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Abstract
The tectonic and paleoceanographic setting of the Great Austra-

lian Bight (GAB) and the Mentelle Basin (MB; adjacent to Natural-
iste Plateau) offered an outstanding opportunity to investigate 
Cretaceous and Cenozoic climate change and ocean dynamics 
during the last phase of breakup among remnant Gondwana conti-
nents. Sediment recovered from sites in both regions during Inter-
national Ocean Discovery Program Expedition 369 will provide a 
new perspective on Earth’s temperature variation at sub-polar lati-
tudes (60°–62°S) across the extremes of the mid-Cretaceous hot 
greenhouse climate and the cooling that followed. The primary 
goals of the expedition were to

• Investigate the timing and causes for the rise and collapse of the 
Cretaceous hot greenhouse climate and how this climate mode 
affected the climate-ocean system and oceanic biota;

• Determine the relative roles of productivity, ocean temperature, 
and ocean circulation at high southern latitudes during Creta-
ceous oceanic anoxic events (OAEs);

• Identify the main source regions for deep-water and intermedi-
ate-water masses in the southeast Indian Ocean and how these 
changed during Gondwana breakup;

• Characterize how oceanographic conditions at the MB changed 
during the Cenozoic opening of the Tasman Passage and restric-
tion of the Indonesian Gateway;

• Resolve questions on the volcanic and sedimentary origins of the 
Australo-Antarctic Gulf and Mentelle Basin and provide strati-
graphic control on the age and nature of the prebreakup succes-
sions.

Hole U1512A in the GAB recovered a 691 m thick sequence of 
black claystone ranging from the early Turonian to the early Cam-
panian. Age control is primarily based on calcareous nannofossils, 
but the presence of other microfossil groups provided consistent 
but low-resolution control. Despite the lithologic uniformity, long- 
and short-term variations in natural gamma ray and magnetic sus-
ceptibility intensities show cyclic alternations that suggest an orbital 
control of sediment deposition that will be useful for developing an 
astrochronology for the sequence.

Sites U1513–U1516 were drilled between 850 and 3900 m water 
depth in the MB and penetrated 774, 517, 517, and 542 meters be-
low seafloor (mbsf ), respectively. Under a thin layer of Pleistocene–
upper Miocene sediment, Site U1513 cored a succession of Creta-
ceous units from the Campanian to the Valanginian. Site U1514 
sampled an expanded Pleistocene–Eocene sequence and termi-
nated in the upper Albian. The Cenomanian–Turonian interval at 
Site U1514 recovered deformed sedimentary rocks that probably 
represent a detachment zone. Site U1515 is located on the west 
Australian margin at 850 m water depth and was the most challeng-
ing site to core because much of the upper 350 m was either chert or 
poorly consolidated sand. However, the prebreakup Jurassic(?) sedi-
ments interpreted from the seismic profiles were successfully recov-
ered. Site U1516 cored an expanded Pleistocene, Neogene, and 
Paleogene section and recovered a complete Cenomanian/Turonian 
boundary interval containing five layers with high total organic car-
bon content.

Recovery of well-preserved calcareous microfossil assemblages 
from different paleodepths will enable generation of paleo-
temperature and biotic records that span the rise and collapse of the 
Cretaceous hot greenhouse (including OAEs 1d and 2), providing 
insight to resultant changes in deep-water and surface water circu-

lation that can be used to test predictions from earth system mod-
els. Paleotemperature proxies and other data will reveal the timing, 
magnitude, and duration of peak hothouse temperatures and any 
cold snaps that could have allowed growth of a polar ice sheet. The 
sites will also record the mid-Eocene–early Oligocene opening of 
the Tasman Gateway and the Miocene–Pliocene restriction of the 
Indonesian Gateway; both passages have important effects on 
global oceanography and climate. Understanding the paleoceano-
graphic changes in a regional context provides a global test on mod-
els of Cenomanian–Turonian oceanographic and climatic evolution 
related both to extreme Turonian warmth and the evolution of OAE 
2.

The Early Cretaceous volcanic rocks and underlying Jurassic(?) 
sediments cored in different parts of the MB provide information 
on the timing of different stages of the Gondwana breakup. The re-
covered cores provide sufficient new age constraints to underpin a 
reevaluation of the basin-wide seismic stratigraphy and tectonic 
models for the region.

Introduction
Understanding the mechanisms, feedbacks, and temporal rela-

tionships that link climate dynamics between the polar regions and 
the tropics is of fundamental importance for reconstructing rapid 
climate change in the past and hence improving predictions in the 
future. High-resolution stratigraphic records from strategic loca-
tions around the globe, especially from the high-latitude oceans, are 
essential to achieve this broader goal. Within this context, past peri-
ods of extreme warmth such as the Cretaceous hot greenhouse and 
the initial Eocene thermal maximum have attracted increasing re-
search interest over recent years, resulting in often spectacular and 
sometimes contradictory insights into the mechanisms of natural 
short-term changes in climate, biogeochemical cycling, and ocean 
oxygenation. IODP Expedition 369 targeted these fundamental ob-
jectives with specific goals of providing high-latitude Southern 
Ocean sites with expanded late Mesozoic and Cenozoic sections 
and improving constraints on the tectonic history of the region.

Expedition 369 recovered sediments from the Great Australian 
Bight (GAB) and Mentelle Basin (MB) that will provide new insights 
to the evolution of Southern Hemisphere, high-latitude Cretaceous 
climates. The high paleolatitude (60°–62°S) location of the sites 
(Figure F1) is especially important for global climatic studies be-
cause of the enhanced sensitivity to changes in ocean temperature. 
Study of the recovered sections will enable generation of high-reso-
lution stratigraphic records across the rise and collapse of the Cre-
taceous hot greenhouse climate and concomitant changes in Earth’s 
latitudinal thermal gradients and deep ocean circulation that con-
tinued through the Cenozoic. The well-resolved age framework of 
the pelagic carbonate sequences will enable more precise correla-
tion between global climatic shifts and tectonic history, especially 
major volcanic episodes in the region. These aspects are crucial to 
improve our understanding of Earth’s climate system and to inform 
the scientific modeling community on high-latitude Southern 
Hemisphere Cretaceous (and possibly older) records in a currently 
underexplored region.

Background
Geological setting

Following the collision of Gondwana with Laurasia at 330–320 
Ma, which formed the supercontinent of Pangaea, the breakup of 
6
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eastern Gondwana commenced during the Jurassic (Veevers, 2006). 
At this time, the Naturaliste Plateau (NP) was located near the triple 
junction of the Australian, Antarctic, and Greater India plates (Fig-
ure F1) at 60°–62°S. The first stage of breakup occurred as India 
separated from Australia. Later, in the early Eocene, Australia sepa-
rated from Antarctica.

The Mentelle Basin and rifting of Greater India
The MB separates the NP from western Australia and is part of a 

sequence of basins along the western margin of Australia that 
formed during the breakup with India (Bradshaw et al., 2003). The 
rifting episode initiated in northwestern Australia in what is now 
the Argo Abyssal Plain and then propagated southward in a series of 
en echelon basins with the MB being the furthest south (Maloney et 
al., 2011). The MB is separated from the Perth Basin by the base-
ment high of the Leeuwin Block and the Yallingup Shelf (Figure F2). 
Despite its water depth (2000–4000 m), the basement under the MB 
is believed to be continental. The MB is believed to contain Jurassic 
and possibly older sediments that were deposited in syn- and post-
rift basins. During the breakup with Greater India, the NP is classed 
as part of a volcanic margin as evidenced by the onshore Bunbury 
basalt, which recent dating has given an age of 137–130 Ma. This 
date is contemporaneous with the final stages of rifting but older 
than the basalt found on the Kerguelen Plateau, even though the 
geochemistry is similar (Olierook et al., 2016). Basalt is widely 
dredged around the NP and, as has been documented on volcanic 
margins elsewhere (Planke et al., 1999), is the cause of the strong 
seismic reflection echo seen on seismic profiles that cross the MB 
and denote the top of the Valaginian. Younger sediments were de-
posited in a thermally subsiding basin and margin. Deep Sea Drill-
ing Project (DSDP) Site 258 previously drilled this post-rift section 
on the western margin of the MB but stopped short of the inter-
preted basalt horizon.

Seismic data acquired in 2004 and 2009 by Geoscience Australia 
(tied to Site 258) provided a regional survey to appraise the strati-
graphic, structural, and depositional history of the MB (Maloney et 
al., 2011; Borissova et al., 2010). Relatively young Neogene carbon-
ate oozes unconformably overlie Paleogene deep marine chalk. Oc-
casional bright reflection events in this sequence are likely caused 
by thin chert bands. This Paleogene chalk unconformably overlies 
Cretaceous coccolith-rich chalk that is underlain by Albian/Aptian 
claystones that pinch out against a glauconitic sandstone. The un-
conformity at the base of the ooze and the top of the glauconitic 
sandstone can be identified and interpreted from the seismic data; 
the other boundaries do not create distinct reflections. The glauco-
nitic sandstone sequence is floored by a high-amplitude reflection 
(not sampled at Site 258) that is interpreted to be caused by Va-
langinian volcanics. Hence, this horizon coincides with the onset of 
breakup and separation of Greater India from Australia and a series 
of subsequent volcanic episodes related to the continuing breakup 
on the northern and western margins of the NP. Prior rifting of the 
area is recorded by Early Cretaceous, Jurassic, and Permian/Triassic 
sequences, although the interpretation is somewhat speculative be-
cause the sequences lacked borehole control.

Opening of the Australo-Antarctic Gulf
The breakup on the southern margin of Australia is thought to 

have started in the Cenomanian–Turonian (Direen et al., 2011) and 
proceeded at a very slow rate. Contrary to the rifting of Greater In-
dia, this margin is believed to be nonvolcanic, but plate tectonic re-
constructions corresponding to these early stages of rifting are 

poorly constrained and controversial (White et al., 2013). The ~15 
km thick post-Middle Jurassic sedimentary sequence that accumu-
lated in the GAB contains the largest continental margin deltaic se-
quence deposited during the Late Cretaceous greenhouse. 
Accelerated subsidence commencing in the late Albian and con-
tinuing through the Cenomanian–Santonian led to the deposition 
of a thick sequence of marine shales (Totterdell et al., 2000). During 
the Cretaceous, the GAB was situated at the eastern tip of a partial 
seaway, the Australo-Antarctic Gulf (AAG), with the NP in the open 
ocean at the western gateway that connected the AAG with the 
southern Indian Ocean.

An overall transgressive phase of sedimentation in the early 
Paleogene was followed by the establishment of open marine car-
bonate shelf conditions from the early Eocene onward. The AAG 
eventually widened to create the Southern Ocean with a switch to 
rapid spreading after 45 Ma (White et al., 2013). An industry well, 
Jerboa-1, in the Eyre subbasin on the continental shelf provided a 
stratigraphic tie along seismic profile AGSO Survey 65 Line 06 
(Bradshaw et al., 2003).

Opening of the Indian Ocean and Tasman Gateway and closure 
of the Indonesian Gateway

After initial rifting, India drifted in a north-northwest direction 
with strike-slip motion along the Wallaby-Zenith Fracture Zone. 
This juxtaposed their continental shelves until ~120 Ma, isolating 
the nascent Indian Ocean from global deep-water circulation (Gib-
bons et al., 2013). Subsequently, the northward drift of Australia 
through the Cenozoic affected changes in two important ocean 
gateways to the Indian Ocean: the opening of the Tasman Gateway 
between Australia and Antarctica in the middle Eocene–early Oli-
gocene and the restriction of the Indonesian Gateway between Aus-
tralia and Southeast Asia in the Miocene–Pliocene. Both passages 
have important effects on global oceanography and climate, and the 
NP/MB region is well situated to monitor their opening history and 
resultant effects on ocean circulation (Figure F3).

The Antarctic Circumpolar Current (ACC) in the Southern 
Ocean is central to the present-day overturning circulation and sur-
face heat redistribution (Lumpkin and Speer, 2007). Although there 
is no significant restriction on the ACC in the modern Tasman Pas-
sage, the Tasman and Drake Passages both opened during the mid-
dle Eocene–Oligocene, and the restriction to flow at the Tasman 
Passage would have been significant for ocean circulation, espe-
cially in the late Eocene–early Oligocene. During the Paleocene–
Eocene, southern Australia would have been influenced more by 
subpolar (rather than the modern subtropical) gyres as a conse-
quence of the closed or restricted Tasman Passage and more south-
erly position of Australia (e.g., Huber et al., 2004). During the Early 
Eocene Climatic Optimum, however, temperatures in the southwest 
Pacific Ocean near Australia seem to have been warmer than cli-
mate models predict (Hollis et al., 2012). Cooling of the Antarctic 
margin relative to the Australian margin near Tasmania occurred 
early in the opening of the Tasman Passage, which is dated at 49–50 
Ma (Bijl et al., 2013), and differentiation of deepwater produced in 
the Southern Ocean relative to the North Atlantic began in the late 
middle Eocene (Cramer et al., 2009; Borrelli et al., 2014). However, 
plate tectonic reconstructions (Müller et al., 2000) indicate that sep-
aration of Australia and Antarctica near Tasmania occurred later 
(~43 Ma). Recovering material spanning this time interval thus pro-
vides an important opportunity to reconcile these tectonic and 
paleoceanographic interpretations.
7
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The restricted surface flow through the Indonesian Gateway is 
essential to the surface heat flux in the Pacific and Indian Oceans 
and has been linked to El Niño Southern Oscillation (ENSO) dy-
namics and the global ocean overturning circulation (Gordon, 1986; 
Godfrey, 1996; Lee et al., 2002). The gradual restriction of the Indo-
nesian Passage from deep-water throughflow in the late Oligocene–
early Miocene to variable shallow flow in the Pliocene–Pleistocene 
is thought to have strongly affected surface heat distribution with 
potential links to the late Neogene cooling and Northern Hemi-
sphere glaciation (Cane and Molnar, 2001; Kuhnt et al., 2004; Karas 
et al., 2009).

Objectives
1. Investigate the timing and causes for the rise and collapse of the 

Cretaceous hot greenhouse and how this climate mode affected 
the climate-ocean system and oceanic biota.

Compilations of deep-sea benthic foraminiferal and bulk car-
bonate δ18O data reveal that the world ocean experienced long-term 
warming from the late Aptian through middle Cenomanian, main-
tained extremely warm temperatures from the late Cenomanian 
through Santonian with peak warmth during the Turonian (>20°C 
at midbathyal depths), and gradually returned to cooler values 
(~6°–8°C at midbathyal depths) during the Maastrichtian (Huber et 
al., 1995, 2002, 2011; Clarke and Jenkyns, 1999; Friedrich et al., 
2012; O’Brien et al., 2017). Recent benthic and planktonic δ18O val-
ues obtained from the Turonian at Site 258 support extreme high-
latitude Turonian warmth (Huber et al., submitted). Still, these δ18O 
values are problematically low and seem to defy straightforward ex-
planations (Bice et al., 2003). These new analyses compared to exist-
ing stable isotope data (Huber et al., 1995, 2002) showed large 
changes at times of known climatic shifts. Relative to low-latitude 
sites, high-latitude sites are both undersampled and respond more 
strongly to climate change.

Although the Cretaceous has long been characterized as too 
warm to sustain continental ice sheets (e.g., Barron, 1983; Frakes et 
al., 1992; Huber et al., 2002; Hay, 2008), coincidences between sea 
level variations (deduced from sequence stratigraphy) and δ18O re-
cords have been proposed by some authors as evidence for the occa-
sional existence of polar ice (e.g., Barrera et al., 1997; Miller et al., 
1999, 2005; Stoll and Schrag, 2000; Gale et al., 2002; Bornemann et 
al., 2008) and winter sea ice (Bowman et al., 2012). The “greenhouse 
glaciers” hypothesis has been countered by evidence for diagenetic 
influence on bulk carbonate oxygen isotope records and stable trop-
ical planktonic and benthic foraminiferal δ18O data across several 
of the proposed cooling intervals (Huber et al., 2002; Moriya et al., 
2007; Ando et al., 2009; MacLeod et al., 2013), Furthermore, TEX86 
values from DSDP Site 511 suggest sea-surface temperatures during 
the Hauterivian–Aptian interval of 25°–30°C (Jenkyns et al., 2012; 
O’Brien et al., 2017).

