 8 > 2 and the integer j such that 5 € (24,25 + 2]. We define ¢(*) % f as the i-folded convolution of ¢

with f for any integer ¢ > 1. First we calculate ¢, x fo(z), ¢((,2) x fo(z), ..., ((,j) * fo(z), and by Lemma S3.5
we get ¢, * fj(x). The calculation of ¢((,Z) * fo(x) is the same as that of ¢, * fo(x) except taking the convolution
with ¢ 5. The terms o2, 0%, ..., 0% caused by the factors containing |y — z|¥ for k < 8 in gzb((f) x fo can be

canceled out by Lemma S3.5. For terms containing |y — z|* for k > 3, we take out |y — z|® and bound the rest
by a certain power of |/;(x)| or some constant. Following an induction in Kruijer et al. (2010), we can guarantee
the approximation error of ¢, * f5 is at the order of O(c?). O

S2.3 Proof of Theorem 3.1

Theorem 3.1. If II,, has full sup-norm support on C[0,1] and II, has full support on [0,00), then the L;
support of the induced prior IT on F contains all densities fy which have a finite first moment and are non-zero
almost everywhere on their support.

Proof. Let fy be a density with quantile function pg that satisfies the conditions of Theorem 3.1. Observe that
ol = j;lzo lo(t)|dt = [ |z| fo(z)dz < oo since fo has a finite first moment, and thus g € L1[0,1]. Fix
€ > 0. We want to show that II{B.(fo)} > 0, where B.(fo) ={f : ||f — foll; < €}

Note that py ¢ C[0,1], so that P(||x — poll, < €) can be zero for small enough e. The main idea is to find a
continuous function fig close to pg in Ly norm and exploit the fact that the prior on p places positive mass to
arbitrary sup-norm neighborhoods of fig. The details are provided below.

Since [|¢o * fo — foll; = 0 as 0 — 0, find oy such that ||¢, * fo — fol; < €/2 for ¢ < oy. Pick any ¢ < 0. Since
C10,1] is dense in L;[0, 1], for any 6 > 0, we can find a continuous function fip such that ||uo — fio]|; < 6. Now,
| fu.o — frio,oll; < Ol — fiol|, /o for a global constant C. Thus, for § = € 0¢/4,

{fu,a 109 <o <oy, ||,u - /70”00 < 5} - {fu,o : ”fO - fu,a”l < 6},
since || fo — fu.oll; < |lfo = fuoolly + 1 fuoe = frowolly + 1 f7o.0 = fuolly and fug,o = éo * fo. Thus, II{Be(fo)} >

IL,(|p — foll o, < 0)Ils(00 < 0 < 1) > 0, since IT, has full sup-norm support and II, has full support on
[0, 00). O

S2.4 Proof of Theorem 3.2

In this section we will give a detailed proof for the adaptive posterior contraction rate result for the NL-LVM
models.

Theorem 3.2. If f, satisfies Assumptions F1 and F2 and the priors II, and II, are as in Assump-
tions P1 and P2 respectively, the best obtainable rate of posterior convergence relative to Hellinger metric h
is

€n = n_%%(log n)t, (S2.3)

where t = 8(2V ¢)/(26 +1) + 1.

Proof. Following Ghosal et al. (2000), to obtain the posterior convergence rate we need to find sequences €,, €, —
0 with nmin{e2,e2} — oo such that there exist constants C;,Cs, C3,Cy > 0 and sets F,, C F so that,

log N (&, Fp,d) < Ciné2, (S2.4)
II(FS) < Cyexp{—ne2(Cy + 4)}, (S2.5)
2
H(fu,g : /fo log ffo g%%, /fo log (ffo ) Sé) > C4exp{—anEfL}. (S2.6)
n,o .o

Then we can conclude that for €, = max{€,,¢,} and sufficiently large M > 0, the posterior probability

IL,(fue : d(fue, fo) > Mey|Y1,...,Y,) — 0 as. Py,



Plummer, Zhou, Bhattacharya, Dunson, Pati

where Py, denotes the true probability measure whose the Radon-Nikodym density is fo. To proceed, we consider
the Gaussian process j ~ W4 given A, with A satisfying Assumption P1.

