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Abstract 1 

Current and future trends indicate that mining of natural phosphorus (P) reserves is occurring 2 

faster than natural geologic replenishment. This mobilization has not only led to P supply 3 

concerns, but has also polluted many of the world’s freshwater bodies and oceans. Recovery and 4 

reuse of this nuisance P offers a long-term solution simultaneously addressing mineral P 5 

accessibility and P-based pollution. Available physical, chemical, and biological P 6 

removal/recovery processes can achieve low total P (TP) concentrations (≤100 μg/L) and some 7 

processes can also recover P for direct reuse as fertilizers (e.g., struvite). However, as shown by 8 

our meta-analysis of over 20,000 data points on P quantity and P form, the P in water matrices is 9 

not always present in the reactive P (RP) form that is most amenable to recovery for direct reuse. 10 

Thus, strategies for removing and recovering other P fractions in water/wastewater are essential 11 

to provide environmental protection via P removal and also advance the circular P economy via 12 

P recovery. Specifically, conversion of non-reactive P (NRP) to the more readily 13 

removable/recoverable RP form may offer a feasible approach; however, extremely limited data 14 

on such applications currently exist. This review investigates the role of NRP in various water 15 

matrices; identifies NRP conversion mechanisms; and evaluates biological, physical, thermal, 16 

and chemical processes with potential to enhance P removal and recovery by converting the NRP 17 

to RP. This information provides critical insights into future research needs and technology 18 

advancements to enhance P removal and recovery. 19 
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1 Introduction 22 

1.1 Phosphorus as a critical nutrient and a pollutant 23 

Paradoxically, phosphorus (P) is simultaneously an important non-renewable agricultural 24 

nutrient and an environmental pollutant. On one hand, modern human society depends on P to 25 

sustain the global food supply. Rapid increases in human population and the subsequent need for 26 

high agricultural productivity have led to substantial increases in fertilizer use. Currently, P is 27 

primarily obtained from subsurface mining of phosphate minerals. Unfortunately, these mineral 28 

P resources replenish on geologic time scales, making P an essentially non-renewable resource, 29 

characterized by rapidly depleting finite reserves. This, coupled with the fact that 90% of 30 

minable P is found in only five countries around the world, has led to substantial increases in 31 

fertilizer prices (Childers et al., 2011; Cordell et al., 2009; Liu et al., 2008).  32 

On the other hand, P is also an overabundant water pollutant. The simplified schematic in Figure 33 

1 illustrates anthropogenic P flows and distributions in global food production. Approximately 34 

80% of mined P (16.5±3 million metric tonnes/yr) is used as fertilizer for global food production, 35 

and almost 35% (6.3±3 million metric tonnes/yr) of that P makes its way to surface waters 36 

(Cordell and White, 2014). This P can enter streams as nonpoint runoff from urban and 37 

agricultural lands and point sources such as municipal and industrial wastewater treatment 38 

facilities (Bravo et al., 2017; USEPA, 1998). In most freshwaters, P is the limiting nutrient, or 39 

nutrient in least supply relative to demand (typical N:P ratios are greater than 15:1 (Correll, 40 

1999)). Thus, excess P makes these waters prone to extraordinary phytoplankton growth. The 41 

resulting eutrophication adversely affects the ability of a water body to serve as a drinking water 42 

supply, recreational resource, or fishery as it eventually leads to color, odor, turbidity, loss of 43 

dissolved oxygen, and elimination of fish habitat (USEPA, 1995). Eutrophication can be costly 44 



3 

in terms of human and environmental health as well as economic impacts, with annual damages 45 

associated with freshwaters estimated at $2.2 billion in the United States alone (Dodds et al., 46 

2009). This is surely exceeded by the as yet undetermined total value of ecosystem disservices 47 

(Mayer et al., 2016). To control ecological degradation, the United States Environmental 48 

Protection Agency (USEPA) has recommended a limit of 50 μg/L total phosphorus (TP) for 49 

streams entering lakes and 100 μg-TP/L for flowing waters (USEPA, 1986). However, some P-50 

limited surface waters are susceptible to algal blooms even at these low levels (Mayer et al., 51 

2013; USEPA, 1998). These findings have led to more stringent water quality goals and 52 

standards, e.g., as low as 5 – 10 μg-TP/L in ecologically-sensitive zones like the Great Lakes and 53 

Everglades (USEPA, 1995, 1986).   54 

A long-term sustainable solution for addressing the dual problems of mineral P scarcity and P-55 

based eutrophication is to remove P from water and wastewater streams and recover it for 56 

beneficial reuse, e.g., as an agricultural fertilizer. Researchers have identified a wide range of 57 

innovative physical, thermal, chemical, and biological technologies to remove and recover P  58 

(Mayer et al., 2013; Mehta et al., 2015; Morse et al., 1998; Rittmann et al., 2011). However, 59 

existing processes can struggle to consistently achieve increasingly lower TP standards 60 

(Neethling et al., 2010; Stephens et al., 2004; USEPA, 2007). A key factor contributing to this 61 

difficulty is that existing processes cannot remove all P fractions (Gu et al., 2011; USEPA, 62 

2010). In particular, non-reactive P (NRP) poses a challenge for P removal and recovery. 63 

1.2 Objectives: What is the big deal about NRP and what can we do about it? 64 

A considerable proportion of TP in many waters, including both point and non-point sources, 65 

consists of NRP. NRP is not readily reactive and must first be converted to reactive P (RP, or 66 

orthophosphates) before chemical reactions can proceed and P recovery strategies can be 67 
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implemented (APHA, 2012; Rittmann et al., 2011). To effectively limit eutrophication risks and 68 

substantially satisfy anthropogenic P demands, we must maximize capture of all of the lost P, 69 

including NRP, which historically has been overlooked as a specific target for recovery 70 

technologies. This extends to capitalizing on opportunities at a variety of scales and from a 71 

variety of flows (e.g., animal, municipal, and industrial wastewater; environmental waters and 72 

agricultural runoff; and organic and industrial waste). The objective of the review article is to 73 

offer a first step towards addressing this need via 1) a quantitative assessment of the presence of 74 

NRP in water, wastewater, and sludge matrices; and 2) a forward-looking assessment of NRP 75 

conversion mechanisms and the associated strategies for improving P management by converting 76 

the NRP to RP forms amenable for subsequent recovery and reuse as P-rich products. This article 77 

addresses a major gap in the literature, as NRP is not effectively targeted for removal/recovery 78 

and there are very few assessments of technologies specifically focused on conversion of NRP in 79 

water, wastewater, or sludge. Thus, we focus on identifying a suite of potential technologies such 80 

that future research can directly establish NRP conversion efficacy. 81 

2 All P is not created equal: Why should we worry about NRP?  82 

In water, P can be present in many different forms, which vary dramatically in terms of 83 

environmental impacts, removability, recoverability, and reusability for agricultural applications. 84 

