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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

In situ stiffness manipulation using elegant curved origami
Zirui Zhai1, Yong Wang2, Ken Lin2, Lingling Wu1, Hanqing Jiang1*

The capability of stiffness manipulation for materials and structures is essential for tuning motion, saving energy, 
and delivering high power. However, high-efficiency in situ stiffness manipulation has not yet been successfully 
achieved despite many studies from different perspectives. Here, curved origami patterns were designed to ac-
complish in situ stiffness manipulation covering positive, zero, and negative stiffness by activating predefined 
creases on one curved origami pattern. This elegant design enables in situ stiffness switching in lightweight and 
space-saving applications, as demonstrated through three robotic-related components. Under a uniform load, 
the curved origami can provide universal gripping, controlled force transmissibility, and multistage stiffness re-
sponse. This work illustrates an unexplored and unprecedented capability of curved origami, which opens new 
applications in robotics for this particular family of origami patterns.

INTRODUCTION
The stiffness of a material or a structure is of key importance in most, 
if not all, applications, with positive stiffness as a common property 
for bearing loads and transferring motion (1), zero (or quasi-zero) 
stiffness for vibration isolation and protection (2), negative stiffness 
for fast switching between states (3), high-speed actuation (4–6), and 
programmed deformation (7). Many species have ingenious mech-
anisms to switch among different stiffnesses to maintain motion, 
save energy, or deliver high power (8, 9). Scientists and engineers 
have also deliberately created various means to manipulate stiffness 
for various applications, including in automotive (10), robotics (11), 
and aerospace components (12). However, these mechanisms are 
rather complicated (e.g., spring structures) and often require con-
siderable energy inputs [e.g., electromagnetic and piezoelectric mech-
anisms (6, 13)], which unfortunately cannot be used in size-limited 
applications [e.g., small robots (14), soft robots without rigid parts 
(15), or passive systems without power input (16)], although these 
applications may represent the true need for in situ stiffness manip-
ulation. To somewhat circumvent the complex structures and ex-
pensive energy input, mechanical metamaterials have been designed 
to achieve stiffness manipulation using simple mechanisms (17–20); 
however, for a given metamaterial, the range of manipulation is 
limited and cannot switch all the way from positive to negative. Me-
chanical metamaterials with elegant mechanisms for manipulating 
the stiffness of the structure in situ covering positive, zero, and neg-
ative ranges are highly desired.

Origami provides an elegant means to design metamaterials with 
tunable properties, such as diverse spatial configurations (20–23), 
on-demand deployability (24), controllable multistability (25), and 
tunable thermal expansion (26) and stiffness (19, 20, 24, 27–29). 
However, these strategies for tunable stiffness cannot achieve in situ 
stiffness manipulation, i.e., the stiffness cannot be altered on de-
mand once the pattern is determined. In addition to the incapability 
for in situ stiffness manipulation, note that the current origami-based 
metamaterials are solely based on straight-creased patterns, par-
ticularly the so-called rigid origami patterns, in which the defor-
mation energy is theoretically only stored at the creases, not in the 

origami panels. For example, the well-known Miura pattern and its 
derivatives have been extensively used (19, 20, 28, 30). Although 
simple, rigid origami patterns have an inherent limitation when 
used for tunable stiffness, a single energy input from the folding of 
creases leads to a simple energy landscape and thus a limited range 
of stiffness tunability. To create a complex energy landscape, another 
energy input should be considered: energy in the origami panels. 
Deformable origami falls in this category, although the candidate 
patterns are very limited (24). In addition to in-plane energy in the 
panel, bending energy in the panel can also be introduced. By com-
bining folding energy at the creases and bending energy in the panel, 
curved origami can be created (31). In contrast to straight creases, 
there can be multiple curved creases between two points rather than 
just one straight crease (32). The competition between bending en-
ergy in the panel and the folding energy at the creases, along with 
multiple curved creases between two points, would lead to in situ 
stiffness manipulation covering positive, zero, and negative ranges, 
which forms the key aspects of this paper.

Here, we designed a family of curved origami–based metamate-
rials for in situ stiffness manipulation. A specific unit cell of curved 
origami–based metamaterials was studied, which can be manipulated 
in situ to exhibit positive, zero, or negative stiffness and functions as 
a fundamental building block to design curved origami–based meta-
materials with different stiffnesses. Then, three applications were 
presented to demonstrate the unique functions of the metamaterials: 
a curved origami–based gripper with a negative-stiffness rapid 
mode or a positive-stiffness precise mode, curved origami cubes for 
in situ switching between a zero-stiffness vibration isolation mode 
and a positive-stiffness responsive mode, and a two-dimensional 
(2D) modular metamaterial for programmable, multistage stiffness 
responses upon homogenous loading. This work provides an un-
precedented principle for curved origami–based mechanical meta-
materials for in situ manipulation of stiffness in full ranges, which 
can be applied in many fields.