We will first verify (S2.6) along the lines of Ghosal & van der Vaart (2007). Recall fg is defined as from (6), by
Lemma 53.7 we guarantee that fg is a well-defined density. Denote by pg = Fy ! the quantile function of 15,
then we have f,,, » = ¢o * f3. Note that

h2(f07 f/L,lT) j hQ(an fug,a) + hQ(f/Lg,ay f,u,rf)~ (827)
Under Assumptions F1 and F2 and by Lemma S3.8, one obtains

W2 (fo, fup,o) < /fo log <ff0 ) 3 0(*). (S2.8)

Hp,o

From Lemma S3.1 and the following remark, we obtain

i — sl
h2<f/1¢-j,o') fu,o’) ~ T (82.9)
From Lemma 8 of Ghosal & van der Vaart (2007), one has
fo ' 2 Jfo '
folog 7 < h*(fo, fu.o)| 1+ log : (S2.10)
o B0 oo

fori=1,2.
From (S2.7)-(S2.10), for any b > 1 and €2 = 028,

2
28 /folog(f ) igi’@}
o

Since pg € CP*10, 1], from Section 5.1 of van der Vaart & van Zanten (2009),

{0 € [ow 200, 11— sl S o8+ C {/folo

L 1 2Vq
M= sl < 26,) > Caexp{ = Co(1/8,)7 g () J(Casan)re/iss,

for §,, — 0 and constants Cy, Cs, Cg > 0. Letting §,, = JE“, we obtain

1 1 \2Ve
Huum—uﬂnms%n)zexp{ 07( )log( ) }
Jn

for some constant C7 > 0. Since o ~ IG(a,, b, ), we have

bao 20,
HU(U € [O’n,20'n]) = F(; ) / x_(aa'f'l)e—bg/ldw

bg” 2on —2b,/
> F(ao')/a' e dx

do

> ﬁon exp{—b,/on}

> exp{ng/on},

for some constant Cs > 0. Hence

1 1 2Vq
{o € [on,20,], |1 — psll o 2 oty > exp{ — C7<0> log <5+1) }CXP{CS/Un}
n g

n

1 1\
n On
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Then (S2.6) will be satisfied with €, = n=%/(#+1 Jog" (n), where t; = 3(2V q)/(28+ 1) and some Cg > 0. Next
we construct a sequence of subsets F, such that (S2.4) and (S2.5) are satisfied with €, = n=#/(26+1 10g" n and
€, for some global constant ¢t > 0.

Now we construct the sieves for F. Letting H{ denote the unit ball of RKHS of the Gaussian process with
rescaled parameter a and By denote the unit ball of C[0,1] and given positive sequences M,,, r,,, define

B, =Ua<y, (M HY) + 6,B4,
as in van der Vaart & van Zanten (2009), with 8, = &,l,,/K1, K1 = 2(2/m)"/? and let
Fn ={fuo:p € Byl <o <h,}.

First we need to calculate N(&,, Fy, ||-||;). Observe that for oo > o1 > 02/2,

1/2
3 _
||fy.1,0'1 _fp,Q,a'ng S (7() H:ul 0“2”00 4 (02 0'1).

1 01

Taking k,, = min{€,/6,1} and o7 = 1,(1 + k,)™, m > 0, we obtain a partition of [l,, h,] as l,, = o} < o} <
<oy 1 <hp, <oy, with

h,, 1

One can show that 3(c?, — o™ _,)/om _ = 3k, < €,/2. Let {a,k=1,...,N(6,, Bn, |.)} be a d,-net of B,,.
Now consider the set

{(@R,om) k=1,...,N(6n, Bn, I o), 0 < m < my . (S2.12)

n
m

Then for any f = f., € Fn, we can find (i}, o™ ) such that ||p — 47| < .. In addition, if one has o €

(oh then

m—-10 m]

[ fuo = fuponll, < &

Hence the set in (S2.12) is an €,-net of F,, and its covering number is given by
N(gmBn’ Hlloo)
From the proof of Theorem 3.1 in van der Vaart & van Zanten (2009), for any M, r,, with r,, > 0, we obtain