Historically, the NRP fraction has been largely ignored as a target for removal and recovery; 85 

however, we contend that this fraction cannot be ignored on the basis that: 86 

1) NRP counts toward TP effluent discharge limits at wastewater treatment facilities, but is 87 

typically less amenable to removal, which can be a challenge for removal to ultra-low TP 88 

levels. 89 
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2) To maximize P recovery in support of a circular P economy, we need to “unlock” this 90 

largely unavailable pool of NRP. 91 

3) In environmental waters, NRP eventually converts to RP, which contributes to 92 

eutrophication potential (although the timing of NRP conversion varies dramatically as a 93 

function of chemical and biological water quality parameters and environmental 94 

conditions such as temperature and sunlight exposure). 95 

2.1 Major P fractions 96 

The different forms of P typically found in water matrices, including soluble (sP; which can pass 97 

through a 0.45 μm filter) and particulate (pP; retained on a 0.45 μm filter) forms, are 98 

summarized in Figure 2. Particulate P fractions can be removed from water matrices using 99 

physical separation techniques, but the suitability of this pP for subsequent reuse depends on the 100 

extent of its reactivity. 101 

Reactive P (RP), also known as inorganic phosphorus, orthophosphate, or molybdate reactive P, 102 

refers to the operational TP fraction that is readily available for chemical reactions via coulombic 103 

attraction to cations (APHA, 2012; McKelvie, 2005; Rittmann et al., 2011).   104 

The NRP fraction, also known as condensed or acid hydrolysable phosphorus (AHP) or organic 105 

phosphorus (OP), includes inorganic polyphosphates (metaphosphates and di, tri, and tetra-106 

polyphosphates) (APHA, 2012; USEPA, 2010). Polyphosphates can occur naturally as many 107 

microorganisms accumulate and store P in this form as energy reserves (USEPA, 2010; Yuan et 108 

al., 2012). Use of polyphosphoric compounds in fertilizers and anti-corrosive agents also 109 

contributes to concentrations of these species in water (USEPA, 2007). Natural OP comes from 110 

plants, animals, or microbial cellular materials such as nucleic acids, nucleotides, and 111 
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phospholipids (Murphy, 2007; USEPA, 2010, 1986). Synthetic sources of soluble OP (sOP) 112 

come from organophosphorus compounds in pesticides (e.g., malathion), herbicides (e.g., 113 

glyphosate), flame retardants (e.g., tris(2-ethylhexyl)phosphate), and plasticizers (Meyer and 114 

Bester, 2004; Yu, 2002). In some environmental waters, OP can be at least as abundant as 115 

inorganic P (Cade-Menun et al., 2006; Karl and Björkman, 2001; Worsfold et al., 2016); for 116 

example, sOP may constitute on the order of 30 – 60% of TP in lakes (AWWA, 1970). In the 117 

context of the environmental biogeochemical P cycle, NRP (e.g., in the form of apatite minerals) 118 

is unavailable for chemical reactions; however, P can be released to soluble, more bioavailable 119 

forms via natural processes such as weathering (Filippeli, 2002). 120 

Figure 3 illustrates several example P compounds from each of the major fractions: soluble 121 

reactive P (sRP), soluble non-reactive P (sNRP), particulate RP (pRP), and particulate NRP 122 

(pNRP). Each of these compounds may be present in water, wastewater, or sludge matrices, 123 

albeit at varying concentrations.  124 

2.2 Distribution of P forms across water matrices 125 

Water matrices of interest for P removal and/or recovery, including sludges, manures, 126 

wastewaters, and environmental waters, may vary in both P concentration and composition. Here 127 

we examine both of these dimensions across the water matrices of interest. 128 

Although TP concentrations vary widely both spatially and temporally, they typically follow the 129 

trend manure > sludge > wastewater > environmental waters, as shown in Figures 4 and 5. In 130 

environmental waters, TP concentrations range from approximately 0.001 – 100 mg-TP/L, with 131 

0.005 – 1 mg-TP/L being more common in lakes and rivers (AWWA, 1970). In North Pacific 132 

ocean waters, Yoshimura et al. (2006) reported TP concentrations from 0.0037 to 0.057 mg/L. 133 
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Concentrations of NRP in the particulate OP (pOP) form ranged from 0.00028 to 0.0034 mg/L, 134 

while sOP varied from 0.0031 to 0.0068 mg/L. Effluent from sewage treatment without specific 135 

P removal processes may contain approximately 3 – 10 mg-P/L, whereas with P removal, 136 

concentrations are typically ≤ 1 mg/L (AWWA, 1970; Egle et al., 2015). In agricultural drainage 137 

waters, P concentrations are often on the order of 0.05 – 1 mg/L (AWWA, 1970), up to 138 

approximately 7 mg/L. 139 

The relative magnitude of the pP fraction varies by water matrix, specific waterbody, and 140 

location/time. Figure 4 illustrates the trend in pP across water matrices, where manures contain 141 

the highest levels of particulate-associated P. In environmental waters, pP varies widely, but can 142 

be substantial (Jarvie et al., 2006), even accounting for the majority of TP in some cases, e.g., 143 

56% in the Pee Dee river inlet in South Carolina (Cade-Menun et al., 2006). Similarly, Aydin et 144 

al. (2010) reported 3.7 mg-TP/L in the Asi River (Samandag, Antakya, Turkey), of which > 99% 145 

was present as pRP. In contrast, pP in the textile industrial wastewater is low. The domestic 146 

wastewaters are also relatively low, but pP levels depend on location-specific factors. For 147 

example, Dueñas et al. (2003) observed pP fractions contributing 20 – 100% of the 8 – 16 mg-148 

TP/L influent at two municipal wastewater treatment plants. Figure S1 in the Supplementary 149 

Information (SI) shows that concentrations of TP and pP are different amongst the environmental 150 

waters, wastewaters, and livestock manures.  151 

The variability of sRP content across different water matrices is shown in Figure 5. Also 152 

illustrated is the temporal and spatial variability in the large dataset of environmental waters 153 

(22,750 data points from 4,000 sites across the US). As shown, wastewaters generally exhibit the 154 

highest proportion of sRP, while sludges tend to have the lowest sRP. These findings coincide 155 

with the inverse trends observed for pP across matrices. Again, environmental waters are highly 156 
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variable, spanning the entire spectrum of 0 to 100% sRP, with TP levels typically less than the 157 

other matrices. A principle component (PCA) analysis was performed in R to assess the 158 

similarity amongst the grouped water matrices with respect to concentrations of TP and sRP. As 159 

shown in Figure S4 of the SI, levels of TP and sRP in sewage sludges were dissimilar from 160 

wastewater. The wastewaters were also different from the manure. 161 

Beyond TP, sRP, and some limited pP data, the other P fractions are much less frequently 162 

reported. Furthermore, the actual P-containing compounds present in the different water matrices 163 

are seldom identified, with the exception of laboratory spiking studies. For example, the 164 

American Water Works Association notes that “almost no information is available to identify the 165 

specific compounds or groups of compounds that may make up a dissolved organic-phosphorus 166 

fraction in waste effluents, agricultural soil-drainage water, or surface water” (AWWA, 1970). In 167 

particular, the chemical constituents of the OP and colloidal P fractions remain poorly 168 

characterized, which hampers understanding of environmental fate (e.g., bioavailability and 169 

mineralization potential) as well as design of effective approaches for P removal and recovery 170 

(Venkatesan et al., 2018). 171 

2.3 P Bioavailability  172 

From a eutrophication perspective, not all P fractions are readily available for biological uptake 173 

