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Abstract

International Ocean Discovery Program (IODP) Expedition 371
drilled six sites in the Tasman Sea of the southwest Pacific between
27 July and 26 September 2017. The primary goal was to understand
Tonga-Kermadec subduction initiation through recovery of Paleo-
gene sediment records. Secondary goals involved understanding re-
gional oceanography and climate since the Paleogene. Six sites were
drilled, recovering 2506 m of cored sediment and volcanic rock in
36.4 days of on-site drilling during a total expedition length of 58
days. Wireline logs were collected at two sites. Shipboard observa-
tions made using cores and logs represent a substantial gain in fun-
damental knowledge about northern Zealandia, because only Deep
Sea Drilling Project Sites 206, 207, and 208 had penetrated beneath
upper Eocene strata within the region.

The cored intervals at five sites (U1506-U1510) sampled
nannofossil and foraminiferal ooze or chalk that contained volcanic
or volcaniclastic intervals with variable clay content. Paleocene and
Cretaceous sections range from more clay rich to predominantly
claystone. At the final site (U1511), a sequence of abyssal clay and
diatomite was recovered with only minor amounts of carbonate.
The ages of strata at the base of each site were middle Eocene to
Late Cretaceous, and our new results provide the first firm basis for
defining formal lithostratigraphic units that can be mapped across a
substantial part of northern Zealandia and related to onshore re-
gions of New Caledonia and New Zealand.

The material and data recovered during Expedition 371 enable
primary scientific goals to be accomplished. All six sites provided
new stratigraphic and paleogeographic information that can be put
into context through regional seismic-stratigraphic interpretation
and hence provide strong constraints on geodynamic models of
subduction zone initiation. Our new observations can be directly
related to the timing of plate deformation, the magnitude and tim-
ing of vertical motions, and the timing and type of volcanism. Sec-
ondary paleoclimate objectives were not all completed as planned,
but significant new records of southwest Pacific climate were ob-
tained.

Introduction

The Tasman Frontier represents an extensive and under-ex-
plored area of the ocean between Australia, New Zealand, and New
Caledonia (Figure F1). The primary goal of Integrated Ocean Drill-
ing Program (IODP) Expedition 371 was to understand Tonga-Ker-
madec subduction initiation through recovery of Paleogene
sediment records at six new sites across the Tasman Frontier (Fig-
ures F1, F2, F3, F4).

Subduction systems are primary drivers of plate motions, man-
tle dynamics, and global geochemical cycles, but little is known
about how subduction starts. What are the initial conditions? How
do forces and kinematics evolve? What are the short-term conse-
quences and surface signatures: uplift, subsidence, deepwater sedi-
mentary basins, convergence, extension, and volcanism? The early
Eocene onset of subduction in the western Pacific was accompanied
by a profound global reorganization of tectonic plates, with known
plate motions before and after the change (Billen and Gurnis, 2005;
Sharp and Clague, 2006; Steinberger et al., 2004; Whittaker et al.,
2007). The Izu-Bonin-Mariana (e.g., IODP Expeditions 350, 351,
and 352) and Tonga-Kermadec systems contain complementary in-
formation about subduction initiation (Figure F1), but the south-
west Pacific has had little relevant drilling.
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Eocene tectonic change occurred at a turning point in Cenozoic
climate. Long-term global warming through the Paleocene—Eocene
transition culminated in the Early Eocene Climate Optimum
(EECO; ~53-49 Ma), which was followed by overall cooling
through the remainder of the Cenozoic (Figure F5) (Zachos et al.,
2008). A secondary scientific goal of Expedition 371 was to address
the question of why Earth’s climate might move between multimil-
lion-year greenhouse and icehouse climate states. Under very high
pCO, conditions or high climate sensitivity, global climate models
(Huber and Caballero, 2011; Lunt et al., 2012) can reasonably simu-
late early Eocene warming in many regions (Douglas et al., 2014;
Tripati et al., 2003) but not the extreme warmth previously reported
in the southwest Pacific and Southern Ocean (Bijl et al., 2009; Hollis
et al., 2009, 2012; Pross et al., 2012).

The Eocene-Oligocene transition and Neogene paleoceano-
graphy have been subjects of numerous scientific drilling expedi-
tions, including Deep Sea Drilling Project (DSDP) Legs 21, 29, and
90 in the Tasman Sea (Figure F2), which were highly influential in
the development of ideas that connected regional oceanography
with thermal isolation and glaciation of Antarctica and hence global
climate change (Burns and Andrews, 1973; Kennett, 1977; Kennett
et al,, 1975; Kennett and von der Borch, 1986). Ocean Drilling Pro-
gram (ODP) Legs 181 and 189 further investigated the Eocene—Oli-
gocene opening of the southern Tasman Sea gateway (Carter et al.,
2004; Exon et al., 2004b). However, the significance of unconformi-
ties in the Tasman Sea has not, so far, included consideration of re-
gional vertical tectonics or local faulting (Sutherland et al., 2010,
2017). Records from the Tasman Sea may also offer insights into un-
derstanding Neogene paleoceanography across the Pacific and phe-
nomena such as the late Miocene—early Pliocene biogenic bloom
(Farrell et al., 1995; Grant and Dickens, 2002).

Scientific background
Subduction initiation and global plate tectonics

Subduction initiation and changes in plate motion are linked be-
cause the largest driving and resisting tectonic forces occur within
subduction zones (Becker and O’Connell, 2001; Buffett, 2006; Lith-
gow-Bertelloni and Richards, 1998; Stadler et al., 2010). There are
two end-member classes of subduction initiation models: induced
or spontaneous (Stern, 2004) (Figure F6). In the spontaneous
model, oceanic lithosphere ages, cools, increases in density and
gravitational instability, and sinks into the mantle under its own
weight (Stern and Bloomer, 1992; Turcotte et al., 1977). In the in-
duced model, externally applied compressive stress and conver-
gence is necessary to overcome lithospheric strength before
convective instability can grow and subduction initiation occurs
(McKenzie, 1977; Toth and Gurnis, 1998).

Half of all presently active subduction zones on Earth initiated
during the Cenozoic (Gurnis et al., 2004), so it is possible to assem-
ble observations to address the question of how and why these mar-
gins evolved into self-sustaining subduction zones. Recent drilling
results from Expedition 351 shed new light on this question, and
new models suggest juxtaposition of a transcurrent fault and relict
arc could have led to Izu-Bonin-Mariana subduction initiation just
before 50 Ma (Leng and Gurnis, 2015). Subduction initiation at a
passive continental margin has received considerable attention
through the concept of a Wilson cycle (a class of the spontaneous
model), but there are no known Cenozoic examples of passive mar-
gins evolving into subduction zones (Stern, 2004). Spontaneous and
induced models predict different states of stress and vertical mo-
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tions during their early stages, and the aim to distinguish these un-
derpinned our drilling strategy.

The largest change in global plate motions since 83 Ma (the only
period with precisely known plate kinematics) is manifest as the
Emperor-Hawaii seamount chain bend (Figure F1). Geochronology
shows that the Emperor-Hawaii bend started at ~50 Ma and may
have occurred over ~8 My (Sharp and Clague, 2006). The onset of
Pacific plate motion change corresponds to the timing of Pa-
cific/Farallon plate boundary rearrangement (Caress et al., 1988)
and termination of spreading in the Tasman Sea (Gaina et al., 1998),
followed by a change in direction and rapid increase in rate of Aus-
tralia-Antarctic spreading with consequent northward acceleration
of Australia (Miiller et al., 2000; Seton et al., 2012; Whittaker et al.,
2007) and initiation of Australia-Pacific spreading south of New
Zealand (Keller, 2003; Sutherland, 1995; Wood et al., 1996). Eocene
emplacement of ophiolites and deformed flysch may record the on-
set of convergence in New Caledonia (Aitchison et al., 1995). Re-
configuration of plate boundaries in Antarctica (Cande et al., 2000),
the Indian Ocean (Cande et al., 2010), and Asia (Aitchison et al.,
2007) confirms the global extent of tectonic change.

The westward swerve in Pacific plate motion occurred at about
the same time as subduction zones initiated throughout the western
Pacific (Gurnis et al., 2004; Hall et al., 2003; Steinberger et al., 2004).
It is the only global-scale subduction initiation event for which plate
motions are known before and after, and there is a clear linkage be-
tween subduction initiation and plate motion change. Reconstruct-
ing what happened in the western Pacific is of fundamental
significance for understanding subduction initiation and hence the
physics of plate tectonics and mantle flow.

Eocene greenhouse climate

Paleogene sediment records have provided new insights into
Earth’s climate history and underpin predictions of future green-
house climate (Lunt et al., 2014). Available data indicate that pCO,
exceeded 1000 parts per million by volume (ppmv) in the early Eo-
cene (Beerling and Royer, 2011), when global temperatures were
~10°C warmer than present day and the poles were largely free of
ice (Zachos et al., 2008; Pagani et al., 2011; Pearson et al., 2009). Cli-
mate model simulations, using either very high greenhouse gas ra-
diative forcing or very high climate sensitivity, yield mean annual
temperatures consistent with most data for the early Eocene (Huber
and Caballero, 2011; Lunt et al., 2012). However, at several sites in
the southwest Pacific, both on and off shore (e.g., from Leg 189),
multiple proxies yield sea-surface temperatures (SSTs) 5° to 10°C
warmer than predicted by model simulations (Hollis et al., 2012;
Pross et al., 2012). Such SST estimates imply very low meridional
temperature gradients in the early Eocene, which has long posed a
climate puzzle (Barron, 1987).

Ocean circulation might account for low SST gradients in the
southwest Pacific during the early Eocene. One possibility is that
modeled SST predictions are too low because the region was influ-
enced by a warm southward-flowing current system (Hollis et al.,
2012) unaccounted for in climate models. Ocean currents predicted
by model simulations also could be substantially wrong if paleo-
bathymetry is not depicted accurately (e.g., if parts of the Tasman
Frontier were much shallower than today during the early Eocene).
There are indications that large vertical movements in the Tasman
Frontier occurred during the early Eocene (Baur et al., 2014; Suther-
land et al., 2010).

The early Paleogene stratigraphic record of New Zealand has
been examined in detail. The warming trend of the late Paleocene
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through early Eocene, the hyperthermal events of the early Eocene,
the EECO, and subsequent cooling can be found in sedimentary
successions of eastern New Zealand (Dallanave et al., 2015; Han-
cock et al., 2003; Hollis, 2006; Hollis et al., 2005; Nicolo et al., 2010,
2007; Slotnick et al., 2012).

Why did Earth’s climate generally cool since about 49 Ma? Most
hypotheses have invoked changes in the amount of volcanism or
weathering, which would affect carbon addition to or carbon re-
moval from the ocean and atmosphere (Brinkhuis et al., 2006; Kent
and Muttoni, 2008). It has been suggested that Eocene tectonic
change drove long-term Cenozoic climate change (Lee et al., 2013;
Reagan et al,, 2013). Prior to the early Eocene, most volcanic arcs
were continental, where rising magma can react with carbonate-
rich crust and generate voluminous CO,. Initiation of widespread
island-arc subduction systems around the Pacific during the early
Eocene created a network of submarine plate boundaries that may
have first increased and later decreased CO, fluxes to the atmo-
sphere.

Post-Eocene climate evolution

Initial reports for Legs 21 and 29 (Burns and Andrews, 1973;
Kennett et al., 1975) laid foundations for understanding the inter-
play between tectonic and oceanographic events in the region, in-
cluding opening of the Tasman Sea and separation of Australia and
New Zealand from Antarctica (Andrews et al., 1975; Andrews and
Ovenshine, 1975; Edwards, 1973, 1975; Kennett et al., 1975; Kennett
and Shackleton, 1976). Stable isotope records from Leg 29 (DSDP
Sites 277 and 279) reveal a general cooling trend over the Cenozoic,
with evidence for a pronounced cooling step across the Eocene—
Oligocene transition. A series of landmark publications from these
legs proposed that ocean circulation was a primary driver of re-
gional and global climate through the early Cenozoic, and the role
of circumpolar gateways in the evolution of Antarctic ice sheets and
global climate was first hypothesized (Kennett, 1977; Kennett and
Shackleton, 1976; Nelson and Cooke, 2001).

Leg 189 focused on the ocean gateway hypothesis and generated
a wealth of data and debate (Exon et al., 2004a; Kennett and Exon,
2004). Some continue to argue that opening of the Tasmanian gate-
way and subsequent development of the Antarctic Circumpolar
Current (ACC) played a crucial role in southwest Pacific oceanogra-
phy and climate (Kennett and Exon, 2004), whereas others link late
Paleogene cooling and ice sheet growth to a tectonically driven de-
cline in atmospheric CO, (DeConto and Pollard, 2003; Huber et al.,
2004).

Expedition 371 collected high-quality cores and data from the
key Tasman Frontier region, where ACC-driven abyssal bottom cur-
rents and the shallow wind-driven East Australian Current (EAC)
operate (Figure F7). Eastern flow of the EAC from Australia toward
New Zealand leads to an east—west zone of surface water diver-
gence. Drilling within the broader Indo-Pacific area has docu-
mented a phenomenon coined the late Miocene—early Pliocene
“biogenic bloom” (Farrell et al., 1995; Dickens and Owen, 1999). Be-
tween about 9 and 4 Ma, the accumulation of biogenic components
(e.g., carbonate, biosilica, and barite) increases significantly at many
sites beneath regions of modern surface water divergence (e.g.,
along the Equator of the eastern Pacific [van Andel et al., 1975; Far-
rell et al,, 1995], the far North Pacific [Rea et al., 1995], and the
Oman margin [Brummer and Van Eijden, 1992]). At DSDP Site 590,
which lies beneath the Tasman Front (southern boundary of the
easterly flowing EAC), carbonate accumulation rates doubled be-
tween the late Miocene and early Pliocene, consistent with the bio-
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genic bloom phenomenon (Grant and Dickens, 2002). The
coincidence of elevated export production at numerous locations
suggests far-field oceanographic teleconnections during the Neo-
gene, such as via an acceleration of Indo-Pacific upwelling and nu-
trient delivery to the photic zone.

Geological setting

The seafloor beneath the Tasman Frontier in the southwest Pa-
cific is complex with a series of bathymetric highs and lows (Figures
F1, F2). The bathymetric highs, and the islands of New Zealand and
New Caledonia, and perhaps the New Caledonia Trough, represent
the northern part of a continent referred to as Zealandia (Mortimer
et al.,, 2017). Unlike other continents, most of Zealandia lies under-
water because the continental crust is relatively thin. East of north-
ern Zealandia lies a lengthy subduction system, the Kermadec and
Tonga Trenches.

The Tonga-Kermadec system has been studied much less than
the Izu-Bonin-Mariana system but is complementary and has the
following advantages for investigation by drilling: (1) the Tonga-
Kermadec system formed adjacent to thin continental crust that
early back-arc spreading isolated from later complication by faulting
or volcanism; (2) persistent submarine conditions and moderate
water depths led to preservation of fossil-rich bathyal sediment re-
cords in many places; (3) seismic reflection data demonstrate the
existence of Eocene tectonic signals of change, including compres-
sion, uplift-subsidence, and volcanism; and (4) Australia-Pacific
plate-motion boundary conditions are precisely known (Cande and
Stock, 2004; Sutherland, 1995).

The tectonic history of the Tasman Frontier can be simplified
into 4 phases with approximate ages:

« >350-100 Ma: subduction along the eastern Gondwana margin.

« 100-80 Ma: continental rifting in the Tasman Sea region.

« 80-50 Ma: oceanic rifting, passive margins, and opening of the
Tasman Sea.

» 50—0 Ma: Tonga-Kermadec subduction.

Continental “basement” beneath bathymetric rises in the region
is inferred to be similar to rocks found in New Zealand, New Cale-
donia, and eastern Australia; this inference is supported by limited
dredge samples and drilling (DSDP Site 207), seismic velocities, and
gravity and magnetic anomalies (Collot et al., 2012; Klingelhoefer et
al.,, 2007; Mortimer, 2004a, 2004b; Mortimer et al., 2008; Suther-
land, 1999; Tulloch et al., 1991; Wood and Woodward, 2002). The
Lord Howe Rise and Challenger Plateau (Figure F3, F4) are proba-
bly composed of quartzose metasedimentary rocks and granitoids
of Paleozoic age that represent the eastern edge of Gondwana (Mor-
timer et al., 2017). High-amplitude magnetic anomalies and a single
dredge sample from the West Norfolk Ridge suggest that the south-
ern New Caledonia Trough is underlain by a fossil arc of late Paleo-
zoic and Mesozoic age that formed along the active margin of
Gondwana (Mortimer et al., 1998; Sutherland, 1999). The geology
of New Caledonia and northern New Zealand suggests that the
Norfolk Ridge system is underlain by Mesozoic fore-arc accretion-
ary rocks that formed at the convergent margin of Gondwana (Ad-
ams et al., 2009; Aitchison et al., 1998; Cluzel et al., 2010; Cluzel and
Meffre, 2002; Mortimer, 2004b). Based on comparison with eastern
New Zealand (Davy et al., 2008), a “fossil” Gondwana trench lay
along the northeast side of the Norfolk Ridge system and the slab
dipped southwest beneath the Lord Howe Rise.