_ M\ \ 2
log N (205, By, |||l o) < Kgrn<10g (;)) . (S2.13)

n

Again from the proof of Theorem 3.1 in van der Vaart & van Zanten (2009), for r, > 1 and for M2 >
16 K37, (log(1,,/0,))?, we have

K4T‘£67K5r" log? r,

P(W4 ¢ B,) < Kol + exp{—M2/8}, (S2.14)
for constants Ks, K4, K5 > 0.
Next we calculate P(o ¢ [l,, hy]). Observe that
P(o & [ln, ha]) =P(0™" < hy') +P(o™" > 17)
= cha (byhy, bee [
< k;g ]i! * + F(‘;g) /l”1 e b2y
< emartog(hn) | 057 —boit2 (S2.15)

- I'(ao)
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Thus with h,, = O(exp{n/ 8+ (logn)**1}),1, = O(n~Y B+ (logn)=211),r, = O(n'/ 2+ (logn)?), M, =
O(n'/ 28+ (logn)t1+1), (S2.14) and (S2.15) implies

II(Fy;) = exp{—Kgnep},
for some constant K¢ > 0, which guarantees that (S2.5) is satisfied with &, = n=%/(26+1) (logn)"
Also with &, = n=#/2+1) (logn)1+1 it follows from (S2.11) and (S2.13) that
log N (€n, Fu, [|-Il,) < K7/ 7D (log n)*1+2,

for some constant K7 > 0. Hence max{e,,¢,} = n=#/f+D (logn)h+1. O

S2.5 Proof of Theorem 4.1

In this section, we present the detailed proof of the high probability bound for KL divergence between the true
posterior and its a-VB approximation in the case of the GP-IVI.

Theorem 4.1. Under assumptions B1 through B5 it hold that m}(Q,) = mingeo, {Dlg|lp(- | Y ™)}
is bounded in probability with respect to the data generating distribution. Formally, given any € > 0, there

exists M., N. > 0 such that for n > N,, we have ng)(m;i(Qn) > M) <e

The objective m(Q,) can be bounded above by Dlg|[p(Y™ | 0)] for any ¢ € Q,. Choosing ¢ as a
particular univariate Gaussian centered at the true parameter with variance satisfying our assumptions B1-B5

allows us to bound the KL divergence between the true posterior p(Y (™) | ) in high P(n)—probability.

Proof. Tt follows from the definition of m}(Q,,) that for any ¢ € Q,
m;,(Qn) < D(gllp(- | Y™)).

Choose i, to be the quantile function of the distribution N(6*,02). Define the variational distribution

0) = / 608 — pin ()

where o, satisfies assumption B2. By change of measure,

/%(9 — pin(u))du = /%(9 — )@, (t — 0F)dt = N(0;60%,0% + 072).
Therefore g, (6) = N(0;0*,0% + 02) € Q,,. Denote by E,, the mean respect to ¢,. Expanding D(g,|[p(Y™ | 6)),

B, [log ~ - 0| = Bullog ] + ELU6)] + ol ) ~ B, [£,(60.6°),

where L, (0,6%) = >, £;(6,6%). Since the sum of Op(1) terms is Op(1), it suffices to show that each of the
terms in the above sum is O,(1). The first term E,[log g,], the differential entropy of ¢y, is a constant and is
Op(1). A straight forward application of Markov’s inequality along with the fact that ng) [m(Y(™)] = 1 shows
that logm(Y (™) is O,(1).