RESULTS
Rationale of curved origami–based in situ  
stiffness manipulation
We started by studying two fundamental deformation modes of ori-
gami, namely, crease folding and panel bending, with the former for 
the deformation between creases and the latter for that in the panel. 
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Figure 1A shows the simplest folding (hereinafter referred to as 
“folding I”) where a horizontal valley crease (marked by a dashed 
line) is subjected to a compressive load F in the vertical direction. 
As rigid origami, the only resistance during compression is from 
the bending at the creases, which provides positive stiffness during 
the first loading cycle. Upon unloading, the plastic deformation 
leads to a permanent shape and defines the folded state. The second 
loading cycle follows the unloading path of the first cycle and the 
subsequent loading/unloading cycles follow the same route. Another 
folding mode (hereinafter referred to as “folding II”) is when the 
folding direction is close to the loading direction (Fig. 1B), where a 
common cell for quadrilateral rigid origami (e.g., Miura pattern), 
a single-vertex, four-crease pattern with an angle  = 80∘ between a 
mountain crease (marked by solid line) and valley creases (marked 
by dashed lines), is subjected to a compressive force F in the vertical 
direction. Upon compression, this rigid origami exhibits a higher 
positive stiffness than that shown in Fig. 1A. As shown in the ana-
lytical analysis in the Supplementary Materials, for an ideal rigid 
origami, the initial positive stiffness should be infinite (fig. S1). Then, 
this positive stiffness quickly transitions to a negative stiffness due 
to the snap-through at the two vertical valley creases. Theoretical 

analyses and experimental tests have shown that a positive to nega-
tive stiffness transition appears for larger  angles (figs. S1 and S2). 
Upon unloading, this pattern has plastic deformation, which is also 
observed in other folding II deformations with different  angles 
(fig. S1). The second loading cycle follows the unloading path of the 
first cycle and does not exhibit negative stiffness because the perma-
nent folded state after the first load has exceeded the critical point 
for the snap-through of the vertical creases. These two types of crease 
folding describe the key features of rigid origami: positive stiffness 
from the creases perpendicular to the loading direction and nega-
tive stiffness from the creases close to the loading direction due to 
snap-through, although the negative stiffness may not reappear af-
ter the first loading cycle. The third deformation mode is simply a 
bending mode, which provides positive stiffness and elastic defor-
mation (Fig. 1C). When the vertical straight creases are replaced with 
a curved crease and the horizontal creases are replaced by the bend-
ing mode, curved origami appears. Depending on the curvature of 
the curved crease, negative stiffness may occur during compression 
because of the snap-through when the curvature is small (corre-
sponding to a larger  angle for straight creases), whereas the bend-
ing mode provides positive stiffness. Connecting two points, there 
can be multiple curved creases with different curvatures (1, 2, and 
3) and possibly different stiffnesses (H1, H2, and H3) via means 
such as creases with different thicknesses (Fig. 1D), which would 
provide a means to switch in situ between different modes for vari-
ous stiffnesses. This is the rationale to use curved origami for stiff-
ness manipulation.

Finite element simulations were conducted in ABAQUS to study 
the stiffness of the square-shaped panel (length a, thickness t, and 
elastic modulus E) with the coexistence of three arc-shaped creases 
(curvatures 1, 2, and 3) in the middle (Fig. 1D). The crease mod-
ulus H is defined as the applied bending moment per folding angle 
per crease length and is normalized as ​​ ̄  H ​ = ​ Ha _ 

​Et​​ 3​
​​. The arc-shaped 

crease can be activated by applying a bending deformation  = 70° 
(Fig. 1E), and then, a compressive load is applied (Fig. 1F). For a 
specific crease modulus ​​​   H ​​ 1​​ = 0.07, ​​   H ​​ 2​​ = 0.03, and ​​   H ​​ 3​​ = 0.01​, the 
deformed configurations of the curved origami are plotted in fig. 
S4, and the relationship between the normalized force ​​ ̄  F ​​ (​= ​ Fa _ 

​Et​​ 3​
​​) and 

the compressive displacement ​​ ̄  u ​​ (​= ​u _ a ​​) is shown in Fig. 1G. Clear-
ly, the same square with different creases has different stiffness val-
ues, which can be positive, zero, or negative, as highlighted in the 
blue shadowed area. Specifically, crease ① (shown in green) with a 
smaller curvature 1 exhibits negative stiffness due to the snap-
through similar to the folding II mode in Fig. 1B, crease ② (shown 
in black) with a median curvature 2 exhibits zero stiffness, and 
crease ③ (shown in red) with a larger curvature 3 exhibits positive 
stiffness. Hence, hereinafter, we use red, black, and green to repre-
sent positive, zero, and negative stiffness, respectively. Thus, the cor-
relation between the curvature and the origami stiffness provides an 
elegant way to manipulate stiffness.

Figure 2 presents the essential mechanism for using curved origami 
to provide in situ stiffness manipulation. During the collapse of curved 
origami, there are two parts of deformation energy: panel bending 
energy and crease folding energy. For curved origami with only crease 
① activated (Fig. 1D), the normalized bending energy in the pan-

el ​​​   U ​​ b​​​(​= ​ ​U​ b​​ _ 
​Et​​ 3​

​​), the folding energy at the curved crease ​​​   U ​​ f​​​ (​= ​ ​U​ f​​ _ 
​Et​​ 3​

​​), and the 

total energy ​​​   U ​​ tot​​​(​= ​​U​ tot​​ _ 
​Et​​ 3​

 ​​) are plotted for various displacements ​​ ̄  u ​​ (​= ​u _ a ​​) 