The tectonic regime along the Tasman sector of the Gondwana
margin changed during the Cretaceous from subduction and con-
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vergence to widespread rifting and extension. Igneous activity was
widespread and of variable type and chemistry during the Creta-
ceous. Calc-alkaline and adakitic (high Sr/Y) activity with a sub-
duction-related signature is characteristic of the early phase (130—
110 Ma) in New Zealand and New Caledonia, whereas an intraplate
rift setting characterizes later activity after ~105-100 Ma and is also
recorded on the Lord Howe Rise (Bryan et al., 1997; Cluzel et al.,
2010; Higgins et al., 2011; Mortimer et al., 1999; Tulloch et al,
2009). Late Cretaceous rift basins contain coastal sandstone facies
overlain by transgressive marine sandstones and mudstones in New
Zealand, eastern Australia, and New Caledonia and are likely pres-
ent in the Tasman Frontier region (Collot et al., 2009; Herzer et al.,
1999; King and Thrasher, 1996; Uruski and Wood, 1991; Uruski,
2008). The end of widespread rifting in New Zealand, New Caledo-
nia, and Australia and the subsequent transition to passive margin
conditions were contemporaneous with the onset of seafloor
spreading in the Tasman Sea at ~80 Ma, but local fault activity is
known to have continued to ~60 Ma in Taranaki and northern
South Island, New Zealand (King and Thrasher, 1996; Laird, 1993).

Late Cretaceous to early Cenozoic seafloor spreading in the Tas-
man Basin is inferred from magnetic anomalies (Hayes and Ringis,
1973; Weissel and Hayes, 1977). The earliest seafloor spreading may
predate Chron C33r (84—80 Ma) east of Tasmania (Royer and Rol-
let, 1997), but marginal seafloor along much of the western edge of
the Lord Howe Rise probably formed during Chron C33r (Gaina et
al., 1998; Sutherland, 1999). Seafloor spreading ceased in the central
Tasman Sea during Chron C24 (53-52 Ma) or very shortly after-
ward (Gaina et al., 1998).

Deformation, exhumation, and emplacement of ultramafic,
mafic, and sedimentary allochthons occurred in New Caledonia
during the middle and late Eocene (Aitchison et al., 1995; Cluzel et
al,, 2001). The peak of high-pressure metamorphism in northern
New Caledonia was at 44 Ma, and exhumation was largely complete
by 34 Ma (Baldwin et al., 2007). Seismic-stratigraphic evidence
shows that the New Caledonia Trough either formed or was sub-
stantially modified during this event, though Cretaceous sedimen-
tary basins beneath the trough escaped Cenozoic convergent
deformation in most places (Collot et al., 2008; Sutherland et al.,
2010). Regional deformation and emplacement of allochthons in
northern New Zealand occurred later than in New Caledonia or the
Norfolk Ridge system, with the onset of tectonic activity during the
late Oligocene and early Miocene (~30-20 Ma) (Bache et al., 2012;
Herzer, 1995; Herzer et al., 1997; Rait et al.,, 1991; Stagpoole and
Nicol, 2008).

Australia-Pacific plate motion is precisely known for the period
since Chron C20 (43 Ma) because the plate boundary south of New
Zealand was extensional and a plate circuit through Antarctica can
be followed to provide additional constraints (Cande and Stock,
2004; Keller, 2003; Sutherland, 1995). Eocene convergence rates var-
ied from <1 cm/y in New Zealand to 10 cm/y near New Caledonia
(Figure F8). Late Eocene to Holocene subduction zone roll-back has
produced back-arc basins (Loyalty, Norfolk, South Fiji, North Fiji,
Havre, and Lau) and ridges interpreted as fossil and active arcs east
of the Norfolk Ridge system (Loyalty, Three Kings, Lau-Colville,
Tonga-Kermadec, and Vanuatu) (Crawford et al., 2003; Herzer et al.,
2009; Herzer and Mascle, 1996; Mortimer et al., 2007; Schellart et
al,, 2006). The complexity of basin opening makes local determina-
tion of past plate boundary configurations and rates difficult. This
back-arc region has mostly isolated the submerged continental part
of the Tasman Frontier region from Cenozoic subduction-related
deformation and volcanism.
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A variety of tectonic models have been proposed to explain how
various Eocene—Miocene arcs and back arcs subsequently formed
between the Tonga-Kermadec Trench and Norfolk Ridge (Cluzel et
al., 2006; Crawford et al., 2003; Herzer et al., 2009; Mortimer et al.,
2007; Schellart et al., 2006). General agreement exists that the mod-
ern Tonga-Kermadec system evolved from a boundary lying near
the Norfolk Ridge and New Caledonia in the middle Eocene. How-
ever, ideas about the exact geometry of that boundary or the nature
of Cretaceous to middle Eocene plate boundaries northeast of Nor-
folk Ridge (Whattam et al., 2008) vary because the region has either
been subducted or deformed and intruded and it is sparsely sam-
pled.

The oldest Cenozoic volcanic rocks from the southwest Pacific
with clear subduction affinities were dredged from the Tonga-Ker-
madec fore arc and have ages in the range of 52—-48 Ma (Meffre et
al,, 2012). In New Caledonia, dikes with subduction affinities cut
ophiolitic rocks and are interpreted to be approximately synchro-
nous with felsic dikes that are dated at ~53 Ma (Cluzel et al., 2006).
This represents the earliest evidence for subduction and predates
the peak of high-pressure metamorphism at 44 Ma (Baldwin et al.,
2007) and nappe emplacement in New Caledonia (Aitchison et al.,
1995; Maurizot, 2012). Magnetic anomaly interpretation shows that
the Tasman Basin ceased spreading at ~52-50 Ma (Gaina et al,,
1998). Therefore, there is strong evidence for Pacific-wide synchro-
nicity: the age of the Emperor-Hawaii bend, the inception of Izu-
Bonin-Mariana subduction, and a change from seafloor spreading
to Tonga-Kermadec subduction initiation in the Tasman Frontier.

Scientific objectives

1. How and why does subduction initiation occur?

a. Did plate convergence and a period of high horizontal stress
with convergent failure precede and induce subduction initi-
ation, or did subduction initiation happen spontaneously
with early extensional stresses?

b. What vertical stresses occurred during subduction initia-
tion, and when and where was this manifest as uplift or sub-
sidence?

2. Was the Eocene southwest Pacific anomalously warm, and why?

a. What were surface water temperatures during the early Ce-
nozoic across the region?

b. Were unusually high temperatures linked to regional phys-
iographic changes and hence climate change or/and global
changes in carbon cycling and hence the long-term cooling
trend that begins at ~50 Ma?

3. How does post-Eocene oceanography and climate compare to
elsewhere in the Pacific?
a. When did the modern ocean circulation system develop as
evidenced in the Tasman Frontier?
b. Are pole-Equator climate teleconnections manifested in the
Tasman Sea during the late Cenozoic?

Drilling strategy

Our drill sites were chosen foremost to test geodynamic model
predictions. Periods of time in the past that had high horizontal
stress may be recorded as faulted or folded strata. Anomalous verti-
cal stress in the past caused by traction or buoyancy would have
been balanced by surface uplift or subsidence and might be re-
corded as changes in paleodepths. Thermal or chemical anomalies
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in the crust or mantle in the past may be recorded by characteristic
volcanic products. We aimed to sample records with these signals.

The timing and style of faulting and folding can be determined
from stratigraphic relationships tied to seismic reflection data. In
general, three units constrain the timing of a tectonic event: faulted
strata are older than the event, unfaulted strata are younger than the
event, and syntectonic growth strata record progressive faulting
during the event. Growth strata are typically identified from thick-
ness changes within a sedimentary unit that drapes faulted units,
and seismic reflectors within the syntectonic unit may exhibit fan-
ning geometries close to faults.

The only practical way of measuring elevation of the crust
through time is against a sea level reference frame. Flat unconformi-
ties with regional consistency on seismic reflection (and in some
cases bathymetric) data are interpreted as surfaces produced by sea
level-modulated erosional processes. Samples dredged from >1500
m water depth from the Reinga Basin during the TAN1312 expedi-
tion confirm the occurrence of Paleogene bioclastic limestone with
shallow-marine fossils and hence affirm the hypothesis that large
(>1 km) vertical motions were associated with subduction initiation
(Browne et al., 2016). We aimed to recover shallow-water (<400 m)
fossils, either in place or reworked by sediment gravity flows, at our
target locations to provide direct evidence of past vertical positions
at precisely dated times. Tectonic and oceanographic research ob-
jectives are aligned. Fossils and geochemistry (e.g., proxy records for
water temperature or chemistry) can provide independent evidence
for vertical positions. Beyond direct and local constraints, models
that include ocean circulation are sensitive to paleobathymetry.

Our strategy was to obtain information on transects parallel and
perpendicular to where subduction initiated to constrain the differ-
ent physical processes involved in subduction zone initiation (Fig-
ure F9). The proximal ridge includes New Caledonia, Norfolk
Ridge, Reinga Basin, and northwest New Zealand (Figures F2, F3,
F4). The proximal region is deformed and presumably was involved
in the initial phase of surface convergence (Sutherland et al., 2017).
Knowledge from New Caledonia, IODP Sites U1507 and U1508,
and New Zealand produce a proximal boundary—parallel transect
that progressively samples initial rates of predicted convergence
(Bache et al., 2012).

IODP Sites U1506 and U1507 (proposed Sites LHRN-3A and
NCTN-8A, respectively), combined with knowledge from New
Caledonia and regional seismic reflection interpretation, should
provide a boundary-perpendicular transect in the northern region
(Figure F3), where Eocene convergence rates are thought to have
been highest (Figure F8). IODP Sites U1508, U1509, U1510, and
U1511 (proposed Sites REIS-2A, NCTS-2A, LHRS-3A, and TASS-
2A, respectively), combined with knowledge from New Zealand and
Australia, provide a southern transect (Figure F4) that has clear
signs of an extended period of plate failure (Sutherland et al., 2017).

We aimed to test the hypothesis that the proximal basin, the
New Caledonia Trough, subsided >2 km during the Paleogene, even
though it was only subjected to minor convergent deformation
(Sutherland et al., 2010). Sites U1507 and U1509 were chosen to
constrain the magnitude and timing of subsidence in relation to
other events. In addition, the New Caledonia Trough contains a re-
cord of detrital products derived from ridges on either side and so
records the timing of deformation and emergence of those ridges
(Etienne et al., in press; Bache et al., 2014).

The distal ridge, Lord Howe Rise, shows signs of minor Eocene
convergent deformation, volcanism, and significant erosion sur-
faces (Sutherland et al., 2010). Sites U1506 and U1510 were chosen
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to determine the timing and magnitude of vertical motions and
hence constrain the history of dynamic topography (upper mantle
flow), lithospheric buoyancy, and/or tractions related to shear
zones. Different geodynamic model classes make very different pre-
dictions of vertical motion.

The distal basin, the Tasman Abyssal Plain, shows signs of local
convergent deformation (Sutherland et al., 2017). The force trans-
mitted through the tectonic plate must have been large enough to
stop seafloor spreading and cause failure of the lithosphere. Site
U1511 was chosen to determine the timing of this change in stress
state and how it relates to other tectonic events. The timing and
magnitude of force transmitted through a plate is a powerful dis-
criminator: an induced subduction model predicts a larger and ear-
lier compressive force than a spontaneous subduction model
(Gurnis et al., 2004).

The Australia-Pacific convergence rate during the time of inter-
est was much faster near New Caledonia than near New Zealand
(Figure F8). Geodynamic models predict that stresses within an ini-
tiating subduction system evolve in response to the total conver-
gence experienced (Gurnis et al., 2004), so models predict along-
strike changes in timing that can be tested using biostratigraphy.
The absolute timing of observables can also be compared to known
plate motions. This ability to track total convergence precisely
through space and time is unique to the Tonga-Kermadec system
because most subduction systems have imprecisely known kine-
matic histories, as the rock record has been subducted.

Site summaries
Site U1506 (northern Lord Howe Rise)

Background and objectives

Site U1506 (proposed Site LHRN-3A) is located on the northern
Lord Howe Rise, ~290 km south of DSDP Sites 208 and 588 and
where geophysical surveys image a regional unconformity (Suther-
land et al., 2016). At Sites 208 and 588, the unconformity corre-
sponds to a break between foraminiferal and nannofossil chalk of
early Oligocene age and siliceous microfossil-bearing chalk, radio-
larite, and diatomite of middle Eocene age. The primary scientific
objective at Site U1506 was to test the hypothesis that the northern
Lord Howe Rise transiently uplifted to near sea level during the
Paleogene and has since subsided by ~1500 m. The drilling target,
identified from seismic reflection data, is a buried flat-topped fea-
ture with ~100 m of relief above the regional unconformity surface.
The feature has a positive polarity seismic reflection at its top but
also internal reflections. We hypothesized that it could be a coral
reef or wave-cut surface formed during the Eocene. Rotary drilling
was chosen because consideration of the seismic reflection ampli-
tude and seismic refraction velocity (3.2-3.8 km/s) suggested the
material might be too hard for advanced piston corer (APC) or ex-
tended core barrel (XCB) coring.

Operations

Hole U1506A: 28°39.7180’S, 161°44.4240'E; water depth = 1495
m

All depth references in meters in this section refer to the drilling
depth below seafloor (DSF) depth scale.

Site U1506 was the first site occupied during Expedition 371.
After an 1167 nmi transit from Townsville, Australia, the ship ar-
rived at Site U1506 at 1912 h on 3 August 2017 (UTC + 10 h). At
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1948 h, the drill floor was cleared for operations, beginning Hole
U1506A.

The rotary core barrel (RCB) bottom-hole assembly (BHA) was
assembled and deployed, and Hole U1506A was spudded at 0600 h
on 4 August. Coring proceeded to Core 29R where the expected
hard formation was encountered at ~265 m. We recovered cores in
half intervals (4.5-5.0 m length) below this depth to minimize risk
of core loss due to jams in the bit or inner barrel.

Coring stopped after Core 36R, which arrived on the rig floor at
1345 h on 5 August. Total recovery for the 306.1 m cored in Hole
U1506A was 192.38 m (63%). This included an average core recov-
ery of 61% from Cores 1R through 28R and 79% from Cores 29R
through 36R, which were recovered in half intervals (4.5-5.0 m).
Hole U1506A operations ended at 1935 h and the total time spent
on Hole U1506A (and Site U1506) was 47.75 h or 2.0 days. At 2000
h we departed for Site U1507.

Principal results

All depth references in meters in this section refer to the core
depth below seafloor, method A (CSF-A) depth scale.

Site U1506 consists of ~265 m of Pleistocene—middle Eocene
nannofossil ooze and chalk (lithostratigraphic Unit I) overlying ~40
m of volcanic rocks (lithostratigraphic Unit II; Figures F10, F11).
Sediments of Unit I are further divided into three subunits.

Subunit Ia (0-258.2 m) consists of relatively homogeneous
Pleistocene to upper Miocene white nannofossil ooze and chalk
with foraminifers, with carbonate content ranging from 88% to 95%.
Faint decimeter-scale white and grayish white color banding and
rare blebs of pyrite (generally framboidal under the scanning elec-
tron microscope [SEM]) occur in this subunit. The ooze—chalk
transition occurs across an interval including Cores 371-U1506A-
24R through 26R (~260 m). Fine structures and texture, including
bioturbation with slightly darker Zoophycos, Planolites, Skolithos,
and Chondrites burrows, are better preserved and visible in the
chalk than in the ooze.