Next, expand each of the functions D(6*||0), u2(0*]|0), and U(6) using a multivariate Taylor expansion around
0*. Applying assumptions B4 and B5 shows

E.[U(0)] < Ci(0® + 02),
En[u2(07]10)] < Ca(0® + 07), (S2.16)
E,[D(6*]10)] < Cu(0® + 03), (S2.17)
E,[D(0*]10)] > Ce(0® + 07,) (S2.18)
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Markov’s inequality shows that U(6) is O,(1). We will use Chebychev’s inequality to show E, [Z £;(6,60%)] is

Op(1). Given e > 0, choose § = [Caco/(eC)? ] & Using (S2.16)-(S2.18) and noting that — 9* {L (0,6%)} =
nD(6*]|9), we have

Py {En[Ln(0,07)] < —Cu(1+ 8)n(0® + 02)} < PG {En[Ln(0,6%)] < —(1 + 6)nE,[D(67]|60)]}
< B { B [£,(0,0%) - B (L0, 0)] <~V B D0 0]
_ Varg? (Ba[61(6,6")]) _  Enlpa(6716")
= 020 (E.[D(07]10))7 ~ 62n (B, [D(6*]]6)))°
02(0'2 + 0.72L) < C2 < CQ
= 02nCy(0% +02)? ~ 62nCi(02 4+ 02) ~ §?nCio2’

Applying assumption B2 we have cgl/2n’1/2 < o, < n~Y2. This gives

p{Y { / L (60,0%)¢n(0)d0 < —2C, (1 + (cgco/(gc*;))l/?)} <P { / L (0,0%)¢n(0)d0 < —Cy(1 + )n(o® + ai)} <e.
Thus E,[L,(6,6%)] is Op(1). This completes the proof. O

S2.6 Proof of Theorem 4.2

In this section, we present the detailed proof of the Bayesian risk bound for a-variational inference in the case
of the GP-IVI model. We also present a proof of the corollary for the Hellinger risk bound. The main theorem
and the lemmas are restated here for convenience. Our risk bound is based of the following theorem,

Theorem S2.1 (Yang et al. (2020)). For any ¢ € (0,1), it holds with Pé?)-probability at least (1 — ¢) that for
any probability measure q € Q with g < py,

a¥(q) +log(1/¢)

| Dl i at0) a0 < S E

The GP-IVI risk bound is stated as follows.

Theorem 4.2. Assume g, , satisfies (14) and ¢, ., < pp. It holds with Pé?)—probability at least 1 — 2/
[(D —1)%(1 + n~2)ne?] that,

1 1
=+ n(n) ) A < 2 * -1 —1
[ 5P 0.08,00)i0 < (22— tox {2 B,(07. <)} + Ol ).

The desired risk bound follows from bounding the right hand side of Theorem 3.2 of Yang et al. (2020)

« __« p(Y™16%) 1
m@(‘lu,a) = m [/ Qu,a(e) log Wd@ + O[D(qﬂ’g|p9)]

in high ]P’(Tf)—probability in terms of the local Bayesian complexity logPy (B, (6*,¢)). By choosing a particular
member of the variational family we can bound both the likelihood ratio integral as well as the KL divergence
between the prior and the variational approximation. The relation between the variational distribution and the
local Bayesian complexity come from the KL divergence term.

Proof. We will construct a special choice of p as follows. Denote pg(6) = fo(0). Let B,(0*,¢) be as in (12).
Define the truncated densities

=~ Jo(®)Ip, () fo() B, (6%,)(t)
fO(t)_an(e*,g)fO(U)d Py(Bn(0%,¢))

fa()Ip, o) (t)

fﬁ(t) = an(e*’E) f@(u)du
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where fz is constructed by procedure (6) such that ||¢, * f5— follco = O(c”) along with its associated distribution
functions

%m:/ Fo(t)t, @mz/ Falt)t.
(—00,tNB, (0*,¢) (—00,t]NB, (0*,¢)

Define the quantile function of ﬁ'g as p(t) = ﬁﬁ_ L(t). This can be used to define the variational density

6,00 = [ 0aO= ) = [ 000 DFa0t = 6, 4 Jo(0),

[0,1]

with o > 0 a bandwidth that will be specified later in the proof. The main tool for the proof will be from
Proposition 2.1

a7, ,(0) = 6o * f5(0) < fo(0)(1+ D(6)O(c?)). (52.19)

Denote Mp = supp_ (g- .y D(0) and Kg(o) = 14+ MpO(c”). We will now bound the model-fit term. Denote the
random variable

HY™), F,0) = [ a7,.,(0)loglp(y ™) [0%)/p(Y™) | 6)ab.