Fig. 1. Rationale and mechanical behavior of a unit cell of the curved origami. 
(A) Origami with folding I (a horizontal valley crease in red) under compression and 
its force-displacement relationship exhibiting positive stiffness. (B) Origami with 
folding II (two valley creases in green close to the loading direction that have an 
angle  = 80° with the mountain crease in red) under compression and exhibiting 
positive and negative stiffness. The combination of (A) and (B) represent typical 
deformation modes for rigid origami. (C) Plastic film under compression exhibiting 
bending deformation and positive stiffness. The combination of (B) and (C) repre-
sent the deformation modes for curved origami. (D) Design of a curved origami 
unit cell with predefined curved creases ①, ②, and ③, where  is the curvature and 
H is the stiffness of the crease. (E) Activating a predefined crease of the curved ori-
gami unit cell by bending. (F) Loading a curved origami unit cell with an activated 
crease. (G) Force-displacement relationship of a unit cell of the curved origami with 
individually activated curved creases ①, ②, and ③, exhibiting negative, zero, and 
positive stiffness, respectively. Photo credit: Zirui Zhai, Arizona State University.
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in Fig. 2A. The total normalized reaction force ​​​   F ​​ tot​​​ (​= ​ Fa _ 
​Et​​ 3​

​  = ​ ∂ ​​   U ​​ tot​​ _ ∂​   u ​  ​​), 
which is the derivative of the energy with respect to the displace-
ment, can also be divided into two parts: ​​​   F ​​ b​​​ (​= ​∂ ​​   U ​​ b​​ _ ∂​   u ​ ​​) due to panel 

bending and ​​​   F ​​ f​​​ (​= ​∂ ​​   U ​​ f​​ _ ∂​   u ​ ​​) due to folding at the crease, which are plot-
ted in Fig. 2B for crease ①. The variations in the energies and forces 
with respect to the displacement for creases ② and ③ are plotted in 
fig. S5. It is found in all cases that the forces due to panel bending ​​​   F ​​ b​​​ 
and crease folding ​​​   F ​​ f​​​ are increasing and decreasing during com-
pression, respectively. Now, it is clear that the bending deformation 

of the panel provides positive stiffness, whereas the folding at the 
curved crease provides negative stiffness. By adjusting the contribu-
tions of the panel and crease, positive, zero, and negative stiffness 
can be achieved.

Individual activation of one of multiple coexisting curved creases 
without (or with negligible) interference is a required characteristic 
for in situ stiffness manipulation using curved origami. To verify 
this characteristic, Fig.  2C compares the deformation and stress 
contour for curved origami with three creases but only one activated 
crease (Fig. 1D) and its counterpart with only one curved crease at 

Fig. 2. Essential mechanism and design guideline of curved origami for in situ stiffness manipulation. (A) Normalized total energy ​​​ ̄  U ​​ tot​​​, bending energy ​​​ ̄  U ​​ b​​​, and 
folding energy ​​​ ̄  U ​​ f​​​ of the curved origami with crease ① activated as a function of normalized displacement ​​ ̄  u ​​. (B) Normalized total force ​​​ ̄ F ​​ tot​​​, force due to bending ​​​ ̄ F ​​ b​​​, and 
force due to folding ​​​ ̄ F ​​ f​​​ of the curved origami with crease ① activated as a function of normalized displacement ​​ ̄  u ​​. (C) Comparison of the deformation and stress contour 
for curved origami with three coexisting creases but only one activated crease and its counterpart with only one curved crease at normalized displacement ​​ ̄  u ​ = 0.15​. 
(D) Force-displacement relationship of curved origami containing three creases but only one activated crease and its counterpart with only one curved crease. (E) Phase 
diagram of normalized stiffness ​​ ̄ k ​​ for single-crease curved origami with a normalized curvature ​0.4 < ​ ̄ ​ < 2​ and a crease modulus ​0.01 < ​ ̄  H ​ < 0.09​. (F) Force-displacement rela-
tionship of single-crease curved origami for a given crease modulus ​​ ̄  H ​ = 0.05​ and varying crease curvatures ​​ ̄ ​ = 0.4, 0.8, 0.9, 1.4, and 1.7​.
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a given normalized displacement ​​   u ​ = 0.15​. It is clear that these two 
scenarios are undifferentiable at a given displacement. The relation-
ship between the reaction force ​​   F ​​ and displacement ​​   u ​​ for curved 
origami with three creases but only one activated crease and its 
counterpart with just one crease is shown in Fig. 2D, where neg-
ligible differences are observed for a given displacement range ​
0.025 < ​   u ​ < 0.075​ for all three curvatures. Moreover, finite element 
simulations show that only one crease can be activated at a given 
time, thus ensuring the precise control of creases (section S3 and fig. 
S6). The negligible interference among the curved creases suggests 
that the design principle for a single curved crease can be applied 
to design curved origami with multiple curved creases, providing 
astounding merit to build a universal phase diagram of a single 
curved crease through two control parameters: normalized curva-
ture ​​   ​​ (=a) and crease modulus ​​   H ​​ (​= ​ Ha _ 

​Et​​ 3​
​​). Figure 2E provides such 

a phase diagram for a single crease with a normalized curvature ​
0.4 <  ​   ​ < 1.8​ and a crease modulus ​0.01 < ​   H ​ < 0.09​. More than 400 cases 
were simulated through finite element analysis to calculated the 
stiffness ​​   k ​​ (​= ​​ka​​ 2​ _ 