Subunit Ib (258.2-264.3 m) is a ~6 m thick interval of pale yel-
low to white upper Oligocene nannofossil chalk with foraminifers.
The Subunit Ia/Ib boundary is marked by a color change from white
gray to pale yellow and a slight increase in magnetic susceptibility
(MS). It also represents a ~10 My hiatus separating the late Oligo-
cene from the late Miocene. Additionally, Subunit Ib is moderately
bioturbated with common Zoophycos and Planolites trace fossils.

Subunit Ic (264.3—-264.6 m) is a 34 c¢m thick interval of middle
Eocene glauconitic nannofossil chalk with foraminifers. The Sub-
unit Ib/Ic boundary, defined by the appearance of glauconite and a
coincident color change to light greenish gray, represents a ~20 My
hiatus between the middle Eocene and late Oligocene. Subunit Ic is
intensely bioturbated, with burrows filled with pale yellow Oligo-
cene nannofossil chalk from the overlying Subunit Ib.

Lithostratigraphic Unit II (264.6—305.3 m) represents the up-
permost ~41 m of a volcanic rock sequence. It consists of micro-
crystalline to fine-grained basalt with facies alternating in ~10 m
couplets of (1) dark reddish brown microcrystalline, highly vesicu-
lar, and amygdaloidal basalt with common veins and (2) dark gray
fine-grained massive aphyric basalt with rare carbonate veins. Thin
sections and X-ray diffraction (XRD) measurements show the basalt
is dominated by Ca-plagioclase and clinopyroxene alongside vari-
ous alteration minerals such as Fe-Ti oxides and chlorite. The car-
bonate veins and vesicle fills display a variety of composition and
texture, including large (>1 c¢cm grain size) fibrous calcite crystals
and fine-grained bioclastic packstone.
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Nannofossil and planktonic foraminifer biostratigraphy assign a
Pleistocene to late Oligocene age to lithostratigraphic Subunits Ia
and Ib. Higher resolution sampling allowed identification of a con-
densed interval between Samples 371-U1506A-28R-3, 75 cm, and
28R-4, 75 ¢cm (257.25-258.75 m), that represents ~10 My. Subunit Ic
is of middle Eocene age. A sample of a burrow fill within Subunit Ic
(29R-2, 70 cm; 264.36 m) is late Oligocene in age, indicating erosion
or nondeposition of middle Eocene to upper Oligocene sediment.

Microfossil assemblages consist of well-preserved calcareous
nannofossils, planktonic and benthic foraminifers, and ostracods,
indicating a depositional depth well above the lysocline. The middle
Eocene benthic foraminifers are characteristic of an upper bathyal
environment, about 500—1000 m shallower than the late Oligocene
and younger intervals. The ostracod assemblages indicate a deep-
water setting throughout Subunits Ia and Ib (representing late Oli-
gocene and younger age) but an upper bathyal setting for Subunit Ic
(middle Eocene).

Rare, heavily recrystallized reworked radiolarians were found in
some core catcher samples from this site. No other siliceous micro-
fossils were found in samples examined from this site.

A palynological reconnaissance study carried out on five sam-
ples from Hole U1506A, including one sample from the middle Eo-
cene glauconite-rich layer in Section 371-U1506A-29R-2, yielded
no palynomorphs.

Paleomagnetic measurements from ooze samples, representing
most of lithostratigraphic Subunit Ia, yielded unstable paleo-
magnetic directions, largely due to reworking of sediments (biotur-
bation) and drilling disturbance associated with the RCB coring
system. Integration with discrete sample-derived directions does
not allow reliable correlation with the geomagnetic polarity time-
scale (GPTS). However, stable paleomagnetic directions with sev-
eral polarity reversals were obtained in the chalk interval (below
~245 m), and clarity was improved by alternating field (AF) demag-
netization at 20 mT. Principal component analysis of paleomagnetic
directions after stepwise AF demagnetization of discrete samples
reveals a stable remanent magnetization component above 10-20
mT, confirming observations from superconducting rock magneto-
meter measurements.

Lithostratigraphic Unit II yields a stable paleomagnetic signal
after removing the overprint with AF demagnetization at 20 mT. A
normal polarity was obtained from most volcanic rock samples.
Some intervals not affected by AF demagnetization showed a re-
versed polarity after 20 mT demagnetization. Further analyses (e.g.,
thermal demagnetization) are required to investigate the paleo-
magnetic signal of the volcanic materials.

Gamma ray attenuation (GRA) bulk density, MS, color, and nat-
ural gamma radiation (NGR) exhibit small amplitude variations in
lithostratigraphic Unit I and significantly greater amplitude varia-
tions in Unit II.

In Unit I, GRA varies between 1.6 and 1.8 g/cm?, and porosity
decreases from ~63% to 52% from the seafloor to the base of Unit I,
typical of calcareous ooze and chalk. P-wave velocity increases
gradually with depth from ~1600 to ~2000 m/s. Intermittently
higher P-wave velocity values of ~2200 m/s occur in Cores 371-
U1506A-26R and 27R, reflecting the diagenetic transition of ooze to
chalk. MS is low throughout the sedimentary section, with a few lo-
cal MS spikes up to 100 instrument units (IU). NGR is also generally
low (1-4 counts/s) but increases to ~25 counts/s in glauconitic Sub-
unit Ic.

Thermal conductivity shows a gradual and increasing trend with
depth from 1.1 to 1.4 W/(m-K) over the uppermost ~250 m, consis-
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tent with expected values for calcareous ooze and chalk. Vane shear
strength increases from ~18 kPa near the seafloor to ~40 kPa at 190
m. Compressive strength from penetrometer measurements shows
very low strength in the top ~72 m of Unit I then increases and be-
comes variable (~60 to ~100 kPa) to 186 m.

The most significant change in physical properties spans the
lithostratigraphic Unit I/II boundary. This sediment/rock contact at
265 m corresponds to major increases in bulk density (up to 2.8
g/cm?®) and P-wave velocity (4400—-6500 m/s). This impedance con-
trast can be correlated with the major reflection seen in the multi-
channel seismic (MCS) profiles used in the site surveys (2.29 s two-
way traveltime [TWT]). MS (0-1500 IU), NGR (~3-9 counts/s),
bulk density, and color reflectance show much higher amplitude
variations in Unit II than in Unit I. Porosity drops to 9%—20% within
Unit IL

A total of 15 interstitial water (IW) samples were collected from
Cores 371-U1506A-4R through 28R (26-261 m; lithostratigraphic
Unit I). Sulfate concentration decreases from ~29 mM at the “mud-
line” to ~20 mM at depth. The ammonium profile somewhat mir-
rors that of sulfate, increasing from 0 to 150 uM. This suggests
sulfate reduction of particulate organic carbon in the sediments.
The product of this reaction, H,S, once reacting with Fe, also ex-
plains the abundant iron sulfide mineral horizons observed in the
cores. From the top to the bottom of the sedimentary section, Ca
increases from 10.6 to 18.3 mM and Mg decreases from 52.9 to 36.2
mM. This could reflect reactions between pore water and basement
rock. Si and Mn increase from 160 to 200 mM and from 0.4 to 3
mM, respectively, at the transition from ooze to chalk.

Headspace gas samples were collected from each core. Hydro-
carbon gas concentrations in all samples were below detection lim-
its.

Carbonate (CaCOs) content is high (>88 wt%) throughout Unit
I, showing an increasing trend with depth in the uppermost 70 m,
with highest values (~95 wt%) between 85 and 143 m and between
200 and 228 m. Total organic carbon (TOC) percentages are low,
with values ranging between 0.2 and 0.4 wt% in the top ~210 m and
between 0.6 and 1.0 wt% from 219 to 247 m. Trace amounts of ni-
trogen are present in the uppermost two samples (0.65 and 14.32
m). No samples were taken for bulk sediment geochemistry from
Subunit Ic or Unit II.

Site U1507 (northern New Caledonia Trough)

Background and objectives

Site U1507 (proposed Site NCTN-8A) is located in the New
Caledonia Trough, ~460 km south of New Caledonia, ~620 km
north of DSDP Site 206, and ~530 km east of Sites 208 and 588.
Trending northwest—southeast and north-south, the New Caledo-
nia Trough delineates a ~1700 km long bathymetric low on north-
ern Zealandia (Figure F2). The northern and central parts of the
feature have not been drilled previously. On the basis of evidence
from Site 206 and the Taranaki Basin, it has been inferred that the
New Caledonia Trough formed during Cretaceous rifting and sub-
sequent subsidence. However, recent analysis of high-quality seis-
mic reflection data has led to an alternate hypothesis: the present
physiography was created mainly during Eocene subduction zone
initiation. Site U1507 was chosen to determine the timing of defor-
mation and uplift of Norfolk Ridge, to constrain the age of trough
formation and sedimentary fill, and to obtain a record of regional
volcanism (Sutherland et al., 2016). The intent was to core Site
U1507 using the APC/XCB system to sample a downlapping se-
quence (at ~500-700 meters below seafloor [mbsf]) that was in-
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ferred to represent an influx of sediment from the Norfolk Ridge
and hence date emergence of the ridge.

Operations

Hole U1507A (26°29.3158’S, 166°31.7039’E; water depth = 3568
m)

Hole U1507B (26°29.3158’S, 166°31.7155'E; water depth = 3568
m)

All depth references in meters in this section refer to the DSF
depth scale, unless noted otherwise.

Hole U1507A was cored with the APC and XCB systems. The
first was used to retrieve Cores 1H through 26H with an average re-
covery of 106%. Temperature measurements were taken at the bot-
tom of Cores 4H, 7H, 10H, 13H, 16H, and 19H. Deployment of
orientation and temperature tools was discontinued after Core 20H,
and APC coring was discontinued after Core 26H. Coring contin-
ued with the XCB system, retrieving Cores 27X through 46X with
an average recovery of 55%. Total recovery for Hole U1507A was
352.7 m (83%), and the total time spent on Hole U1507A was 3.6
days.

Hole U1507B was first drilled without coring from 0 to 376 m
and then cored (Cores 2R through 53R) with a recovery of 371.5 m
(76%). The total time spent on Hole U1507B was 8.1 days.

After dropping the coring bit at the bottom of the hole and re-
placing the hole with heavy mud, three logging passes were made
with a modified triple combo tool string between 75.2 and 864 m
wireline log depth below seafloor (WSF): a downhole log, a 125 m
uplog for calibration, and a main log up the entire hole. The modi-
fied triple combo logging tool string included MS, electrical resis-
tivity, sonic, bulk density, and NGR tools.

Principal results

All depth references in meters in this section refer to the CSF-A
depth scale.

The sedimentary sequence at Site U1507 consists of ~685 m of
biogenic ooze and chalk interbedded with calcareous and volcani-
clastic turbidites (lithostratigraphic Unit I), overlying ~170 m of
more homogeneous clayey nannofossil chalk (lithostratigraphic
Unit II; Figures F10, F11). Sediments of Unit I are further divided
into three subunits, based on changes in lithology and sedimento-
logical features, as identified by macroscopic and microscopic
(smear slide, thin section, and SEM) core description.

Subunit Ia (0-401.2 m) mostly consists of white nannofossil
ooze and chalk. This dominant lithology is accompanied by light
greenish gray nannofossil-rich clay with volcanic ash, white gray
normally graded foraminiferal ooze or limestone beds, and a re-
stricted ~2 m thick interval of very dark greenish gray volcanic
breccia and tuffaceous sandstone. Soft-sediment deformation is
widespread but particularly common in the lowermost part of the
subunit.

Subunit Ib (401.2-542.9 m) is primarily composed of greenish
gray clayey nannofossil chalk with volcanic ash showing significant
soft-sediment deformation, interbedded with dark gray clayey tuffa-
ceous sandstone and greenish gray clayey foraminiferal limestone
with volcanic clasts. This subunit differs from Subunit Ia by an over-
all increase in clay and volcanic content.

Subunit Ic (542.9-685.5 m) consists of dark greenish gray
coarse- to fine-grained tuffaceous conglomerate, sandstone, and
tuff, alternating with light greenish gray clayey nannofossil chalk
with volcanic ash. The boundary with Subunit Ib is defined by the
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first occurrence of a thick-bedded tuffaceous conglomerate. Volca-
niclastic lithologies display a range of sedimentary facies that point
to deposition from various gravity flow processes from debris flows
to turbidity currents. Thin sections and XRD measurements on the
volcaniclastics reveal that clast lithologies consist of variable per-
centages of basaltic minerals, such as pyroxene, plagioclase, and ol-
ivine phenocrysts, as well as volcanic glass shards, vesicular pumice,
and large benthic foraminifers.

Lithostratigraphic Unit II (685.5-855.7 m) consists of homoge-
neous, light greenish gray bioturbated clayey nannofossil chalk with
common Zoophycos, Nereites, and Spirophyton burrows and rare
foraminiferal limestone beds. The lithology is consistent with hemi-
pelagic-dominated sedimentation. Very rare foraminiferal lime-
stone beds, with few volcanic grains, are still encountered in this
subunit. At 826-836 m, the lithology changes to a greenish gray
nannofossil claystone, possibly reflecting increased carbonate dis-
solution.

Nannofossils and foraminifers are present throughout Holes
U1507A and U1507B, providing a robust stratigraphy (Figure F11):
Pliocene—Pleistocene (6.2—177.8 m), Miocene (187.0-432.6 m), late
Oligocene (449.9-520.0 m), early Oligocene (523.1-639.1 m), and
late to middle Eocene (642.3—855.7 m). The Oligocene/Miocene
boundary can be approximated using the top of Sphenolithus del-
phix (~442.5 m). The Eocene/Oligocene boundary can be approxi-
mated using the top of planktonic foraminifer Globigerina
euapertura, the benthic foraminifer Nuttallides truempyi, the base
acme of calcareous nannofossil Clausicoccus subdistichus, and the
top of rosette discoasters.

The occurrence of Orbulinoides beckmanni in samples from
835.5 to 836.1 m constrains these depths to planktonic foraminiferal
Zone E12 (40.03-40.43 Ma), which effectively marks the Middle Eo-
cene Climatic Optimum (MECO). For calcareous nannofossils, the
base of Dictyococcites bisectus at ~836.1 m and the top of Spheno-
lithus obtusus at ~825.6 m indicate the post-MECO interval was re-
covered in this interval. However, Core 371-U1507B-51R (835.7—
836.1 m) only recovered 38 cm (4%), so most of the MECO was
washed away or lost during coring.

Radiolarians have a patchy record. Well-preserved Neogene
radiolarians are found in samples from 6.2 to 54.1 m. The interval
from 63.4 to 380.6 m is barren of radiolarians. The interval from
380.6 to 523.2 m contains varying amounts of radiolarians, ranging
from trace to common, with some samples barren of radiolarians.
Low-latitude index species are absent or rare.

Benthic foraminifers indicate paleodepths that gradually range
from abyssal in the most recent part of the sequence to lower
bathyal in the Oligocene and Eocene. In some intervals (e.g., ~205.6
m), their assemblages contain a mixture of deepwater and relatively
shallow-water taxa with different preservation states. A paly-
nological reconnaissance study, carried out on 10 core catcher sam-
ples throughout the sedimentary sequence, showed that deposits at
Site U1507 are effectively barren of palynomorphs. Ostracods were
rare to common between 6.2 and 279.7 m in Hole U1507A and ab-
sent in Hole U1507B, except for one sample.

Paleomagnetic measurements on section halves from Holes
U1507A and U1507B show variable quality for different lithostrati-
graphic units. In Hole U1507A, the natural remanent magnetization
(NRM) intensity is in the range of 10-2 A/m and increases from 234
m downhole by about one order of magnitude. NRM inclination is
mostly positive, likely the effect of a present-day geomagnetic over-
print. After AF demagnetization cleaning at 20 mT, the interval
from O to 54.1 m is characterized by dominantly normal polarity
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with some intervals of reversed polarity. Between 53.7 and 215.6 m,
some swings between positive and negative inclination are ob-
served, without a clear bimodal clustering, and from 216 m down-
hole inclinations are less stable. This may reflect some combination
of drilling-related deformation, depositional processes, and weak
magnetization. The average inclination for Hole U1507A is around
-20°, and no reliable shipboard magnetostratigraphy can be ob-
tained for this hole.

High-quality paleomagnetic data were obtained on sediments
from Hole U1507B, with a well-defined series of normal and re-
versed polarity intervals in lithostratigraphic Unit I. Inclination val-
ues for Unit I after 20 mT AF demagnetization have two clear peaks
clustered around -40° and 45°. The overall high-quality paleo-
magnetic data from Hole U1507B can be attributed to the high
NRM intensity and good recovery of lithified sediment cores. Inte-
gration with biostratigraphic results shows that the interval be-
tween 433.3 and 682.9 m contains most polarity chrons from Chron
C6Br in the early Miocene through Chron C16n in the late Eocene.