The mean and variance (with respect to the data generating distribution) of the model-fit term are bounded by
applying (S2.19),

B H(Y ™, Fouo)l = [ DIy ™) 6]y | 0))az, ,0)9

< /D[p(Y(") | 0)]lp(Y™ | 0)] fo(0)(L + D(0)O(c”))do

< K )/B(g*ﬁ)D[p(Y |0 lp(Y ™) | O g 0

< Kg(o)ne?,
and
Var (Y o) < [ V™ [6)]p(y ™ | 0)lag, ,(6)ds

< [ VI 1 6)p(Y ™ | 6)F(6)(1 + DOYO(o?))ds

<Ko [ VIO 0 0

B, (6%, ¢)] d0

< Kg(o)ne?

It follows from Chebyshev’s inequality that with }P’(?)—probabﬂity at least 1 — 1/[(D — 1)?Kg(o)ne?]

(n) | g*
/ a5, ,(0)log {W} df < DKg(o)ne?.

Next we will bound the regularization in terms of the local Bayesian complexity. Using (52.19) we can bound
the KL divergence,

A 7 AN ~
Dla, .lloo) = [ a5, . (6)log [qf”()} o < [ 1og [fow)(HO(D(Q) ))] Fo0)(1 + O(D(8)*)) .

fo(0) fo(0)
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Expanding f(f) and making use of the convention I, (9= ,e)(0)1og(Ip, (6+,)(0)) = 0 for 0 ¢ B,(0*,¢) we have

Jo(0)IB, (6% )
]P)G [Bn *7 5)]
Py

(
_ o 1+ O(D(Q)O—ﬁ)) Fo(6) y
B /Bn(o*,s)l & { Py[B,,(0*,¢)] ] [B,,(0,2)] (1+0(D(0)o"))do

(1+0(D(6)c?))ds

/10 fo(0)Ig, 6+ ) (1 + O(D(6)c?))
& fo(6)B[B,(67,2)]

_ El0) ___fol6)
= Kplo)log [Pe(Bn(Q*ﬁ))} /an*,@ BB, (0] "
) K5(0)
= Kg(o)log {M(Bf(t‘)*,s))} :

Combining the bounds from both parts, we have with probability at least 1 — 1/[(D — 1)K (o )ne?] that

\I!(qfﬂ’g) < DKB(O')TLEQ + oz_lKB(U) log Kg(o) + a_lKﬂ(a) log {]P’g[Bn(H*,s)]_l} .

Choosing ¢ = 1/[(D —1)?Kg(o)ne?]. It follows from the union bound for probabilities, we have with probability
at least 1 — 2/[(D — 1)?Kg(o)ne?] that

aDKg(o)ne® + Kg(o)log Kg(o) + Kg(o) log {Py[B,(0%,£)] 7} + log((D — 1)*Ks(0)ne?)

1
Zpn) NG, <
[ 500,67 )30(0)d8 < i

1120;52 + n 1_ ) log {Pg[B,(0*,)] '} + O(n1)> .

SKﬁ(U)(

Recall that Kg(o) = 1+ O(c?). Choosing o = n=2/8 gives

Da

/%Dgn)(e,e*)(j%a(e)dﬁ < Kg(o) (1 —¢ + n(ll— ) log {Po[Bn(e*,g)]—l} + O(n—1)>
Do

<1 0462 + ol 1_ ) log {Py[B,(0*,e)] '} + O(n™") + O(n™?).

O

Corollary 4.1. Suppose the prior density py satisfies Assumption A1l and ¢ satisfies (14). It holds with
probability tending to one as n — oo that,

1/2
{ [t 10150 0*»@,0(9)%} <o),

demonstrating that the risk bound is parametric even when a flexible class of variational approximation is used.

Proof. For IID data nilD&n)(ﬁ,Q*) = Dy[pel|pe-]. Applying Theorem 4.2 with ¢ = n~! and Assumption A1l
yields,

[ 000,050 000 < 222+ Lo {BalBu(0" 2]} + O
Da -1 —1\ _ —2 -1
_m‘FO(n )=0(Mn"°)+0(n™").