High-resolution isotopic studies of samples from Expedition 
369 sites should advance our understanding and improve geo-
graphic documentation of major global climatic warming and cool-
ing transitions during the Cretaceous. Recovery of more complete 
sections will lead to biostratigraphic refinements and improved re-
gional to global correlations.

2. Determine the relative roles of productivity, ocean temperature, 
and ocean circulation at high southern latitudes during Creta-
ceous oceanic anoxic events (OAEs).

OAEs are defined as short-lived (<1 My) episodes of enhanced 
deposition of organic carbon in a wide range of marine environ-
ments (Schlanger and Jenkyns, 1976) and are associated with prom-
inent carbon isotope excursions in marine and terrestrial sequences 
(Jenkyns, 1980, 2010; Arthur et al., 1988; Gröcke et al., 1999; Jahren 
et al., 2001; Ando et al., 2002; Jarvis et al., 2006). Generation of 
OAEs has been attributed to a rapid influx of volcanogenic and/or 
methanogenic CO2 sources leading to abrupt temperature rise and 
an accelerated hydrological cycle, increased continental weathering 
and nutrient discharge to oceans and lakes, intensified upwelling, 
and an increase in organic productivity. Globally expressed Creta-
ceous OAEs occurred during the early Aptian (OAE 1a; ~120 Ma) 
and at the Cenomanian/Turonian (C/T) boundary (OAE 2; ~94 
Ma), whereas regionally recognized events occurred during the 
early Albian (OAE 1b; ~111 Ma) and late Albian (OAE 1d; ~100 
Ma).

Cretaceous OAEs are best known from the Atlantic/Tethyan ba-
sins and surrounding continents, whereas Indian Ocean records are 
limited. The presence of black shales with as much as 6.9% total or-
ganic carbon (TOC) in the GAB (Totterdell et al., 2008), 11% at Site 
U1513 and up to 14% at Site U1516, suggest water may even have 
been euxinic in the region during deposition of OAE 2. OAE depos-
its should have been present at Kerguelen (Ocean Drilling Program 
[ODP] Site 1138) and Exmouth Plateaus and adjacent basinal areas 
(primarily ODP Site 763), but drilling strategies and poor recovery 
resulted in all of the cores missing the OAE record.

Recovery of a continuous record of the C/T boundary OAE 2 
was anticipated at GAB Site U1512, western MB Site U1513, and 
northern MB Site U1514, although the actual recovery at Expedi-
tion 369 sites was different (see Principal results). At all sites, the 
anticipated OAE 2 interval is at a shallow burial depth (~260–460 
meters below seafloor [mbsf ]) where sediments are thermally im-
mature and biogenic preservation is good to excellent. Observations 
and data will compare the Expedition 369 sites and other high-lati-
tude OAE 2 sites to establish (1) whether significant changes in 
ocean circulation were coincident with OAE 2, (2) over what depth 
ranges (Zheng et al., 2013), and (3) whether OAE 2 in the high-lati-
tude Southern Hemisphere was coincident with major changes in 
sea-surface temperatures (Jarvis et al., 2006). We were particularly 
interested in establishing whether the C/T succession contained ev-
idence for the “Plenus cold event,” an important cooling (~4 to 
>5°C) event within OAE 2 known from the Northern Hemisphere. 
This event is associated with changes in surface water circulation 
(e.g., Zheng et al., 2013) and reoxygenation of bottom water, but it 
remains unclear whether the Plenus cold event was a global or re-
gional phenomenon. Data from the high southern latitudes are cur-
rently lacking (Jenkyns et al., 2012) and would address this critical 
gap in our model for OAE 2.

3. Identify the main source regions for deep- and intermediate wa-
ter masses in the southeast Indian Ocean and how these changed 
during the Gondwana breakup.

Over the past few years, study of Cretaceous intermediate and 
deep-water circulation patterns has been galvanized by an increase 
8
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in published neodymium (Nd) isotopic data (e.g., Jiménez Berro-
coso et al., 2010; Robinson et al., 2010; MacLeod et al., 2011; Martin 
et al., 2012; Murphy and Thomas, 2012; Jung et al., 2013; Moiroud et 
al., 2013; Voigt et al., 2013; Zheng et al., 2013). Nd isotopic values 
(expressed as εNd) have emerged as a promising proxy for recon-
structing past circulation and are applicable across a wide range of 
water depths, including abyssal samples deposited below the car-
bonate compensation depth.

Typically measured on either phosphatic fossils (fish teeth, 
bones, and scales) or oxides leached from bulk samples, εNd values 
record a depositional to early diagenetic bottom water signature 
generally resistant to later diagenetic overprinting (Martin and 
Scher, 2004). The bottom water signature, in turn, reflects the εNd 
value of the source region of that water mass because Nd enters the 
ocean largely as riverine or eolian input, has a residence time 
shorter than the mixing time of the oceans, and has semiconserva-
tive behavior. Because εNd values in likely source regions vary by 
10–15 units compared to an analytical precision of ~0.3 units, 
stratigraphic trends in εNd can be used to infer changes in circula-
tion and mixing patterns through time. However, εNd values of 
samples are also influenced by local and global volcanic inputs, and 
the bottom water εNd signature of a water mass can be modified 
during circulation due to a high particle flux or boundary exchange, 
especially near detrital sources.

Cretaceous εNd data have been used to test, refine, and revise 
earlier circulation hypotheses that were based largely on carbon and 
oxygen isotopes. They have also documented correlation between 
εNd shifts and both long-term climate trends and shorter bioevents 
(e.g., OAE 2) and demonstrated a degree of complexity within and 
among sites not predicted by early studies. The latter is particularly 
true for the Southern Ocean, where circulation changes, water col-
umn stratification changes, volcanic inputs, and establishment of a 
widespread source of Southern Component Water have all been in-
voked to explain observed patterns (e.g., Robinson and Vance, 2012; 
Murphy and Thomas, 2012; Jung et al., 2013; Voigt et al., 2013). 
Neodymium studies of samples from sites representing a range of 
depths within the MB/NP, when combined with parallel paleo-
temperature estimates from δ18O and TEX86 and documentation of 
calcareous microfossil assemblages, should help reduce uncertainty 
in interpretation of previous studies.

4. Characterize how oceanographic conditions changed at the MB 
during the Cenozoic opening of the Tasman Passage and restric-
tion of the Indonesian Gateway.

The MB sites are well positioned to monitor paleoceanographic 
variations in the Leeuwin Current/Undercurrent system. The sur-
face Leeuwin Current is unique in flowing poleward along the east-
ern boundary of the Indian Ocean (Figure F3). It is caused by the 
north–south gradient between cooler waters to the south and warm 
surface waters along the northwestern Australian coast. These 
warmer waters are derived from the Indonesian Throughflow (ITF) 
that overrides the prevailing wind stress and results in the poleward 
flow (Pattiaratchi, 2006; Godfrey, 1996; Domingues et al., 2007; 
Waite et al., 2007). The strength of the Leeuwin Current varies sea-
sonally with the ITF strength and interannually with ENSO dynam-
ics, strengthening in winter and under La Niña conditions. The 
intermediate Leeuwin Undercurrent is derived from an eddy system 
associated with the Flinders Current near the NP (Middleton and 
Cirano, 2002; Waite et al., 2007; Meuleners et al., 2007; Divakaran 
and Brassington, 2011). The Flinders Current and Leeuwin Under-
current are conduits of the Tasman leakage, a pathway for return 

flow to the North Atlantic Ocean of deepwater upwelled in the Pa-
cific and a component of the Southern Hemisphere super-gyre that 
links the subtropical gyres of the Atlantic, Pacific, and Indian 
Oceans (Speich et al., 2002, 2007; Ridgway and Dunn, 2007; van Se-
bille et al., 2012). The Tasman leakage allows interconnection of 
Antarctic Intermediate Water (AAIW) in the Pacific, Atlantic, and 
Indian Oceans, and the Flinders Current–Leeuwin Undercurrent 
system seems to play a role in the conversion of Subantarctic Mode 
Water to AAIW (Ridgway and Dunn, 2007). Deepwater in the MB is 
derived from Antarctic Bottom Water (AABW) and lower Circum-
polar Deep Water that enter the Perth Basin between the MB and 
Broken Ridge, with substantial upwelling of AABW in the southern 
portion of the Perth Basin (Sloyan, 2006; McCartney and Donohue, 
2007).

Coring in the MB complements previous drilling around Aus-
tralia, especially off northwest and western Australia (DSDP Leg 27, 
ODP Legs 122 and 123, and International Ocean Discovery Pro-
gram [IODP] Expedition 356) and southern Australia and Tasmania 
(ODP Legs 182 and 189). Coring recovered Paleocene–Eocene and 
upper Miocene–recent sequences at deep-water and intermediate 
water locations. Recovered material from this expedition will con-
tribute to investigations of (1) the early Paleogene greenhouse cli-
mate at a high-latitude (~60°S) site, (2) oceanographic changes in 
the early stages of the opening of the Tasman Passage, and (3) 
oceanographic changes during the late stages of restriction of the 
Indonesian Passage.

5. Resolve questions about the volcanic and sedimentary origins of 
the basin and provide stratigraphic control on the age and nature 
of the prebreakup succession.

The interlinked aspects of the geology and evolution of the NP 
and MB suggest that recovering the volcanic rocks at the Valangin-
ian/late Hauterivian unconformity will further our understanding of 
this region. Drilling the unconformity provides information on

1. The timing and position of the breakup (both on the western 
and southern margin, using paleomagnetic studies and 40Ar/39Ar 
dating of lavas),

2. The nature of the various phases of volcanism (core description, 
petrophysics, and geochemical and isotopic study),

3. Geographic and environmental reconstructions, and
4. The depositional history of the basin.

The principal cause of high-amplitude discontinuous reflectors 
overlying the Valanginian breakup unconformity corresponds to ex-
trusive volcanics that flowed into the MB at the time of the breakup 
with Greater India. Drilling into the Valanginian volcanics and pre-
Valanginian sediments (Sites U1513 and U1515) will provide strati-
graphic control on the age and nature of the prebreakup succession 
and early rifting in the MB. Dating and analysis of the post-breakup 
sediments will provide needed information as to the development 
of the MB and particularly the influence of the later rifting with 
Antarctica. The results from this expedition will address a number 
of key tectonics questions for the region.

Principal results
Site U1512

Site background and objectives
The objective for coring Site U1512 (34°1.6407´S, 

127°57.7604´E) was to obtain a continuous Upper Cretaceous re-
cord of marine black shales in the GAB across OAE 2, which strad-
9
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dles the C/T boundary. Our plan was to compare the Site U1512 
sediment record with coeval Expedition 369 sequences cored in the 
MB to characterize the geochemical and biological responses to ex-
treme global carbon cycle perturbations in different paleoceano-
graphic settings at high southern latitudes. Site U1512 lies in the 
GAB in ~3000 m of water on the continental slope. During the Cre-
taceous, the GAB was situated at the eastern tip of a partial seaway 
(the AAG), with the MB and NP in the open ocean at the western 
gateway that connected the AAG with the southern Indian Ocean. 
Studies of the recovered sequence of early Turonian–late Santonian 
marine claystone will provide new insight into the evolution of Late 
Cretaceous climate and oceanography in the region of the AAG.

Lithostratigraphy
The sedimentary sequence of Hole U1512A is divided into two 

main lithostratigraphic units (Figure F4). Unit I is a 10.06 m thick 
sequence of Pleistocene pinkish to white calcareous ooze with 
sponge spicules. The unit extends from the beginning of the hole to 
10.06 m core depth below seafloor (CSF-A) (Sections 369-U1512A-
1R-1 through 2R-1; 0–10.2 m CSF-A). The unit consists of medium 
and thick beds with no distinctive sedimentary structures, exhibits 
no bioturbation, and is massive and structureless. In this unit, bio-
genic grains are the major constituent and comprise dominant cal-
careous nannofossils, abundant foraminifers, and common sponge 
spicules. Unit II is a 690.32 m thick sequence of silty clay that grada-
tionally transitions into silty claystone (Sections 2R-1 through 73R-
CC at the bottom of the hole; 10.2–701.4 m CSF-A). This unit is 
black to dark gray mottled silty claystone composed of quartz, clay 
minerals, pyrite, siderite, and dolomite with varying degrees of bio-
turbation. Micropaleontological analysis indicates a Late Creta-
ceous (Santonian to Turonian) age for this unit. Lithostratigraphic 
Unit II is further divided into Subunits IIa (silty clay) and IIb (silty 
claystone) based on the degree of sediment lithification. Subunit IIa 
is 75.10 m thick and composed of very dark greenish gray to black 
unlithified silty clay. This subunit is characterized by the presence of 
pyrite both as nodules and in a disseminated form within the silty 
clay. Zeolite, foraminifers, calcareous nannofossils, and sponge 
spicules are present in trace amounts throughout the subunit. Inoc-
eramid bivalve fragments and alteration halos occur frequently 
throughout the subunit. Subunit IIb is 615.22 m thick and is com-
posed of lithified black silty claystone. Included in this subunit are 
23 thin to medium beds of glauconitic and sideritic sandstone that 
are no thicker than 32 cm and mostly massive with normal grading. 
Bioclast traces present in this subunit include foraminifers, calcare-
ous nannofossils, radiolarians, sponge spicules, and organic matter.

Biostratigraphy and micropaleontology
Samples from all Hole U1512A core catchers were analyzed for 

calcareous nannofossils, planktonic foraminifers, and benthic fora-
minifers. In addition, calcareous nannofossil assemblages were eval-
uated from split core sections. Observations of other distinctive and 
potentially age or environmentally diagnostic microfossil groups, 
such as organic-walled dinoflagellate cysts (dinocysts), radiolarians, 
fish debris, and inoceramid prisms, were also made in all core 
catcher samples. Calcareous nannofossil datums form the chrono-
logic framework for Hole U1512A because they are most consis-
tently present. In contrast, planktonic foraminifers are rare but, 
where present, have ages consistent with those from calcareous 
nannofossils. Similarly, rare dinocyst taxa from Cores 369-U1512A-
47R through 70R (~440–672 m CSF-A) and radiolarians from Cores 

5R through 35R (~38–333 m CSF-A) provide valuable additional 
age confirmation of Late Cretaceous sediments.

Core 1R is in calcareous nannofossil Zone CN15 and planktonic 
foraminiferal Subzone Pt1b and is upper Pleistocene/Holocene. 
Cores 2R through 4R are barren of calcareous nannofossils but con-
tain rare planktonic foraminifers of both Cenozoic and Cretaceous 
species, which together with mixed radiolarian assemblage ages in-
dicate downhole contamination during coring. Cores 5R and 6R are 
upper Santonian and lowermost Campanian calcareous nannofossil 
Zone CC17. Cores 7R through 11R (~57–104 m CSF-A) are as-
signed to latest Coniacian–Campanian calcareous nannofossil 
Zones CC16 and CC17. Cores 12R through 16R (~105–154 m CSF-
A) are in Zone CC15, spanning the uppermost Coniacian and low-
ermost Santonian. Cores 17R through 20R (~154–192 m CSF-A) 
are Zone CC14 of Coniacian age. Cores 21R through 30R are mostly 
barren of all age diagnostic carbonate microfossils but likely span 
the C/T boundary. Cores 31R through 73R (to the base of the hole at 
701.38 m CSF-A) are Turonian based on calcareous nannofossils in 
Cores 31R through 48R spanning Zone CC12, Cores 49R through 
73R in Zone CC11, and Cores 65R through 73R in Zone CC10c.

Tubular agglutinated forms dominate benthic foraminiferal as-
semblages at Site U1512 and indicate either a lower to midbathyal 
environment or a marginal/restricted environment throughout the 
Late Cretaceous.