Sediments from lithostratigraphic Unit II generally show scat-
tered inclination values without recognizable bimodal distribution.
Two inclination changes at 759.3 and 834.0 m are tentatively cor-
related with the bases of Chrons C17n and C18n, respectively.

Anisotropy of magnetic susceptibility (AMS) was measured on
123 discrete samples from Site U1507, which were collected in the
most undisturbed intervals and often on top of turbidite layers. The
soft and magnetically weak sediments from Hole U1507A did not
yield well-defined orientations of the AMS tensor. Cube samples
from lithified sediment, however, show a clear oblate magnetic fab-
ric, where the minimum axis of the AMS ellipsoid is statistically ori-
ented perpendicular to the bedding.

Cores recovered from Holes U1507A and U1507B were ana-
lyzed with the full suite of physical property measurements. Down-
hole temperature measurements were made in Hole U1507A, and
wireline logging was completed using a modified triple combo tool
string in Hole U1507B.

Bulk density increases with depth from the seafloor (1.5 g/cm?)
to the bottom of the hole (2.4 g/cm?®) with local decreases to ~1.6
g/cm?® observed between ~420 and ~500 m. Moisture and density—
derived porosity values correspondingly decrease from ~70% in
nannofossil ooze at the top of Hole U1507A to ~25% at the base of
Hole U1507B in nannofossil chalk. Grain density is ~2.71 g/cm? to
~300 m and then varies between 2.7 and 2.8 g/cm? to ~700 m, ex-
cept for the interval ~420-500 m, where grain density conspicu-
ously drops to 2.6-2.7 g/cm? In lithostratigraphic Unit II, grain
density decreases again to ~2.5-2.7 g/cm?.

P-wave velocity measured on cores gradually increases down-
hole in Subunit Ia, with a more rapid increase around 290 m corre-
sponding to the diagenesis of ooze to chalk. From ~400 to 520 m, P-
wave velocities increase from 2000 to 2500 m/s, and stay at similar
values to the base of the hole. P-wave velocity from wireline logging
increases from 2300 to 2700 m/s within Unit II, with a negative ex-
cursion to ~2400 m/s associated with the MECO at ~835 m.

Thermal conductivity increases gradually with depth from 1.1 to
1.8 W/(m-K) in Subunit Ia and shows a decreasing trend in Subunits
Ib and Ic. In Hole U1507A, six temperature measurements were
made with the advanced piston corer temperature tool (APCT-3),
yielding a temperature gradient of 46.9°C/km.

MS is low (< 50 IU) in Subunits Ia and Ib and high (up to 1000
IU) within Subunit Ic. Below 680 m, values decrease to ~40 IU and
are constant in the lowermost part of the hole. NGR measured on
cores and by wireline logging show matching downhole variations.
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NGR is low, except for positive excursions of ~20-40 counts/s be-
tween 400 and 520 m and between 520 and 680 m.

Changes in color reflectance occur at the base of Subunit Ia,
where all parameters decrease, reflecting the darker and greener
clay-rich sediments. A slight increase in lightness (L*) is observed at
the top of Unit II.

Headspace gas samples were routinely collected from each core
from Holes U1507A and U1507B. Hydrocarbon gas concentrations
in all samples were below detection limits.

A total of 56 IW samples were collected from Cores 371-
U1507A-1H through 45X (51 samples) and 371-U1507B-6R
through 14R (5 samples). The results show a distinctive difference
between above and below 250 m, corresponding to the change from
APC to XCB or rotary coring. The IW constituent profiles are
smooth in the upper 250 m and become scattered below 250 m. De-
spite this issue, Mg, K, and SO,2- generally decrease, whereas Ca in-
creases downhole. Dissolved Sr increases smoothly in the upper 160
m and then remains approximately constant with depth. The nega-
tive correlation between dissolved Ca and Mg concentrations sug-
gests reactions between volcanic material and pore water in the
sediment column. The downhole decrease in SO,?- suggests sulfate
reduction of particulate organic carbon, which also explains the rise
in dissolved NH,* with depth.

Samples for solid sediment analysis were taken at a sampling
resolution of at least one sample per core from Holes U1507A and
U1507B. Carbonate contents are very high (>90 wt%) throughout
Subunit Ia. Decreasing carbonate contents (30—70 wt%) toward the
middle of Subunit Ib and Ic correlate well with changes in other
properties, such as decreasing reflectance L*, increasing MS, and
increasing NGR. Interbedded darker colored layers are represented
by lower total carbon and carbonate contents (~20 wt%). Carbonate
contents within Unit II are high, varying between 50 and 80 wt%.
TOC contents are low (averaging 0.4 wt%) throughout the sediment
column and do not differ significantly between units.

Linear sedimentation rates (LSRs) and mass accumulation rates
were calculated for Site U1507 using paleomagnetic and calcareous
nannofossil datums (Figure F11). The record recovered at Site
U1507 is remarkably continuous despite numerous turbidite depos-
its and seismic reflectors, and it includes the entirety of the Oligo-
cene. LSRs in the mid to late Eocene vary between ~30 and 60
m/My but decrease near the Eocene—Oligocene transition to ~15—
20 m/My. An extended duration of low LSRs (~12 m/My) character-
izes the Oligocene to middle Miocene, except for two short time in-
tervals of enhanced LSRs (30-29 Ma and 25-23 Ma). After 9.5 Ma,
LSRs stepwise increase to 40 m/My at 7.4 Ma and remain at these
high values until 4.0 Ma. This pulse in sedimentation, which is char-
acterized by constant high carbonate contents, may correspond to
the late Miocene to early Pliocene biogenic bloom as documented at
other sites. The uppermost 4 My at Site U1507 are represented by a
relatively condensed section with LSRs <4 m/My.

Mass accumulation rates follow the trend observed in LSRs and
vary between 2 and 12 g/cm?/ky.

Site U1508 (Reinga Basin)

Background and objectives

Site U1508 (proposed Site REIS-2A) is located ~130 km west of
Cape Reinga, the northern tip of Northland, New Zealand. The lo-
cation is on the northeast margin of Reinga Basin (Bache et al.,
2012), which contains folded Eocene strata that have been dredged
but never drilled (Browne et al., 2016). The site was chosen to sam-
ple a record of deformation, uplift, subsidence, and early arc volca-
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nism in a southern region proximal to Tonga-Kermadec subduction
initiation (Sutherland et al., 2016). The overall objective was to sam-
ple Miocene—Eocene strata, which includes an onlap surface that
marks the onset of deformation. A high-amplitude seismic reflector
near the base of the borehole has regional significance for strati-
graphic correlation and was hypothesized to represent a major
change in sedimentation during the Eocene.

Operations

Hole U1508A (34°26.8902'S, 171°20.6073’E; water depth = 1609

m)

Hole U1508B (34°26.8975’S, 171°20.5990'E; water depth = 1609
m)

Hole U1508C (34°26.8905'S, 171°20.5889'E; water depth = 1609
m)

All depth references in meters in this section refer to the DSF
depth scale, unless noted otherwise.

We completed the 546 nmi transit from Site U1507 to U1508
and arrived at 2300 h on 20 August 2017 (UTC + 10 h). An
APC/XCB BHA was made up and APC coring in Hole U1508A
started at 0900 h on 21 August. Temperature measurements were
taken on Cores 7H, 9H, 10H, 12H, 14H, and 17H. Core 23H had to
be drilled over for 40 min to release it from the formation, and Hole
U1508A was ended at 1140 h on 22 August. Total recovery for the
210.3 m cored was 201.1 m (96%). The time spent on Hole U1508A
was 36.0 h or 1.5 days.

The ship was offset by ~20 m to the southwest. An RCB BHA
was made up and drilling without coring in Hole U1508B started at
1745 h on 22 August, reaching the target (186.6 m) at 2245 h on 22
August. Coring in Hole U1508B began with Core 2R. While retriev-
ing Core 38R (503.4 m) at 0700 h on 24 August, we stopped opera-
tions due to a medical emergency and began recovering the drill
string. Cores 2R through 38R penetrated from 186.6 to 503.4 m and
recovered 133.32 m (42%). The time spent on Hole U1508B was
49.5 h or 2.1 days.

The 302 nmi transit to Auckland began at 1354 h on 24 August.
During the trip, the clock was advanced twice, to UTC + 12 h
(Auckland time). On the way back from the medical evacuation, the
clock was set back 1 h, to UTC + 11 h, and remained that way for the
rest of the Expedition 371 drilling operations. The trip back to Site
U1508 was completed at 0600 h on 27 August. An RCB BHA was
deployed and Hole U1508C was initiated ~20 m northwest of Hole
U1508B at 1150 h. The top 450 m of Hole U1508C was drilled with-
out coring, except for two spot-cored intervals at 278.0-292.6 m
(Cores 2R through 4R) and 316.0-330.7 m (Cores 6R and 7R) to bet-
ter recover key intervals. At 0730 h on 28 August, we resumed RCB
coring until penetration rates slowed to ~2 m/h. Although short of
the desired target depth, we decided to stop coring and conduct
wireline logging at 0300 h on 31 August. Collectively, Cores 2R
through 38R and the two drilled intervals penetrated from 278.0 to
704.5 m and recovered 185.04 m of sediment (65% of cored inter-
vals).

The bit was dropped at the bottom of the hole at 0325 h on 31
August, the hole was displaced with 194 barrels of 11.0 Ib/gal mud,
and the open end of the drill string was set at 86.7 m. At 0900 h, we
deployed the same modified triple combo logging tool string config-
uration as used in Hole U1507B with the exception that no source
was installed in the density tool. Logging went well until ~1230 h
when the tool string became stuck at ~270 m WSEF. The logging line
was cut at the rig floor and terminated with connectors that would
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allow assembly of drill pipe over the logging line to wash down and
over the logging tools with the open-ended BHA. After the logging
tools were free at 2105 h, the tool string arrived back on the rig floor
at 0315 h on 1 September. After the drill string was recovered, the
ship began the transit to Site U1509 at 0730 h on 1 September.

Principal results

All depth references in meters in this section refer to the CSF-A
depth scale.

The sedimentary sequence at Site U1508 consists of ~700 m of
heterogeneous strata divided into three lithostratigraphic units (I,
I, and III).

Lithostratigraphic Unit I (0.0-90.1 m) consists of ~90 m of fora-
miniferal ooze with varying amounts of nannofossils and coarse-
grained bioclasts. An increase in the occurrence of millimeter-sized
bioclasts comprised mainly of bryozoans starts at ~49 m and ex-
tends to the bottom of this unit. The Unit I/Il boundary at 90.1 m is
defined by an abrupt change from foraminiferal ooze with bioclasts
to clayey nannofossil ooze with biosilica.

Lithostratigraphic Unit II (90.1-379.3 m) consists of ~290 m of
calcareous ooze and chalk with varying amounts of clay and is di-
vided into two subunits. Subunit ITa (90.1-200.6 m) comprises light
greenish clayey nannofossil ooze with varying contents of foramini-
fers and sponge spicules. Subunit IIb (200.6-379.3 m) is nanno-
fossil-rich foraminiferal ooze and chalk with lithic and volcanic
grains increasing to ~336 m and then decreasing downhole, result-
ing in a pure foraminiferal chalk in the lowermost 30 m of the sub-
unit.

The lithostratigraphic Unit II/III boundary at 379.3 m is identi-
fied by an abrupt downhole decrease in grain size to nannofossil
chalk with varying amounts of foraminifers. Unit III (379.3-701.9
m) is composed of moderately bioturbated nannofossil chalk, which
is further divided into two subunits. Subunit IIIa (379.3-491.6 m)
consists of moderately to heavily bioturbated clayey nannofossil
chalk and contains at least 50 sporadic centimeter-scale cherty
limestone intervals. Subunit IIIb (493.8-701.9 m) is characterized
by a downhole decrease in clay content and color brightening, with
cherty limestone last observed at ~503 m. Subunit IIIb comprises
nannofossil chalk, and from ~685 m downbhole it is sufficiently lith-
ified to be classified as a nannofossil limestone.

Calcareous nannofossils are abundant in most of the studied
samples. Planktonic foraminifers dominate over benthic foramini-
fers, which are present in most samples. Radiolarians are few to rare
in most samples, barren in some samples from Holes U1508A and
U1508B, and few to abundant in the lower half of Hole U1508A. Os-
tracods are abundant to common in Unit I and Subunit IIb and rare
to barren in Subunits IIa, IIla, and IIIb. Preservation of all fossil
groups decreases downhole, ranging from excellent to good in the
upper part of Hole U1508A and from moderate to poor in Hole
U1508C.

Calcareous nannofossil and planktonic foraminiferal datums,
occasionally supplemented by radiolarian biostratigraphy, allow age
assignments to all studied samples (Figure F11). Lithostratigraphic
Unit [ is Pleistocene—Pliocene in age. The interval between 96 and
210 m, nearly coincident with lithostratigraphic Subunit Ila, is Mio-
cene in age. Samples between 187 and 373 m are Miocene to Oligo-
cene in age. Nannofossil biostratigraphy points to an early Miocene
to late Oligocene hiatus (Zones NN4-NN1) of ~6 My in both Holes
U1508B (312-321 m) and U1508C (316—321 m). The interval from
379 to 497 m in Hole U1508B is late to middle Eocene age. In Hole
U1508C, the interval from 450 to 480 m is late Eocene age and the
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interval from 484 to 686 m is middle Eocene age. Nannofossils,
planktonic foraminifers, and radiolarians indicate an early Eocene
age near the bottom of the sequence (686—702 m). Age-diagnostic
dinocyst species corroborate the age constraints determined by
nannofossils and planktonic foraminifers.

Benthic microfossils (ostracods and foraminifers) indicate a
lower bathyal paleoenvironment throughout most of the sedimen-
tary sequence and slightly shallower paleodepths (deep middle
bathyal) during the Oligocene and late Eocene. Palynological as-
semblages contain moderately to well-preserved palynomorphs,
predominantly inner neritic to pelagic dinocysts. Terrestrial palyno-
morph content is much higher in the Pliocene to late Oligocene
than in the early Oligocene to Eocene, indicating a significant
change in offshore transport. Reworked microfossils, in particular
of early Paleogene age, commonly occur downhole from the mid-
Miocene in all fossil groups.

Pass-through paleomagnetic measurements from Unit I (0-90
m) are affected by core disturbance and have extremely weak mag-
netization (~10-°-10-% A/m), resulting in random NRM inclina-
tions. NRM inclinations in Subunit IIa (~90-210 m) show a series of
polarity swings but no clear polarity pattern. In contrast, high-qual-
ity paleomagnetic data were obtained from Subunit IIb from ~250
to 380 m with well-defined geomagnetic reversals. From lithostrati-
graphic Subunit IIb to Unit III, the NRM intensity drops to ~10-4—
10-% A/m, resulting in poor paleomagnetic behavior for many cores.
Reliable paleomagnetic data were obtained from some intervals in
Hole U1508C, including 278-324 and ~650-700 m. Integration
with biostratigraphy allows a series of paleomagnetic reversals in
Holes U1508B and U1508C (Subunit IIb and Unit III) to be cor-
related with the GPTS back to ~48 Ma.

Samples from Hole U1508A have a poorly defined orientation of
the AMS tensor, whereas most samples from Holes U1508B and
U1508C exhibit a well-defined oblate AMS fabric with the mini-
mum axis of the AMS ellipsoids statistically oriented perpendicular
to the bedding plane.

Variations in physical properties define three distinctive bound-
aries at ~90, ~200, and ~500 m and are correlated with two strong
reflections on MCS data and three lithostratigraphic boundaries.
The upper interval, corresponding to lithostratigraphic Unit I, is
characterized by low density of ~1.5 g/cm?, high porosity of ~65%—
75%, and increasing velocity from ~1500 to ~1700 m/s. All these
values show a baseline shift at the Unit I/II boundary (~90 m) to
higher bulk density values (~1.65 g/cm?), lower porosity values
(~60%—65%), and lower velocity values (~1600 m/s) that remain
constant throughout Subunit IIa down to ~200 m. Within the up-
permost part of Subunit IIb (~200-250 m), bulk density decreases
from ~1.75 to ~1.55 g/cm?, porosity increases from ~60% to ~70%,
and shear strength decreases from ~100 to ~30 kPa, whereas P-
wave velocity increases from ~1600 to 1900 m/s. Below the Subunit
IIIa/IIIb boundary at 500 m, bulk density gradually increases from
2.0 to 2.3 g/cm?, porosity gradually decreases to ~25%, and P-wave
velocity increases from ~2200 to 2600 m/s. At the very base of Sub-
unit IIIb where the transition from chalk to limestone occurs (680—
700 m), velocity and bulk density sharply increase to ~3600 m/s and
2.45 g/cm?, respectively.