​Et​​ 3​
 ​​), and an interpolation was conducted to smooth the 

plotting. It is observed that by changing the two control parame-
ters ​​   ​​ and ​​   H ​​, one can readily design curved origami that exhibits a 
wide spectrum of stiffness ​​   k ​​ (​= ​​ka​​ 2​ _ 

​Et​​ 3​
 ​​), including positive, zero, and 

negative values. Given that it is not operationally trivial to change the 
crease modulus ​​   H ​​ and that it is relatively easy to alter the curva-
ture ​​   ​​, we presented a relationship between the reaction force ​​   F ​​ 
and the displacement ​​   u ​​ for a given crease modulus ​​   H ​ = 0.05​ and vary-
ing crease curvatures ​​   ​ = 0.4, 0.8, 0.9, 1.4, and 1.7​ in Fig. 2F, where the 
dots in dark red to dark green are also shown in Fig. 2E. This figure 
again shows that in practice, one can achieve positive, zero, and 
negative stiffness by simply changing the curvature of a crease. A 
similar plot is shown in fig. S7 for fixed curvature and varied 
crease moduli. Given the negligible interference among different 
creases, Fig. 2E essentially provides a design map to create origami 
with multiple curved creases with any range of stiffness manipula-
tion in two steps: (i) choosing a desired value of stiffness ​​   k ​​ from 
the stiffness phase diagram and (ii) then locating the correspond-
ing crease curvature and crease modulus. We will demonstrate the in 
situ stiffness manipulation of curved origami using the following 
three applications.

Demonstration I: A lightweight, universal gripper
The first demonstration is a lightweight, universal gripper with two 
modes: a negative stiffness mode for fast gripping and a positive 
stiffness mode for precise gripping (Fig. 3). The gripper consists of 
two plastic films: one handler with an ON/OFF switch for fast and 
precise gripping and one clipper for gripping objects (Fig. 3A). The 
ON/OFF switch is realized by activating two curved creases (dashed 
green lines, ​​   ​​ = 0.46, and ​​   H ​​ = 0.072; see the Supplementary Materials) 
with negative stiffness (​k = ​ F _ u​  =  − 0.489 N / mm​ at 0.3 mm < u < 
2 mm; k = −0.016 N/mm at 3 mm < u < 12 mm) for ON and deacti-
vating the creases for OFF (k = 0.001 N/mm at 0.3 mm < u < 12 mm). 
The clipper has two curved creases (solid red lines, ​​   ​​= 1.68, and 
H = 0.072) and has a positive stiffness (k = 0.109 N/mm at 0.3 mm < 
u < 12 mm) for actual gripping. The two pieces are connected by 
tape, as shown in Fig. 3B. The overall stiffness of the gripper can be 
switched between ON and OFF modes by (de)activating the green 
curved creases. Top and side views of the gripper in the ON and 
OFF modes are shown in Fig. 3C. Rubbery pieces were added to 
increase friction for gripping. To trigger the gripper to switch be-

tween ON and OFF modes, one can easily apply bending on the 
green curved creases to lock the gripper in a desired mode. Movie 
S1 shows the procedures of switching the gripper between ON and 
OFF modes. Figure 3D shows the force versus displacement rela-
tionship for the ON/OFF modes. Under the same precompres-
sion with displacement u0 at point A, the ON mode needs a larger 
preload than the OFF mode, i.e., FON > FOFF. Under displacement-
controlled loading, the ON mode has a smaller force increment 
FON to reach the peak force, and then, a snap-through occurs, 
causing an instantaneous jump to the final state at point B with dis-
placement u1, whereas for the OFF mode, the force gradually in-
creases to the peak with a larger force increment FOFF. It is clear 
that because of the negative stiffness for the ON mode, high power 
can be achieved through instantaneously large deformation from 
u0 = 0.5  mm at the initial state to the final state u1 = 11.6  mm, 
whereas for the OFF mode, monotonically increased gripping force 
can achieve precise handling.

We conducted experiments to grip different objects with both 
modes in Fig. 3 (E to G) to demonstrate the importance of switching 
between ON and OFF modes. For easy-to-grip objects, which are of 
medium size and regular shape and have a frictional surface, the 
ON mode will save much time with rapid actuation. In Fig. 3E, 
when the ON mode is activated, the gripper spent 0.033 s (0.029 s 
before snap-through and 0.004 s after snap-through) with a speed of 
10 m/s (40 mm in 0.004 s), whereas 0.504 s elapsed in the OFF mode. 
The speed of gripping is higher than the speed of a frog’s tongue 
when capturing prey [1.67 m/s; 50 mm in 0.030 s (33)]. Compared 
with the OFF mode, the ON mode for gripping objects such as a 
Lego block saves up to 0.471 s (i.e., 93.5% of the time), providing a 
means for high-efficiency gripping. However, there are also some 
hard-to-grip objects. Although the ON mode saves time, it may not 