Paleomagnetism
The natural remanent magnetization (NRM) of all archive-half 

core sections and 21 discrete samples collected from the working 
halves of Hole U1512A were measured. The archive halves were 
stepwise treated with up to 30 mT alternating field (AF) demagneti-
zation and measured with the pass-through superconducting rock 
magnetometer (SRM) at 5 cm intervals. The NRM intensity of the 
section is relatively weak and varies from 1.5 × 10−5 to 7.8 × 
10−2 A/m with a mean of 5.5 × 10−4 A/m. The drilling-induced mag-
netic overprints can generally be removed by AF demagnetization 
at 10–20 mT. Inclinations of the characteristic remanent magnetiza-
tions (ChRMs) are predominantly negative, ranging from around 
−70° to −20°, indicating predominantly normal polarity. The upper-
most ~80 m display a very noisy signal because of the significant 
coring disturbance (biscuiting) introduced by the rotary coring pro-
cess. Positive inclination values occur between 0 and 75, 175 and 
190, and 256 and 259 m CSF-A. The intervals from ~0 to 75 and 175 
to 100 m CSF-A also exhibit sporadic or consecutive negative 
ChRM inclinations mixed with dominantly positive inclinations, 
making it impossible to assign magnetic polarity. The interval be-
tween 256 and 259 m CSF-A exhibits consistent downward-point-
ing paleomagnetic inclinations, defining a zone of reversed polarity 
that is probably associated with a short geomagnetic excursion.

Shipboard micropaleontological studies suggest that Core 5R 
(38.4–47.4 m CSF-A) is Santonian and the base of Core 73R is early 
Turonian. Therefore, the majority of the sedimentary cores from 
38.4 to 700 m CSF-A document the uppermost segment of the 
41.5 My Cretaceous normal Superchron C34n.

Petrophysics
Physical property data were obtained with the Whole-Round 

Multisensor Logger (WRMSL), Natural Gamma Radiation Logger 
(NGRL), P-wave velocity caliper (PWC), Section Half Multisensor 
Logger (SHMSL), and discrete samples. WRMSL P-wave measure-
ments were discontinued deeper than Core 11R because of poor 
10
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contact between the core sections, their liners, and the caliper. NGR 
values (Figure F4) average 32.8 counts/s, and bulk density estimates 
from gamma ray attenuation (GRA) average 1.7 g/cm3. GRA bulk 
density values in siltstone/claystone do not exceed 2.2 g/cm3, 
whereas in siderite nodules and glauconitic sandstones they in-
crease to 3.28 g/cm3. WRMSL magnetic susceptibility values aver-
age 9.35 instrument units (IU), do not exceed 16 IU in claystone and 
siltstone, but increase to 253.58 IU in glauconitic sandstone and 
siderite; point measurements from the SHMSL agree with the 
trends. At scales longer than 10 m, the NGR and magnetic suscepti-
bility records do not correlate over silty/clayey intervals from Cores 
3R through 15R, possibly because of the high abundance of pyrite 
differentially influencing the magnetic susceptibility values. The 
NGR and GRA records display parallel trends in this interval. From 
Core 16R to 62R, pyrite abundance markedly decreases, and all 
three data types (magnetic susceptibility, NGR, and GRA density) 
display similar trends. From Core 63R to 73R, both NGR and mag-
netic susceptibility decrease, but GRA density remains stable. At 
shorter scales (<10 m), magnetic susceptibility, GRA density, and 
NGR show high-amplitude cycles of 3–5 m thickness in Cores 10R 
through 19R, 34R through 43R, and 62R through 73R. The range of 
P-wave velocities in the silty claystone range from 1670 to 2346 m/s, 
although faster velocities (3397–5774 m/s) were obtained for the 
discrete layers of sideritic sandstone. High-resolution (2 cm) reflec-
tance spectroscopy and colorimetry data from archive-half core 
sections display high-amplitude variability.

On average, three discrete moisture and density (MAD) samples 
were taken from each core. Overall, the MAD results show that bulk 
density increases and grain density and porosity decrease. Bulk den-
sity for the dark silty claystone is 1.54–2.37 g/cm3, and the density of 
the sideritic sandstone intervals ranges from 3.21 to 3.49 g/cm3. Po-
rosities in the silty claystone are 28%–65%, with most measure-
ments between 40% and 48%. The porosity of the sideritic 
sandstone ranges from 5% to 13%.

Potassium (K), uranium (U), and thorium (Th) content were de-
convolved from the NGR data. U/Th ratios are <0.2 throughout the 
entire hole, indicating oxic conditions during deposition. K/Th ra-
tios sharply decrease in the uppermost 100 m, possibly caused by 
the presence of salt in this interval, which may increase the K con-
tent.

One downhole logging run measured NGR, density, sonic veloc-
ity, and resistivity values of the borehole wall using the triple combi-
nation (triple combo) tool string with the Dipole Shear Sonic 
Imager (modified triple combo tool string hereafter). Excellent 
borehole stability and favorable low-heave weather conditions per-
mitted logging of the entire open borehole. Inclinometer readings 
progressively increase from roughly 0° shallower than 210 m wire-
line log matched depth below seafloor (WMSF) to 27° near the base 
of the hole, indicating that the borehole orientation deviated from 
vertical during coring. Background trends in density, NGR, and re-
sistivity logs are relatively stable in the upper 300 m of the borehole. 
Below that interval, each of those three logs records minimum val-
ues near 325 m WMSF and then increases downhole to plateaus ap-
proaching maxima for the hole. Additionally, the density and 
resistivity logs preserve thin spikes in values that likely correspond 
to the thin sideritic and glauconitic sandstone beds commonly ob-
served (see Lithostratigraphy). In general, downhole measure-
ments record trends that are similar to those observed in the 
physical properties measured from the cores, such as meter-scale 

cyclicity in NGR (Figure F4), and provide a continuous petro-
physical stratigraphy to span occasional gaps in core recovery.

Geochemistry
The geochemistry program was designed to characterize the 

composition of interstitial water and bulk sediments and to assess 
the potential presence of volatile hydrocarbons for routine safety 
monitoring. A total of 73 headspace gas samples were taken, and hy-
drocarbons were detected in 69 samples, although Cores 1R 
through 9R were broadly free of interstitial gas. Methane was the 
dominant gas detected (as high as 104,000 ppmv), with very minor 
ethane and occasional propane (up to 653 and 148 ppmv, respec-
tively). Methane:ethane ratios suggest a transition from biogenic 
production above ~473 m CSF-A to possible thermogenic sources 
below that depth.

For interstitial water analyses, 46 samples were recovered from 
whole-round squeezing of sediment intervals. As a result of sedi-
ment lithology, interstitial water yield was low for the majority of 
the cores deeper than Core 12R (~115 m CSF-A). The final intersti-
tial water sample was taken from Core 59R (~560 m CSF-A). The 
salinity of interstitial water samples generally decreases with depth 
due to decreases in sulfate (SO4

2−), magnesium (Mg), and potassium 
(K) concentrations and general decreases in sodium (Na), bromide 
(Br−), and chloride (Cl−), possibly caused by low-salinity water pres-
ent at greater depths. The dissolved Mg, K, and boron (B) concen-
tration profiles reflect alteration of volcanic material and clay 
mineral formation. Sulfate is readily depleted within the upper ~93 
m (Core 10R) of the sedimentary column (Figure F4) due to intense 
bacterial SO4

2− reduction, which is accompanied by synchronous in-
creases in ammonium (NH4

+), alkalinity, and lithium (Li), along 
with high barium (Ba) values when SO4

2− is exhausted. Alkalinity 
ranges from 4.4 to 16.52 mM with a maximum at 93.55 m CSF-A, 
and pH ranges from 7.76 to 7.97 with a slight decrease downhole; 
both measurements are limited to the uppermost ~130 m because 
of the small interstitial water volumes obtained from deeper sam-
ples. The dissolved calcium (Ca) and, to a lesser degree, strontium 
(Sr) concentration profiles show increasing concentrations toward 
300 m CSF-A that are more than likely due to carbonate diagenesis. 
Decreasing Ca and Sr concentrations deeper than 300 m CSF-A in-
dicate that carbonate dissolution/recrystallization may prevail at 
depth. Dissolved silicon (Si) shows a short positive excursion be-
tween 310.68 and 329.27 m CSF-A (Figure F4), reflecting the pres-
ence of biogenic opal-A in the sediment; lower values deeper than 
Core 35R may be due to opal-A/cristobalite and tridymite (CT) 
transformation. Elevated manganese (Mn) concentrations demon-
strate the reducing character of the entire sedimentary sequence.

CaCO3 content from Cores 1R through 73R varies from 0.06 to 
6.66 wt% with the exception of Core 1R, which is composed of cal-
careous ooze with 90.97% CaCO3. The low carbonate percentages in 
Cores 2R through 73R reflect the very low contribution of calcare-
ous nannofossil and foraminiferal components to the sediment. 
TOC, which is predominantly terrestrially derived, ranges from 0.20 
to 1.31 wt%, and total nitrogen (TN) ranges from <0.01 to 0.10 wt%. 
TOC/TN ratios generally decrease with depth, ranging from 6.30 to 
31.19. This trend is likely caused by decomposition of nitrogen-con-
taining terrestrial organic matter that released carbon as methane 
but retained the produced NH4

+ in clays. Eight freeze-dried bulk 
sediment samples with TOC > 1 wt% were analyzed on the source 
rock analyzer. The results show very low hydrogen index values, and 
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the kerogen in the samples was classified as Type III, suggesting a 
predominantly terrestrial origin for the organic carbon.

Stratigraphic correlation
Only one hole was drilled at Site U1512 with the rotary core bar-

rel (RCB) system. Recovery was excellent, exceeding 100% in 24 of 
the 73 cores recovered, and total recovery was 90%. Distinctive fea-
tures for correlation included large-scale (>10 m) trends and 
changes of variable amplitude on shorter length scales (1–5 m) in 
NGR and magnetic susceptibility data, as well as distinct peaks cor-
responding to sandstone layers. Despite being unable to correlate 
cored intervals, recognition of matching features in NGR records 
from the Hole U1512A cores and wireline logs permitted a correla-
tion of core depth scales from the CSF-A scale to the WMSF scale.

Age-depth model and sedimentation rates
Sediment accumulation rates are 36 m/My for Santonian Zones 

CC17 and CC16 and 19 m/My for Zone CC15 (Figure F4). The in-
terval from the uppermost Coniacian to middle Turonian, encom-
passing Zones CC14 and CC13, has an average sediment 
accumulation rate of 63 m/My. Sediment accumulation rates accel-
erate markedly in the lower to middle Turonian Zone CC12 to a rate 
of 272 m/My. This estimate does not correct for the hole deviation 
from vertical (see Petrophysics and Operations).

Site U1513
Background and objectives

The objectives for coring Site U1513 on the western margin of 
the MB were to (1) obtain a continuous Late Cretaceous sediment 
record to better document the rise and fall of the Cretaceous hot 
greenhouse climate at southern high latitudes (~60°S paleolatitude), 
(2) characterize how oceanographic conditions changed during the 
Cenozoic opening of the Tasman Passage and the restriction of the 
Indonesian Gateway, and (3) obtain basalt from the base of the sed-
imentary sequence to provide stratigraphic control on the age and 
nature of the pre-Gondwana breakup succession. A particularly im-
portant goal was to obtain a complete OAE 2 sequence across the 
C/T boundary in order to characterize associated biotic, oceano-
graphic, and climatic changes. The Site U1513 sequence will be 
compared with coeval Expedition 369 sections cored elsewhere on 
the MB and other ocean drilling (e.g., Site 258) and industry data 
from the western Australia margin and in the GAB to identify any 
regional differences in the geochemical biological responses to the 
OAEs and Cretaceous and Neogene ocean circulation history.

Lithostratigraphy
The Site U1513 cored section is divided into six lithostrati-

graphic units, five sedimentary and one igneous, based on a combi-
nation of data from Holes U1513A, U1513B, U1513D, and U1513E. 
Lithostratigraphic units and boundaries are defined by changes in 
lithology as identified by macroscopic core description, micro-
scopic examination of smear slides and thin sections, and X-ray dif-
fraction (XRD) and X-ray fluorescence (XRF) analyses. 
Lithostratigraphic Unit I is a 64.93 m thick sequence of light gray to 
pale yellow calcareous ooze and nannofossil ooze with sponge spic-
ules that is Pleistocene–late Miocene in age. Unit II is a 182.93 m 
thick sequence of Campanian–Cenomanian white to greenish gray 
calcareous and nannofossil ooze/chalk and clayey nannofossil chalk 
with intervals of silicified limestone. Unit III is a 21.87 m thick se-
quence of alternating greenish gray, light gray, and black nanno-
fossil-rich claystone that is Cenomanian in age. Unit IV is a 187.12 

m thick sequence of black claystone and nannofossil-rich claystone 
that is Cenomanian–Albian in age. Unit V, described only in Hole 
U1513D, is a 234.25 m thick sequence of sandstone with siltstone 
and silty claystone that are Aptian to Valanginian in age. Unit VI is 
an 82.2 m thick alternation of extrusive basalt flows and breccia in-
truded by a diabase dike. A sharp boundary is present between 
Units V and VI. The top of Unit VI is defined by a flow-top breccia 
with an altered matrix that grades downsection into a massive pla-
gioclase-phyric basalt flow. The unit is composed of five extrusive 
sequences intercalated with four volcaniclastic breccia beds that 
show graded structures and are defined as lithologic Units 1–7. 
Each extrusive sequence is generally bounded by chilled margins 
but also by faults or textural and color changes. Most discrete flows 
appear to be massive, thin sheets of olivine ± pyroxene- or pla-
gioclase-phyric (some megacrystic) basalt. The least-altered por-
tions of the lowermost sequence (Unit 7) show a higher degree of 
vesicularity and highly angular vesicles that may indicate subaerial 
to very shallow eruption depths. A xenolith-bearing diabase dike in-
trudes the flow sequences. The contact between the xenolith-bear-
ing diabase dike and the extrusives are defined by either faulted or 
chilled margins with alteration halos. These flows show a lesser de-
gree of alteration in Hole U1513E than in Hole U1513D, and prelim-
inary megascopic and thin section analyses reveal the original 
porphyritic, microcrystalline, or vesicular textures, with some of the 
bottom flows showing interesting crosscutting lineation features 
and absence of minor intrusion intervals.

Biostratigraphy and micropaleontology
Samples from all core catchers from Holes U1513A and U1513D 

and selected samples from Hole U1513B were analyzed for calcare-
ous nannofossils, planktonic foraminifers, and benthic foraminifers. 
In addition, samples from split core sections were also evaluated for 
calcareous nannofossils and/or planktonic foraminiferal assem-
blages as necessary. Observations of other distinctive and poten-
tially age or environmentally diagnostic microfossil groups, such as 
organic-walled dinoflagellate cysts (dinocysts), radiolarians, ostra-
cods, fish debris, bryozoans, small corals, and inoceramid prisms 
were also made in all core catcher samples. Calcareous nannofossil 
and planktonic foraminiferal datums form the chronologic frame-
work for Site U1513 shallower than 450 m CSF-A.