NGR and color reflectance data reveal complementary trends to
the density, porosity, and velocity measurements, including the
three distinctive boundaries at ~90, ~200, and ~500 m. NGR in-
creases and the color changes at ~90 m. NGR decreases and then
increases around ~200 m. MS from wireline logging and core mea-
surements are low throughout the entire section, except for the in-
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terval from ~240 to ~380 m (Subunit IIb), which contains lithic
constituents. This interval also has higher amplitude (up to ~20
counts/s) NGR variations.

Five in situ temperature measurements in Hole U1508A re-
vealed a gradient of ~55°C/km.

Headspace gas samples were routinely collected from each core
in Hole U1508A and from deeper cores in Hole U1508C. Methane
was above the detection limit from ~460 m downhole and progres-
sively increased below ~500 m. Methane concentration was ~6000
ppmv and ethane concentration was 36 ppmv at the base of Hole
U1508C.

A total of 75 IW samples were collected from Site U1508 by
three different methods: whole-round squeezing, Rhizon sampling,
and half-round squeezing. The latter were ~15 cm intervals taken
from core working halves 1-2 days after recovery and crushed in
plastic bags. These half-round samples yield reasonable results for
some dissolved species, notably sulfate. Rhizon results generally lie
close to those from squeezed samples at nearby depths. The manga-
nese concentration profile does not show a peak within the upper-
most meter or so, which suggests the true mudline is missing.
Adjacent samples from the upper ~100 m of the section show large
variance because the sediment is unconsolidated foraminiferal
sand, which makes collection of uncontaminated pore water diffi-
cult. Nonetheless, most constituents do not vary much in concen-
tration over the uppermost 275 m. Below 275 m, sulfate
concentrations decrease downhole linearly and ammonium, bar-
ium, and strontium concentrations increase linearly or exponen-
tially. The concomitant loss of sulfate and rise in methane from
~500 m downhole suggests a deep zone of anaerobic oxidation of
methane (AOM), which also may explain the abundant macroscopic
pyrite at this depth interval.

Bulk sediment carbonate content varies considerably with
depth, having 100 m—scale fluctuations between highs of ~95 wt%
and lows of ~40 wt%, which relate to the lithostratigraphic units.
TOC contents are 0.76 + 0.36 wt%, without any consistent down-
hole trend.

All cores from Holes U1508A-U1508C were correlated to the
downhole logging data (at the wireline log matched depth below
seafloor [WMSF] depth scale) using one tie per core. An offset table
allows users to approximate depths of core data at the CSF-A depth
scale to the WMSF depth scale of the downhole logging data.

LSRs were calculated for Site U1508 using calcareous nanno-
fossil datums and polarity chron boundaries from 0 to 48 Ma (Fig-
ure F11). LSRs in the Pliocene—Pleistocene vary between ~10 and
80 m/My and average ~20 m/My during the early to late Miocene.
The succession is condensed for most of the Oligocene despite a
short interval from 23 to 26 Ma. LSRs for the late to middle Eocene
are steady at ~20 m/My.

Site U1509 (southern New Caledonia Trough)

Background and objectives

Site U1509 (proposed Site NCTS-2A) is located ~640 km west
of the northern tip of New Zealand, ~300 km south of Site 206, and
~200 km north of DSDP Site 592. The location is on the western
margin of the New Caledonia Trough at the base of the Lord Howe
Rise slope, near the mouth of a canyon that drains around the
northeast end of a small submerged spur (Sutherland et al., 2016).
This spur, inferred to have been created by deformation, is under-
lain by the northeast-dipping limb of a west-verging fold that ex-
poses strata that can be traced beneath the axis of the New
Caledonia Trough. Site U1509 was chosen to determine the timing
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of Cenozoic folding in the southern New Caledonia Trough and to
obtain stratigraphic constraints on the timing of vertical tectonic
movements and volcanism.

Operations

Hole U1509A (34°39.1312’S, 165°49.6599E; water depth = 2911
m)

All depth references in meters in this section refer to the DSF
depth scale.

We arrived at Site U1509 at 1030 h on 2 September 2017 (UTC
+ 11 h), completing the 273 nmi transit from Site U1508. RCB cor-
ing in Hole U1509A was initiated at 2145 h on 2 September. The
decision to use the RCB system was made after considering target
depth, time constraints, and success at previous sites. Coring con-
tinued until 2345 h on 6 September and reached 690.7 m (Core
74R). Total recovery in Hole U1509A was 462.86 m (67%).

Planned wireline logging in Hole U1509A was canceled due to
ship heave exceeding 3.0 m. Hole U1509A was ended at 1434 h, af-
ter a total of 127.5 h or 5.3 days. At 1630 h on 7 September, the ship
began a ~200 nmi transit to the north to avoid severe weather fore-
cast for 9-10 September; this weather also impacted operations at
the remaining drilling sites.

Principal results

All depth references in meters in this section refer to the CSEF-A
depth scale.

The sedimentary sequence at Site U1509 consists of ~415 m of
calcareous ooze, chalk, and limestone (Unit I) overlying ~275 m of
claystone (Unit II).

Lithostratigraphic Unit I is divided into three subunits. Subunit
Ia (0—99.6 m) consists of calcareous ooze and chalk with rare tuffa-
ceous beds. RCB coring led to soupy and mousse-like drilling dis-
turbance in the soft sediments of the upper ~50 m of this subunit,
followed by biscuiting, horizontal cracking, fracturing, and pulveri-
zation in the more indurated lower sediment of the unit. The ooze—
chalk transition was observed, remarkably, at ~55 m. Subunit Ib
(99.6-139.28 m) comprises calcareous chalk showing significant
soft-sediment deformation (i.e., slumps). Subunit Ic (139.28-414.57
m) consists of calcareous chalk and limestone with biosilica and
several silicified (chert) intervals. Subunit Ic is characterized dis-
tinctively by tilted bedding (apparent dip of ~20°). From Subunit Ic
downhole, preferential fracturing of cores was seen along primary
deformation structures such as shear zones, microfaults, and tilted
bedding. The chalk-limestone transition occurs within Subunit Ic
at around 385 m.

Lithostratigraphic Unit II is divided into two subunits. Subunit
IIa (414.57-614.2 m) consists of claystone with nannofossils and
silt. Subunit IIb (614.2—-689.68 m) consists of massive brown clay-
stone with minor bioturbation and agglutinated benthic foramini-
fers. Similar to Subunit Ic, tilted bedding is observed throughout
Unit 1L

Nannofossil and planktonic foraminifer preservation and abun-
dance generally decrease downhole, with these groups absent below
617.6 and 536.0 m, respectively. Radiolarians are rare to abundant
and well preserved in the upper 393 m but are rare and poorly pre-
served farther downhole. Benthic foraminifer abundance is low, and
preservation decreases downhole in the upper 249 m and remains
poor below. Only agglutinated taxa are found in sediments below
617.6 m. Ostracods are common to rare with moderate to poor
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preservation in the upper 178 m and are rare to barren below. A
palynological reconnaissance study focused on Unit II and recov-
ered rich and well-preserved assemblages.

Nannofossil and foraminifer datums yielded Miocene (22.41—
82.47 m), Oligocene (90.13—-248.63 m), Eocene (259.98-407.07 m),
and Paleocene (418.53—-609.27 m) ages for the sequence in Hole
U1509A (Figure F11). The interval from 617.6 to 689.6 m is barren
of age-diagnostic nannofossils and planktonic foraminifer taxa but
contains Late Cretaceous dinocysts and agglutinated benthic fora-
minifers. Benthic foraminifers indicate deposition in a lower
bathyal—abyssal environment during the Pleistocene to Eocene and
at middle bathyal depths during the Paleocene and Cretaceous.

NRM intensity of most sediment cores from Hole U1509A is
weak, mostly around 10™* A/m. This results in generally noisy
paleomagnetic data from the pass-through magnetometer. How-
ever, step-wise AF demagnetization of some discrete samples gives
reliable paleomagnetic data. Integrating these data with biostrati-
graphy, the observed magnetic polarities at 110 to ~260 m are tenta-
tively correlated to Chrons C9 through C13 of GPTS2012. The
claystone interval of Subunit IIb produces higher quality pass-
through data compared to intervals above. Cores from Subunit IIb
have a normal magnetic polarity.

Physical property measurements in Hole U1509A exhibit grad-
ual changes in bulk density and P-wave velocity with depth, except
across a layer of limestone between ~390 and 415 m. Through the
ooze and chalk, above the limestone, P-wave velocity and bulk den-
sity increase with depth from 1500 to 1900 m/s and from 1.55 to
1.90 g/cm?, respectively. The transition from ooze to chalk is shal-
low (~55 m) and correlates with a P-wave velocity increase of ~100
m/s. The limestone of Subunit Ic represents a discrete interval
where P-wave velocity and density increase by ~40% and porosity
decreases sharply. P-wave velocity, bulk density, and MS are approx-
imately constant in the Unit II claystone below the limestone. A
gradual decrease in porosity with depth is also observed. NGR val-
ues show high variance in Unit II (from 8 to 30 counts/s), reflecting
changes in clay composition and abundance.

A total of 23 IW samples were collected from Hole U1509A.
Profiles of some species show trends similar to those at Site U1508.
For example, sulfate concentrations decrease and ammonium con-
centrations increase downhole, suggesting sulfate reduction of par-
ticulate organic matter and release of nitrogen to pore waters.
Furthermore, at ~370 m, sulfate concentrations drop below 1.0 mM
and methane concentrations start to rise. This suggests further sul-
fate consumption by AOM at a deep sulfate—methane transition
(SMT). Reduction of sulfate leads to production of hydrogen sul-
fide, which reacts with iron to form pyrite (Snyder et al., 2007),
which is present in many cores from this hole. Below the SMT,
headspace methane concentrations increase to 15,000 ppmv and
dissolved Ba concentrations increase to 0.4 mM. Such values are
common to slope environments of many continental margins.

Bulk sediment chemistry corresponds to lithostratigraphic
units. Unit I is characterized by carbonate contents that decrease
downhole from ~94 wt% at 20 m to ~65 wt% between 360 and 380
m. Carbonate content varies little in the uppermost 200 m, but by
more than 10% in the lower part. Carbonate content drops drasti-
cally across the Unit I-II transition (415 m), to average values of 18
and 0.5 wt% in Subunits IIa and IIb, respectively. TOC contents are
~0.3 wt% in Unit I and Subunit IIa and ~1.0 wt% in Upper Creta-
ceous Subunit IIb.
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Site U1510 (southern Lord Howe Rise)

Background and objectives

Site U1510 (proposed Site LHRS-3A) is located on the southern
Lord Howe Rise, ~850 km west of northern New Zealand and ~495
km south of Site 206. Site U1510 is ~80 km west of Site 592 and
~105 km northwest of Site 207. Seismic reflection data can be used
to tie stratigraphy at the three sites but with some uncertainty
caused by unconformities and deformation (Sutherland et al., 2016).
Site U1510 was chosen to determine the timing of Cenozoic folding
on the southern Lord Howe Rise and to constrain the timing of re-
gional tectonic movements and volcanism. The primary drilling ob-
jectives at Site U1510 were to (1) constrain the depths and ages for
the top and base of the syntectonic seismic unit; (2) determine the
nature of the lowest seismic unit and pretectonic state of the south-
ern Lord Howe Rise; and (C) collect evidence for volcanism or ver-
tical movements, especially including sediments representing
nearby shallow water of any age. A secondary objective was to col-
lect a continuous late Neogene record for paleoceanographic stud-
ies.

Operations

Hole U1510A (36°19.7385’S, 164°33.5220E; water depth = 1238
m)

Hole U1510B (36°19.7392’S, 164°33.5347E; water depth = 1238
m)

All depth references in meters in this section refer to the DSF
depth scale.

After the 380 nmi transit in heavy winds and seas from a waiting
on weather location, the ship arrived at Site U1510 at 0918 h on 12
September 2017 (UTC + 11 h).

An APC/XCB BHA was deployed and coring in Hole U1510A
started at 1915 h on 12 September. Cores 1H through 17H pene-
trated from O to 150.5 m and recovered 147.9 m (98%). We stopped
deploying the orientation tool after Core 15H. Temperature mea-
surements were taken on Cores 4H, 7H, 10H, 13H, and 17H. We
continued with XCB coring until 1930 h on 14 September. Cores
18X through 52X penetrated from 150.5 to 483.4 m and recovered
108.1 m (32%). Recovery over portions of this depth interval was se-
riously compromised because of frequent chert layers. Coring in
Hole U1510A concluded on 14 September with a total penetration
of 483.4 m and total recovery of 260.0 m (53%). The time spent on
Hole U1510A was 60 h or 2.5 days.

The ship was offset 20 m to the east and APC coring in Hole
U1510B began at 2300 h on 14 September and ended at 0215 h on
15 September. Cores 1H through 7H penetrated from 0 to 66.3 m
and recovered 64.7 m (98%). An APCT-3 temperature measurement
was taken on Core 7H. Operations in Hole U1510B and at Site
U1510 ended at 0815 h on 15 September. The time spent on Hole
U1510B was 10.75 h or 0.4 days. At 0842 h the ship began the transit
to Site U1511.

Principal results

All depth references in meters in this section refer to the CSF-A
depth scale.

Lithostratigraphic Unit I (0-138.0 m) is composed of calcareous
ooze and is divided into two subunits. Subunit Ia (0-60.0 m) con-
sists of subtle color banding between light gray and white calcare-
ous ooze. Subunit Ib (60.0-138.0 m) is a white homogeneous
calcareous ooze. The Unit I/II boundary is defined by the first oc-
currence of chert at 138 m.
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Lithostratigraphic Unit II (138.0-418.1 m) consists of ~340 m of
calcareous ooze and chalk interbedded with cherty limestone and
chert. Unit II is divided into three subunits. Subunit Ila is a ~9.5 m
thick white homogeneous nannofossil ooze with bioclasts. The up-
per ~30 cm of Subunit Ila consists of centimeter-sized extraclasts
composed of chert, cherty limestone, and lithic clasts. Although this
interval could be affected by drilling disturbance (i.e., “fall-in” at the
top of the core), it also contains the first occurrence of chert; similar
material had not been found in the cores above. Subunit IIb (147.5—
349.4 m) is a 201.9 m thick interval of light gray, moderately biotur-
bated clayey calcareous chalk with scattered shallow-water bioclasts
interbedded with cherty limestone. Subunit Ilc (349.4—478.1 m) is a
128.7 m thick homogeneous white nannofossil chalk interbedded
with chert and sparse volcaniclastic beds in the lower portion of the
subunit.

Core recovery in Unit I was near 100%, with coring disturbance
limited to up-arching and soupy sediments. Recovery dropped to
~20% in Subunits ITa and IIb due to the presence of chert and cherty
limestone and the use of the XCB coring system, with drilling dis-
turbance including severe fracturing of chert and cherty limestone
intervals and moderate to severe biscuiting of the calcareous chalk
intervals.

Nannofossils are generally abundant with moderate preserva-
tion. Planktonic foraminifer abundance and preservation decrease
downhole (from 215 and 187 m, respectively) with a few barren
samples. Radiolarians are rare throughout, except for a short middle
Miocene interval (109.6 to 119.7 m) where radiolarians are com-
mon. Radiolarian preservation is good in the upper 135 m and poor
farther downhole. Benthic foraminifers were recovered at generally
low abundance from all cores, with very good preservation for the
Neogene and generally poor preservation for the Paleogene. Ostra-
cods are very abundant in most samples with good preservation
from 0 to ~150 m and with poor preservation below. Due to weather
constraints on processing, no samples from Site U1510 were ana-
lyzed for palynology. Paleodepth was lower bathyal from the Pleis-
tocene through the Eocene. During the late and middle Eocene, a
significant component of the benthic fauna appears to be derived
from shallower (shelf, upper bathyal, and middle bathyal) sources.

Based on nannofossil and foraminifer biostratigraphy, the fol-
lowing ages were determined for the sequence in Hole Ul1510A:
Pleistocene (5.0—33.5 m), Pliocene (43.1-70.3 m), Miocene (72.3—
135.4 m), and late, middle, and early Eocene (138.8-147.7, 150.5—
438.9, and 448.9-478.2 m, respectively).