Fig. 3. Design and testing of a curved origami–based lightweight, universal 
gripper. (A) Design of the handler part of the gripper with curved creases in green 
with negative stiffness and the clipper part with curved creases in red with positive 
stiffness. The inset shows the parameter selections in the stiffness phase diagram. 
(B) The gripper formed with the handler and clipper parts connected by tape and 
the ON/OFF mode by selecting the appropriate curved creases on the handler part. 
(C) Top and side views of the ON mode (where the creases in green are activated) 
and OFF mode (where the creases in green are inactivated) of the gripper. (D) The 
force-displacement relationships of the gripper in the ON and OFF modes. Process 
of gripping (E) a Lego block, (F) a grain of white rice, and (G) a piece of soft tofu, 
respectively, using both ON and OFF modes of the gripper. The time indicates the 
time spent gripping the object. Photo credit: Zirui Zhai, Arizona State University.
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be successful or even do harm to the objects. An example is a grain 
of rice (Fig. 3F), which is small, lightweight, and irregularly shaped. 
Using the ON mode to grip results in the rice slipping and being 
kicked away. Using the OFF mode can accurately grip rice without 
slipping. Another example is soft objects that are likely to be dam-
aged for fast gripping. In Fig. 3G, soft tofu (modulus, 8.005 kPa; 
strength, 3.298 kPa; and toughness, 875 J/m2) is damaged when 
gripping with the ON mode, whereas it is safely and effectively 
gripped with the OFF mode for precise gripping. Movie S2 shows a 
movie of gripping these three objects. These demonstrations sug-
gest that one can use the same principle to design grippers with more 
than two modes to realize more selectable modes of different speeds, 
gripping forces, and actuation responses.

Demonstration II: A cube with tunable stiffness 
for controllable force transmissibility
Another demonstration is to use the in situ stiffness manipulation 
from the curved origami to control force transmissibility. The in situ 
tunability of force transmissibility is necessary in many situations. 
For example, people in many areas of the world habitually carry 
heavy loads on their head instead of by hand or on their shoulders 
to save energy (34, 35) because the lower stiffness of the neck results 
in a lower force transmissibility and, thus, a reduced energy cost 
from the vibrations of loads. Another example is the suspension 
system in an automobile, which can be switched to a higher stiffness 
for responsive driving (i.e., sport mode) and a lower stiffness for 
smooth driving (i.e., comfort mode). Unfortunately, this system is 
too bulky and complicated to be applied in areas such as robotics. 
Here, we designed curved origami–based cubes that can switch be-
tween an isolating mode and a responsive mode for low-frequency 
ranges (e.g., lower than 20 Hz). The planar folding pattern is shown 
in Fig. 4A, in which white, 0.6-mm-thick, plastic panels are used for 
the top and bottom plates, whereas blue, 0.125-mm-thick, plastic 
panels are used for the side plates. Tape was used to connect the 
panels and is represented by thick bars in the folding pattern. The 
folding creases for modes A (​​   ​ = 1​, ​​   H ​ = 0.084​) and B (​​   ​ = 1.8​,  
​​   H ​ = 0.084​) are represented by black and red lines, respectively, 
with mode A for zero stiffness and mode B for positive stiffness, and 
their locations on the stiffness phase diagram are explicitly shown 
in the inset of Fig. 4A. The finished cubes at modes A and B are 
shown in Fig. 4B. Movie S3 shows the cube and the way to switch 
between modes A and B. Figure 4C provides the reaction force-
displacement relationship during compression for both modes, 
which clearly shows that mode A exhibits a quasi-zero stiffness and 
mode B exhibits a positive stiffness. Specifically, at a load of 2.35 N, 
mode A exhibits approximately zero stiffness. Hence, 2.35 N is the 
matching force to achieve quasi-zero stiffness. Near the critical load 
of 2.35 N, mode B exhibits a positive stiffness of k = 0.584 N/mm.

We used four curved origami cubes as an array for vibration iso-
lation experiments. Figure 4D shows that the four curved origami 
cubes of mode A can stay balanced at any position when the match-
ing mass of 960 g (equal to 4 × 2.35 N) is applied. A frequency sweep 
vibration with a power spectrum spreading was used to test the per-
formance of the curved origami isolators. Figure 4E shows the set-
up of the experiments. An electromechanical shaker (S 51120 from 
TIRA Vibration Test Systems Inc.) was used to generate vertical 
vibrations at varied frequencies, and two identical acceleration 
sensors (352C33 from PCB Piezotronics Inc.) were attached on the 
bottom and top surfaces to record the input and output accelera-

tions ain and aout, respectively. Comparisons of the output and in-
put accelerations of modes A and B for a frequency sweep vibration 
are shown in Fig. 4F. The transmissibility of the curved origami 
isolators in decibels is defined by ​20 ​log​ 10​​∣​​a​ out​​ _ ​a​ in​​ ​∣​. Figure 4G 
shows the transmissibility at frequencies from 1 to 30 Hz for modes 
A and B. The isolators at mode A can isolate vibrations (i.e., 
transmissibility less than 0) when the frequency is higher than 
5 Hz. The transmissibility of mode B is approximately 20 to 30 dB 
higher than that of mode A, which means that mode B can transfer 
vibration. Movie S4 compares the performances of modes A and B 
at fixed frequencies of 10, 12.5, and 15 Hz. Larger output vibrations 
can be observed at mode B for all ranges, suggesting a respon-
sive mode. For mechanical vibrations, the isolation range exists 
when the vibration frequency is higher than the critical frequency 
[​​f​ c​​ = ​ 1 _ 2​ ​√ 