Combining the above with the fact that max{1, (1 — ) ta}h?(p, q) < D4[p||q] competes the proof. O
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S3 Auxiliary results

In this section, we summarize results used in the proofs of main theorems in the main document. First to
guarantee that the model (2) leads to the optimal rate of convergence, we start from deriving sharp bounds for
the Hellinger distance between f,, o, and f,, 5, for pi,ps € C[0,1] and 01,02 > 0. We summarize the result in
the following Lemma S3.1.

Lemma S3.1. For py,us € C[0,1] and 01,02 > 0,

20102 [l 121 *M2H2
B2 (fus o1y fumos) <1 — — e eloo f S3.1
(fm, 1 fltz, 2) — O,%Jro_% exp{ 4(0.%+0.%) ( )

Proof. Note that by Hoélder’s inequality,

1 2
Furor 0 Fmora ) > { | Vo m@en - uz(r))dx} |

Hence,

B2 (Fn s Fanio) < / { / sy pr (@) + / sy — )

1
2 [ Vol m @V m(z))dsc} dy.
0

By changing the order of integration (applying Fubini’s theorem since the function within the integral is jointly
integrable) we get

1
hz(ful,ﬂlafuz,dfz) < /0 hQ(fu](;c),olvf,ug(;z),az)dx
1 2
| 20109 (11(z) — po(z))
:/ [1— 02+U2exp{— 207+ 02) dx
0 1 2 1 2

20109 1 — pal|”
<1-— ex —
= o7 + 03 p{ 4(07 + 03)

O

Remark S3.2. When o1 = 02 = 0, h*(fur,00fuso) < 1 — exp{||,u1—u2Hio/802}, which implies that

2
hQ(fuhoafuz,tf) 3 ||M1 - M2||oo /02'

Remark S3.3. The standard inequality h*(fu, o1, fus.o0) < [fur.or = fuz.onlly relating the Hellinger distance to
the total variation distance leads to the cruder bound

11 — p2ll o log — 01

h2 015 . <C )
('fl“’ 1 fuz, 2) - (0’1 /\0’2) 2(01 AU?)

which is linear in ||pn — pa2l||.. This bound is less sharp than what is obtained in Lemma S3.1 and does not
suffice for obtaining the optimal rate of convergence.

In order to apply Lemma 8 in Ghosal & van der Vaart (2007) to control the Kullback-Leibler divergence between
the true density fo and the model f, ,, we derive an upper bound for log || fo/fuc|l ., in Lemma S3.4.

Lemma S3.4. If fy satisfies Assumption F2,

o

2
<C+ llpe = polls (83.2)

log 2

50 [loo

for some constant C > 0.
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Proof. Note that

2ro
1 1 _ 5 - ,
27/ eXp{—wg(m))}dxeXp{_”/i/;O”oo}
2mo Jo o .
2
>C¢a/ﬁ*fo(y)e><p{—““0”oo}

2
> Cfo(y)eXp{ - W_“OI“’}

where the last inequality follows from Lemma 6 of Ghosal & van der Vaart (2007) since fy is compactly supported
by Assumption F2. This provides the desired inequality. O

Fuo ) = —m /OleXP{—(y_uW}dx

Lemma S3.5. Let j > 0 be the integer such that 3 € (2],2j + 2], and the sequence of f; is constructed by the
procedure in (6). Then we have fz = S27_ (—1)! (zi%)¢o % fo, where 65 % fo = ¢o % -+ % bg % fo, the i-fold
convolution of ¢, with fy.

Proof. Consider f; constructed by (6). When j =1, fi = 2fo — ¢o * fo, so the form holds. By induction, suppose
this form holds for j > 1, then

fi+1r=fo = (8o = f; — [j)
J
:f0+z(_ 1+1(Z1'i>¢(1+1 *f0+z <]+1>¢ % fo
i=0

Jj+1

=(+2fo+ > (1) (“1)&1 f+2 (j+1>¢ff)*fo
=1
J .

=G+ 2h+ 0 (1) (1)) e ok captoe g
=1
! Jj+2 . .

=G +2fo+ > (-1) ( )¢<Z x fo+ (=170« f
=1

j+1 .