Calcareous nannofossils
Core 369-U1513A-1H is in calcareous nannofossil Zone CN15 

(upper Pleistocene/Holocene), whereas planktonic foraminifers in-
dicate lower Pleistocene Subzone Pt1a. Samples 2H-CC and 3H-CC 
are assigned to middle Pleistocene Subzone CN14a, whereas Sam-
ple 4H-CC is assigned to upper Pliocene Subzone CN12a. Cores 5H 
through 6H contain mixed assemblages of Neogene and Paleogene 
species, but the main component of the nannoflora indicates lower 
Pliocene Zone CN10. The base of Core 7H also contains a mixed 
assemblage but is dominated by species that indicate a late Miocene 
age. Sample 8H-CC is calcareous ooze mixed with fragmented Mn 
oxide nodules and phosphatized limestone that contains a mixed 
assemblage with species derived from the Upper Cretaceous, Paleo-
gene, and Neogene; thus, it cannot be assigned confidently to a cal-
careous nannofossil zone. Cores 9H through 15F are assigned to the 
lowermost Campanian Zone CC17. Upper Santonian Subzone 
CC16b is found in Core 16X and lower Santonian Subzone CC16a is 
found in Core 17X. The interval between Cores 18X and 23X is as-
signed to upper Coniacian Zone CC15. Cores 24X through 28X are 
assigned to middle to lower Coniacian Zone CC14. The Turonian to 
12
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lower Albian succession is described exclusively from Hole U1513D. 
Sample 369-U1513D-10R-CC is assigned to upper Turonian Zone 
CC13. The middle to upper Turonian Zone CC12 ranges from Core 
11R to Core 14R, whereas Sample 15R-CC is assigned to lower Tu-
ronian Zone CC11. Cores 16R through 20R contain a succession 
that spans the C/T boundary. Cores 20R through 21R are correlated 
with Subzones CC9c through CC10a of middle to late Cenomanian 
age. The lower Cenomanian Subzone CC9c is placed between Cores 
23R and 27R. Sample 28R-CC indicates upper Albian Subzones 
CC9a through CC9b. The Core 29R through 31R interval is placed 
in Subzone CC8d of late Albian age. The middle Albian, comprising 
combined Subzones CC8b and CC8c, is found in Cores 32R through 
36R. Cores 37R through 39R are assigned to Subzone CC8a of early 
Albian age. Sediments sampled deeper than Core 39R (~440 m 
CSF-A) were barren of calcareous nannofossils.

Planktonic foraminifers
Planktonic foraminiferal communities span the Pleistocene 

through late Miocene and unconformably overlay a lower Campan-
ian through Albian sequence. Pliocene planktonic foraminiferal 
Zones PL5 to PL2 were identified based on the presence of indica-
tive taxa between Samples 369-U1513A-3H-CC and 6H-CC. The 
interval between Samples 6H-5, 146–150 cm, and 8F-CC, immedi-
ately above the unconformity, is assigned to Miocene Zones M14–
M11. Beneath the hardground is a lowermost Campanian through 
Albian sequence. Samples 9H-CC to 10H-CC are unzoned, whereas 
Samples 11F-CC to 18X-CC; Samples 369-U1513B-13F-2, 89–91 
cm, to 14F-CC; and Samples 369-U1513D-5R-CC to 7R-CC (79.8–
144.97 m CSF-A) are assigned the Santonian Planoheterohelix pap-
ula Zone. Samples 369-U1513A-19X-CC to 27X-CC and Samples 
369-U1513D-8R-2, 73–75 cm, to 11R-CC are of Coniacian age and 
represent the interval between the base of the P. papula Zone and 
the top of the Falsotruncana maslakovae Zone. The F. maslakovae
Zone spans Samples 369-U1513A-28X-CC through 32X-CC and 
369-U1513D-12R through 15R-CC. Samples between Sample 369-
U1513A-33X-CC and 46X-CC and between Samples 369-U1513D-
16R-CC and 25R-CC are frequently barren of planktonic foramini-
fers or have rare, poorly preserved individuals. A middle Cenoman-
ian to late Albian age is inferred from Sample 369-U1513A-46X-CC 
to the bottom of the hole (284.69 m CSF-A). Hole U1513D extends 
beyond the base of Hole U1513A and can be divided into the upper 
Albian Thalmanninella appenninica, Pseudothalmanninella ticin-
ensis, and Biticinella breggiensis Zones. Deeper than Sample 369-
U1513D-33R-CC, samples are predominantly barren of planktonic 
foraminifers.

Benthic foraminifers
The Cenozoic benthic foraminiferal assemblages recorded in 

Cores 369-U1513A-1H through 8F are characterized by abundant 
calcareous-walled taxa. The species present indicate a bathyal water 
depth. Two distinctively different benthic foraminiferal assemblages 
were recorded from the Cretaceous strata. In Cores 9H through 
36X, a bathyal benthic assemblage dominated by calcareous-walled 
forms was recorded. The percentage of planktonic foraminifers rel-
ative to benthic forms in this interval fluctuates between 80% and 
99%. In the Turonian strata, there is a decrease in the number of 
planktonic individuals, and the percentage of planktonic foramini-
fers drops to 40% (Cores 28X through 42X). Agglutinated foramini-
fers dominate from Samples 34X-CC through 50X-1, 126–127 cm, 
and 369-U1513D-22R-CC through 40R-CC. Glomospira spp. is the 
most common taxon within this interval, suggesting a bathyal water 
depth.

Paleomagnetism
The NRM of all archive-half core sections and 98 discrete sam-

ples collected from the working halves of Holes U1513A, U1513B, 
U1513D, and U1513E was measured. The archive halves were step-
wise treated with up to 20 or 30 mT AF demagnetization and mea-
sured with the pass-through SRM at 5 cm intervals. Discrete 
samples were progressively demagnetized up to 60 or 80 mT and 
measured with the spinner magnetometer or the SRM. The NRM 
intensity of the recovered cores is in the order of 10−5 to 1 A/m and 
broadly covaries with lithology. The calcareous ooze/chalk in the 
upper part and the basalt in the basal part of Hole U1513D display 
the weakest and the strongest NRM intensity, respectively. Despite 
the weak NRM of the calcareous ooze/chalk, the demagnetization 
results after 20 mT showed inclination zones of dominant positive 
and negative values, defining a magnetic polarity sequence from 
Chrons C1n to C2An.3n for the uppermost ~65 m. The inclinations 
of the ~65 to 455 m CSF-A interval are mostly scattered, and domi-
nant negative values from 200 to 450 m CSF-A indicate a normal 
polarity, which is assigned to Chron C34n based on shipboard bio-
stratigraphy. The inclinations deeper than 455 m CSF-A exhibit a 
distinct pattern of zones of either positive or negative values, estab-
lishing a well-defined magnetic polarity sequence. The polarity se-
quence between 455 and ~690 m CSF-A is tentatively correlated 
with Chrons M0r–M10n, indicating the absence of most of the Ap-
tian strata and increasing sedimentation rates between ~530 and 
~690 m CSF-A. The well-defined reversed and normal polarities 
deeper than ~690 m CSF-A occur in the basalt unit and cannot be 
correlated with the geomagnetic polarity timescale (GPTS) without 
constraints of ages from the basalt.

Petrophysics
Physical property data were obtained with the WRMSL, NGRL, 

PWC, SHMSL, and discrete samples. The uppermost 35 m pre-
serves cyclicity in NGR (~15 counts/s amplitude; ~5 m thickness) 
and was deconvolved into U, Th, and K concentrations. The C/T 
boundary interval shows a distinct plateau of ~40 counts/s in NGR 
values at ~240–245 m CSF-A. Additionally, NGR values preserve a 
broad trend to higher counts through a mudstone interval spanning 
from 230 to 455 m CSF-A with a trough near 320 m CSF-A (Figure 
F5). Below a contact with underlying volcaniclastic sandstones at 
455 m CSF-A, NGR values decrease by nearly an order of magni-
tude from 75 to 10 counts/s and magnetic susceptibility values in-
creased by two orders of magnitude from ~10 to ~1000 counts/s. 
Similarly, both grain and bulk density step to higher values across 
this transition. NGR values, more specifically U content, spike 
across an interval near 675 m CSF-A, possibly signifying abundant 
terrestrial organic matter. The indurated breccia and crystalline 
rocks of lithostratigraphic Unit VI show spikes in magnetic suscep-
tibility and density, along with nearly undetectable counts of NGR. 
In the overlying sedimentary sequence (Units I–V), trends in poros-
ity and PWC measurements demonstrate a gradual but occasionally 
punctuated change to lower and higher values, respectively.

Downhole logging was conducted in Holes U1513A, U1513D, 
and U1513E using several downhole tool configurations, including 
the modified triple combo tool string, which measures NGR, den-
sity, sonic velocity, and resistivity; the traditional triple combo; the 
Formation MicroScanner (FMS) with the porosity tool; and the Ver-
satile Seismic Imager for some intervals in Hole U1513E. NGR, den-
sity, and resistivity measurements from each hole yielded similar 
results for the overlapping depth intervals across Holes U1513A, 
U1513D, and U1513E. The most continuous downhole logging run 
using the triple combo occurred in Hole U1513E and spanned from 
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a bridge at ~615 m WMSF to the bottom of the drill pipe at ~119 m 
WMSF. The wireline logging data provided continuous coverage 
and filled several coring gaps. The most striking features include a 
strong positive response in resistivity, density, and sonic velocity 
values through intervals of silicified limestone (96–123 and 152–
180 m WMSF; lithostratigraphic Unit II) and a shift from low to 
high NGR across the C/T boundary interval (~240–245 m WMSF). 
NGR increases downhole from this horizon through the Cenoman-
ian–Albian claystones, displaying similar trends to the core-based 
NGR. In situ temperature measurements were attempted in Hole 
U1513B, but this experiment returned only one reliable measure-
ment of 4.55°C from Core 369-U1513B-5H.

Geochemistry
The Site U1513 geochemistry program was designed to charac-

terize interstitial water and bulk sediment composition and to as-
sess the potential presence of volatile hydrocarbons for routine 
safety monitoring. Samples were taken from Holes U1513A and 
U1513D. All 90 headspace gas samples showed only low concentra-
tions of methane (≤60 ppmv) and trace levels of ethane and pro-
pane.

For interstitial water analyses, 60 samples were recovered from 
squeezing 10 cm whole rounds, covering 0–366.4 and 471.8–687.3 
m CSF-A. Sample salinity was generally constant, with the excep-
tion of distinctly fresher interstitial water between 281.8 and 303.0 
m CSF-A; this exception is also seen in the Br− and Cl− profiles and 
may reflect a low-salinity water source in this interval. The dis-
solved Mg, K, and Na concentration profiles reflect alteration of 
volcanic material found in lithostratigraphic Units IV and V. No ev-
idence for significant sulfate reduction was detected; sulfate is pres-
ent throughout, and Ba concentrations are correspondingly low. 
The dissolved Ca (Figure F5) and Sr concentration profiles primar-
ily reflect the release of these elements during the alteration reac-
tions of volcanic material. Li appears to have been released in Unit 
IV and then is incorporated into alteration products in Unit V. Dis-
solved Si reflects the presence of biogenic opal-A in Units I and II; 
lower concentrations in Units III and V may reflect the opal-A/CT 
and CT to quartz transition, respectively. Elevated Mn concentra-
tions demonstrate the reducing character of the sedimentary se-
quence below Unit I.

In addition, 129 bulk sediment samples were collected down-
hole to ~690 m CSF-A (Core 369-U1513D-65R), the contact with 
igneous material. Additional samples were measured at a higher 
resolution through the putative OAE 2 and 1d intervals. CaCO3

content varies from 0 to 93 wt%, reflecting variations in lithology. 
TOC was broadly <1 wt% except in the OAE 2 interval, where TOC 
reaches 10.5 wt%. TN is generally below the detection limit. A total 
of 57 samples with TOC ≥ 0.8 wt% from the OAE 2 and 1d intervals 
were analyzed with the source rock analyzer. Samples with higher 
concentrations of TOC (>3 wt%) were found to be predominantly 
marine in source, whereas the lower TOC samples were generally 
inconclusive.

Stratigraphic correlation
Four holes were cored at Site U1513. Recovery in any one hole 

ranged from poor to excellent, but when combined, overall recovery 
was excellent for most of the interval that penetrated and spanned 
the Valanginian through the present day. Splices were constructed 
for the 0–95 m core composite depth below seafloor (CCSF) inter-
vals (Holes U1513A and U1513B) and from 220 to 295 m CCSF 
(Holes U1513A and U1513D) (Figure F5). These splices cover the 
late Miocene through recent and the middle Cenomanian through 

the middle Turonian, respectively, as estimated from bio- and 
magnetostratigraphy. Portions of both splices were formed by ap-
pending subsequent cores from the same hole because of aligned 
core breaks or poor recovery in the other hole (i.e., there was no 
bridge across core breaks in these intervals). However, correlation 
to downhole logging data minimized the uncertainty introduced by 
this approach. The 95–220 m CSF-A interval was recovered in 
Holes U1513A and U1513D. Despite this, no splice was attempted 
because recovery was too low to meaningfully correlate at the meter 
scale in this interval, but pooled data suggest recovery should be 
sufficient to generate good records with 1 My resolution. The inter-
val from 295 to 757.4 m CSF-A was only cored in Hole U1513D, but 
recovery was generally very good to excellent, averaging 82% across 
~70 m of basalt and basaltic breccia (lithostratigraphic Unit VI) and 
75% over the 395 m of overlying sandstones and claystones (Unit V) 
between the basalt and the lower splice. The oldest biostratigraphic 
date for these overlying sediments is middle Albian, although 
magnetostratigraphy suggests portions could be older.

Age-depth model and sedimentation rates
Sediment accumulation rates are presented in Figure F5 for the 

Albian through Campanian portion of Site U1513. Sediment accu-
mulation rates averaged ~12 m/My from the Albian through Conia-
cian but dropped appreciably during the Santonian and lower 
Campanian to only 8 m/My, with an apparent rate of only 3 m/My 
in the Santonian. Alternatively, part of the Santonian may be miss-
ing due to a hiatus in sediment accumulation. Sediment accumula-
tion rates deeper than 450 m CSF-A are based on the paleomagnetic 
record. Sediment accumulation rates for the Barremian to upper 
Hauterivian (M0 to base Mr8) averaged approximately 10 m/My, 
whereas estimated rates for the lower Hauterivian and Valanginian 
(M9 to M10) were ~132 m/My.

Site U1514
Background and objectives

Site U1514 is the northernmost and deepest site targeted during 
Expedition 369. The greater paleodepth of the site relative to other 
sites cored in the MB provides the opportunity to characterize the 
evolution of deep-water masses and deep ocean circulation during 
the final phase of breakup among the Gondwana continents. Be-
cause Site U1514 was located at a high paleolatitude (~60°S), the 
sediments preserve a paleoclimate record that serves as a highly 
sensitive monitor of global climatic changes. The site was expected 
to sample a series of Cenozoic and possibly Late Cretaceous sedi-
mentary drifts and erosional features that would enable greater in-
sight into the early and later phases of the opening of the Tasman 
Gateway and restriction of the Indonesian oceanic gateway. The 
current seabed is composed of Paleogene/Neogene/Quaternary 
oozes that sit unconformably on the Cretaceous (Maloney et al., 
2011).

The primary objectives for coring Site U1514 were to (1) obtain 
a continuous Cenozoic sediment record in the MB to characterize 
how oceanographic conditions changed during the Cenozoic open-
ing of the Tasman Passage and the restriction of the Indonesian 
Gateway; (2) reconstruct middle through Late Cretaceous paleo-
temperature changes to document initiation of the Cretaceous hot 
greenhouse climate, the duration of extreme warmth, and when a 
switch to a cooler climate occurred; and (3) obtain a complete and 
well-preserved sediment record across mid-Cretaceous OAEs to 
better understand their cause and accompanying changes in the cli-
mate-ocean system and the marine biota.
14



B.T. Huber et al. Expedition 369 Preliminary Report
Lithostratigraphy
The Site U1514 cored section is divided into three main litho-

stratigraphic units based on data from Holes U1514A and U1514C, 
with Units I and III further divided into two subunits (Figure F6). 
Lithostratigraphic units and boundaries are defined by changes in 
lithology as identified by macroscopic core description, micro-
scopic examination of smear slides, and XRD and XRF analyses. 
Lithostratigraphic Unit I is a 81.20 m thick sequence of very pale 
brown to pale yellow nannofossil ooze, foraminiferal ooze, and 
sponge spicule–rich nannofossil ooze that is Pleistocene–Eocene in 
age. The unit is divided into Subunits Ia and Ib at 30.38 m CSF-A in 
Hole U1514A. Subunit Ib spans the Miocene–Eocene and differs 
from Subunit Ia in that it is characterized by an increased abun-
dance of sponge spicules. Further, the color of Subunit Ib changes to 
yellow-brown, which is distinctively darker than Subunit Ia. Unit II 
is a 308.01 m thick sequence of Eocene–Paleocene light greenish 
gray clayey nannofossil ooze, sponge spicule–rich clay, and nanno-
fossil-rich clay that gradationally transitions into clayey nannofossil 
chalk and nannofossil-rich claystone. Unit III is a 126.43 m thick se-
quence of greenish gray, brown, and black claystone that is Paleo-
cene–Albian in age. Unit III is divided into Subunits IIIa and IIIb at 
454.33 m CSF-A in Hole U1514C. Subunit IIIb was deposited 
during the Cenomanian/Albian to Albian and is distinguished from 
overlying Subunit IIIa (Paleocene to Cenomanian/Albian) in that it 
is characterized by darker greenish gray/black claystone. Soft-sedi-
ment deformation, possibly slumping, includes convoluted and 
overturned bedding and is also present in Subunit IIIa (Cores 369-
U1514C-25R through 29R; 411.2–455.31 m CSF-A).