_
 ​ k _ m​ ​​ (36)]. For mode A, the theoretical critical frequency is 

0 because the stiffness k is zero, which enables ultralow-frequency 
vibration isolation. However, because of the plasticity of the creases, 
the viscoelastic damping of the panels, and the existence of the tape, 
the isolation is only effective for frequencies higher than 5 Hz. For 
mode B, the theoretical critical frequency is ​​f​ c​​ = ​ 1 _ 2​ ​√ 

_
 ​4 × 584 N / m _ 4 × 240 g  ​ ​  = 

7.85 Hz​, which results in the isolation range (frequency higher than 
12.5 Hz) of mode B. It is believed that this lightweight curved 
origami–based isolator can be used in many applications in soft and 
small robotics.

Fig. 4. Design and experimental characterization of the curved origami cubes 
for controllable force transmissibility. (A) Design of the curved origami cube 
with predefined curved creases A and B and their parameter selections from the 
stiffness phase diagram. The curved origami cube exhibits negative stiffness when 
crease A is activated, whereas it exhibits positive stiffness when crease B is activated. 
(B) Photographs of the curved origami cube in modes A and B, corresponding to 
the isolating and responsive modes. Photo credit: Zirui Zhai, Arizona State Univer-
sity. (C) Force-displacement relationships of curved origami cubes in modes A and 
B exhibiting quasi-zero and positive stiffness, respectively. The required load for 
quasi-zero stiffness is approximately 2.35 N. (D) Photographs showing an array of 
four curved origami cubes in mode A that can stay balanced at any position under 
its critical load of 960 g (2.35 N). Photo credit: Ken Lin, Zhejiang University. (E) Ex-
perimental setup used to measure the acceleration transmissibility of the curved 
origami cubes. Photo credit: Ken Lin, Zhejiang University. (F) Input and output ac-
celerations of curved origami cubes in modes A and B under various vibration fre-
quencies from 1 to 30 Hz. (G) Acceleration transmissibility of curved origami cubes 
in modes A and B under various vibration frequencies from 1 to 30 Hz.
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Demonstration III: Curved Miura pattern for in situ 
multistage stiffness response
Here, we design 2D modular metamaterials using curved origami as 
building blocks, taking a similar approach as the Miura pattern, and 
demonstrate their unprecedented capability of in situ multistage 
stiffness response under a uniform load. Figure 5A shows a 3 × 3 
Miura pattern, a 3 × 3 curved Miura pattern, and their correspond-
ing unit cells. The curved Miura pattern replaces the mountain 
creases in the Miura pattern (shown in green) with a curved crease 
and the two other creases (shown in red) with curved plates. When 
the top and bottom boundaries are constrained, the curved Miura 
pattern exhibits different behaviors from the Miura pattern during 
compression. As shown in movie S5, different deformation modes 
of curved Miura are observed under different loading conditions 
(i.e., concentrated loading on the concave side or convex side and 
uniform loading), and it is found that the deformation can only 
transfer from the concave side to the convex side. Moreover, when 
the concave segment is confined, the curved Miura becomes very 
stiff (fig. S11). Figure 5B shows the deformation of a curved Miura 
with identical unit cells characterized by the curvature ​​   ​​ (equal to 
0.56) of the crease subjected to a compressive load along the A-A 
direction. The concave segment snaps and moves to the right, which 
is also shown in movie S5. This snap is ubiquitous, as shown in fig. 
S11, for another crease with curvature ​​   ​​ = 1.10 that has negative 
stiffness. For curved Miura patterns that have positive stiffness, 
snap does not occur, and the applied force monotonically increases 
with respect to the displacement, which is also shown in fig. S11 for 
curved origami with curvature ​​   ​​ = 1.62. Figure 5C compares these 
three curved Miura patterns with ​​   ​​ = 0.56 for , ​​   ​​ = 0.95 for , 
and ​​   ​​ = 1.62 for . When 0.125-mm-thick plastic film is used, the 
normalized crease modulus is ​​   H ​ = 0.063​. On the basis of the stiff-
ness diagram (Fig. 2E), these three curved origami patterns have 
normalized stiffness ​​   k ​ = − 10.9, − 1.6, and 6.1​, which leads to snap-
through behaviors for  and  and gradual deformation without 
snap-through for . Upon compressive loading along the A-A path 
at progressive displacement u = 0, 5, and 10 mm, these three pat-
terns exhibit different responses. Pattern  has the highest negative 
stiffness ​​   k ​ = − 10.9​ and the highest transverse displacement of 
25 mm, whereas pattern  has positive stiffness ​​   k ​ = 6.1​ and the 
lowest transverse displacement of 9 mm. For the curved Miura with 
homogeneous curvature, there is a one-to-one relation between the 
curvature and the transverse displacement under compressive load-
ing, which leads to the design of curved Miura with inhomogeneous 
curvatures.