Low NRM intensity of most cores, low core recovery, and signif-
icant core disturbance from XCB coring make it difficult to estab-
lish shipboard magnetostratigraphy at Site U1510.

Physical property measurements show a gradual increase in
bulk density and P-wave velocity with depth in the nannofossil and
foraminiferal ooze of Unit . In Subunits Ila and IIb, from 140 to
~350 m, physical property measurements are less reliable and
sparse due to drilling disturbance and low recovery, respectively.
Bulk density (~1.75 g/cm?®) and P-wave velocity (~1750 m/s) in-
crease downhole to 300 m and then decrease again to the base of
Subunit IIb, where fewer chert layers are observed. MS and NGR
both increase downhole in these two subunits then decrease toward
the base of Subunit IIb. P-wave velocity peaks and spikes in NGR in
Subunit IIc correlate with sandstone and claystone. Near the base of
the hole (~470 m) where sediments become more lithified, density
and velocity increase and porosity decreases.

Headspace samples from Site U1510 yielded hydrocarbon gas
concentrations below detection limits.
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A total of 118 IW samples were taken from Site U1510 by
squeezing whole-round sediment and by Rhizon sampling (Dickens
et al,, 2007). Ca concentrations increase and Mg and K concentra-
tions decrease downhole, similar to Sites U1506 and U1507. These
profiles may result from the reaction of pore water with volcanic
material in the sediment. Sulfate and ammonium concentration
profiles mirror each other, suggesting sulfate reduction of organic
matter. Dissolved Sr, Si, Li, and B concentrations increase down-
hole, likely reflecting dissolution of biogenic carbonate and silica.
Dissolved Mn and Fe concentrations decrease within the upper-
most meter, suggesting the true mudline is missing. Dissolved Fe
concentrations in Rhizon samples decrease rapidly over the upper 8
to 10 m, consistent with the odor of H,S at ~10 m.

Carbonate content is >90 wt% in Unit I and in Subunits IIa and
Ilc, corresponding to calcareous ooze and chalk lithologies. In Sub-
unit IIb, carbonate content decreases downhole toward the middle
of the subunit, along with decreasing L* and increasing NGR. Inter-
bedded cherty and tuffaceous layers are distinguished by carbonate
contents of <50 and <20 wt%, respectively. TOC content is mostly
below detection limit but is represented by somewhat higher values
(0.35 wt%) below 400 m.

Coring of Hole Ul510B was monitored in near real time
through out-of-sequence measurement of whole-round sections.
Using primarily NGR data, cores from Holes U1510A and U1510B
were depth shifted to construct a composite depth scale. A spliced
record was generated using the composite scale, which provides a
continuous record of the top ~44 m of sediment at Site U1510.

Site U1511 (Tasman Abyssal Plain)

Background and objectives

Site U1511 (proposed Site TASS-2A) is located on the Tasman
Abyssal Plain, ~945 km east of Australia and ~990 km northwest of
New Zealand. Site U1511 lies west of the Lord Howe Rise on oce-
anic crust of Late Cretaceous age that is thought to have formed
during Chron C33 (74—84 Ma). Regional seismic reflection data re-
veal a thick (>800 m) sequence of sediments deformed by reverse
faults and folds (Sutherland et al., 2016). Site U1511 was chosen to
find the age of this deformation and to provide the second compre-
hensive record of sedimentation on the Tasman Abyssal Plain. The
primary drilling objectives at Site U1511 were to sample (1) the top
of the middle seismic unit to constrain the age of folding and (2) the
rest of the sedimentary sequence to develop an understanding of
this significant abyssal location. The only previous scientific bore-
hole into Tasman Abyssal Plain sediments was drilled in 1973 at
DSDP Site 283, 870 km to the southwest and on conjugate crust of
Late Cretaceous age east of southeast Australia.

Operations
Hole U1511A (37°33.6665'S, 160°18.9380'E; water depth = 4847
m)
Hole U1511B (37°33.6656’S, 160°18.9379E; water depth = 4847
m)

All depth references in meters in this section refer to the DSF
depth scale.

The ship completed the transit from Site U1510 and arrived at
Site U1511 at 1248 h on 16 September 2017 (UTC + 11 h). RCB cor-
ing in Hole U1511A began at 0425 h on 17 September. After retriev-
ing Core 3R, the drill string had to be pulled clear of the seafloor
due to excessive heave and wind. Cores 1R through 3R penetrated
from 0 to 26.6 m and recovered 7.9 m (30%). A total of 19.25 h or 0.8
days were spent on Hole U1511A.
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After waiting for 17 h because of weather, Hole U1511B was ini-
tiated at 0145 h on 18 September by washing down (i.e., drilling
without coring and without a center bit installed) to 19.8 m. Coring
resumed at 0215 h on 18 September, and Cores 2R through 7R pen-
etrated from 19.8 to 77.2 m. A center bit was deployed and the inter-
val from 77.2 to 192.2 m was drilled without coring to ensure we
could reach the target depth in the remaining time of the expedi-
tion. Coring resumed at 1500 h on 18 September, and Cores 9R
through 41R penetrated from 192.2 to 508.8 m. At 1600 h on 20
September, coring was suspended due to excessive heave and the
drill string was raised above the bottom of the hole. As the swell be-
gan to subside at 1030 h on 21 September, the drill string was low-
ered back to the bottom of the hole. After pumping a 25 barrel mud
sweep, coring resumed at 1600 h on 21 September and ended with
the recovery of the last core (47R) at 0450 h on 22 September. The
total cored interval in Hole U1511B was 431.4 m and recovery was
279.3 m (65%). Two intervals were drilled without coring for a total
of 134.8 m.

The rig floor was secured for transit to Hobart at 1630 h on 22
September, ending Hole U1511B and Site U1511. A total of 110.75 h
or 4.6 days were spent on Hole U1511B. The total time at Site
U1511 was 130.0 h or 5.4 days. This included 40.5 h lost because of
weather.

Principal results

All depth references in meters in this section refer to the CSF-A
depth scale.

Three lithostratigraphic units were described and are differenti-
ated by the presence or absence of microfossils. Unit I (0-77.2 m) is
~80 m of gray to brown clay, with calcareous nannofossils restricted
to the lowermost 40 cm of the unit. Unit II (201.9-403.4 m) is sepa-
rated from Unit I by a ~120 m drilled interval and consists of ~200
m of greenish gray to yellowish brown diatomite with minor abun-
dances of clay and other siliceous microfossils (radiolarians, sponge
spicules, ebridians, and silicoflagellates). Unit III (403.4—560.7 m) is
~150 m of claystone. A ~30 m reddish brown interval near the top
of Unit III contains minor abundances of radiolarians. A ~40 m
grayish green interval near the bottom of the unit contains minor
abundances of calcareous nannofossils.

A variety of secondary minerals are present throughout Site
U1511, attesting to diagenesis and alteration. Manganese nodules
and black specks of sulfides occur in Unit I, whereas sporadic centi-
meter-scale nodules and specks of pink rhodochrosite occur in Unit
II. Several centimeter-scale intervals of greenish gray claystone
within Units II and III contain sand-sized grains of native copper
surrounded by dark green halos. The lower part of Unit II also con-
tains cristobalite and an interval of red and pink fluorapatite. Fur-
thermore, a color gradient across Unit III from red and reddish
brown at the top of the unit to greenish gray toward the base, with
alternations of the two colors in the intervening interval, seems to
be related to trace amounts of redox-sensitive metal oxides. These
minerals suggest a complex history of diagenesis and alteration, the
latter likely mediated by past fluid flow.

Calcareous nannofossils and planktonic foraminifers are gener-
ally absent throughout Site U1511. When present, their abundances
and preservation states are varied. Radiolarians are present from
192 to 547 m and are abundant from 209 to 394 m, with good pres-
ervation. Below, radiolarians are less abundant and poorly pre-
served.

Benthic foraminifers are sparse in the Pliocene to lower Eocene
interval, where a low-diversity agglutinated assemblage was recog-
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nized. The transition to a higher diversity Paleocene to lowermost
Eocene assemblage was observed at the contact between lithostrati-
graphic Units II and III. The Paleocene interval contains both agglu-
tinated and calcareous taxa. Samples are barren of ostracods and
palynomorphs. Given the overall microfossil assemblages, the loca-
tion of Site U1511 has probably been abyssal and beneath or near
the carbonate compensation depth (CCD) since the Paleocene.

Rare nannofossils and planktonic foraminifers found through
the Pliocene, Miocene, lower Oligocene, and Paleocene intervals
were used to constrain age where possible (Figure F11). Based on
planktonic foraminifers, Pliocene (7.5-7.6 m), lower Pliocene to up-
per Miocene (7.5-47.6 m), and possible Miocene (65.6—-65.7 m)
strata were recognized. Based on calcareous nannofossils, the lower
Oligocene (192.2—-204.0 m) was identified; however, sediments from
this level may have come from the drilled interval and may not be in
situ.

Based on radiolarian biostratigraphy, upper Eocene (209-235
m), lower to middle Eocene (235-389 m), and Paleocene (432-539
m) strata were recognized. The lower to middle Paleocene (538.8—
539.4 m) was also identified based on nannofossil biostratigraphy.

High-quality paleomagnetic data were obtained across intervals
of Units II and III. From Cores 371-U1511B-14R through 30R
(~240-400 m), all polarity reversals from the base of Chron
C17n.3n to Chron C21n are identified, indicating that Unit II in
Hole U1511B spans from ~38 to 47.5 Ma (Bartonian—Lutetian).
Four magnetic polarity reversals within Core 38R can be success-
fully correlated with Chrons C24n.1n to C24.2n (~53 Ma).

The remanence intensity of sediments from Units II and III ex-
hibits possible cycles. These variations appear related to lithologic
color changes, where brown intervals generally have a higher mag-
netization compared to the lower magnetization in the gray sedi-
ment intervals. Such changes may be related to magnetic mineral
diagenesis. Many samples in Unit III show magnetically hard NRM
behavior that is resistant to AF demagnetization. Such a hard rema-
nence component is carried by hematite, which probably contrib-
utes to the reddish sediment color in Unit III.

Cube samples from Units II and III show reliable AMS data and
distinct patterns for Units II and III. Samples from Unit II indicate a
random orientation of the AMS tensor, which probably reflects a
random deposition of minerals without sediment compaction. In
contrast, sediments from Unit III exhibit a well-defined oblate AMS
fabric, as typical for compacted sedimentary rocks.

Porosity decreases downhole from 80% to 65% in Unit I along a
trend typical for pelagic clay. This trend continues in Unit III (from
60% to 45%). However, in Unit II porosity is offset to extremely high
values (70%-83%). This general profile is mirrored in bulk density
and is attributed to the diatomite with clay in Unit II. P-wave veloc-
ity increases linearly downhole, with the exception of two peaks in
the lower part of Unit II (1750 m/s) and the middle part of Unit III
(1850 m/s). MS values vary between 5 and 50 IU in Unit I and near
the top of Unit III and are much lower in Unit II and in the lower
part of Unit III. NGR shows a similar trend and both MS and NGR
appear to correspond to clay content. All color reflectance parame-
ters (L*, a* and b*) increase downhole from 200 to 300 m and then
decrease from 300 to 400 m, corresponding to the diatomite in Unit
II. A step increase in bulk density (1.50-1.75 g/cm?®), MS, NGR, and
a* and b*, associated with a decrease in porosity (from 70% to 52%),
is attributed to a red claystone interval in the top of Unit III (~410
m).

Headspace samples from Site U1511 yielded no light hydrocar-
bon gas concentrations above detection limits.
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Low contents of carbonate (<15 wt%) and TOC (<0.4 wt%) pre-
vail throughout the sedimentary column at Site U1511. Carbonate
contents only rise >1 wt% in samples from two intervals: at the bot-
tom of Unit I (71-77 m) and within the lower half of Unit III (490—
539 m).

A total of 50 IW samples were collected at Site U1511 by two
methods: squeezing and Rhizon sampling. At the precision required
to understand basic processes at Site U1511, squeeze and Rhizon
samples give similar profiles for most dissolved species. These pro-
files show some general trends, as well as some unusual features.
This reflects a combination of lithology and multiple processes.

As also observed at other Expedition 371 sites, modest oxida-
tion of particulate organic carbon leads to production of alkalinity
and NH,* and removal of SO,>". Limited dissolution of biogenic sil-
ica occurs, which increases dissolved H,SiO, (particularly in Unit
II). Dissolved Ca increases and dissolved Mg and K decrease down-
hole, suggesting reactions with silicate minerals. However, the
change in Ca relative to Mg with respect to depth is much greater at
Site U1511 than at other Expedition 371 sites, which probably re-
sults from reactions with underlying basalt rather than sediment or
continental crust. Many species display an inflection in concentra-
tions at ~200 m and a major drop in concentrations at ~400 m. The
first change probably results from the major increase in porosity as-
sociated with diatomite; the latter change probably represents the
conversion of biosilica to cristobalite and the release of water. Dis-
solved Mn increases slightly in the upper 80 m but sharply below
200 m, reaching an extreme of 357 uM at 421 m. Such high values
suggest dissolution of Mn oxides in the lower layer of the sediment
column. Ammonium concentrations are below the detection limit
across the uppermost 20 m, which may indicate a deep horizon of
ammonia oxidation.

Physical property, paleomagnetic, and biostratigraphic data
were compiled to locate middle Eocene climate events in Hole
U1511B. Interpretation of magnetic inclination and radiolarian as-
semblages indicates the MECO was recovered in sediment of Core
371-U1511B-16R. The putative C19r hyperthermal event (Edgar et
al., 2007) may be present in sediment of Core 18R, based on natural
magnetic remanence data.

Summary of scientific results
Regional stratigraphy

Expedition 371 retrieved the sedimentary section at six sites
(Table T1) in a vast remote region (Figure F2). Only two continents
on Earth remain largely unexplored: Antarctica and Zealandia. The
observations made at these six sites represent a substantial gain in
fundamental knowledge about northern Zealandia, which is similar
in size to India (Mortimer et al., 2017). The only previous boreholes
in the region that penetrated strata older than late Eocene were at
DSDP Sites 206, 207, and 208 (Shipboard Scientific Party et al.,
1973a, 1973b, 1973c¢), and these sites were drilled in 1971, before re-
gional seismic reflection data were available and their context was
understood.

At five sites, we sampled nannofossil and foraminiferal ooze and
chalk that contained volcanic or volcaniclastic intervals with vari-
able clay content (Figure F10). The Paleocene and Cretaceous sec-
tions are generally clay rich or predominantly claystone. At the final
site (U1511), a sequence of abyssal clay and diatomite was recovered
with only minor carbonate. The ages at the base of the deepest hole
at each site varied from Eocene to Cretaceous, and sedimentation
rates were moderate to high (5-20 m/My) for the lower bathyal and
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abyssal environments within which most sediments accumulated
(Figures F11, F12).

Our new results provide the first substantial basis for definition
of formal lithostratigraphic units that can be mapped across a sub-
stantial part of northern Zealandia and related to onshore regions of
New Caledonia and New Zealand.

Paleogeography and vertical tectonic motions

Flat unconformities have been mapped across large parts of the
Lord Howe Rise using seismic reflection data and have been tenta-
tively interpreted as surfaces produced by sea level-modulated ero-
sion (Sutherland et al, 2010). Similar surfaces also have been
identified in the Reinga Basin (Bache et al., 2012). Our discovery of
shallow-water (<400 m) fossils at several sites near these horizons
provides the first compelling evidence of substantial vertical mo-
tions during the Cenozoic. The detailed age models we have con-
structed and paleoenvironmental interpretations we have made will
allow us to construct new paleogeographic maps of northern Zea-
landia, with broad implications for studies of tectonics, climate, and
biogeography.

Ocean circulation and sedimentation models are sensitive to
paleobathymetry, and geodynamic models make predictions of ver-
tical motions that control paleogeography. Therefore, our primary
and secondary science objectives are closely aligned. Our new ob-
servations of sediment distribution combined with fossils provide
independent evidence for past vertical positions and paleogeogra-
phy. Our new data confirm the hypothesis that Eocene vertical mo-
tions were dramatic and regional in nature. Importantly, the
paleogeography of the early Eocene and older cannot be easily in-
ferred from looking at the present physiography.