Biostratigraphy and micropaleontology
Samples from core catchers in Holes U1514A and U1514C were 

analyzed for calcareous nannofossils, planktonic foraminifers, and 
benthic foraminifers. As necessary, additional samples from split-
core sections were evaluated for calcareous nannofossils and/or 
planktonic foraminiferal assemblages. Observations of other dis-
tinctive and potentially age or environmentally diagnostic micro-
fossil groups including calcispheres, diatoms, radiolarians, fish 
debris, sponge spicules, and inoceramid prisms were also recorded.

The Hole U1514A nannofossil biostratigraphy spans from Plio-
cene Subzone CN12a to lower Eocene Subzone CC9b, whereas Hole 
U1514C spans middle Eocene Subzone CP13b to Subzones CC8b–
CC8c of the early Albian. Planktonic foraminiferal assemblages re-
covered at Site U1514 are generally rare with poor to moderate 
preservation, although discrete samples in the Pleistocene, Paleo-
cene, Turonian, and Albian contain seemingly unrecrystallized 
specimens. Planktonic foraminiferal communities in Hole U1514A 
span Pleistocene Subzone Pt1a through lower Eocene Zone E4. 
Hole U1514C ranges from middle Eocene Zones E8–E9 to the T. ap-
penninica/P. ticinensis Zones of the upper Albian. An apparently 
complete (at least to biozone level) though bioturbated Creta-
ceous/Paleogene (K/Pg) boundary section was recovered in Core 
369-U1514C-23R. Benthic foraminiferal assemblages are domi-
nated by epifaunal, calcareous-walled taxa, indicating bathyal to 
abyssal paleowater depths throughout the recovered interval.

Paleomagnetism
The NRM of all archive-half core sections and 82 discrete sam-

ples collected from the working halves in Holes U1514A and 
U1514C was determined as part of the paleomagnetism measure-
ment program (Figure F6). The archive halves were stepwise treated 
with up to 20 or 30 mT AF demagnetization and measured with the 

pass-through SRM at 5 cm intervals. Discrete samples were pro-
gressively demagnetized up to 60 mT and measured with the SRM. 
The NRM intensity of the recovered cores is in the order of 10−6 to 
1 A/m and broadly covaries with lithology. Inclinations after the 
20 mT demagnetization step exhibit intervals dominated by positive 
and negative inclination values, defining an almost complete mag-
netic polarity sequence from Chron C1n (Brunhes) to Chron C34n, 
the long Cretaceous Normal Superchron, with 74 identified and 
dated reversals. The magnetic data are of excellent quality in the ad-
vanced piston corer (APC) section (0–95 m CSF-A) and exhibit 
larger scatter caused by drilling disturbance in the extended core 
barrel (XCB) and RCB cores. The sequence is interrupted by four 
hiatuses at 11, 18, 30, and 41 m CSF-A identified by sharp lithologic 
boundaries in conjunction with biostratigraphic constraints.

Petrophysics
Magnetic susceptibility, GRA density, NGR, thermal conductiv-

ity, P-wave velocity, color reflectance spectroscopy and colorimetry 
(RSC), and MAD were measured on whole-round sections, split-
core sections, and discrete samples from Site U1514. Several unique 
features were identifiable using the physical property data, includ-
ing distinct signals in the NGR (Figure F6), magnetic susceptibility, 
and GRA density near the C19r event (~152 m CSF-A), the Paleo-
cene–Eocene interval (~275–280 m CSF-A), the Cretaceous/Paleo-
gene boundary (382–415 m CSF-A), and the Cenomanian–
Turonian interval (415–445 m CSF-A). However, the latter is within 
a zone of soft-sediment deformation possibly associated with 
slumping.

Magnetic susceptibility values vary between 1.76 and 50.48 IU 
and consist of sections of high- and low-frequency variations down-
hole. Bulk density estimated from GRA ranges from 1.6 to 1.9 
g/cm3. NGR ranges from 0 to 105 counts/s with high-amplitude cy-
clic fluctuations downhole, which is coincident with changes in sed-
iment RSC. The bulk density, grain density, and porosity of cored 
material were measured on discrete samples (MAD). These data 
show several deviations from the expected trend. In several sec-
tions, porosity increases with depth. This increase may reflect litho-
logic changes and/or is associated with soft-sediment deformation 
that may have led to several packages of material being more over- 
or undercompacted than the surrounding beds. P-wave velocities 
range from ~1500 m/s near the seafloor to ~2100 m/s at ~290 m 
CSF-A. Velocity tends to decrease below this depth to 1800–1900 
m/s at the bottom of the hole (515.7 m CSF-A), except for the 390–
470 m CSF-A interval, where velocities are scattered between 1800 
and 2300 m/s, which brackets the zone with soft-sediment deforma-
tion.

Downhole logging was conducted in Hole U1514C using the 
modified triple combo tool string. The measurements yielded simi-
lar results for the overlapping depth intervals when core recovery 
was good. The downhole tools provided continuous coverage of the 
borehole and filled several coring gaps. The most striking features 
include several peaks in NGR at ~395, ~425, and ~445 m WMSF 
and between 455 and 480 m WMSF. Interestingly, the two peaks in 
the NGR log at ~395 and ~425 m WMSF correspond to a decrease 
in bulk density, sonic velocity, and resistivity, as well as more clay 
rich lithofacies. There are also notable slower sonic velocities be-
tween 420 and 440 m WMSF, which could (at least partially) reflect 
a thick zone of soft-sediment deformation associated with possible 
slumping. Magnetic susceptibility data were collected in Hole 
U1514C, but the signal quality was poor. In addition, in situ tem-
perature measurements were obtained in Hole U1514A and were 
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combined with the thermal conductivity data to determine heat 
flow (45–49 mW/m2).

Geochemistry
The Site U1514 geochemistry program was designed to charac-

terize the composition of interstitial water and bulk sediments and 
to assess the potential presence of volatile hydrocarbons for routine 
safety monitoring. Samples were taken from Holes U1514A and 
U1514C. A total of 56 headspace gas samples were taken, with only 
low concentrations of methane (≤90 ppmv) and trace levels of eth-
ane detected.

For interstitial water analyses, 54 samples were recovered from 
whole-round squeezing of sediment intervals from Holes U1514A 
(0–247.7 m CSF-A) and U1514C (255.0–515.7 m CSF-A). Sample 
salinity is generally constant, with the exception of distinctly fresher 
interstitial water in lithostratigraphic Subunit IIIa (Figure F6). This 
low-salinity interval reflects decreased concentrations of many ele-
mental profiles, particularly Br− and Cl−, and an input of fresher wa-
ter. The dissolved Mg, K, Ca, Li, Sr, and Na concentration profiles 
reflect alteration of volcanic material from depths below the cored 
interval for Site U1514. Moderate sulfate reduction was detected 
because sulfate is present but decreases with depth, and Ba concen-
trations are correspondingly low. Dissolved Si reflects the presence 
of biogenic opal-A in lithostratigraphic Units I and II and the top 
part of Subunit IIIa; lower concentrations at the bottom of Subunit 
IIIa and in Subunit IIIb may reflect the opal-A/CT transition. Peri-
odic elevated Mn and Fe concentrations demonstrate the reducing 
character of the sedimentary sequence at certain intervals at this 
site.

A total of 64 bulk sediment samples were collected downhole to 
~513 m CSF-A (Core 369-U1514C-35R). Additional samples were 
measured from the putative OAE 2 and 1d intervals. CaCO3 content 
varies from 0 to 90 wt%, reflecting variations in lithology (Figure 
F6). TOC is generally less than 0.3 wt%, except in the OAE 1d inter-
val where TOC reached 1.2 wt%. TN is generally below the detec-
tion limit. A total of 8 working-half samples from the potential OAE 
2 and 1d intervals were analyzed on the source rock analyzer. Al-
though the lower TOC content samples were generally inconclu-
sive, kerogen in samples with higher concentrations of TOC 
(>1 wt%) were found to be predominantly terrestrial in source.

Stratigraphic correlation
Three holes were cored at Site U1514. Recovery in Hole U1514A 

was excellent (near 100%), and the total recovery of Holes U1514A 
and U1514C was 65%. Target depths were recommended before and 
during the coring of Hole U1514C, which aided the bridging of cor-
ing gaps in Hole U1514A. A splice was created for the overlapping 
portion of the lower Eocene, spanning 195.6 to 266.1 m CCSF in 
Holes U1514A and U1514C. This splice was established by identify-
ing similar trends in NGR and subsequent comparison of high-res-
olution physical property data. Recognition of sharp peaks in NGR 
enabled correlation of core data to wireline logging results and con-
firmed the accuracy of the splice.

Together, Holes U1514A and U1514C span the end-Albian to 
the present, with good coverage over much of the Paleogene and 
Upper Cretaceous, including a seemingly complete record over the 
K/Pg boundary in Core 369-U1514C-23R. Downcore, a multicol-
ored interval of deformed sediments spanning Cores 25R through 
29R is consistent with the downslope motion of the upper portion 
of the sequence at this site.

Age-depth model and sedimentation rates
Sediment accumulation rates vary throughout the section, with 

the lowest values recorded in the Neogene and Cretaceous (3–9 
m/My) and the highest values (13-15 m/My) recorded in the Eocene 
and Paleocene (Figure F6). Major unconformities are present in the 
lower Pleistocene, Pliocene, Miocene, and Oligocene. The sediment 
accumulation rate is quite low for the Oligocene and Miocene inter-
val (~0.13 cm/ky), moderate for the Eocene and Paleocene interval 
(~1.0 cm/ky), and modest for most of the Cretaceous interval 
(~0.29 cm/ky).

Site U1515
Background and objectives

Site U1515 is the westernmost and shallowest site targeted 
during Expedition 369 with the primary objective to provide evi-
dence of the prebreakup rifting history in the region prior to the fi-
nal separation of Greater India and Antarctica. The site location 
was chosen based on seismic evidence of dipping strata below what 
is interpreted to be the eastward extension of the Valanginian un-
conformity cored at Site U1513 in the western MB. The extrusive 
basalts that cover this unconformity in the western MB are not 
present at Site U1515.

Structural interpretations suggest that depocenters in the east-
ern MB are older (Permian? to Jurassic) than those in the western 
MB (Jurassic?) (Borissova et al., 2002). Site U1515 is the first sam-
pling of this eastern depocenter and will test the hypothesis of early 
Mesozoic rifting. Cores recovered from this site will enable the in-
vestigation of the tectonic and structural relationships with simi-
larly aged rifts along the western margin of Australia, in particular 
the adjacent Perth Basin (Bradshaw et al., 2003), and rift structures 
in Antarctica (Maritati et al., 2016). Finally, the cored record will as-
certain the provenance of these earlier (Jurassic?) sediments as pos-
sibly sourced from the Pinjarra orogen or Albany-Frazer province.

Lithostratigraphy
The cored section of Hole U1515A, the only hole at Site U1515, 

is divided into two main lithostratigraphic units (I and II; Figure 
F7), which are further divided into five subunits (Ia, Ib, IIa, IIb, and 
IIc). Lithostratigraphic units and boundaries are defined by changes 
in lithology as identified by macroscopic core description, micro-
scopic examination of smear slides and thin sections, and XRD and 
XRF analyses. Unit thicknesses are not given because of the overall 
low core recovery. Lithostratigraphic Unit I (Cores 1R through 15R) 
is a sequence of calcareous ooze/chalk with sponge spicules, silici-
fied limestone, bioclastic limestone, chert, sandy limestone, and 
sandstone (arkose). Subunit Ia (Cores 1R through 8R) consists of 
light greenish gray calcareous ooze with sponge spicules, whereas 
Subunit Ib (Cores 9R through 15R) is generally more lithified and 
consists largely of calcareous chalk and 10–40 cm thick silicified 
limestone with frequent chert beds. Because of poor recovery in 
this interval, the contact between Units I and II was not recovered. 
Unit II (Cores 24R through 55R) largely consists of gray to black 
silty sand and glauconitic sandstones/silty sandstones. Subunit IIa 
(Cores 24R through 36R) is characterized by abundant glauconite 
and consists of black to greenish gray silty sand and sandstone. Sub-
unit IIb (Cores 37R through 41R) consists largely of fine- to coarse-
grained sandstones with interbedded siltstone and claystone. This 
subunit differs from Subunit IIa in that it contains less glauconite 
and more abundant pyrite nodules. Subunit IIb gradually transi-
tions to organic-rich silty sandstone and claystone with coal and 
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plant debris, which are characteristic components of Subunit IIc 
(Cores 44R through 55R). The sediments recovered in Unit II are 
possibly terrestrial in origin.

Biostratigraphy and micropaleontology
Hole U1515A core catcher samples were analyzed for calcareous 

nannofossils, planktonic foraminifers, and benthic foraminifers. 
Observations were recorded for other distinctive and potentially 
age or environmentally diagnostic microfossil groups, including cal-
cispheres, radiolarians, pollen grains and spores, fish debris, sponge 
spicules, and inoceramid prisms.

Microfossils occur in the upper part of the hole (Cores 1R 
through 15R), whereas the lower part (Cores 16R through 49R; no 
samples were taken deeper than Core 49R) is barren of all calcare-
ous and siliceous microfossil groups. However, a spore found in a 
smear slide of Sample 39R-1, 97 cm, was identified as Contignispo-
rites sp. (likely Contignisporites glebulentus), which could indicate 
an age of Pliensbachian or younger. Most of the Neogene and Paleo-
gene samples (Cores 1R through 14R) indicate reworking of Plio-
cene, Miocene, Oligocene, and Eocene species. The nannofossil 
biostratigraphy of Hole U1515A spans from upper Pleistocene Sub-
zone CN14b to upper Campanian Zone CC22. Planktonic foramin-
iferal assemblages are in good agreement with this stratigraphic 
determination, spanning from the upper Pleistocene Subzone Ptlb 
through the late Campanian/late Santonian Globigerinelloides im-
pensus Zone. Benthic foraminiferal assemblages indicate an outer 
neritic to upper bathyal paleodepth throughout the analyzed inter-
val (Figure F7).

Paleomagnetism
The NRM of most of the archive-half core sections and 19 dis-

crete samples collected from the working halves of Hole U1515A 
was determined (Figure F7). The archive halves were stepwise 
treated with up to 20 mT AF demagnetization and measured with 
the pass-through SRM at 5 cm intervals. Discrete samples were pro-
gressively demagnetized up to 60 mT and measured with the SRM. 
The NRM intensity of the recovered cores is in the order of 10−5 to 
1 A/m and broadly covaries with lithology. Inclinations after the 
20 mT demagnetization step exhibit intervals dominated by positive 
and negative inclination values, defining a brief magnetic polarity 
sequence from Chron C1n (Brunhes) to Subchron C1r.2r. Although 
the magnetic record is noisy and the core recovery is poor, intervals 
of predominantly normal and reversed polarity can be discerned in 
the remainder of the sections deeper than 20 m CSF-A. However, a 
correlation to the GPTS is not possible mainly because of the poor 
core recovery and the lack of biostratigraphic control.