N (TR 40,

=S 0 (1) e

It holds for j + 1, which completes the proof. O

Lemma S3.6. Let fy satisfy Assumptions F1 and F2. With A, = {z : fo(x) > o'}, we have
| Jola)da = 0(0*%), ¢>g * fi(x)de = O(a%), (53.3)
for all non-negative integer j, sufficiently small o and sufficiently large H.

Proof. Under Assumption F2 there exists (a,b) C [0,1] such that AS C [0,a) U (b,1] if we choose o sufficiently
small, so that fo(z) < o for z € AZ. Therefore, [,. fo(z) < off < O(06?7) if we choose H > 23. Using
Proposition 2.1,

» ¢o * fi(x)dr = » fo(x){1+ O(D(x)o’ﬁ)} < O(c).

With bounded D(z) and H > 24 it is easy to bound the second integral in (S3.3) by O(c2?). O
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Lemma S3.7. Suppose fy satisfies Assumptions F1 and F2. For > 2 and the integer j such that 8 €
(24,25 + 2], fs is a density function.

Proof. To show fg is a density function, it suffices to show f3 is non-negative, since a simple calculation shows
that [ fz =1 for j > 0. Following the proof of Lemma 2 in Kruijer et al. (2010), we treat log fo as a function in
C?[0,1] and obtain the same form of ¢, * fo as in (S2.1). For small enough o we can find p; € (0,1) very close
to 0 such that

o * fo(@) = fo(x)(1+ O(DP(2)0?)) < fo(z)(1 + p1),
where D) contains |I;(x)| and |l2(z)| to certain power, so D(?) is bounded. Then we have
fi(@) =2fo(x) = Ko fo(z) > 2fo(x) = fo(z)(1 + p1) = fo(z)(1 — p1).
Then we treat log fy as a function with § =4, j = 1. Similarly, we can get
G0 * f1(x) = fo(z)(1+ O(DW(z)0")),

where D™ contains |I;(z)], ..., |ls(z)|. We can find 0 < ps < p; such that ¢, * f1(z) < fo(z)(1+ p2), then can
get

f2(2) = fol@) = (90 * f1(x) — f1(z)) > folx)(1 — p1 — p2) > fo(z)(1 —2p1).

Continuing this procedure, we can get f;(z) > fo(x)(1 — jp1) with sufficiently small o and 1 — jp; € (0,1) and
it is close to 1. Then we show f; is non-negative.
O

Lemma S3.8. Let fy satisfy Assumptions F1 and F2 and let j be the integer such that B € (24,25 + 2]. Then
we show that the density fg obtained by (6) satisfies

fo(@) 26
/fo )log ———— o fo(7) = 0(c*"), (S3.4)
for sufficiently small o and all z € [0, 1].

Proof. Again consider the set A, = {x : fo(z) > o™} with arbitrarily large H. We separate the Kullback-Leibler
divergence into

Jo fo fo
I
fO o8 b * [ /[0,1]mA folog bo * fp /[0 1JnAe folog bo * f5

(o — 6 * )2 o fo
< /A Ry / (o * i — fo) / folog 520 (83.5)

Under Assumption F2 and by Remark 3 in Ghosal et al. (1999), for small enough o there exists a constant C
such that ¢, * fo > Cfo for all x € [0, 1]. Especially, fy satisfies ¢, * fo > fo/3 for © € AS. Also in the proof of
Lemma S3.7 we can find p € (0,1) such that fz > pfo. Then, on set A, with sufficiently small o, we have

o * fj 2 poo * fo > K fo,
where K = min{p/3, pC}. Applying (S2.1), the first integral on the r.h.s. of (53.5) can be bounded by
/ (fo— 0% £5)* _ / [fo(z) = fo(z)(1 + O(D(z)o”))]?
A, @o * [ B Kfo(x)
3 [ p@oweet) = o).
To bound the second integral of r.h.s in (S3.5), according to Remark 3 in Ghosal et al. (1999) we get ¢, * f; >

pfo/3, then we can find a constant C' < 1 such that ¢, * f; > C'fo. The second and third term in (S3.5) can be
bounded by O(c??) based on Lemma S3.6. O
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Lemma S3.9. Let H{ denote the unit ball of RKHS of the Gaussian process with rescaled parameter a and By
be the unit ball of C[0,1]. For r > 1, there exists a constant K, such that for e <1/2,