Curved Miura with inhomogeneous curvature can be modularly 
designed to achieve in situ switching and multistage stiffness ma-
nipulation. Figure 5D illustrates a 4 × 3 curved Miura with in situ 
switchable creases along the A-A and B-B paths. Along each path, 
the three creases , , and  that were studied in Fig. 5C can be 
turned ON or OFF to control the transmissibility of the transverse 
buckling deformation. As shown in Fig. 5C, transverse buckling 
always initiates at the concave site of a curved Miura and then prop-
agates inward; thus, this 4 × 3 curved Miura has two transverse 
buckling paths along  and Ξ, and each path has three candidate 
curvatures , , and . Thus, this 4 × 3 curved Miura can achieve 
six in situ switchable and accessible states, representing the stiffness 
response. Considering symmetry, these states can be expressed by a 
3 × 3 symmetric matrix shown in Fig. 5E. The switching and com-
pression tests of the six modes are shown in movie S6. Figure 5G 

Fig. 5. Design and performance of the curved Miura pattern and its applica-
tion in a swimming robot. (A) Photographs of a 3 × 3 Miura pattern and a 3 × 3 
curved Miura pattern and their corresponding unit cells. (B) A 3 × 3 homogeneous 
curved Miura with crease  (​​ ̄ ​​ = 0.56) under a compressive load on the A-A direc-
tion. (C) The deformation of the middle row of 3 × 3 homogeneous curved Miura 
with creases  (​​ ̄ ​​ = 0.56),  (​​ ̄ ​​ = 0.95), and  (​​ ̄ ​​ = 1.62) at varied displacements 
u = 0, 5, and 10 mm and the parameter selections of creases , , and  from the 
stiffness phase diagram. (D) Design of a 4 × 3 inhomogeneous curved origami pat-
tern containing three creases , , and  on the leftmost and rightmost bound-
aries and crease  in the middle. (E) State matrix of the 4 × 3 inhomogeneous 
curved Miura representing the force responses of each state, with “↑” denoting in-
creasing force and “↓” denoting decreasing force. (F) Design of a pneumatic-driven, 
curved Miura-based swimming robot. (G) Configurations of the six states - , 
- , - , - , - , and -  and their force-displacement relationship under 
a uniform compressive load. The green arrow indicates snap-through due to neg-
ative stiffness, whereas the red cross indicates no snap-through. (H) Photographs 
of the swimming robot at the six states when the balloon is inflated and the gener-
ated linear and rotation displacements of each corresponding state. Photo credit: 
Zirui Zhai, Arizona State University.
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shows the configurations of these six states and their force-displacement 
responses under a uniform compressive load. Multistage stiffness 
manipulation is accomplished by a uniform load depending on the 
ON/OFF combination of different creases. The diagonal compo-
nents for the matrix in Fig. 5E represent the stiffness response when 
two identical creases are activated on both paths. When two creases 

 are activated on both paths  and Ξ ( -  combination), the re-
action force of this curved Miura will undergo a single peak and 
then drop because of concurrent transverse buckling at both paths, 
which is denoted by a ↑↓ stiffness response (with ↑ for peak and ↓ 
for drop), and a similar situation occurs for a -  combination. 
When crease  is turned ON for both paths, positive stiffness pro-
vides a monotonic increase in the force response, which is denoted 
by ↑. The off-diagonal components in Fig. 5E are for those with 
nonidentical creases activated. When crease  is activated on path 
 and  on path Ξ (i.e., a -  combination), the reaction force will 
experience a peak-valley-peak-valley change, i.e., a ↑ ↓ ↑ ↓ multi-
stage stiffness response achieved by a uniform load. The -  com-
bination exhibits a peak-valley-peak pattern, i.e., ↑ ↓ ↑. The -  
combination exhibits a peak-flat pattern, i.e., ↑→. For a curved 
Miura with more unit cells (e.g., a 6 × 3 pattern), the leftmost and 
rightmost creases have more choices in terms of curvature (e.g., 4), 
so a much more complicated stiffness response can be generated, 
which can be represented by multidimensional tensors. Inhomoge-
neous curved Miura with in situ switchable curvatures produces 
complicated multistage stiffness responses under uniform loading. 
Thus, a controllable and in situ switchable nonlinear mechanism 
can find many applications, such as in robotics.

One of the challenges in robotics is to accomplish different mov-
ing patterns with less actuators to improve the reliability and reduce 
the cost (37). To solve this problem, we built a curved Miura-based 
swimming robot with a single pneumatic actuator, which can be 
switched in situ among different actuation modes (Fig. 5F). When 
air fills the balloon, the inflation compresses the frame in gray that 
is glued to the curved Miura, and two paddles are attached to the 
frame via a sliding trench (fig. S12). When the frame moves down-
wards, the paddle rotates, and the rotation increases as the displace-
ment of the frame increases. On the basis of the matrix in Fig. 5E, 
the stiffness response with a ↓ mode will lead to a sudden displace-
ment of the frames and thus a larger rotation of the paddle. Conse-
quently, by altering the combinations (e.g., -  and - ), six 
types of complex motions can be realized in situ through simple air 
flow. Figure 5H and movie S7 show the motion of the robot on wa-
ter by inflating the balloon using 50 ml of air with a constant flow 
within 1 s. The activated paddle during motion is highlighted by a 
green arrow, and the inactivated paddle is indicated by a red cross. 
The displacement and rotation resulting from the inflation are also 
presented in Fig. 5H. Modes - , - , and -  have linear dis-
placement without rotation because of the symmetrical buckling in 
paths  and Ξ, with mode -  providing the largest displacement 
of 63 mm in 1 s because of the largest negative stiffness snap-
through, mode -  having a 36-mm displacement because of the 
snap-through, and mode -  generating the least displacement of 
16 mm because of positive stiffness. Modes - , - , and -  
provide both linear displacement and rotation because of the asym-
metrical deformation of the two paths. The other three modes (i.e., 

- , - , and - ) in Fig. 5E also have asymmetrical motion 
but clockwise rotation, as shown in movie S8. In summary, the 
curved Miura-based swimming robot enables different moving 

modes including fast, slow, linear, and rotational moving with a sin-
gle pneumatic actuator. This demonstration only presents one of the 
possible applications to use the in situ multistage stiffness response 
rooted from curved origami.