(Ekholm, 1998; Li and Brett, 2015). Algal bioavailability of sRP in water is significantly higher 174 

compared to sNRP and pP fractions (Button, 1985; Ekholm, 1998; Lean, 1973; Reynolds and 175 

Davies, 2001). Laboratory algae growth studies have shown that the sRP fraction can be 176 

completely removed from water within hours (Button, 1985; Lean, 1973). Studies of Lake Erie 177 

tributaries also show that most sP is bioavailable to algae, whereas only about 30% of the pP 178 

fraction is bioavailable; thus, even in cases where pP dominates TP loading (e.g., major Ohio 179 
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tributaries to Lake Erie), sRP often contributes more bioavailable P (Baker et al., 2014). The 180 

bioavailability of the sRP fraction, and the fact that it is often the dominant form of P in 181 

wastewater, has made it the primary target for P monitoring and removal from wastewater 182 

(Ekholm, 1998; Rittmann et al., 2011). However, some studies have shown that the recalcitrant 183 

fractions (sNRP and pP) can also lead to cyanobacteria and algal growth (Monbet et al., 2009; 184 

Sañudo-Wilhelmy, 2006). Qin et al. (2015) showed that up to 75% of sOP from the effluent of 185 

two tertiary wastewater treatment plants (filtration and activated carbon adsorption) was 186 

bioavailable for algae growth within a 14-day period. The long-term fate of these sNRP and pP 187 

fractions released in environmental waters is not yet known. Natural processes, e.g., enzymatic 188 

hydrolysis (phosphatase) and photolysis, may degrade even the most recalcitrant P fractions, 189 

converting them to more bioavailable forms. Thus, all P fractions should be considered relevant 190 

targets for removal strategies implemented in water to limit eutrophication risks.    191 

2.4 Removal and recovery of P  192 

The different P fractions and compositions behave differently with respect to removal and 193 

recovery. For example, while inorganic P is removed reasonably well by most advanced 194 

treatment systems, OP commonly passes through (Mayer et al., 2016; Venkatesan et al., 2018). 195 

All existing removal processes rely on the extraction of P solids (De-Bashan and Bashan, 2004). 196 

For example, pP is amenable to direct removal via physical separation processes, while sP is 197 

converted into a solid phase (via, e.g., biological uptake, adsorption, or precipitation) to enable 198 

efficient separation. Regardless of the approach, P recoverability is enhanced by conversion of 199 

the NRP fraction to the more readily reusable RP form. 200 

Conventional activated sludge and enhanced biological phosphorus removal (EBPR) wastewater 201 

treatment plants remove P using a combination of biological accumulation and physical/chemical 202 
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separation techniques (Henze et al., 2008). Activated sludge plants rely heavily on tertiary 203 

physical/chemical processes (incorporating, e.g., granular or membrane filtration, coagulation, 204 

flocculation, or adsorption) to remove the majority of P (Neethling et al., 2010). To more 205 

specifically target P removal, EBPR plants modify conventional activated sludge to foster the 206 

growth of polyphosphate accumulating organisms (PAOs), which can accumulate significantly 207 

higher amounts of P (>15% P per dry cell weight compared to <3% for typical cells) (Crocetti et 208 

al., 2000; Henze et al., 2008; Seviour et al., 2003). While more P can be concentrated in the 209 

microbial cells and removed in the secondary sludge stream using EBPR, physical/chemical 210 

techniques may still be used for further polishing to facilitate compliance with low effluent TP 211 

standards (Stephens et al., 2004). The secondary effluents of activated sludge, and to a lesser 212 

extent, EBPR, will still have both particulate and soluble RP and NRP fractions (Neethling et al., 213 

2013, 2010; Stephens et al., 2004) that may be amenable to removal via tertiary 214 

physical/chemical treatment processes. Gu et al. (2011) observed >93% removal of sRP, pRP 215 

and pAHP (i.e., pNRP) during secondary biological treatment in a full-scale EBPR plant. 216 

However, only 78% OP and <40% sAHP (i.e., sNRP) were removed.  217 

Tertiary physicochemical P removal techniques, including granular, micro-, or ultra-filtration; 218 

coagulation; flocculation; precipitation; ion exchange; and adsorption, are highly effective in 219 

removing RP and even some pNRP fractions (Neethling et al., 2010; USEPA, 2010). However, 220 

they do not effectively remove the sNRP fraction, which passes through unaffected in the 221 

effluent (USEPA, 2010). Gu et al. (2011) observed that tertiary treatment including chemical 222 

coagulation using FeCl3 followed by filtration at an EBPR plant effectively removed sRP, sAHP, 223 

and pOP, but was not as effective in removing pAHP and sOP. Though NRP typically makes up 224 
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only a small fraction of influent wastewater TP (1 – 10%), NRP (sNRP in particular) can lead to 225 

failures in meeting regulatory effluent standards (USEPA, 2010).  226 

Similarly, the more recalcitrant sOP and pP fractions present a challenge for achieving ultra-low 227 

level TP goals in some environmental waters, e.g., the Florida Everglades (Ged and Boyer, 228 

2013). Installation of adjacent wetlands significantly reduced sRP in the Everglades system, but 229 

this approach cannot effectively reduce sNRP (White et al., 2004). In an ongoing effort to 230 

achieve ultra-low TP concentrations in the Everglades, the George Barley Water Prize, launched 231 

in 2016, seeks innovative technologies able to remove P directly from the environmental water. 232 

This effort is part of an integrated approach to P management including source reduction, e.g., 233 

best management of agricultural runoff and enhanced wastewater treatment, as well as P removal 234 

from the sink itself – in the actual waters of the Everglades. Notably, the Barley Prize 235 

acknowledges the importance of 1) P removal directly from environmental waters, 2) OP 236 

removal, and 3) opportunities to recover value-added products (P removal + recovery paradigm) 237 

(Everglades foundation, 2016; Macintosh et al., 2018). Accordingly, diverse P management 238 

portfolios of the future could increasingly consider P removal (and possibly even P recovery) 239 

from environmental waters as one viable strategy. 240 

Apart from removing P to limit eutrophication, recovering P for reuse is also essential for 241 

satisfying increasing agricultural P demands. Ideally, the recovered P should be readily available 242 

for reuse with limited additional processing. For agricultural reuse, the most direct approach is 243 

land application of manure or biosolids. However, because of the wide variation in P 244 

concentrations; P bioavailability; crop nutrient needs; and the presence of organic matter, metals, 245 

toxic compounds, and pathogens, land application of manure or wastewater sludge may be 246 

limited (Morse et al., 1998; Singh and Agrawal, 2008; USEPA, 1994).  247 
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Another option is to further process wastewater biosolids via incineration. Incineration reduces 248 

pathogen levels and attractiveness to vectors (rodents, flies, etc.) while retaining the P nutrient 249 

content in the sewage sludge ash, which could potentially be land applied (Gerstle and Albrinck, 250 

1982; USEPA, 1994). A key advantage of incineration is conversion of P to reactive forms 251 

(complete conversion in the case of complete combustion). However, the bioavailability of the 252 

RP ranges by compound, and incinerated sewage sludge ashes are less bioavailable compared to 253 

dewatered sludge, meaning they are often less effective as fertilizers (Lemming et al., 2017). 254 