Petrophysics
Site U1515 had overall low core recovery (18%), so physical 

property data is sparse and discontinuous, particularly between 
~130 and ~270 m CSF-A. Despite the quality of the record, the data 
show very broad trends from the top to the bottom of the hole, and 
some comparisons can be made between physical property data and 
lithology, including a general increase in P-wave velocity and ther-
mal conductivity, which corresponds to a change from unlithified to 
weakly lithified glauconitic sand, sandstone and interbedded silt-
stone, and claystone (lithostratigraphic Subunits IIa and IIb) to silty 
sandstone and claystone with coal and plant debris (Subunit IIc). 
This change in velocity also corresponds to a 364–373 m CSF-A un-
conformity identified in seismic images. Other broad trends include 
an overall increase in thermal conductivity, an increase in bulk and 
grain densities, and an overall decrease in porosity. The color reflec-

tion and bulk density data are noisy, but they show some trends that 
can be correlated with lithostratigraphic units. Similarly, the NGR 
(Figure F7) and magnetic susceptibility data also show broad trends 
and potentially highlight zones where changes in lithology occur 
(e.g., the highest magnetic susceptibility values, high bulk density, 
and low NGR values at ~270 m CSF-A correspond to glauconitic 
sandstone).

Geochemistry
The Site U1515 geochemistry program was designed to charac-

terize the composition of interstitial water and bulk sediments and 
to assess the potential presence of volatile hydrocarbons for routine 
safety monitoring. No gas was detected in the 38 headspace gas 
samples that were taken.

For interstitial water analyses, 17 samples were recovered from 
whole-round squeezing of sediment intervals at 2.9–77.1 and 
287.8–441.60 m CSF-A. Sampling was restricted due to low core re-
covery at Site U1515, which limits interstitial water interpretation. 
Sample salinity is generally constant, and alkalinity generally de-
creases downhole. The dissolved Mg, K, and Ca concentration pro-
files possibly reflect alteration of volcanic material from depths 
below the cored interval for this site. Increasing Sr concentrations 
with depth in lithostratigraphic Unit I may indicate carbonate re-
crystallization. Low levels of sulfate reduction were detected; sulfate 
is present but decreases with depth. Dissolved Si reflects the pres-
ence of biogenic opal-A in Unit I; lower concentrations in Unit II 
indicate the interval falls below the opal-A/CT transition (Figure 
F7). Elevated Mn and Fe concentrations in Unit II demonstrate the 
reducing character of the sedimentary sequence in that interval.

A total of 33 bulk sediment samples were collected downhole to 
~511 m CSF-A (Core 369-U1515A-55R). Within the intervals with 
carbon-rich layers, small chips were taken from the carbon-rich 
parts for analysis. Carbonate content is very high (~80–90 wt%) in 
the upper part but drops to nearly 0 wt% deeper than 160 m CSF-A 
(Figure F7). Lithostratigraphic Subunit IIa and shallower contains 
0–2.4 wt% TOC, whereas Subunits IIb and IIc contain as much as 
46.2 wt% TOC (likely coal fragments). TN is <0.05 wt% in Subunits 
Ia, Ib, and IIa but exceeds 0.3 wt% at four horizons in Subunits IIb 
and IIc, showing a pattern similar to that of TOC. In most samples 
with higher TOC (>1 wt%), the kerogen was found to be predomi-
nantly terrestrial in origin, except for the ~430–460 m CSF-A inter-
val, where a more significant algal contribution is suggested.

Site U1516
Background and objectives

Site U1516 is located in the south-central MB. Objectives for 
drilling at Site U1516 were to (1) obtain a continuous and expanded 
Cenozoic and Upper Cretaceous pelagic carbonate sediment record 
in the MB to reconstruct climatic shifts across the rise and fall of the 
Turonian and early Eocene hot greenhouse climates, (2) determine 
the relative roles of productivity, ocean temperature, and ocean cir-
culation at high southern latitudes during Cretaceous anoxic events 
and across the PETM, and (3) characterize how oceanographic con-
ditions changed during the Cenozoic opening of the Tasman Pas-
sage and the restriction of the Indonesian Gateway. The Site U1516 
sequence will be compared with coeval Expedition 369 sections 
cored elsewhere on the MB and with other IODP and industry data 
from the southern and western Australia margins to correlate re-
covered lithologies with seismic lines across the MB and to identify 
regional differences in the geochemical biological responses to the 
OAEs, Cretaceous, Paleogene, and Neogene ocean circulation his-
tory.
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Lithostratigraphy
Site U1516 is divided into four main lithostratigraphic units (I, 

II, III, and IV; Figure F8), with Unit I divided into three subunits (Ia, 
Ib, and Ic). Lithostratigraphic units and boundaries are defined by 
changes in lithology as identified by macroscopic core description, 
microscopic examination of smear slides and thin sections, and 
XRD and XRF analyses. Lithostratigraphic Unit I is a sequence of 
calcareous/foraminiferal/nannofossil oozes and chalks with sponge 
spicules that is Pleistocene to Paleocene in age. Subunit Ia consists 
of pinkish white, pinkish gray, and very pale orange sponge spicule–
rich calcareous oozes that are Pleistocene to Miocene in age. Sub-
unit Ib consists of sponge spicule–rich calcareous chalks and calcar-
eous chalks with sponge spicules that span the Miocene to Eocene. 
The transition between Subunits Ia and Ib is defined by a shift to 
higher NGR and bulk density values and a decrease in L* values. 
Subunit Ic, Paleocene in age and consisting of claystones, is likely to 
be a condensed interval. An unconformity between the Paleocene 
and the Turonian marks the boundary between Units I and II. Unit 
II is calcareous chalk interbedded with chert that gradually transi-
tions into light greenish gray and greenish gray nannofossil chalk 
with clay that is also interbedded with chert. The boundary between 
Units II and III is placed at the C/T boundary and is marked by the 
first occurrence of black laminated claystone at the top of Unit III. 
Unit III is an alternating sequence of black, greenish gray, and gray 
claystone (sometimes with abundant nannofossils) and clayey 
nannofossil chalk with occasional parallel laminations. Unit IV 
ranges from the Cenomanian to the Albian and is a sequence of 
black and dark greenish gray nannofossil-rich claystone and clay-
stone with nannofossils with subtle alternations in color through-
out.

Biostratigraphy and micropaleontology
Coring at Site U1516 recovered a succession of sediments from 

the Albian through the Pleistocene. Calcareous nannofossils, plank-
tonic foraminifers, and benthic foraminifers occur throughout this 
succession, with preservation and abundance sufficient to provide 
biostratigraphic and paleoecologic information for the entire sec-
tion. Calcareous nannofossils are abundant to common throughout 
the section, with barren samples only in the middle Albian and as-
sociated with the C/T boundary. Preservation is generally good to 
moderate, with poor preservation associated only with a condensed 
Paleocene sequence. Reworking of Paleogene taxa into the Neogene 
assemblages is common. Preservation of planktonic foraminifers is 
generally good at Site U1516, with some samples in the upper Al-
bian ranked as excellent. Abundance is more variable; the Neogene, 
Paleogene, and Turonian generally contain abundant planktonic 
foraminifers, whereas the Albian contains only rare specimens. 
Benthic foraminiferal abundance and preservation are also variable. 
In general, examination of benthic foraminifers indicates a bathyal 
paleodepth during the Albian through Cenozoic.

Paleomagnetism
We measured the NRM of all archive-half core sections from 

Holes U1516A, U1516C, and U1516D (Figure F8). The archive 
halves were stepwise treated with up to 20 mT AF demagnetization 
and measured with the pass-through SRM at 5 cm intervals. The 
NRM intensity of the recovered sedimentary cores is in the order of 
10−6 to 10−1 A/m, and lithostratigraphic Unit I, which consists of 
mainly calcareous oozes and chalk, generally displays weak magne-
tism. Despite the weak NRM of the calcareous oozes/chalk of Unit I, 
inclinations after 20 mT demagnetization show zones of dominantly 

positive and negative values, defining a magnetic polarity sequence 
from Chrons C1n (Brunhes) through C22r for the upper ~430 m in-
terval, with a total of 84 identified and dated reversals. The mag-
netic polarity sequence is interrupted by a sedimentary hiatus at 
~270 m CSF-A based on biostratigraphic constraints. Below 
~430 m CSF-A, inclinations of Units II–IV, which mainly consist of 
claystones, exhibit predominantly negative values, indicating a nor-
mal polarity. The normal polarity zone spans from ~430 to 525 m 
CSF-A and is assigned to Chron C34n, the long Cretaceous Normal 
Superchron, based on shipboard biostratigraphic analysis.

Petrophysics
Site U1516 physical property data were collected from Holes 

U1516A, U1516C, and U1516D. Thermal conductivity shows a mi-
nor overall increase downhole, whereas porosity and P-wave veloc-
ity show a minor overall decrease downhole. In comparison, there is 
very little variation of bulk and grain density downhole. Exceptions 
are within the interval between 380 and 460 m CSF-A, which shows 
a pronounced excursion toward higher values in bulk density, ther-
mal conductivity, and P-wave velocity; a minor excursion toward 
higher values in grain density; and a strong excursion to lower val-
ues in porosity. This interval also corresponds to an interval of rela-
tively high magnetic susceptibility and the top of an interval of 
increasing NGR (Figure F8). Despite the strong correlation between 
physical properties, this interval does not correlate to lithostrati-
graphic unit boundaries. NGR and magnetic susceptibility show 
similar overall trends throughout Site U1516, increasing when the 
lithology becomes richer in detrital components. At the transition 
between lithostratigraphic Units II and III (~470 m CSF-A), both 
NGR and magnetic susceptibility increase when approaching the 
black shale interval related to OAE 2. Enrichment in U is notable 
after deconvolution of the NGR. In Unit IV, similar features have 
been found in the evolution of both proxies with Site U1513, allow-
ing correlations between these two sites.

Geochemistry
The Site U1516 geochemistry program was designed to charac-

terize the composition of interstitial water and bulk sediments and 
to assess the potential presence of volatile hydrocarbons for routine 
safety monitoring. No gas was detected in the 57 headspace gas 
samples that were taken.

For interstitial water analyses, 52 samples were recovered from 
whole-round squeezing from Holes U1516A (0–223.6 m CSF-A) 
and U1516C (244.0–541.6 m CSF-A). Sample salinity is generally 
constant, with the exception of distinctly fresher interstitial water in 
lithostratigraphic Unit IV (Figure F8). This low-salinity interval re-
flects decreased concentrations in many elemental profiles, particu-
larly Br− and Cl−, and an input of fresher water. The dissolved Mg, K, 
and Ca concentration profiles possibly reflect alteration of volcanic 
material from depths below the cored interval for this site. The Sr 
profile likely reflects carbonate diagenesis. Low levels of sulfate re-
duction were detected; sulfate is present but decreases with depth. 
Dissolved Si reflects the presence of biogenic opal-A in lithologic 
Subunit Ia; decreasing concentrations deeper than Subunit Ib indi-
cate the opal-A/CT transition. Elevated Mn (Figure F8) and Fe con-
centrations in parts of Subunits Ia and Ib and Units II–IV 
demonstrate the reducing character of the sedimentary sequence in 
these intervals.

A total of 43 bulk sediment samples were collected downhole to 
~540 m CSF-A. Additional samples were measured from the sug-
gested OAE 2 interval. CaCO3 content varies from 0 to 94 wt%, re-
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flecting variations in lithology. TOC is 0–1.2 wt%, except in the 
OAE 2 interval where TOC reaches 14 wt%. TN is generally below 
the detection limit.

Eleven samples including one from the putative OAE 2 black 
shale were also analyzed using the source rock analyzer. The sample 
from the top of the 8 cm thick black interval indicates Type II kero-
gen, whereas samples with low (<2 wt%) TOC from the OAE 2 in-
terval and Unit IV are composed primarily of Type IV kerogen. Tmax
values indicate thermal immaturity.

Stratigraphic correlation
Cores from Hole U1516A provide a 225 m thick, continuous re-

cord of middle Miocene to recent deposition, and the sequence 
seems to be biostratigraphically and magnetostratigraphically com-
plete. In Hole U1516C, coring gaps limit knowledge of the lower 
Miocene, much of the Oligocene, and portions of the Eocene at this 
site, but both the Oligocene/Miocene boundary interval and a 30 m 
long interval of the upper Eocene were well recovered. In addition, 
much of the Upper Cretaceous, all of the Paleocene, and much of 
the lower and middle Eocene are either missing or represented in a 
15 m thick interval of condensed deposition and/or erosion and 
nondeposition spanning from Section 369-U1516C-26R-4, 106 cm, 
to the top of Core 25R. In contrast, an excellent record of the upper 
Albian to the middle Turonian was recovered between Holes 
U1516C and U1516D, including a seemingly complete splice across 
the OAE 2 interval.

Age-depth model and sedimentation rates
The Neogene has an average sediment accumulation rate of ~18 

m/My from the Pleistocene through the upper Miocene (Figure F8). 
Much of the middle and lower Miocene are missing at a disconfor-
mity with an estimated 8 My hiatus. The lowermost Miocene and 
uppermost Oligocene are present at this site, separated from the 
lower Oligocene by a disconformity with ~4 My missing. The lower 
Oligocene through middle Eocene has an average accumulation rate 
of ~8 m/My. This sequence is separated from the Turonian by a 
condensed interval containing several biostratigraphic units of the 
middle Paleocene. The lower Paleocene through upper Turonian is 
missing at a disconformity with a hiatus of at least 29 My. The mid-
dle Turonian through upper Albian has an average sediment accu-
mulation rate of ~8 m/My.

Preliminary scientific assessment
Expedition 369 met the proposed science objectives and ex-

ceeded many during its investigation of the tectonic, paleoclimatic, 
and paleoceanographic history of the GAB and the MB. Sediment 
recovered from sites drilled in both regions will provide a new per-
spective on Earth’s temperature variation at subpolar latitudes (60°–
62°S) during the rise and fall of the mid-Cretaceous and early Eo-
cene hothouse climates and ensuing paleoceanographic and biotic 
changes. The recovered sediment will also provide constraints on 
the timing of rifting and basin subsidence during the last phase of 
breakup among remnant Gondwana continents. The following is a 
discussion of how the objectives and additional discoveries were at-
tained for each of the primary goals:

1. Investigate the timing and causes for the rise and collapse of the 
Cretaceous hot greenhouse and how this climate mode affected 
the climate-ocean system and oceanic biota.

Recovery of Cretaceous sediments that yielded foraminifers 
showing minimal diagenetic alteration was a major goal of Expedi-
tion 369 because these samples are essential for reliable Cretaceous 
climate reconstructions. We achieved this objective at Sites U1512–
U1514, and U1516 (Figures F9, F10, F11, F12). The sequence that 
will yield the most continuous Cretaceous climate record ranges 
from the middle Albian through the early Campanian (~28 My) at 
Site U1513, adjacent to where Site 258 was drilled with only 22% 
Cretaceous sediment recovery (Luyendyk and Davies, 1974). Im-
portantly, analysis of Cenomanian sediments yielding good micro-
fossil preservation at Sites U1513, U1514, and U1516 will fill a 
critical temporal gap in the climate record at southern high lati-
tudes. Moreover, good core recovery and microfossil preservation 
in portions of the Santonian–Turonian at Site U1512, Coniacian–
Turonian and late Albian at Sites U1513 and U1514, and most of the 
Santonian–early Campanian at Site U1513 will significantly im-
prove reconstructions of the climatic and oceanographic changes 
that occurred across the rise and fall of the hot Cretaceous green-
house climate.

2. Determine the relative roles of productivity, ocean temperature, 
and ocean circulation at high southern latitudes during Creta-
ceous OAEs.