2
1
08 N (e Uaeio . Hl.0) < (1o L) (33.6)

Proof. Since we can write any element of H{ as a function of Re(z) by Lemma 4.5 in van der Vaart & van
Zanten (2009), and an e-net denoted by F° over H{ is constructed through a finite set of piece-wise polynomial
functions, and according to Lemma 4.4 and Lemma 4.5 in Bhattacharya et al. (2014), F* also forms an e-net
over HY} as long as a is sufficiently close to b. Thus we can find one set I' = {a;,i = 1,...,k} with k = [r] +1
and ap = r, such that for any b € [0, r] there exists some a; satisfying |b — a;| < 1, so that U;<,F% forms an
e-net over U,<,H{. Since the covering number of U;<;F* is bounded by summation of covering number of F%,
we obtain

k 2

. . 1

log N (€, Upefo,HY, || - o) < log <Z#(]—"“)) <log(k - #(F")) < KT(log 6) .
=1

Here we write #(A) to denote the cardinality of any arbitrary set A. To prove the second inequality above,
note that the piece-wise polynomials are constructed on the partition over [0, 1], denoted by U<, B;, where
B;’s are disjoint interval with length R that can be considered as a non-increasing function of a, so the total
number of polynomials is non-decreasing in a. Also we find that when building the mesh grid of the coefficients
of polynomials in each B;, both the approximation error and tail estimate are invariant to interval length R,
therefore we have #(F¢) < #(F?) if a < b, for a,b € [0,7]. O

Remark S3.10. With larger a we need a finer partition on [0,1] while the grid of coefficients of piece-wise
polynomial remains the same except the range and the meshwidth will change together along with a. Since we

can see the element h of RKHS ball as a function of it and with Cauchy formula we can bound the derivatives
of h by C/R™, where |h|* < C2.

S4 GP-IVI Algorithm

In this section we outline an algorithm to train GP-IVI based on the Karhunen—Loéve representation of a
Gaussian process; details on the Karhunen—Loéve representation of a stochastic process can be found in either
Jin (2014) or Le Maitre & Knio (2010).

S4.1 Karhunen—Loéve representation of a Gaussian process
For a mean zero Guassian process X (t), 0 < ¢ < 1, with covariance function
K(s,t) =E[X(t)X(s)], for 0 < s,t < 1.

The Karhunen—Loéve expansion is given by

oo

X(t) =" vV er(t)é,

k=1

where {(\g,er)} are the eigenvalue eigenfunction pairs to the Fredholm integral equation
1
Aper(t) = / K(s,t)ex(s)ds, for 0 <t <1,
0

and & are IID N (0, 1) random variables. For computational purposes, we need work with the finite approximation

N
Xn(t) =D VAbren(t).
k=1
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S4.2 Algorithm

Recall the GP-IVI family consists of distributions of the form,

Qap:{q,m(@):/o ¢o(9—u(n))dn|u60[0,1]70>0}~

Substituting in the truncated Karhunen-Loéve expansion in place of p(n) we can equivalently define ¢, ,(0) =
E, [N (0; 1u(n), 0?)] using the reparameterization trick

N
0= Arérer(n) + oc (54.1)
=1
1 ol ’
CI/A,U(G) =E, |exp T 952 <9 - Z @&%(n)) ) (54.2)
=1

where &, N(0,1) for 1 <k < N,e~ N(0,1), and n ~ U(0,1). This allows us to define the joint ELBO in
(O'vgla"'agN)a

ELBO(Ua 517 s 7§N) = ]Eq“’(,(b') [lng(97 Y(n)) - log Qu,o (9)] (843)

and its gradient

VU»&M---@NELBO(U’ 515 v agN)'

At this point we can compute the ELBO and its gradient using Monte Carlo techniques and maximize the ELBO
using a gradient-based optimization technique.
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