Sludge ash also retains heavy metals, which may provide incentive for further separation to 255 

recover a more specific P product with greater bioavailability. Other considerations for 256 

implementation of incineration include energy costs and emissions of NOx and other gas-phase 257 

compounds (Gerstle and Albrinck, 1982; Werther and Ogada, 1999).  258 

More selective P recovery from water, wastewater, sludge, or ash can yield an inorganic 259 

chemical form that may provide a higher-value product that can replace or augment fertilizers 260 

derived from mined P. Precipitation of P as struvite (magnesium ammonium phosphate 261 

hexahydrate, MgNH4PO4•6H2O), a slow release fertilizer, is an increasingly common practice 262 

which serves as the basis of multiple commercially-available P recovery systems, including 263 

PHOSNIX, Rem-Nut, and Ostara processes (Schröder et al., 2010; USEPA, 2010). Calcium 264 

phosphates such as hydroxylapatite, Ca5(PO4)3(OH), are alternative precipitates that can 265 

substitute for mined P as the raw material for production of high-grade fertilizers such as triple 266 

superphosphates (Morse et al., 1998). Regardless of the chemical composition of the product, P 267 

precipitation (i.e., the formation of pRP products) using metal cations such as Ca2+ and Mg2+ can 268 

only incorporate the sRP fraction. Thus, NRP must be converted to RP prior to recovery, e.g., 269 
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hydrolysis of polyphosphate yields orthophosphate, which can then be recovered as struvite or 270 

hydroxylapatite (Yang et al., 2017). 271 

2.5 Can we capitalize on conversion of NRP? 272 

Various P fractions behave differently with respect to removability/recoverability, yet to 273 

effectively limit eutrophication risks and substantially satisfy anthropogenic P demands, 274 

consideration of all options for P removal/recovery, including NRP (sNRP, in particular), is 275 

imperative. This extends to capitalizing on opportunities at a variety of scales and from a variety 276 

of flows (e.g., animal, municipal, and industrial wastewater; environmental waters and 277 

agricultural runoff; and organic and industrial waste) (Mayer et al., 2016). The diversity in 278 

anthropogenic P flows in global food production, illustrated in Figure 1, highlights the 279 

importance of P removal and recovery strategies capable of addressing both point (e.g., sewage) 280 

and non-point (e.g., agriculture runoff) sources to move towards effectively closing the 281 

anthropogenic P loop. The composition and structure of P compounds in each fraction, and their 282 

relative magnitudes, can vary significantly depending on geographic location, environmental 283 

conditions, agricultural practices, and types of wastewater. A considerable proportion of the TP 284 

observed in both point and non-point sources consists of NRP (Figure 1), and is currently not 285 

targeted for recovery. Thus, technologies capable of converting NRP to the more readily 286 

recoverable RP form while operating in low and high flow conditions, and variable water quality 287 

matrices are necessary for a circular P economy (Childers et al., 2011).   288 

3 Potential routes for NRP conversion 289 

In this section, we identify and assess strategies for improving P management by converting 290 

NRP in water, wastewater, and sludge matrices to RP forms amenable for subsequent recovery 291 

and reuse as P-rich products. Conversion mechanisms and the related biological, physical, 292 
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thermal, and chemical processes of potential relevance to P conversion applications are critically 293 

evaluated. This addresses a major gap in the literature as there are very few assessments of 294 

technologies specifically targeting conversion of NRP in water, wastewater, or sludge (and the 295 

majority of these existing assessments focus solely on sludge solubilization). Thus, we focus on 296 

identifying a suite of potential technologies such that future research can directly establish NRP 297 

conversion efficacy across various water matrices.  298 

3.1 Mechanisms of NRP conversion 299 

Conversion of NRP to RP requires disruption of bonds in complex NRP compounds. The 300 

primary classes of P bonds of interest include phosphoester (P-O-C), phosphoanhydride (P-O-P), 301 

and direct P-X (where X is an electronegative group such as carbon, sulphur, nitrogen or 302 

fluorine). Naturally forming inorganic polyphosphates (pyro-, tri-, meta-, etc.) and organic 303 

mono- and polyphosphates (e.g., glycerol phosphate, ATP, DNA, etc.) are non-reactive and 304 

typically contain phosphoester and/or phosphoanhydride bonds (Butusov and Jernelöv, 2013; 305 

Miller et al., 1969; Strauss and Day, 1967; Strauss and Krol, 1967; Strauss and Treitler, 1956; 306 

Thilo and Wieker, 1961). Direct P-X bonds are more commonly present in synthetic 307 

organophosphorus compounds (e.g., glyphosate, zinc dialkyldithiophosphates, 308 

cyclophosphamide, sarin, etc.) (Doong and Chang, 1997; Singh and Walker, 2006). Cleavage of 309 

these bonds may proceed via hydrolysis (nucleophilic substitution) or redox reactions. 310 

The hydrolysis of phosphoesters and phosphoanhydrides is exothermic, making these bonds 311 

readily susceptible to hydrolytic scission, either enzymatically (e.g., by phosphatase) or 312 

chemically mediated (Figure 6). The half-lives of hydrolysis reactions in environmental waters 313 

have been reported to range from 4 to 220 d (up to 7,000 d in sterile water), versus 0.5 d for 314 

hydrolysis of pyrophosphate in domestic sewage (AWWA, 1970). The rate of hydrolysis 315 
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increases with temperature and in acid/alkali pH conditions (Butusov and Jernelöv, 2013; Miller 316 

et al., 1969; Strauss and Day, 1967; Strauss and Krol, 1967; Strauss and Treitler, 1956; Thilo and 317 

Wieker, 1961). The P-C bonds in organophosphorus compounds are more recalcitrant than the 318 

ester and anhydride bonds; however some studies have reported cleavage of P-O and P-S bonds 319 

via alkali or enzymatic hydrolysis (by, e.g., phosphonoacetate hydrolase) and oxidation (Costas 320 

et al., 2001; Doong and Chang, 1997; Dyguda-Kazimierowicz et al., 2014; Singh and Walker, 321 

2006; Theriot and Grunden, 2011). 322 

In biological systems, P is widely reported as a redox conservative element, with biochemical 323 

reactions largely consisting of the formation and hydrolysis of phosphoester bonds. 324 

Phosphoesters certainly play a critical role in biochemistry, and P is principally present in the 325 

fully oxidized +5 valence state in living systems; however, both natural and xenobiotic reduced P 326 

compounds may also play a role (Costas et al., 2001). If present, trivalent P is easily oxidized. 327 

Moreover, when present in complex organophosphorus structures, NRP may convert to RP, or at 328 

least convert to a form more readily available for hydrolytic conversion, as oxidants break down 329 

densely conjugated aromatic organic matter.      330 

Based on these mechanisms, potential NRP conversion technologies include biological, physical, 331 

thermal, and chemical operations that initiate and/or accelerate hydrolysis or redox reactions. 332 

However, there is a paucity of information on such processes for the purpose of NRP conversion. 333 

To date, technologies have been primarily investigated for the purpose of solubilizing thickened 334 

wastewater sludge streams with a focus on sludge dewatering, nutrient release, and improving 335 

digestion. Accordingly, we critically review the performance of potential NRP conversion 336 

technologies applied to sludge for the purpose of improved residuals management. However, in 337 

principle, these approaches may also be applied for the specific objective of converting NRP to 338 
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the more readily recoverable RP form. Moreover, this can be accomplished in other streams 339 

including high-strength animal manure, slaughterhouse waste, and chemical (pesticide) 340 

manufacturing wastewater. Some of these approaches may also be applicable for converting 341 