One of the most important goals of Expedition 369 was to ob-
tain stratigraphically complete and well-preserved sediment re-
cords spanning OAE 2 (~93.8 Ma; Meyers et al., 2012) and OAE 1d 
(~100.2 Ma; Erbacher and Thurow, 1997; Bréhéret, 1988, 1997; 
Leckie et al., 2002). These short-lived (<1 My) episodes of enhanced 
deposition of organic carbon are associated with carbon isotope ex-
cursions and high rates of species turnover (Jenkyns, 1980, 2010; 
Arthur et al., 1988; Leckie et al., 2002; Jenkyns et al., 2012, 2017). 
The sediment records cored at Sites U1513, U1514, and U1516 ex-
ceeded our expectations for this objective. Complete and well-pre-
served microfossil assemblages were recovered from above, below, 
and within the OAE 2 and 1d intervals, together with laminated 
black shale beds. Some authors have suggested that OAE 2, which 
spans the C/T boundary (~94 Ma), was triggered by CO2 outgassing 
during a widespread pulse of volcanism (Turgeon and Creaser, 
2008; Du Vivier et al., 2014). The 97% composite recovery across 
OAE 2 in Holes U1513A and U1513D and 100% recovery in Holes 
U1516A and U1516C provide a unique opportunity to study this 
event in greater detail than any OAE 2 sequence in the world be-
cause of the abundance and good preservation of calcareous micro-
fossils and organic biomarkers across the interval. Cores from 
across this interval at both sites include multiple black shale inter-
vals with high TOC content (Figure F11). Osmium isotope mea-
surements through the cored sequence will determine the timing of 
eruptions prior to, during, and after the event. Oxygen isotope anal-
yses of well-preserved benthic and planktonic foraminifers should 
determine for the first time whether oceanic warming was triggered 
by a volcanic event and whether predicted cooling followed the 
burial of organic carbon during the peak of the OAE (Jenkyns et al., 
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2017). Measurement of additional chemical proxies and study of the 
microfossil assemblages for both OAEs will characterize changes in 
carbon chemistry, nutrient flux, types and amount of organic car-
bon burial, and changes in microfossil assemblages. Results from 
study of the OAE intervals cored at Sites U1513–U1514 and U1516 
will provide a significant advance in our understanding of the cause 
and effects of these global anoxic events. A final additional bonus 
was the recovery of the relatively little studied mid-Cenomanian 
event at Sites U1513 and U1516.

3. Identify the main source regions for deep-water and intermediate 
water masses in the southeast Indian Ocean and how these 
changed during Gondwana breakup.

Several intervals cored during Expedition 369 will be investi-
gated using εNd to trace sources and circulation patterns of deep-
water masses (and thus changing connections between basins), as 
well as local weathering inputs and potential global influences such 
as hydrothermal input from large igneous province volcanism. For 
the Cenomanian in general and the OAE 2 interval in particular, 
εNd patterns obtained from sediments cored at Sites U1513 and 
U1516 will provide a geographically distant test between competing 
volcanic and circulation models developed for the North Atlantic. 
Integration of deep circulation among basins and the increasing im-
portance of the Southern Ocean as a deep-water source can be tem-
porally constrained by comparing εNd values and trends in the MB 
cores to values documented elsewhere. Finally, the timing and re-
gional importance of the opening of the Tasman Gateway and the 
evolution of Antarctic circulation patterns across the Eocene/Oligo-
cene boundary can be determined from εNd values obtained from 
sediment cores at Site U1514 on the northern MB.

4. Characterize how oceanographic conditions changed at the MB 
during the Cenozoic opening of the Tasman Passage and restric-
tion of the Indonesian Gateway.

The opening of the Tasman Passage and restriction of the Indo-
nesian Passage were major factors that influenced the evolution of 
global climate during the Cenozoic, and both oceanic gateway 
changes profoundly affected the climate of Australia and Antarc-
tica. The Eocene opening of the Drake Passage and the Tasman 
Gateway led to development of the cold ACC that isolated Antarc-
tica from warm equatorial currents, resulting in the buildup of a 
continental ice sheet in Antarctica (Bijl et al., 2013; Scher et al., 
2006). Northward movement of Australia toward equatorial waters 
during the Miocene caused substantial reorganization of ocean cur-
rent pathways in the Indian Ocean and major shifts in the climate of 
Australia (Gallagher et al., 2017; Groeneveld et al., 2017). Continued 
northward movement restricted current circulation across the In-
donesian Gateway during the Pliocene, which then reduced the in-
fluence of the warm-water Indonesian Throughflow in the Indian 
Ocean and initiated the arid climate that characterizes modern 
western Australia (Christensen et al. 2017).

Because of the mid-latitude location, Cenozoic sedimentation in 
the MB has been particularly sensitive to northern and southern 
movements of Antarctic waters and changes in oceanic gateway 
passages that connect the western equatorial Pacific Ocean with the 
Indian Ocean. Study of Eocene deposits recovered at Sites U1514 
and U1516 will further our understanding of the oceanographic and 
climatic consequences of the opening of the Tasman Passage. High-
resolution studies of Miocene and Pliocene sediments recovered 
from Sites U1513, U1415 and U1516 will establish the timing, mag-
nitude, and rates of climate and ocean circulation changes that af-

fected the Australian continent and the southeast Indian Ocean 
region as the seaway between Australia and Antarctica widened and 
deepened and the Indonesian Passage became more restricted.

5. Resolve questions on the volcanic and sedimentary origins of the 
basin and provide vital stratigraphic control on the age and na-
ture of the prebreakup succession.

Sampling the prebreakup sediments was achieved at Site U1515. 
The margin-wide unconformity was crossed at 364 m CSF-A, and 
coring sampled a series of carbon-rich claystones interspersed with 
poorly cemented sandstone in a fault-bounded segment of the east-
ern MB. These claystones are believed to be of Early Jurassic age de-
posited during the early stages of rifting within Gondwana, which 
was undergoing a period of thermal subsidence following an earlier 
Permian rifting event (Bradshaw et al., 2003). Tilting of these sedi-
ments is indicative of a later stage of rifting and fault reactivation in 
the mid- to Late Jurassic.

Our deepest hole (U1513E) cored ~84 m of volcanic material 
and recovered ~54 m of material. Onboard analysis identified sepa-
rate extrusive flow sequences intercalated with sedimentary breccia 
beds that were later intruded by a younger diabase dike. The older 
extrusive volcanics appear to be a mix of subaerial and marine 
flows, which suggests they were deposited close to sea level. Isoto-
pic dating of the volcanics was not possible on board, although 
stratigraphic relations mean that the extrusive flows are older than 
the overlaying mid-Valanginian sediments as dated by magneto-
stratigraphy. Volcanic activity, as evidenced from the intersecting 
seismic profiles as either isolated bright reflectors that are inter-
preted as sills or as volcanic cones, appears to be present through 
lithostratigraphic Unit V, which is dated as Valanginian to Barre-
mian. Although the basalt sequences are highly altered, we antici-
pate that enough material has been collected for Ar/Ar analysis to at 
least date some of the flows and dike. Results will be compared with 
a recent compilation of basalt samples from both nearby dredge and 
onland sampling of the Bunbury basalt (Direen et al., 2017; Olierook 
et al., 2016).

All Expedition 369 sites contribute to significantly improving 
the stratigraphic control of the regional reflection seismic data. Site 
U1512 recalibrates the current seismic interpretation and hence the 
role of the Wallaroo Fault System as an active fault synchronous 
with the initial phase of seafloor spreading between Antarctica and 
Australia. Sediments cored at sites around the MB enable dating of 
key stratigraphic units that record the rifting of both India and Ant-
arctica from Australia that can be correlated to the regional seismic 
reflection data. Erosional hiatuses and faults in the sedimentary 
succession can now be dated and linked with episodes of uplift, ero-
sion, and subsidence, which in turn can be linked to the wider tec-
tonic and thermal histories of this margin.

Operations
Port call and initial transit to Site U1512

Expedition 369 officially began at 0754 h (UTC + 11 h) on 26 
September 2017 with the first line ashore at Macquarie Wharf, 
Berth 4, in Hobart, Australia. The ship cleared immigration and 
customs, and Expedition 369 technical staff, the Expedition Project 
Manager, and the Co-Chief Scientists boarded the ship at 0930 h. 
The remainder of the science party boarded the vessel on 27 Sep-
tember, and public relations activities were conducted on 28 and 29 
September. During the port call, the loading of drilling equipment, 
expedition stores, and food was completed, and installation of a 
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spare wireline logging cable was concluded. The ship left Hobart 
with the last line released at 0710 h on 30 September and began 
making its way to Site U1512. The 1425 nmi sea voyage ended at 
0530 h (UTC + 8 h) on 7 October.

Site U1512
Site U1512 (Table T1) consisted of a single hole (U1512A) that 

was cored with the RCB system. The original plan was to advance to 
570 m drilling depth below seafloor (DSF); however, it became ap-
parent during coring operations that the Late Cretaceous sedimen-
tary section was very expanded. Following revisions to coring depth 
estimates and Environmental Protection and Safety Panel approval, 
the hole was deepened to 700 m DSF. Coring operations and condi-
tions were excellent although the hole deviated ~26° from vertical 
through what was fairly uniform lithology. After coring operations 
were completed, one downhole logging run was completed along 
the entire open borehole with the modified triple combo tool string, 
which measured NGR, density, resistivity, and velocity. Logging op-
erations and conditions were also excellent.

Overall, 7.7 days (7–14 October 2017) were spent at Site U1512. 
A total of 73 RCB cores were recorded for the site, penetrating to a 
total depth of 700.8 m DSF and recovering 631.86 m of core (90% 
recovery).

Site U1513
Site U1513 (Table T1) consisted of coring and logging opera-

tions at five holes and was visited on two separate occasions. All of 
the coring systems were used: both the APC and half-length APC 
(HLAPC) systems in Holes U1513A–U1513C, the XCB system in 
Hole U1513A, and the RCB system in Holes U1513D and U1513E. 
Coring extended to 292.5 m DSF in Hole U1513A and crossed one 
of the critical boundaries for the expedition (C/T boundary). In situ 
formation temperatures were attempted with the advanced piston 
corer temperature tool (APCT-3), but only one value was returned 
for Core 369-U1513A-5H because the tool was damaged. Hole 
U1513B was intended to fill in recovery gaps from the Neogene and 
uppermost Cretaceous section from Hole U1513A and was cored to 
98.6 m DSF; all cores were oriented with either the Icefield MI-5 
core orientation tool or the FlexIT tool. Hole U1513C cores were 
sectioned on the catwalk into 30 cm whole rounds for post-
expedition analyses. Hole U1513D penetrated to 757.4 m DSF and 
accomplished the deep target of the expedition objectives by recov-
ering basalt; Hole U1513E then extended the basalt penetration and 
recovery to 774 m DSF. Downhole logging runs were attempted in 
Holes U1513A, U1513D, and U1513E. After coring operations were 
completed in Hole U1513A, one downhole logging run was com-
pleted along the entire length of the open borehole (to 289.8 m 
WSF) with the modified triple combo tool string, and runs with it 
were also attempted in Holes U1513D (to 346 m WSF) and U1513E 
from 426 to 614 m WSF. One run with the traditional triple combo 
tool string was also performed from 119 to 610 m WSF in Hole 
U1513E. A seismic experiment and FMS runs were also conducted 
in Hole U1513E from 426 to 637 m WSF (VSI) and 426 to 611 m 
WSF (FMS).

Overall, 15.5 days (18 October–2 November and 20–25 Novem-
ber 2017) were spent at Site U1513. A total of 18 APC, 13 HLAPC, 
35 XCB, and 81 RCB cores were recorded for the site, penetrating to 
a total depth of 774 m DSF. Of the 1137.8 m cored, we recovered 
777.07 m of material (80.8%).

Site U1514
Site U1514 (Table T1) consisted of coring and logging opera-

tions in three holes. All four of the coring systems were used. The 
piston coring (APC and HLAPC) and XCB systems were used in 
Hole U1514A, Hole U1514B was cored with the APC system only, 
and the RCB system was used in Hole U1514C. Hole U1514A ex-
tended to 255.6 m DSF, at which point the XCB was unable to pene-
trate deeper. All cores recovered with the APC system in Hole 
U1514A were oriented with either the Icefield MI-5 core orientation 
tool or FlexIT tool. Cores recovered from Hole U1514B were com-
pletely sectioned on the catwalk into 30 cm whole-round sections 
for postexpedition analyses. Hole U1514C penetrated to 516.8 m 
DSF and was successfully logged with the modified triple combo 
tool string.

Overall, 7.4 days (2–9 November 2017) were spent at Site 
U1514. A total of 21 APC, 5 HLAPC, 7 XCB, and 34 RCB cores were 
recorded for the site, penetrating to a total depth of 516.8 m DSF. Of 
the 591.9 m cored, 518.12 m of material was recovered (87.5%).

Site U1515
Operations at Site U1515 (Table T1) consisted of coring a single 

hole (U1515A) with the RCB system to 517.1 m DSF. The original 
plan for this site included coring three holes and a full suite of wire-
line logging runs. However, hole conditions were generally poor, 
which precluded logging, and core recovery was low, thus shorten-
ing the time spent at this site.

Overall, 55 RCB cores were recovered with 93.62 m recovered 
from the 517.1 m cored (18.1%). The total time on Site U1515 was 
3.6 days (10–13 November 2017).

Site U1516
Four holes were cored at Site U1516. Hole U1516A was cored 

with the APC and HLAPC systems to 223.6 m DSF. All cores recov-
ered with the APC system in Hole U1516A (Cores 1H through 20H) 
were oriented with the Icefield MI-5 core orientation tool or FlexIT 
tool. Successful in situ formation temperature measurements were 
made with the APCT-3 in Cores 369-U1516-3H, 5H, 7H, and 17H. 
Hole U1516B was cored with the APC system to ~15 m; all of the 
material was immediately sectioned on the catwalk in 30 cm whole 
rounds for postexpedition analyses. Hole U1516C, which was 
drilled without coring to 196 m DSF, was then cored with the RCB 
system to 541.6 m DSF. Hole U1516D aimed to recover an addi-
tional copy of the C/T boundary. It was drilled without coring to 
458 m DSF and then cored with the RCB system to 477.6 m DSF, 
recovering four cores.

In total, 476.99 m was recovered from 605.0 m cored (78.8%). 
We recovered 206.57 m from 197.5 m cored (104.6%) with the APC 
system and recovered 43.55 m from 42.3 m (103%) and 226.87 m 
from 365.2 m (62.1%) cored with the RCB system. We spent 5.9 days 
at Site U1516. After Site U1516 was completed, we returned to Site 
U1513.

Transit to Fremantle, Australia
At 0525 h on 25 November 2017, the ship was underway to Fre-

mantle, Australia. Expedition 369 ended at 0700 h on 26 November.
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Education, outreach, and media
Three education and outreach personnel participated in Expedi-

tion 369: a museum educator from the US, a videographer from 
Brazil, and a photojournalist from the United Kingdom.

Live broadcasts
During this expedition, 3 museums, 23 schools, and 8 universi-

ties participated in live ship-to-shore broadcasts (Table T2). Over-
all, institutions from nine different countries participated (Brazil, 
China, France, Germany, Japan, Morocco, Republic of Korea, the 
United Kingdom, and the US) and from nine different states in the 
US (California, Florida, Louisiana, Michigan, Missouri, Nebraska, 
New York, Texas, and Washington, DC). We reached approximately 
1514 people through the broadcasts.

Survey feedback
As part of the feedback process, we sent a survey to every group 

that participated in a broadcast. Out of 44 broadcasts, 19 participat-
ing groups filled out a survey.

According to the survey results,

• The average rating for the participants’ experience was 4.71 out 
of 5,

• 100% of participants who completed the survey said they re-
ceived the opportunity to ask questions,

• 92% of participants felt that the objectives of the expedition 
were clearly explained,

• Participants gave an average score of 4.32 out of 5 in regard to 
whether they felt the information was presented at a level appro-
priate to the age of their group,

• 85% of participants felt that they learned more about science 
content,

• 100% of participants felt that they learned more about the sci-
ence process,

• 76% of participants felt that they learned more about careers in 
science, and

• The average score for participants who felt that the broadcast 
met their expectations was 4.24 out of 5.

Anecdotes from participants about broadcasts

• “[These broadcasts are a] quick and easy way to explore science 
careers and real-life applications.”

• “[These broadcasts are] very important for the young scientists 
and the international community.”

• “Our students appreciated this opportunity very much.”
• “Thank you very much for the broadcast. [The students] enjoyed 

it a lot, and the explanation of the scientists was clear and very 
interesting.”