DISCUSSION
In summary, curved origami was introduced here to accomplish in 
situ stiffness manipulation by changing the curvature of the creases. 
The variation in stiffness among positive, zero, and negative stiffness 
results from the competition of the crease folding and the panel 
bending, with the former providing negative stiffness and the latter 
providing positive stiffness. The in situ stiffness manipulation is 
achieved by activating different curved creases on curved origami 
containing multiple creases. A universal stiffness design diagram was 
discovered and can be used to design curved creases for specific ap-
plications. Three demonstrations were presented to highlight the 
versatility of the curved origami, including a universal and light-
weight gripper, a cube with tunable stiffness for controllable force 
transmissibility, and curved Miura patterns for in situ multistage 
stiffness response. This work presents an essential and elegant reso-
lution to use curved origami for complicated, in situ stiffness ma-
nipulation, which opens an unexplored direction to design mechanical 
metamaterials.

Like many other mechanical metamaterials, the presented curved 
origami needs to be mechanically and manually tuned. A remote-
control method will provide better applicability, which can be realized 
by using temperature-activated (38), photoactivated (39), electronic 
(40), and magnetic materials (41) on the creases. Moreover, the prin-
ciple of designing curved origami can be extended from the present 
1D (e.g., gripper and isolator applications) and 2D (e.g., curved 
Miura patterns and their application in robots) patterns to 3D and 
tessellated curved origami scenarios by combining curved origami 
patterns and other existing designs in origami, e.g., Miura tube de-
sign (20), multilayered Miura design (27), and origami-inspired 
structural designs (24).

We believe that the presented work will establish an essential 
principle to use various curved origami patterns for designing me-
chanical metamaterials with unprecedented functions, including 
stiffness manipulation and deformation reprogramming, which can 
be readily coupled with other physical fields, such as electromagnetics. 
Materials and structures created through this principle can be ap-
plied in many fields, including daily essentials, protections, robot-
ics, automobiles, aerospace components, and biomedical devices.

MATERIALS AND METHODS
Fabrication of curved origami
The curved origami patterns are made of 125-m-thick (±5 m) 
polyester sheets from McMaster-Carr. The outlines and creases of 
the curved origami are fabricated using a Silhouette Cameo 2 cutter 
from Silhouette America Inc. The cutting depth of the creases is set 
to 100 m for all curved origami.

Fabrication of the curved origami gripper, curved origami 
cube, and curved Miura
Heavy-duty packaging tape from the 3M Company is used to 
connect the polyester plastic film to build curved origami grip-
per, isolator, and curved Miura. The slow-release foam from 
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McKeon Products Inc. is used on the curved origami gripper to 
prevent slippage. The top and bottom panels of the curved origami 
cubes are fabricated from 635-m-thick (±64 m) polyethylene 
terephthalate glycol plastic films.

Fabrication of the swimming robot
The frame and the sliding trench of the swimming robot are fabri-
cated using an Ender 3 Pro 3D printer from Shenzhen Creality 3D 
Technology Co. Ltd. using polylactic acid materials. A 304-mm balloon 
from Walmart Inc. is used as the actuating balloon in the swimming 
robots. Clear soft polyvinyl chloride plastic tubes with inner diameters 
of 0.125 inches and outer diameters of 0.25 inches from McMaster-
Carr are used to transfer the air flow. A syringe of 100-ml capacity 
from McMaster-Carr is used to inflate the balloon.

Mechanical characterization
An AEL-100-A testing machine from Wenzhou Tripod Instrument 
Manufacturing Co. Ltd. is used for all the compression and tension 
tests under a loading speed of 5 mm/min.

Finite element analysis
ABAQUS (SIMULIA, Providence, RI) commercial software is used 
to simulate the mechanical behavior of curved origami. Four-node 
shell elements S4R are used to model the origami panel. Connector 
elements with one available rotational degree of freedom (DOF) 
along the crease folding direction and constraints on the other five 
DOFs are used to model the creases. The panels are modeled as lin-
ear elastic materials, and the creases are modeled as linear elastic 
perfectly plastic materials (with a yield rotation angle of 1 rad).

Experimental setup for the vibration experiment
The fixed frequency and sweep signals are generated by the signal 
generation module included in the dynamic signal collection system 
(LabGenius IM1208H from Inter-Measure Inc.) and then amplified 
by power amplifiers (BAA 120 from TIRA Vibration Test Systems 
Inc.). The acceleration signals are measured by two accelerated sen-
sors (352C33 from PCB Piezotronics Inc. and are acquired by the 
dynamic signal collection system.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/47/eabe2000/DC1
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