NRP in high flow, low strength waters, e.g., domestic wastewater, or even environmental waters 342 

at risk of eutrophication, e.g., high volume, low strength water bodies such as lakes and rivers.  343 

3.2 Biological P conversion 344 

Sludge fermentation technologies such as waste activated sludge stripping to remove 345 

accumulated phosphorus (WASSTRIP) and PhoStrip are common, commercially-available 346 

biological P conversion processes that have been applied at full-scale (Kroiss et al., 2011). These 347 

processes harness PAOs’ ability to hydrolyze and release accumulated polyphosphates in an 348 

anaerobic environment in exchange for a carbon substrate (Levin and Shapiro, 1965). They 349 

involve retaining the sludge stream in an anaerobic “stripper” tank and can also include addition 350 

of acetic acid or diversion of the influent stream to stimulate polyphosphate release (Van 351 

Loosdrecht et al., 1997). The PhoStrip process has been successfully applied to release up to 352 

67% P from both activated and EBPR sludge (van Loosdrecht et al., 1997). However, a large 353 

fraction of the accumulated P is retained in the sludge, including almost all OP (Levin and 354 

Shapiro, 1965). Large amounts of extra chemicals (acids for neutralization) may be needed as the 355 

water in the stripper tank can contain high alkalinity and pH (>9), which can hamper subsequent 356 

removal/recovery via precipitation (Van Loosdrecht et al., 1997; Wang et al., 2005). Sludge 357 

fermentation processes induce PAOs to release accumulated polyphosphate, making it available 358 

for hydrolysis. Therefore, they are only applicable in polyphosphate-rich EBPR wastewater 359 

treatment scenarios, and they are not able to solubilize other NRP fractions. 360 
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Anaerobic digestion is a well-established process for treatment of animal waste and waste 361 

activated and EBPR sludge. It uses anaerobic conversion of organic compounds to produce 362 

methane energy, while also releasing organically-bound P via hydrolysis, making the P available 363 

for recovery (Battistoni et al., 1997; Carey et al., 2016; Carrère et al., 2010; Huchzermeier and 364 

Tao, 2012; Peccia and Westerhoff, 2015; Rittmann et al., 2011; Uysal et al., 2010; Zeng and Li, 365 

2006). Specific studies focused on the conversion of NRP to RP via anaerobic digestion of high-366 

strength organic waste streams are currently lacking, warranting further research. Nonetheless, 367 

this combination of simultaneous nutrient and energy recovery potential can make anaerobic 368 

digestion a very attractive option. P recovery via struvite precipitation has been demonstrated 369 

from anaerobically digested sewage sludge and animal manure effluent streams (Battistoni et al., 370 

1997; Huchzermeier and Tao, 2012; Uysal et al., 2010; Zeng and Li, 2006). Similarly, two-phase 371 

anaerobic digestion (with a pre-acidogenic phase at pH 6 or lower) demonstrated release of up to 372 

60–90% of pP from pig manure (Piveteau et al., 2017). In this small-scale study, the P was 373 

released as sRP, amenable to struvite recovery. However, the presence of P during anaerobic 374 

digestion can also cause substantial economic and technical problems. Release of P in the 375 

digester can lead to spontaneous formation of struvite crystals if P, magnesium and ammonium 376 

are present in sufficient concentrations (Le Corre et al., 2009; Qureshi et al., 2006). This can 377 

cause scaling of the reactor vessels, pipes, and pumps, leading to extensive operation and 378 

maintenance costs (Marti et al., 2008; Ohlinger et al., 1998). For this reason, P may be removed 379 

from the waste stream prior to anaerobic digestion.  380 

Other biological treatments have been investigated as options to improve sludge handling and/or 381 

anaerobic digestion performance (Ariunbaatar et al., 2014; Carrère et al., 2010), including 382 

aerobic (composting, micro-aeration), anaerobic (thermophilic digestion), and enzymatic 383 
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(lysozymes, protease, lipase, and cellulose) pre/co-treatment techniques (Blonskaja et al., 2003; 384 

Burgess and Pletschke, 2008; Lim and Wang, 2013; Melamane et al., 2007; Mshandete et al., 385 

2005; Muthangya et al., 2009; Riau et al., 2012; Sung and Santha, 2001; Wang and Zhao, 2009). 386 

Although these biological treatments are expected to release P via breakdown of complex 387 

organic material, no specific information on nutrient solubilization or NRP conversion was found 388 

in the literature. Thus, evaluations specifically targeting P release potential are important to 389 

consider in future studies.  390 

3.3 Physical P release 391 

Physical disintegration treatments release cellular materials from sludge flocs into water (Carrère 392 

et al., 2010; Elliott and Mahmood, 2012). A range of physical disintegration techniques such as 393 

liquid shearing (collision plate and high pressure homogenizer) and grinding/cutting processes 394 

(macerator and deflaker) have been applied to high solids streams to improve biodegradability 395 

for subsequent anaerobic treatment (Ariunbaatar et al., 2014; Carrère et al., 2010). These 396 

approaches have been used to improve solids destruction, biogas production, nutrient 397 

solubilization, sludge dewaterability, and reduce sludge volume and foaming (Carrère et al., 398 

2010). Naturally, improvement in cell destruction increases the release of intracellular 399 

compounds, including nutrients like nitrogen and P. For example, Müller (2000) observed a 400 

threefold increase in supernatant P concentrations after disintegration by high-pressure 401 

homogenization (80 MPa). Similarly, Kampas et al. (2007) observed a maximum threefold 402 

increase in sP after 15 min pretreatment of an EBPR sludge with a deflaker. Once NRP is 403 

released from complex molecules, it can be more readily converted to RP via hydrolysis, and 404 

subsequently recovered for reuse.  405 
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Relatively sophisticated sludge pretreatment technologies such as ultrasound and pulsed electric 406 

field (PEF) have been used for sludge disintegration and disinfection with advanced oxidation in 407 

small-scale studies (Khanal et al., 2007; Rittmann et al., 2008; Salerno et al., 2009); however, 408 

they are not currently used at large scales. Ultrasound treatment lyses cells and disrupts other 409 

particulate matter. Large soluble molecules are then degraded by two key mechanisms: 410 

cavitation, which occurs at low frequencies (20 – 40 kHz), and chemical oxidation due to the 411 

formation of hydroxyl radicals (HO•) at high frequencies (Carrère et al., 2010; Khanal et al., 412 

2007; Tiehm et al., 2001). Wang et al. (2010) used 500 kWh/m3 high intensity ultrasound to treat 413 

an EBPR sludge sample, and observed more than 60% P release in 1 hour, 80% of which was in 414 

the sRP form.  415 

In PEF, high-voltage (>20 kV) electrical pulses (produced at rates of thousands per second) are 416 

applied, e.g., as a means of sludge disintegration or food sterilization (Rittmann et al., 2008; 417 