Timing and style of deformation

The southern four sites (U1508-U1511) are located adjacent to
reverse faults and folds. For all four sites, high-quality age models
were constructed that can be tied to seismic reflection images and
hence provide strong constraints on the time period when faulting
and folding occurred. Additional postexpedition work is required to
model ties between depth and TWT on seismic reflection sections,
but preliminary estimates suggest that faulting and folding occurred
during the late Eocene to early Oligocene. At Sites U1508 and
U1510, there is some evidence that faulting and folding started
somewhat earlier (during the middle Eocene) than at the other sites.

New Caledonia Trough subsidence

Existing subduction initiation models do not predict the New
Caledonia Trough feature, which we have now confirmed from our
observations at Sites U1507 and U1509 was either created or greatly
modified during the Eocene. Future work will focus on the develop-
ment of a new class of subduction initiation geodynamic model that
can fit our observations.

Volcanic history

The Pacific Ring of Fire was created during the Eocene when
subduction initiated throughout the western Pacific. In the Izu-Bo-
nin-Mariana system, the onset of volcanic activity associated with
the new subduction system started at ~52 Ma (Arculus et al,
2015b). Our proximal sites (U1507 and U1508) are located in appro-
priate locations to record the onset of volcanic activity in the upper
Eocene and Oligocene (i.e., well after 52 Ma). Additional post-
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expedition analyses are required to determine the precise age and
type of volcanic activity.

Paleoceanography and diagenesis

Thirty years ago and following the three previous scientific drill-
ing expeditions to the Tasman Sea (DSDP Legs 22, 29, and 90), Ken-
nett and von der Borch (1986) summarized the Cenozoic
paleoceanography of the region. The work remains staple reading
but also highlights three well-known biases within the paleoceano-
graphic community: (1) the proportion of text that discusses the
Paleogene as compared to the Neogene is approximately 26%,
whereas the Paleogene represents ~65% of the combined geological
time; (2) the findings come from extrapolations across a vast and
poorly mapped area, but the sites were selected to minimize strati-
graphic complexity; and (3) the detailed records come without full
disclosure of diagenetic reactions that can modify the signal. Expe-
dition 371 presents an opportunity to address each of these issues
and for fresh interpretations and balanced perspectives on a classic
region for Cenozoic climate study. We find that sediment accumula-
tion and diagenesis across the Tasman Sea are highly variable in
space and time. Some of this heterogeneity relates to tectonic his-
tory, as described above.

Quaternary sediment cycles and bryozoan fossils

Two sites hold Quaternary records amenable for paleoceano-
graphic study. The upper section of Site U1510 on the southern
Lord Howe Rise was recovered by APC coring in two holes that can
be spliced together to form a 44.5 m continuous section spanning
most of the late Pleistocene. The section contains calcareous ooze
with obvious cycles in physical properties, such as color and grain
size. Site U1508, northwest of northern New Zealand has a nearly
100 m thick Pleistocene section. Though rotary cored, layers with
macroscopic fragments of bryozoans and other shallow-water or-
ganisms present an intriguing and unusual find. The site is at a
“temperate carbonate” margin (Nelson and Hancock, 1984) that
provides an opportunity to study coupling between sedimentology
and large-amplitude variations in sea level.

Late Miocene to early Pliocene biogenic bloom

Four sites recovered carbonate-rich sediment in which to assess
the so-called late Miocene—early Pliocene biogenic bloom. This
phenomenon, which is recognized from sediment sections at multi-
ple ocean drilling sites, can be described as follows: at zones of sur-
face water divergence in the Indian and Pacific Oceans, the
accumulation rates of biogenic components to the seafloor was sig-
nificantly elevated between about 8 and 3 Ma. Similar to previously
drilled DSDP sites from the Tasman Sea, carbonate accumulation
rates rose dramatically at northern Sites U1506 and U1507 from 8
to 3 Ma. However, a condensed interval marks the stratigraphic re-
cords at southern Sites U1509 and U1510. This may indicate under-
lying changes in deepwater flow during the late Miocene and early
Pliocene.

Eocene to Oligocene interval and presence of
biogenic silica
Previous drilling in the Tasman Sea recovered little sediment
that was deposited between the middle Eocene and middle Oligo-

cene. This led to the widely accepted idea of a regional unconfor-
mity caused by intensification of deepwater currents. We apparently
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recovered complete Oligocene sections at Sites U1507 and U1509 in
the New Caledonia Trough, with all calcareous biozones and most
polarity chrons identified at the first site. However, a hiatus of vari-
able duration was found at shallow sites on Lord Howe Rise be-
tween the upper Eocene and upper Oligocene at Site U1508 and
between the upper Eocene and middle Miocene at Site U1510. No-
tably, the middle Eocene through lower Oligocene interval, where
found, including Site U1511 on the Tasman Abyssal Plain, contains
biosilica or chert. Postexpedition effort will be placed on under-
standing whether these observations support unusual oceanogra-
phy or a different paleogeography to that in existing computer
simulations.

Regional Paleogene climate records

Several Paleogene sediment sections exposed in New Zealand
and New Caledonia have become the focus of paleoclimate re-
search. This has primarily arisen because, once placed onto accu-
rate age models, lithologic variations at key sites, such as Mead
Stream in South Island, correspond to established changes in global
climate. Several Expedition 371 sites contain lithostratigraphic re-
cords where changes in sediment composition appear to correlate
with those now uplifted on land. This is particularly true for Site
U1508 in the Reinga Basin.

Eocene warm worlds and hyperthermals

Earth surface temperatures peaked during several time intervals
of the early and middle Eocene. These events especially include the
MECO (~40.5 Ma), the EECO (53-49 Ma), and a series of geological
brief “hyperthermals;” such as the Paleocene/Eocene Thermal Max-
imum (PETM; 56 Ma). These events generally were not recovered at
most sites during Expedition 371. At Sites U1507 and U1508, poorly
recovered horizons seem to mark the MECO. Sites U1508 and
U1510 terminated near the top of the lower Eocene for reasons of
operational time. At Site U1509, almost the entire early Eocene ap-
pears to have slumped on a surface approximately coincident with
the PETM. It is possible that lithologic changes associated with
warm events, such as clay-rich horizons and surrounding chert,
make them difficult to recover in deep holes. Despite the above dif-
ficulties, an apparently complete MECO interval was recovered
from the Tasman Abyssal Plain at Site U1511.

Paleocene and Maastrichtian claystones

Paleogene calcareous green claystone was found at Sites U1509
and U1511. At the former site, coring also recovered dark brown
Maastrichtian claystone. Considering exposed sections on land and
past drill sites in the region, Paleogene clays accumulated over a
widespread area of Zealandia. At Site U1511 and some locations,
these clays contain modest organic carbon.

Thermogenic gas

Routine headspace gas sampling revealed significant concentra-
tions of light hydrocarbon gases in deep sediments at two locations.
Methane concentrations began increasing below ~500 m within the
middle Eocene nannofossil chalk at Site U1508 and below ~400 m
within the Eocene calcareous claystone at Site U1509. At both loca-
tions, ethane and propane were also detected, although the C,/C,
ratio did not drop below 100. The suites of hydrocarbons measured
were not classified as “anomalous” but do suggest burial of strata
containing organic carbon and thermogenic hydrocarbon produc-
tion in the Reinga Basin and the southern New Caledonia Trough.
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Deep anaerobic oxidation of methane

Upward-migrating gas at Sites U1508 and U1509 (above) im-
pacts pore water chemistry significantly. At both sites, dissolved
sulfate concentrations steadily decrease, almost linearly, from near
seawater values at some shallow depth to zero at the depth where
methane concentrations begin to rise. These deep SMTs, ~500 m at
Site U1508 and ~400 m at Site U1509, probably represent locations
of AOM. Abundant pyrite is found in sediment near the SMTs, and
dissolved Ba concentrations rise steeply beneath the SMTs. Inter-
estingly, at Site U1508, sulfate concentrations begin decreasing at
~290 m rather than at the seafloor, possibly because of major
changes in the porosity of sediment. In any case, these two Expedi-
tion 371 sites, along with a few other sites recently drilled elsewhere,
significantly expand the subbottom depth range over which AOM
can occur.

Sediment compaction and ooze-chalk transition

Calcareous ooze, dominantly comprising microscopic calcite
shells, blankets a large area of the modern seafloor above the CCD.
With time and burial, this ooze can become compacted and altered
to chalk and ultimately limestone. Reduction in porosity (Figure
F13) and lithification over the transition zone from ooze to chalk
has long fascinated the marine geoscience community, as it affects
the velocity of seismic waves, the recovery of core, and the nature of
calcareous components. Analysis of previous DSDP drilling empha-
sized the complex nature of the ooze—chalk transition in the Tas-
man Sea. Cores and data from Expedition 371 provide new
empirical data to quantify relationships between sediment compo-
sition, burial history, compaction, and diagenesis and may help clar-
ify our understanding of the underlying processes. The ooze—chalk
transition was found at approximately 235, 290, 200, 55, and 150 m
at Sites U1506, U1507, U1508, U1509, and U1510, respectively. The
very shallow transition in middle Miocene sediment at Site U1509
probably reflects missing overburden that was lost by slumping.
The other depths appear related to differences in age, compaction,
and sediment composition.

Iron oxide and copper mineralization

Vivid red-orange (2.5YR 5/6) claystone and native copper sur-
rounded by dark green halos were found in multiple intervals of
lower Eocene sediment at Site U1511. The striking color of the clay-
stones comes from hematite, as determined from rock magnetic
properties. Although the thickest and most striking horizon ap-
proximately coincides with the EECO (see above), both observa-
tions and theoretical arguments suggest the unusual mineralogy is
not primary but the product of alteration. Presumably, saline fluids
lacking dissolved oxygen and sulfur but carrying dissolved iron and
copper precipitated minerals as they passed through the sediment,
perhaps along fractures. Notably, seismic profiles show that Eocene
and older strata at the site are folded and faulted. Native copper has
been described at previous scientific drill sites, and a commonality
seems to be proximal folding and faulting.

Rotary drilling and pore water collection

Coring with the APC system in multiple holes and the construc-
tion of spliced records has become a common approach for drilling
expeditions with paleoceanography or biogeochemistry objectives.
To achieve the Expedition 371 goals, which required deep drilling
(and ultimately within a significantly shortened time window), the
sedimentary records at most sites were recovered mostly in one
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hole, often using the RCB system. Although not ideal, good first-or-
der sedimentary records and pore water profiles could be generated
at most sites. Notably, at sites where intervals were cored using both
the XCB and RCB methods, the latter generally gave better quality
cores in a shorter time period. To obtain reasonably good and de-
tailed pore water profiles with minimal impact to the sedimentary
record, Rhizon samples were taken at some sites and squeeze sam-
ples were taken from the bases of core Sections 1, 6, or both. Such
sampling generally avoids splice intervals (i.e., the core gaps created
by IW sampling fall into “off-splice” intervals).

Operations
Port call

Expedition 371 started at 0812 h (all times are UTC + 10 h) on
27 July 2017 with the first line ashore at Wharf 10 in Townsville,
Australia. The Co-Chief Scientists and IODP staff moved onto the
ship and began port call activities, including meetings with the off-
going staff and discharging and receiving cargo.

The rest of the Expedition 371 scientists boarded the ship in the
morning of 28 July and, after checking into their cabins, received
various introductory presentations as well as laboratory safety
tours. The Siem Offshore crew change was completed. Fresh food
and other catering supplies were loaded on board. Three public ship
tours were held. Toward the end of the day, we began loading 450
metric tons of marine gas oil, which was transported alongside by
trucks and then pumped on board.

Fueling was finished at 0100 h on 29 July. We made progress on
the subsea camera hydraulic system upgrade but were not able to
complete it during this short port call. The Expedition 371 scientists
received several presentations, including an introduction to the
project science from the Co-Chief Scientists, an overview of the ed-
ucation and outreach (E&O) plans from the two E&O Officers
aboard, and an introduction to the expedition work plan from the
Expedition Project Manager (EPM). The Captain and other senior
Siem Offshore personnel met with the scientists and provided ship
safety information. The EPM then led the scientists on laboratory
tours for an overview of scientific equipment, procedures, and work
responsibilities. The passage plan for the expedition transits was
completed and arrangements were made with the agent and immi-
gration for a departure at 0700 h on 30 July.

The ship left Townsville with the last line released at 0712 h on
30 July. The first fire and life boat safety drill was held for all aboard.
The Co-Chief Scientists and EPM met with each laboratory team to
discuss requirements, tasks, and issues, and the teams began to pre-
pare for their work.

Site U1506

Hole locations, water depths, and the number of cores recov-
ered are listed in Table T1. All times are local ship time (UTC + 10
h). All depth references in meters in this section refer to the DSF
depth scale, unless noted otherwise.

Site U1506 was the first site occupied during Expedition 371.
After an 1167 nmi transit from Townsville, Australia, the ship ar-
rived at Site U1506 at 1912 h on 3 August 2017. The thrusters were
lowered and the dynamic positioning system was engaged. At 1948
h, the drill floor was cleared for operations, beginning Hole
U1506A. At 2033 h, a seafloor positioning beacon was deployed.

The RCB BHA was assembled and deployed. All drill string tu-
bulars were strapped and drifted during the pipe trip. The top drive
was picked up and a wiper “pig” was pumped through the drill
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string to clean debris from the inside of the drill string prior to cor-
ing. The core barrel was deployed and Hole U1506A was spudded at
0600 h on 4 August.

The seafloor depth was determined to be 1505.8 m drilling
depth below rig floor (DRF) based on tagging it with the drill string,
establishing a water depth of 1495 m. RCB coring proceeded at 9.5—
9.7 m intervals through Core 28R (263.1 m). Core 29R encountered
the expected hard formation at ~265 m. We recovered cores in half
intervals (4.5—-5.0 m length) below this depth to minimize the risk of
core loss due to jams in the bit or inner barrel. We obtained an aver-
age core recovery of 76% in this depth interval.

We decided to stop coring after Core 36R, which arrived on the
rig floor at 1345 h on 5 August. Total recovery for the 306.1 m
drilled in Hole U1506A was 192.38 m (63%). A single 15 barrel mud
sweep of high-viscosity gel mud was pumped during drilling in this
hole. The drill string was retrieved, disassembled, and inspected;
the acoustic beacon was recovered; and the rig floor was secured for
transit, ending Hole U1506A operations at 1935 h. The time spent
on Hole U1506A (and Site U1506) was 47.75 h or 2.0 days.

At 2000 h we departed for Site U1507.

Site U1507

Hole locations, water depths, and the number of cores recov-
ered are listed in Table T1. All times are local ship time (UTC + 10
h). All depth references in meters in this section refer to the DSF
depth scale, unless noted otherwise.

The 286 nmi transit from Site U1506 concluded with the arrival
at Site U1507 at 2200 h on 6 August 2017. After lowering the thrust-
ers and switching to dynamic positioning mode, the rig floor was
cleared for operations, beginning Hole U1507A at 2225 h. The rig
crew assembled an APC/XCB BHA by 0130 h on 7 August, picked
up drill pipe and the top drive, and deployed the bit just above the
seafloor. A wiper pig was pumped through the drill string to clean
out potential debris. The nonmagnetic APC core barrels were
dressed with core liners in preparation to spudding Hole U1507A at
1040 h.

The mudline core recovered 6.2 m, establishing a water depth of
3568 m. APC coring continued to Core 26H. Given the force re-
quired to retrieve the last few APC cores and the overdrilling re-
quired on Core 26H, we switched to XCB coring at 1815 h on 8
August. Given the depth objectives for Site U1507 (>700 m), we de-
cided against using the more time consuming half-APC coring sys-
tem. Recovery of Cores 1H through 26H ranged from 99% to 106%
and averaged 104% (total of 243.7 m cored and 252.7 m recovered).
Temperature measurements were taken with Cores 4H, 7H, 10H,
13H, 16H, and 19H. The deployment of orientation and tempera-
ture tools was discontinued after Core 20H.

Coring continued in Hole U1507A with the XCB system. To-
ward the end of 9 August (at ~425 m) it took ~100—150 min to cut a
core. Moreover, the quality of the cores was poor, with prominent
biscuiting and abundant fracturing. At 0000 h, we decided to termi-
nate Hole U1507A, pull the drill string, and start an RCB hole at the
depth where XCB coring became particularly difficult (~375 m). Re-
covery for the XCB cores varied from 6% to 97% and averaged 55%
(total of 181.7 m cored and 100.1 m recovered). The drill string was
retrieved from Hole U1507A and cleared the rig floor at 0940 h on
10 August, ending Hole U1507A. The time spent on Hole U1507A
was 83.25 h or 3.5 days.