• “It was a very good and unique experience for everybody here to 
“be” on board a science ship off the coast of Australia!”

• “We would like to participate more often.”
• “I loved that the tour included the both the chemistry lab and 

core lab. Tours in the past have only focused on the core lab. 
The diversity was great, and better represented the vessel opera-
tions.”

• “It was engaging for the students, showed them how scientists 
figured out the things we're learning in class, showed them that 
scientists are still figuring out new things, and that there are ca-
reers in geoscience (and science in general).”

Education projects completed at sea
• Thirteen articles about Expedition 369 written in Portuguese 

and published on three Brazilian web portals: Jornal da UNI-
CAMP, Portal Capes, and SBPC.

• Two podcasts produced in Portuguese for the JR Soundcloud 
channel.

• Blogs about the expedition by one of the scientists, facilitated by 
one of the Education and Outreach officers and using her pho-
tos, published on The Geological Society of London and the 
Traveling Geologist websites.

• Photographic documentation of the expedition, which will be 
shared on the National Geographic Voices Blog.

• Visual and audio interviews with scientists.
• Postcards from Scientists series featured on the JR Blog and so-

cial media.
• Education packet with info sheet and videos for the Geological 

Society of London to share with United Kingdom schools and on 
social media.

• Microfossils embroidered onto fabric as examples for a resource 
packet that gives instructions and templates for interested par-
ticipants to make their own.

• Educational packet containing a story about scientific phenom-
ena and concepts portrayed as wrestlers with several wrestling 
masks.

• Two series of coloring pages, one exploring life aboard the JR 
and one helping to explain how scientists study cores.

• A photo posted on Instagram as part of the Oz Rock Stock Take 
contest that won a prize from the Australian Geological Council.

• A newsletter about the highlights of Expedition 369 distributed 
to all the schools that participated in broadcasts.

• A book club series featured on the JR Blog highlighting scientists 
and other expedition members.

Media impact
The education and outreach team worked with various media 

outlets in Brazil, the United Kingdom, and the US, and the expedi-
tion was covered by other media sources in several other countries.

BBC Earth featured several photos of Expedition 369 on their 
Instagram account and Twitter account. We conducted two TV live 
interviews with BBC News and one with BBC Radio, as well as one 
live radio interview with the Australia Broadcasting Corporation. In 
Brazil, a 10 min prerecorded story was produced by BAND Cidades 
channel (https://youtu.be/L5WCA19KOqA).

Additional media coverage included a Reddit Ask Me Anything 
(AMA) session where several of the scientists on board assisted in 
fielding questions asked by the public. The questions and answers 
can be viewed at https://www.reddit.com/r/science/com-
ments/7b4g8u/science_ama_series_were_scientists_on_a_-
ship_off/. There were >1000 views of the session, with 196 people 
voting positively for the session (86% of the vote). More than 33 
questions were asked and answered.

Smithsonian.com (https://www.smithsonianmag.com), which 
has a circulation of >6 million per month, commissioned three arti-
cles about the expedition for publication soon after the end of the 
expedition.

BBC Future, which has global circulation through BBC World-
wide, commissioned two short (3–4 min) films about the expedition 
that will likely come out in early 2018.
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More appearances (Brazilian outreach)
• http://confap.org.br/news/conheca-o-novo-espaco-de-di-

vulgacao-das-ciencias-do-mar
• http://portal.mec.gov.br/component/content/arti-

cle?id=55151:estudantes-poderao-acompanhar-expedicao-
cientifica-pela-internet

• http://www.paqtc.org.br/portal_novo/3versao/htm-
l_paqtc//detailArtigo.action;jses-
sionid=7161B1633C7960DD1015A5302187DBCB?localDe-
tail=principal&idEncript=Xe1yci67wqw%3D

• http://www.correiobraziliense.com.br/app/noticia/eu-estu-
dante/ensino_educacaobasica/2017/09/29/ensino_educa-
caobasica_interna,630182/estudantes-poderao-acompan-
har-expedicao-cientifica-pela-internet.shtml

• http://www.capes.gov.br/diariodebordo/noticias/noti-
cia/8576-agente-de-divulgacao-conta-primeiras-impres-
soes-sobre-expedicao-em-alto-mar

• http://www.unicamp.br/unicamp/ju/artigos/cristiane-del-
fina/sobre-expedicoes

• http://www.gestaouniversitaria.com.br/artigos/conheca-o-
novo-espaco-de-divulgacao-das-ciencias-do-mar

• http://www.abruc.org.br/003/00301015.asp?ttC-
D_CHAVE=270350&btImprimir=SIM

• http://www.sinepenopr.com.br/artigos/boletim-sinepe-
nopr-03-de-outubro-de-2017

• http://gestaouniversitaria.com.br/artigos/capes-tem-sala-
de-interacao-na-14-semana-nacional-de-ciencia-e-tecnolo-
gia

Social media
• +281 followers on Facebook (between 26 September and 23 No-

vember 2017) (Table T3)
• +157 followers on Instagram (between 26 September and 23 No-

vember 2017)
• +124 followers and +195.0K impressions on Twitter (between 

26 September and 23 November 2017)

The increase of organic (not attracted by paid ads) followers is 
the most targeted and hardest to achieve by social media content 
producers. These followers are real people willing to engage with 
the brand/institution. Because Facebook and Instagram have algo-
rithms to increase their gains with paid advertisements, they will 
first show the paid content to the users. The numbers shown above 
are very high because we achieved only organic users. This is a sign 
that the content is attracting people, and they are important follow-
ers of the JOIDES Resolution community.
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Table T2. Live interactive broadcasts between the ship and shore, Expedition 369. (Continued on next page.)

Date 
(2017)

Time
(h UTC)

Location
(state or country
broadcasting to) Organization/School name Age level 

Number of 
attendees 

4 Oct 0100 Washington DC, USA Smithsonian Institute (Natural History) Middle school 3
10 Oct 1930 Brazil Colegio Rogelma A.F.M. Mello High school 49
11 Oct 2300 Washington DC, USA Smithsonian Institute (Natural History) Middle school 22
12 Oct 1700 Casablanca, Morocco Lycee Francais Internationale High school 40
13 Oct 2125 New York, USA Community Partnership Charter School Middle school 46
16 Oct 1900 Brazil Colegio Vila Olympia Middle school 32
17 Oct 2000 Brazil Colegio Seice High school 29
18 Oct 1930 United Kingdom Carmel College High school 40
18 Oct 2315 Washington DC, USA Smithsonian Institute (Natural History) Middle school 20
19 Oct 1600 France Lycee Paul Vincensini High school 27
23 Oct 2100 Brazil Semana Nacional de Ciência e Tecnologia High school 12
24 Oct 0100 Brazil Semana Nacional de Ciência e Tecnologia Middle school 30
24 Oct 2100 Brazil Semana Nacional de Ciência e Tecnologia High school 15
25 Oct 0500 Brazil Semana Nacional de Ciência e Tecnologia 6–7 years 32
27 Oct 0100 Brazil Semana Nacional de Ciência e Tecnologia Middle school 15
27 Oct 2100 Brazil Semana Nacional de Ciência e Tecnologia Middle school 24
30 Oct 1840 United Kingdom Belmont Community School Middle school 36
1 Nov 1500 South Korea Chonnam National University College 25
2 Nov 0400 Louisiana, USA University of Louisiana at Lafayette Post grad 30
2 Nov 0845 California, USA Cerritos College College 25
2 Nov 2140 United Kingdom Belmont Community School Middle school 36
7 Nov 2040 Germany St. Angela School High school 48
7 Nov 2345 New York, USA Intrepid Sea, Air, and Space Museum Teachers/Adults 70
8 Nov 0230 Brazil IODP meeting Academics 110
8 Nov 1430 China Jiayuguan Primary School Elementary school 45

Table T1. Expedition 369 hole summary.

Hole Latitude Longitude
Water

depth (m)
Penetration 

DSF (m)
Interval 

cored (m)

Core
recovered 

(m)
Recovery 

(%)
Drilled

interval (m)
Drilled

interval (N)
Total

cores (N)

U1512A 34°01.6406′S 127°57.7605′E 3070.87 700.8 700.8 631.86 90.16 0 73
U1513A 33°47.6084′S 112°29.1338′E 2789.19 292.5 292.5 170.60 58.32 0 50
U1513B 33°47.6087′S 112°29.1471′E 2787.22 98.6 98.6 102.06 103.51 0 14
U1513C 33°47.6190′S 112°29.1468′E 2788.32 17.1 17.1 17.37 101.58 0 2
U1513D 33°47.6196′S 112°29.1339′E 2788.92 757.4 662.4 437.05 65.98 95.0 1 74
U1513E 33°47.6190′S 112°29.1204′E 2788.62 774.0 67.2 49.99 74.39 706.8 2 7
U1514A 33°7.2327′S 113°5.4672′E 3838.20 255.6 255.6 255.20 99.84 0 31
U1514B 33°7.2335′S 113°5.4798′E 3838.72 15.1 15.1 15.45 102.32 0 2
U1514C 33°7.2443′S 113°5.4799′E 3838.79 516.8 321.2 247.48 77.05 195.6 1 34
U1515A 33°16.1890′S 114°19.3666′E 849.70 517.1 517.1 93.62 18.10 0 55
U1516A 34°20.9169′S 112°47.9553′E 2676.46 223.6 223.6 233.26 104.32 0 29
U1516B 34°20.9175′S 112°47.9684′E 2676.42 16.2 16.2 16.81 103.77 0 2
U1516C 34°20.9272′S 112°47.9711′E 2676.62 541.6 345.6 208.32 60.28 196.0 1 40
U1516D 34°20.9277′S 112°47.9573′E 2676.62 477.6 19.6 18.55 94.64 458.0 1 4

Totals: 5204.0 3552.6 2497.62 1651.4 6 417

Hole Latitude Longitude
APC

cores (N)
HLAPC

cores (N)
XCB

cores (N)
RCB

cores (N)

Date 
started 
(2017)

Time 
started
(h UTC)

Date
finished 
(2017)

Time
finished
(h UTC)

Time on 
hole (days)

U1512A 34°01.6406′S 127°57.7605′E 0 0 0 73 6 Oct 2130 14 Oct 1455 7.73
U1513A 33°47.6084′S 112°29.1338′E 8 7 35 0 18 Oct 0645 23 Oct 0410 4.89
U1513B 33°47.6087′S 112°29.1471′E 8 6 0 0 23 Oct 0410 23 Oct 2225 0.76
U1513C 33°47.6190′S 112°29.1468′E 2 0 0 0 23 Oct 2225 24 Oct 0845 0.43
U1513D 33°47.6196′S 112°29.1339′E 0 0 0 74 24 Oct 0845 1 Nov 1730 8.36
U1513E 33°47.6190′S 112°29.1204′E 0 0 0 7 19 Nov 1910 24 Nov 2125 5.09
U1514A 33°7.2327′S 113°5.4672′E 19 5 7 0 2 Nov 0000 4 Nov 1215 2.51
U1514B 33°7.2335′S 113°5.4798′E 2 0 0 0 4 Nov 1215 5 Nov 0130 0.55
U1514C 33°7.2443′S 113°5.4799′E 0 0 0 34 5 Nov 0130 9 Nov 0935 4.34
U1515A 33°16.1890′S 114°19.3666′E 0 0 0 55 9 Nov 1600 13 Nov 0550 3.58
U1516A 34°20.9169′S 112°47.9553′E 20 9 0 0 13 Nov 1748 15 Nov 0925 1.65
U1516B 34°20.9175′S 112°47.9684′E 2 0 0 0 15 Nov 0925 15 Nov 1945 0.43
U1516C 34°20.9272′S 112°47.9711′E 0 0 0 40 15 Nov 1945 18 Nov 1150 2.67
U1516D 34°20.9277′S 112°47.9573′E 0 0 0 4 18 Nov 1150 19 Nov 1455 1.13

Totals: 61 27 42 287
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Table T3. Social media activity during Expedition 369. Numbers as of 1400 h, 23 November 2017. NA = not applicable.

9 Nov 0500 Brazil Colegio Seice High school 40
9 Nov 2145 Florida, USA River Ridge High School High school 60
10 Nov 0150 Missouri, USA Claymont Elementary School Elementary school 20
12 Nov 0030 United Kingdom University of Oxford College 40
12 Nov 1300 Japan Japanese Young Scientists School College 25
13 Nov 1530 Japan Kanazawa University College 70
14 Nov 0230 Nebraska, USA Shickley Public School Middle school 25
14 Nov 1830 China Nanjing University College 40
15 Nov 0100 Michigan, USA Canton High School High school 30
16 Nov 0030 Michigan, USA Canton High School High school 30
16 Nov 0300 Michigan, USA Canton High School High school 30
16 Nov 1530 Germany Herbartgymnasium High school 18
17 Nov 0215 Washington D.C., USA Smithsonian Institute (Natural History) Middle school 40
17 Nov 2300 United Kingdom Natural History Museum in London General public 40
20 Nov 1800 France Lycee le Likes LaSalle Quimper High school 30
20 Nov 2030 Texas, USA Valley View Junior High Middle school 30
21 Nov 1600 France Lycee Valin High school 25
22 Nov 0100 Brazil Unisinos College 30
23 Nov 0145 California, USA Cerritos College College 30

Platform
Number of 

posts
Number of 

likes 
Number of 

shares
Number of 
comments

Facebook  52  3245  424 108
Twitter  89  1100  552 19
Instagram  57  3059 NA  39
Blog  27 NA NA NA

Date 
(2017)

Time
(h UTC)

Location
(state or country
broadcasting to) Organization/School name Age level 

Number of 
attendees 

Table T2 (continued).
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Figure F1. Late Cenomanian (94 Ma) and middle Eocene (40 Ma) paleogeographic reconstructions after Hay et al. (1999) showing the location of Expedition 
369 sites in the Mentelle Basin (MB; adjacent to Naturaliste Plateau), the Great Australian Bight (GAB), and selected deep-sea sites (DSDP sites 327, 511; ODP 
sites 689, 690) at southern high latitudes.
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Figure F2. A. Regional context of the NP and MB, including location of the major reflection seismic profiles, DSDP sites, and Expedition 369 sites. PB = Perth 
Basin, LB = Leeuwin Block, YS = Yallingup shelf. B. Locations of Site U1512 (red triangle) in the GAB, Leg 182 sites, and petroleum exploration wells (black 
circles).
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Figure F3. Ocean currents in the modern ocean surrounding Australia. Orage = surface currents, green = intermediate currents, and blue = deep-ocean cur-
rents. Yellow circles = Expedition 369 sites.
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Figure F4. Site U1512 summary. Yellow shading = floating spliced intervals.
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Figure F5. Site U1513 summary. Yellow shading = floating spliced intervals. NGR and core recovery: green = Hole U1513A, light blue = Hole U1513B, dark blue 
= Hole U1513D. Green (RGB): values outside a 50-point moving average ±1σ were removed and a 50-point moving average was plotted over the data series. 
Hole U1513C (~17 m) was sampled completely on the catwalk.
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Figure F6. Site U1514 summary. Yellow shading = floating spliced intervals. Core recovery and data: light blue = Hole U1514A, green = Hole U1514C. Hole 
U1514B (~15 m) was sampled completely on the catwalk.
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Figure F7. Site U1515 summary.
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Figure F8. Site U1516 summary. Yellow shading = floating spliced intervals. Core recovery and data: light blue = Hole U15146A, green = Hole U1516C. Hole U1516B 
(~16 m) was sampled completely on the catwalk.
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Figure F9. Age-depth plots, Sites U1512–U1514 and U1516. Horizontal lines = unconformities.

Figure F10. Stratigraphic summary and correlation of NGR records, Sites U1512–U1516 (from west to east). Yellow stars = critical intervals that will be the focus 
of intensive shore-based study. (This figure is also available in an oversized format.)
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Figure F11. Bulk sediment, geochemical summary, Sites U1512–1516 (west to east).
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Figure F12. Interstitial water geochemical summary, Sites U1512–U1516 (west to east).
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