Salerno et al., 2009). The basic components of all cell membranes and walls 418 

(phospholipids/peptidoglycan) are charged and polar, making them susceptible to electric fields, 419 

thereby resulting in complete cell lysis during PEF (Min et al., 2007; Salerno et al., 2009). Choi 420 

et al. (2006) applied PEF at 19 kV, 110 Hz to waste activated sludge samples, and reported an 421 

increase in supernatant P by a factor of 2.3.  422 

3.4 Thermal P conversion 423 

Thermal breakdown of organic compounds by application of heat at temperatures of 50 to 250ºC 424 

and pressure has been successfully applied to enhance sludge disintegration for improved sludge 425 

dewaterability and anaerobic digestion at large scales (Ariunbaatar et al., 2014; Bougrier et al., 426 

2006; Carlsson et al., 2012; Carrère et al., 2010; Cesaro and Belgiorno, 2014; Haug et al., 1978; 427 

Tanaka and Kamiyama, 2002). The breakdown of complex organic matter during thermal 428 
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hydrolysis simultaneously releases nutrients. Kuroda et al. (2002) released 90% of the 429 

organically-bound P by heating activated sludge to 70ºC for 1 hour. P release increased with 430 

increasing temperature. Near complete P release was observed using 80ºC treatment for 20 min 431 

(80% of the released P was in the AHP form), while 10 min treatment provided near complete 432 

removal at 90ºC (40% in the AHP form). Extended exposure to high temperatures (70 – 90ºC) 433 

can ostensibly hydrolyze and convert polyphosphate NRP to sRP (Kuroda et al., 2002).  434 

Steam heating (heat transfer from steam) is typically applied in large-scale systems (Mottet et al., 435 

2009); however, microwave heating (direct irradiation of sludge) has been shown to solubilize 436 

polymers in small-scale studies (Marin et al., 2010; Toreci et al., 2009). Microwave heating can 437 

be advantageous as the heating process can be precisely controlled and heat generation within the 438 

material is more uniform, both internally and on the surface, in comparison to conventional 439 

steam heating (Liao et al., 2005a). Liao et al. (2005a) reported up to 76% release of the TP in 440 

sewage sludge using microwave heating at 170ºC for 5 min. To date, effective thermal 441 

breakdown of polyphosphates to sRP has been demonstrated, whereas future studies evaluating 442 

the effect of heat on release of other NRP constituents are still needed.    443 

3.5 Acid/Alkali P conversion  444 

Chemical treatment by means of strong acids and bases has been extensively investigated as an 445 

approach for solubilization of solids and large organic molecules (Carrère et al., 2010). However, 446 

literature reports of P release typically quantify sRP before and after treatment, making it 447 

difficult to ascertain whether the increase in sRP resulted from conversion of NRP or pRP. The 448 

pRP fraction, including divalent cation precipitates (e.g., calcium or magnesium phosphates), has 449 

been shown to be more susceptible to solubilization after acid treatment in comparison to alkali 450 

treatment. Specifically, Stark et al. (2006) observed 83% release of Ca2+ ions after 1 M HCl 451 
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treatment, whereas only 0.19% Ca2+ ions were released after 1 M NaOH treatment. Accordingly, 452 

it seems likely that acid treatment can convert both NRP and pRP to sRP, whereas alkali 453 

treatment primarily converts NRP to sRP. 454 

Alkali treatment is effective, in order of sludge solubilization efficacy: NaOH>KOH>Mg(OH)2 455 

and Ca(OH)2 (Kim et al., 2003). Similarly, strong acids (H2SO4, HCl) can improve anaerobic 456 

digestibility of sludge and dairy manure (Devlin et al., 2011; Jin et al., 2009). Acid/alkali 457 

treatments, including NaOH; HCl; citric acid; and microwave irradiation combined with NaOH, 458 

CaO, H2SO4, or HCl, have also improved P release (Jin et al., 2009; Mavinic and Koch, 2003; 459 

Stark et al., 2006). Approximately 2 – 4 fold increase in P solubilization was observed when 460 

treating sludge with 10 mM HCl or NaOH for 30 hr (Mavinic and Koch, 2003). Microwave 461 

thermochemical sludge treatment at 120ºC for 30 min with 0.07g-NaOH/g-manure and 0.75% 462 

vol/vol HCl released 20 – 30% of dairy manure P (Jin et al., 2009). Acid/alkali thermochemical 463 

treatment has increased solubilization efficiency 25 – 30% when using a microwave rather than a 464 

conventional oven heating source (Mavinic and Koch, 2003). In addition to sludge, acid/alkali 465 

treatment has been used to recover P from incinerated sludge residues. Stark et al. (2006) 466 

reported 87% P release after treating incinerated sludge ash with 1 M HCl and 70% P release 467 

using 1 M NaOH.  468 

3.6 Redox reactions: P conversion using advanced oxidation processes 469 

As P is most often present in the +5 valence state in water matrices, oxidation typically does not 470 

target P bonds specifically. However, when NRP is locked in complex organic matrices, 471 

advanced oxidation can help to release this P, making it available for hydrolytic conversion to 472 

RP, or yielding recoverable sRP via complete oxidation. 473 
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Advanced oxidation processes (AOPs) are primarily defined as oxidation processes involving the 474 

generation of hydroxyl radicals (HO•), which are the most powerful oxidizing species (Eo = 2.80 475 

V) after fluorine. Other strongly oxidizing radicals include sulfate radicals (SO4•-, Eo = 2.60 V), 476 

which serve as the basis for sulfate radical AOPs (SR-AOPs). These powerful, non-selective 477 

oxidizing agents can mineralize organic compounds to simple, relatively harmless molecules, 478 

e.g., carbon to carbon dioxide and P to phosphates or phosphoric acids (Parsons, 2004). A 479 

number of AOPs have been developed for water and wastewater treatment applications, as 480 

detailed in comprehensive reviews by Comninellis et al. (2008), Parsons (2004) and Poyatos et 481 

al. (2010). Some of the more commonly used AOPs in research or application include 482 

photochemical degradation processes (UV/O3, UV/H2O2, X-ray/H2O2), photocatalysis (TiO2/UV, 483 

photo-Fenton), sonolysis (ultrasonication/H2O2), chemical oxidation (O3/H2O2, H2O2/Fe2+), and 484 

electrochemical processes (Poyatos et al., 2010; Wang and Xu, 2012). These processes have 485 

been successfully applied for the oxidation of a wide array of organic contaminants in water, 486 

including toxic and recalcitrant species (e.g., aromatic compounds, dyes, pharmaceuticals, and 487 

pesticides), microbes (e.g., coliform bacteria, Cryptosporidium, and viruses), and bulk organics 488 

(e.g., humic material, amino acids, and dissolved organic carbon) (Wang and Xu, 2012).  489 

Several studies have also investigated AOPs for solubilizing organically-bound P in sludge. 490 

Researchers at the University of British Columbia evaluated the use of microwave-assisted O3, 491 

H2O2, and O3/H2O2 AOPs targeting P release from activated and EBPR sludge (Kenge et al., 492 

2009; Liao et al., 2005b; Wong et al., 2006; Yin et al., 2007). Using 1 L-O3/min together with 493 

30% H2O2 (1:29 VH2O2/Vsludge) for 20 min released 24 – 31% TP from sludge. The addition of 494 

microwave heating to a temperature of 100ºC for 3 min improved P release by an additional 20% 495 

(Yin et al., 2007). Liao et al. (2005b) reported up to 84% release of TP from EBPR sludge using 496 
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30% H2O2 (1:20 VH2O2/Vsludge) and microwave heating for 5 min at 170ºC. Up to 95% P release 497 

was reported from sewage sludge using 1 L/min ozonation for 9 min followed by addition of 498 

30% H2O2 (6:84 VH2O2/Vsludge) and microwave heating to a temperature of 120ºC for 4 min (Yin 499 

et al., 2008). More than 90% of TP was released from wastewater sludge in 20 min using 500 

ultrasonication (320 kWh/m3)-assisted Fenton oxidation (0.4 g-Fe2+/L; 0.5 g-H2O2/L) (Gong et 501 

al., 2015). These reports indicate that greater P release resulted with higher hydrogen peroxide 502 

concentration, higher temperatures, and/or duration of treatment.   503 

Unlike other potential P conversion processes, several studies have reported the use of AOPs to 504 

degrade soluble organophosphorus pesticides (Badawy et al., 2006; Daneshvar et al., 2004; 505 

Farooq et al., 2003; Trebše and Arčon, 2003; Trebše and Franko, 2002). AOPs such as UV/H2O2, 506 

Fenton, and photo-Fenton were able to degrade 50 – 70% of the organophosphorus compounds 507 

profenofos, diazinon, and fenitrothion in simulated dilute wastewaters (<2% solids, 50 mg/L 508 

organophosphorus concentration) (Badawy et al., 2006). Although the studies do not specify the 509 

extent of conversion of the organophosphorus compounds to sRP, the success of AOPs in 510 

degrading recalcitrant compounds warrants further investigation into their effectiveness at 511 

converting sNRP species to sRP to facilitate P removal and recovery.    512 

4 Comparative assessment of P conversion process applications  513 

Although NRP can account for a substantial proportion of the TP in some water, wastewater, and 514 

sludge matrices, it is not commonly targeted to enhance removal and recovery operations. To 515 

advance the circular P economy needed to both protect environmental waters and support global 516 

food production, future technologies must be assessed in terms of their ability to convert 517 

different compositions of NRP to the more readily recoverable reactive fraction across a range of 518 

water matrices.  519 
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4.1 Conversion process comparison 520 

The data needed to perform a systematic comparison of NRP conversion methods in terms of 521 

their efficiencies, economic feasibility and environmental impacts does not yet exist, but is 522 

necessary for identifying an effective NRP conversion process for a given application. While 523 

quantitative technology-specific comparisons are not yet feasible, we qualitatively compared the 524 

broad categories of conversion methods (biological, physical, thermal, and chemical) based on 525 

the limited literature reports of conversion potential reviewed here. Results of this preliminary 526 

comparative evaluation of process potential to convert NRP in variable water, wastewater, and 527 

sludge matrices, as summarized in Table 1, was performed using inferences based on currently 528 

available sludge solubilization data.  529 

Mechanical, biological and thermal technologies may be applied to sludge/manure streams to 530 

potentially enhance P recoverability. Mechanical pretreatment techniques such as liquid shear, 531 

lysis, centrifugation, and bar milling are simple, cheap and odorless (Ariunbaatar et al., 2014; 532 

Carrère et al., 2010). They are primarily designed to break down large particles into smaller 533 

ones, which may release P from cellular material via lysis. Similarly, biological treatments such 534 

as sludge fermentation (e.g., WASSTRIP and PhoStrip) and traditional or pre-acidogenic phase 535 

anaerobic digestion may improve pNRP release in high P strength sludge/manure streams. 536 

However, mechanical and biological technologies are unlikely to be effective for dilute streams 537 

or in converting sNRP. Although future studies are needed, high intensity ultrasonication, PEF 538 

and thermal pretreatment may be effective for converting both sNRP and pNRP; however, high 539 

energy inputs may be a challenge for dilute waters (Ariunbaatar et al., 2014).  540 

Acid/alkali and AOP conversion technologies are effective in solubilizing P in high strength 541 

sludge streams, and converting soluble, colloidal, and particulate NRP fractions to RP. However, 542 
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these processes oftentimes rely on relatively high inputs of chemicals and/or energy, and must be 543 

evaluated for the specific purpose of P conversion before their relevance in various matrices can 544 

be assessed. Additional considerations include that acid/alkali treatments often have issues 545 

regarding odors, pH control, and formation of toxic/inhibitory byproducts (Ariunbaatar et al., 546 

2014; Carrère et al., 2010). Likewise, AOP systems may lead to incomplete oxidation, the 547 

byproducts of which must be evaluated. AOPs do have the potential for providing greater NRP 548 

conversion; however, the chemical and/or energy inputs needed for this application are likely a 549 

major hurdle for NRP conversion applications.  550 

4.2 Relevance of P conversion processes to applications beyond sludge solubilization 551 

To the authors’ knowledge, there are currently no reports of P conversion technologies applied to 552 

water flows characterized by higher volumetric flowrates and/or lower P concentrations in 553 

comparison to sludge, e.g., secondary effluent from municipal wastewater treatment plants or 554 

environmental surface waters. Even in controlled lab environments, reports of conversion of 555 

specific NRP species are uncommon. However, to better satisfy ultra-low P removal guidelines 556 

while taking full advantage of opportunities to close the anthropogenic P cycle by removing and 557 

recovering P from a wide variety of streams, such P conversion processes may play an important 558 

role, and deserve further exploration in future studies. 559 

To inform comparisons of the applicability of different potential conversion technologies across 560 

a range of water matrices, both P concentration and composition must be considered. While the 561 

relative fraction of NRP to RP varies across these matrices, environmental waters, wastewaters, 562 

and manures tend to have higher sRP fractions in comparison to sludge (Figure 5). As discussed 563 

in Section 2.2, TP concentrations vary widely both spatially and temporally, but typically follow 564 

the trend manure > sludge > wastewater > environmental waters. Accordingly, P removal and 565 
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recovery strategies are most often implemented in applications aligned with this hierarchical 566 

order. However, as noted in this article, there may be needs and opportunities for P 567 

removal/recovery across an array of water matrices in the future, not just in sludge, making it 568 

important to consider a range of options for NRP conversion.  569 

Figure 3 illustrates several examples of P species from each of the major P fractions. Each of 570 

these compounds could potentially be present in all of the water and sludge matrices, albeit at 571 

different concentrations. For example, both sludge and environmental waters are likely to contain 572 

cellular P (classified as pNRP), but higher concentrations would be expected in sludge as 573 

opposed to environmental waters. Based on the overlap of P species ostensibly present in each 574 

matrix, the potential NRP conversion technologies reviewed here (current reports of which focus 575 

primarily on sludge) may also be relevant in other matrices. Key considerations for technology 576 

implementation will include the influence of other competing constituents (e.g., organics, which 577 

are higher in sludge/manure), P content (e.g., lower levels of P in environmental waters may lead 578 

to lower per unit conversion efficacy), and ease of implementation (e.g., application in diffuse 579 

settings such as environmental waters is likely more technically challenging and less cost 580 

effective compared to concentrated P matrices). 581 

Given these considerations, chemical conversion processes (acid/alkali and AOPs) are likely to 582 

offer potential for conversion of NRP in low-strength waters to sRP forms amenable to recovery. 583 

While additional research is needed to evaluate efficacy of these methods for NRP conversion, 584 

the use of acid or oxidant treatment for conversion of NRP is the basis for standard TP 585 

measurements (APHA, 2012), lending credence to this approach. Briefly, Standard Method 586 

4500f involves sample pretreatment using a strong acid (nitric, sulfuric and perchloric acid) or an 587 

oxidant (persulfate) to convert AHP and OP species to a reactive orthophosphate form. The RP 588 
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can then be measured using the ascorbic acid method. The same principle of conversion using 589 

hydrolysis or oxidation of NRP can be applied to facilitate P removal/recovery from 590 

environmental waters, wastewater, or sludge. However, additional research is needed to 591 

specifically establish the efficacy of conversion in water matrices in terms of percent P relative 592 

to energy and chemical inputs.  593 

5 Conclusions and Future Research Needs 594 

Capturing the lost P is essential for the circular P economy by abating concerns regarding 595 

depleting mineral P reserves and increasing P-based pollution. Hence, it is important to 596 

recognize the total potential for removal and recovery of all of the lost P fractions, the non-597 

reactive portion of which has historically been neglected. Here, we contend that the NRP fraction 598 

can no longer be ignored based on its potentially significant role in point and nonpoint source P 599 

regulations, its longer-term eutrophication potential in the environment, and its relative 600 

contribution to maximizing total P recovery.  601 

Most P discharge regulations are defined on a TP basis rather than sRP as environmental 602 

processes eventually convert the NRP in lakes and rivers to reactive (and more biologically 603 

available) P forms. Thus, to protect environmental waters and comply with increasingly lower 604 

effluent TP discharge limits, considering removal of the largely inaccessible NRP fraction 605 

advances the status quo of P management strategies. To further expand the portfolio of viable P 606 

management opportunities, the potential for P removal to ultra-low levels in wastewater, sludge, 607 

and even in-stream intervention in sensitive environmental waters should be leveraged. 608 

Moreover, it is prudent to consider how conversion of NRP to RP can enhance P recovery to 609 

supplement natural, non-renewable P reserves. Such an evaluation does not currently exist in the 610 
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literature, making it essential to provide critical insights focused on the current status of NRP 611 

conversion and future research advancements needed to enhance P removal and recovery. 612 

This critical review offers the first step in addressing uncertainties related to NRP: what is the 613 

big deal and what can we do about it? We offer a forward-looking assessment of 1) the presence 614 

and role of NRP in environmental water, wastewater, and sludge matrices; and 2) NRP 615 

conversion mechanisms and the associated strategies for improving P management by converting 616 

the NRP to RP forms amenable to subsequent recovery and reuse as P-rich products. Through the 617 

review, we highlight NRP-related research gaps that must be addressed to maximize the capture 618 

of all lost P, including NRP (sNRP, in particular), by capitalizing on a range of opportunities at a 619 

variety of scales and from a variety of flows, including environmental waters, wastewater, and 620 

sludge. 621 

The meta-analysis performed here included over 20,000 data points on P quantity and P form, 622 

and clearly showed that P quantity and form varies by water matrix, and is not always present in 623 

the more readily removable/recoverable reactive form. Beyond TP and sRP data, there is a need 624 

for greater quantification and characterization of other P fractions and specific P constituents 625 

across water matrices. Developing a better understanding of NRP composition and variability 626 

among and within water matrices would help to identify target streams for NRP conversion and 627 

enhanced P removal/recovery potential. Additionally, further establishing the physical/chemical 628 

properties (organic/inorganic, soluble/particulate, linear/aromatic, long/short chain, etc.) of the 629 

NRP fractions would assist in selecting and evaluating appropriate NRP conversion technologies 630 

in future studies.  631 
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While NRP can contribute substantially to overall TP in environmental water, wastewater, and 632 

sludge, no technologies have been implemented to specifically target recovery of this fraction. 633 

Mechanisms of NRP conversion include hydrolysis and redox pathways. Potential NRP 634 

conversion technologies include biological, physical, thermal, and chemical operations that 635 

initiate and/or accelerate these reactions. To date, technologies have been primarily investigated 636 

for the purpose of solubilizing thickened wastewater sludge streams with a focus on sludge 637 

dewatering, nutrient release, and improving digestion. Accordingly, we critically reviewed the 638 

performance of potential NRP conversion technologies applied to sludge for the purpose of 639 

improved residuals management. In principle, these approaches may also be applied for the 640 

specific objective of converting NRP to the more readily recoverable RP form. Moreover, this 641 

can be accomplished in other streams including high-strength animal manure, slaughterhouse 642 

waste, and chemical (pesticide) manufacturing wastewater. In future research, these applications 643 

must be critically evaluated, including establishing P conversion, removal, and recovery efficacy 644 

across matrices of interest; elucidating the mechanistic basis for NRP conversion and the 645 

resulting products; assessing the role of water quality and operational parameters on process 646 

performance; and analyzing costs, environmental impacts, and the feasibility of implementation 647 

(e.g., techno-economic analysis). While many questions remain, the conversion of NRP to RP 648 

may offer a feasible option for enhancing P removal and recovery, and is a topic of great interest 649 

as we move toward a circular P economy. 650 
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 1047

Figure 2. Different forms of phosphorus (P) in water, modified from APHA (2012). Only the 1048
reactive phosphorus (RP) fractions (shaded in green) can be removed and recovered for direct 1049
reuse. The NRP fractions (shaded in blue) must be converted to RP prior to recovery and reuse as 1050
P-rich products.  1051

 1052

 1053
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 1054

Figure 3. Examples of phosphorus-containing compounds in the soluble reactive phosphorus 1055
(sRP), soluble non-reactive phosphorus (sNRP), particulate reactive phosphorus (pRP), and 1056
particulate non-reactive phosphorus (pNRP) forms. 1057
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 1058 

Figure 4. Fraction of total phosphorus (TP) in the particulate phosphorus (pP) form for select 1059 
environmental waters, wastewaters, and livestock manures. Additional description of the datasets 1060 
is provided in the Supplementary Information, SI, Section S1.1. 1061 

  1062 



45 

a) 1063 

 1064 
b) 1065 

 1066 
Figure 5. a) Soluble reactive phosphorus (sRP) versus total phosphorus (TP) concentrations for 1067 
select environmental waters, wastewaters, sewage sludges, and livestock manures. b) Data 1068 
shown as the fraction of TP in the sRP form (sRP:TP). Data for environmental waters includes 1069 



46 

over 20,000 data points from 4,000 sites across the US. Additional descriptions of the datasets 1070 
are provided in the Supplementary Information, SI, Sections S1.1-S1.2. The curvilinear pattern 1071 
apparent in b) is ostensibly an artifact of analytical quantification capabilities and significant 1072 
figure reporting for low P concentrations combined with the logarithmic scale used to graph the 1073 
large range in values. 1074 

  1075 
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1076
Figure 6. Examples of non-reactive phosphorus (NRP) conversion to reactive P (RP, also known 1077
as orthophosphate). The reactions illustrate hydrolysis of the phosphoanhydride (P-O-P) bonds in 1078
organic adenosine triphosphate (ATP) (top) and inorganic polyphosphate (bottom).  1079
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