The ship was offset 20 m to the east of Hole U1507A. An RCB
BHA was made up with a center bit installed in the core barrel that
would allow us to drill without coring for the first 375 m. We in-
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cluded a mechanical bit release (MBR) that would allow us to drop
the bit at the bottom of the hole and then wireline log without re-
trieving the entire drill string. Drill pipe was deployed, and by 1800
h on 10 August the bit was just above the seafloor. After picking up
the top drive, we pulled the core barrel with center bit and pumped
a wiper pig through the drill string to clean out debris observed
during drill string assembly. The core barrel with center bit was
then dropped back in place and drilling in Hole U1507B began at
2045 h on 10 August. Drilling without coring in Hole U1507B
reached 376 m by 0630 h on 11 August. The center bit was removed
from the core barrel, and coring began at 0730 h and concluded at
1000 h on 17 August. Cores 2R through 53R penetrated from 376.0
to 864.4 m with a total recovery of 371.5 m (76%). Recovery for the
RCB cores varied between 1% and 109%. Importantly, the quality of
the RCB cores was superior to those collected by XCB drilling over
the 50 m overlap interval. Mud sweeps were pumped for hole clean-
ing on every third core starting with Core 8R. At the end of coring,
Hole U1507B was cleaned with a 25 barrel high-viscosity mud
sweep in preparation for logging.

Wireline logging began with a wireline trip for the rotary shift-
ing tool (RST) to activate the MBR and drop the coring bit at the
bottom of the hole. The bit was released at 1130 h on 17 August.
The RST was recovered, and a second wireline trip was conducted
with the reverse RST to reposition the MBR sleeve into the circulat-
ing position. The tool was recovered and the sinker bars removed.
From 1230 to 1315 h, the hole was displaced with 245 barrels of 11.0
ppg mud. The top drive was set back, the end of drill pipe was raised
to the logging depth of 75.2 m, and the rig floor was prepared for
logging.

Assembly of the modified triple combo logging tool string began
at 1700 h. The tool string included MS, electrical resistivity, sonic,
bulk density, and NGR tools. The neutron porosity tool often run in
the triple combo and the microresistivity imaging (Formation
MicroScanner) tool, often run in a separate string together with the
sonic tool, were omitted from the logging plan for this hole. The
tools were assembled and tested at 1815 h and the tool string was
lowered into Hole U1507B.

The wireline active heave compensator was switched on once
the tools reached open hole. A downhole log was performed from
just above the seafloor to the bottom of the hole at ~864 m WSEF.
The hole was then logged up for a 124 m calibration pass, run back
to the bottom, and logged up to just below the end of the pipe where
the caliper was closed prior to entering the BHA. The tools were
pulled from the hole and were back at the surface at 0200 h on 18
August. By 0345 h, all logging equipment was rigged down and the
rig crew began retrieving the drill string.

Hole conditions were excellent for logging, with a hole diameter
close to the bit diameter (~10 inches) all the way from the bottom of
the hole (846.4 m WSF) to ~490 m WSF. Hole conditions were still
good up to 234 m WSF, where a bridge with a hole diameter of only
~6 inches was encountered. Additional bridges were indicated in
the caliper log further uphole and just below the base of the drill
string. The tool string passed these obstructions successfully and
acquired high-quality measurements throughout the open hole.
However, several hours of remediation work (washing) would have
been required before the Versatile Seismic Imager (VSI) tool could
have been run as planned, with limited chance of success, signifi-
cant daylight time restrictions, and a poor weather forecast. Given
the quality of the standard logs, particularly the sonic log, the pri-
mary logging scientific objective of tying cores to seismic reflection
images had been substantially achieved, so we canceled the VSI run.
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While the drill string was recovered, the seafloor positioning
beacon was released and recovered. With bad weather expected
during the transit to the next site, the drill collars were disassembled
and secured in the drill collar rack. At 1130 h on 18 August, the end
of the drill string cleared the rig floor. The rig floor was secured for
transit at 1150 h, ending Hole U1507B and Site U1507. A total of
194 h or 8.1 days were spent on Hole U1507B.

While raising the thrusters, a hydraulic malfunction occurred
and was repaired, and the transit to Site U1508 began at 1330 h on
18 August.

Site U1508

Hole locations, water depths, and the number of cores recov-
ered are listed in Table T1. All times are local ship time (UTC + 10
h for Holes U1508A and U1508B and UTC + 11 h for Hole
U1508C). All depth references in meters in this section refer to the
DSF depth scale, unless noted otherwise.

We completed the 546 nmi transit from Site U1507 to Site
U1508 at an average speed of 9.5 kt and arrived at 2300 h on 20 Au-
gust 2017. Thrusters and hydrophones were lowered for dynamic
positioning and the rig floor was cleared for operations at 2342 h. At
0130 h on 21 August, we deployed an acoustic beacon for hole posi-
tioning. An APC/XCB BHA was made up and the drill string was
assembled and deployed to just above the seafloor. The top drive
was installed, and the nonmagnetic core barrels dressed with core
liners and the orientation tool were deployed. APC coring in Hole
U1508A started at 0900 h on 21 August.

After shooting Core 10H at 1520 h, the core line parted just
above the sinker bar. The wireline was cut and a new rope socket
was installed. An RCB core barrel was dressed with a fishing shoe,
and by 1800 h on 21 August the sinker bars and core barrel with
Core 10H had been recovered in two wireline trips.

Use of the core orientation tool was postponed until we cut Core
13H because of sandy hole conditions and was discontinued after
Core 17H because of unstable hole conditions. Temperature mea-
surements were taken on Cores 7H, 9H, 10H, 12H, 14H, and 17H.

Core 23H had to be drilled over for 40 min to release it from the
formation. At 0600 h on 22 August, we started to retrieve the drill
string and the bit cleared the rig floor at 1140 h, ending Hole
U1508A. Total recovery for the 210.3 m cored in Hole U1508A was
201.13 m (96%). The time spent on Hole U1508A was 36.0 h or 1.5
days.

The ship was offset by ~20 m to the southwest. An RCB BHA
was made up and deployed, and the drill pipe was assembled until
the bit was just above the seafloor. The top drive was picked up and
drilling without coring in Hole U1508B started at 1745 h on 22 Au-
gust, with a center bit installed in the core barrel. At ~75 m, the drill
string became stuck while making a connection. After pumping a
mud sweep, we were able to free the drill string. A total of 85 barrels
of mud were pumped for the next ~100 m of drilling. Drilling ahead
without coring reached the target (186.6 m) at 2245 h on 22 August,
the center bit was retrieved, and an RCB core barrel was dropped to
begin coring with Core 2R. After achieving low recovery on Cores
23R through 25R and reaching a zone of particular science interest
at ~417 m, we decided to cut half cores for Cores 26R through 33R.
When recovery began to improve, we switched back to full-length
cores with Core 34R.

RCB coring continued to Core 38R (503.4 m), when at 0700 h on
24 August a medical emergency was declared and drill string recov-
ery began. Cores 2R through 38R penetrated from 186.6 to 503.4 m
and recovered 133.32 m (42%). Mud sweeps were pumped for hole
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cleaning on every third core starting with Core 5R. Core recovery
varied from 3% to 104% throughout Hole U1508B.

The acoustic beacon was released and recovered, the drill string
was retrieved and set back in the derrick, and the rig floor was se-
cured, ending Hole U1508B at 1320 h on 24 August. The time spent
on Hole U1508B was 49.5 h or 2.1 days.

After securing the rig floor for transit, the hydrophones and
thrusters were raised and the 302 nmi transit to Auckland began at
1354 h on 24 August. The clocks were advanced 1 h for the first time
at 1400 h, and a second time at 0200 h on 25 August. We arrived at
the dock in Auckland at 2106 h on 25 August (UTC + 12 h). The
medical evacuee, accompanied by two doctors and the port agent,
and a crew member disembarked. The ship left Auckland at 0218 h
on 26 August to return to Site U1508. The clock was set back 1 h
during the transit (UTC + 11 h) and remained that way for the re-
mainder of the Expedition 371 drilling operations. We completed
the 302 nmi transit at an average speed of 10.9 kt and arrived at
0600 h on 27 August. Dynamic positioning was established and the
drill floor was cleared for operations at 0712 h. The RCB BHA was
assembled and deployed to the seafloor and Hole U1508C was initi-
ated ~20 m northwest of Hole U1508B at 1150 h, with a center bit
installed in the core barrel.

The plan was to drill to ~480 m, ~20 m above total depth of Hole
U1508B, and resume coring. We also decided to spot core two sci-
entifically interesting intervals that had particularly low recovery in
Hole U1508B. After drilling without coring to 278 m, we pulled the
center bit and collected core from 278 to 292.6 m (Cores 2R through
4R) at half-core intervals. The center bit was deployed again to drill
ahead from 292.6 to 316.0 m before cutting a half core and a full
core (6R and 7R) from 316.0 to 330.7 m. The center bit was de-
ployed again and drilling without coring advanced from 330.7 to
450.0 m. At 0730 h on 28 August, we retrieved the center bit and
resumed RCB coring until penetration rates slowed to ~2 m/h. Al-
though short of the desired target depth, at 0300 h on 31 August we
decided to stop coring and conduct wireline logging. Collectively,
Cores 2R through 38R, and the two interspersed drilled intervals,
penetrated from 278.0 to 704.5 m and recovered 185.04 m of sedi-
ment (65% of cored intervals).

At the end of coring, the hole was cleaned with a 30 barrel high-
viscosity mud sweep. Next, the RST was deployed to trigger the
MBR and drop the bit at the bottom of the hole (0325 h). The re-
verse RST was deployed to shift the MBR sleeve back into the circu-
lation position (0430 h). Next, the hole was displaced with 194
barrels of 11.0 ppg mud and the end of the drill string was set at 86.7
m. An additional 10 barrels of mud were pumped to ensure the en-
tire hole was displaced with heavy mud.

At 0745 h on 31 August, assembly of the modified triple combo
logging tool string began. This was the same configuration as used
in Hole U1507B with the exception that no source was installed in
the density tool. The logging tools were deployed at 0900 h and data
were collected while lowering the tool string to the bottom of the
hole. After logging up 128 m for a calibration run, the tools were run
back to the bottom of the hole and the main logging pass began. At
~1230 h, the tool string became stuck at ~270 m WSE. The logging
line was cut at the rig floor and terminated with connectors that
would allow assembly of drill pipe over the logging line to wash
down and over the logging tools with the open-ended BHA. The
logging tools were free at 2105 h. The tool was pulled to 155 m WSF
using the T-bar procedure, when sufficient logging line had been re-
trieved to make a connection with the aft coring line, which was
used to pull the logging tools to the surface. The logging tools were
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recovered and cleaned by 0315 h on 1 September. The drill string
was recovered and the end of pipe cleared the rig floor at 0650 h.
The positioning beacon was recovered, the rig floor was secured for
transit, the thrusters and hydrophones were raised, and the transit
to Site U1509 began at 0730 h on 1 September.

Site U1509

Hole locations, water depths, and the number of cores recov-
ered are listed in Table T1. All times are local ship time (UTC + 11
h). All depth references in meters in this section refer to the DSF
depth scale.

We arrived at Site U1509 at 0630 h on 2 September 2017, com-
pleting the 273 nmi transit from Site U1508. After lowering thrust-
ers and hydrophones and establishing dynamic positioning, the rig
floor was cleared for operations at 0700 h. While the RCB BHA was
being assembled, a seafloor positioning beacon was deployed. The
drill string was deployed to just above the seafloor and the top drive
was engaged. A wiper pig was pumped through the drill pipe in an
attempt to remove excessive rust observed during drill string as-
sembly.

Coring in Hole U1509A began at 1825 h on 2 September and
continued until 2345 h on 6 September to a total depth of 690.7 m
(Core 74R). The hole was cleaned with 10-15 barrel mud sweeps,
which were pumped on every third core for Cores 9R through 49R.
Starting with Core 50R the frequency and volume of mud sweeps
were increased to every other core and 20—25 barrels, respectively.
Total recovery in Hole U1509A was 462.86 m (67%).

In preparation for logging, Hole U1509A was cleaned with a 30
barrel high-viscosity mud sweep. The RST was deployed to trigger
the MBR and drop the bit at the bottom of the hole (0015 h on 7
September). The reverse RST was deployed to shift the MBR sleeve
back into the circulation position (0145 h). Next, the hole was dis-
placed with 214 barrels of 10.5 ppg mud, the top drive was set back,
and the drill string was pulled back to the logging depth of 81 m
(0530 h). The modified triple combo logging tool string was rigged
up when at 0645 h the operational decision was made to stop log-
ging operations based on ship heave exceeding 3.0 m. The drill
string was retrieved and the rig was secured for transit by 1434 h,
ending Hole U1509A and Site U1509. A total of 127.5 h or 5.3 days
were spent on Hole U1509A. After recovering the seafloor position-
ing beacon and retrieving positioning thrusters and hydrophones at
1630 h on 7 September, the ship began the ~200 nmi transit to the
north to avoid severe weather that was forecast for 9-10 September
at the remaining proposed drilling sites.

Site U1510

Hole locations, water depths, and the number of cores recov-
ered are listed in Table T1. All times are local ship time (UTC + 11
h). All depth references in meters in this section refer to the DSF
depth scale.

After the 380 nmi transit in heavy winds and seas from a waiting
on weather location, the ship arrived at Site U1510 at 0918 h on 12
September 2017. The thrusters were lowered, dynamic positioning
was established, and the drill floor was cleared for operations at
0936 h. No seafloor positioning beacon was deployed at this site.

An APC/XCB BHA was assembled and deployed. After the first
7 stands of drill pipe were added, the iron roughneck clamping valve
refused to unclamp from the drill pipe. While the repair was taking
place, drill pipe assembly continued using the rig tongs instead of
the iron roughneck for the next 23 stands. When the iron rough-
neck repair was complete, the remaining 8 stands of drill pipe were
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run. The top drive was picked up, the nonmagnetic core barrels
were dressed with core liners, and the orientation tool was installed.
Coring in Hole U1510A started at 1915 h on 12 September.

APC coring continued through Core 17H, which stroked out
only ~3 m because the cutting shoe impacted a chert layer. At 0645
h on 13 September, we decided to switch to XCB coring. We
stopped deploying the orientation tool after Core 15H. Temperature
measurements were taken on Cores 4H, 7H, 10H, 13H, and 17H.
The APC cored interval penetrated from 0 to 150.5 m and recov-
ered 147.9 m (98%).

XCB coring continued until 1930 h on 14 September. Cores 18X
through 52X penetrated from 150.5 to 483.4 m and recovered 108.1
m (32%). Recovery was compromised seriously because of frequent
chert layers.

Coring in Hole U1510A concluded with a total penetration of
483.4 m and total recovery of 260.0 m (53%). The drill pipe was re-
trieved from Hole U1510A, clearing the rig floor at 2135 h on 14
September and ending Hole U1510A. The time spent on Hole
U1510A was 60 h or 2.5 days.

The ship was offset 20 m to the east and APC coring in Hole
U1510B began at 2300 h on 14 September with Core 1H and ended
at 0215 h on 15 September with Core 7H. Nonmagnetic core barrels
were used for Cores 1H through 7H and a single APCT-3 tempera-
ture measurement was taken on Core 7H. Cores 1H through 7H
penetrated from 0 to 66.3 m and recovered 64.7 m (98%). The drill
string was recovered and the rig floor was secured for transit at
0815 h, ending Hole U1510B and operations at Site U1510. The time
spent on Hole U1510B was 10.75 h or 0.4 days.

The thrusters were raised and at 0842 h on 15 September the
ship began the transit to Site U1511.

Site U1511

Hole locations, water depths, and the number of cores recov-
ered are listed in Table T1. All times are local ship time (UTC + 11
h). All depth references in meters in this section refer to the DSF
depth scale.

The ship completed the 216 nmi transit from Site U1510 at an
average speed of 7.7 kt and arrived at Site U1511 at 1248 h on 16
September 2017. The thrusters were lowered and dynamic position-
ing was established. No acoustic beacon was deployed at Site
U1511.

Logging was eliminated from the operations plan following the
stuck logging tool incident earlier in the cruise. After losing ~2000
m of logging wireline, we could no longer reach the combination of
water depth and hole depth to log Site U1511.

Operations in Hole U1511A began at 1334 h on 16 September
with the assembly of an RCB BHA. Drill pipe assembly was com-
pleted at 0245 h on 17 September and a wiper pig was pumped
through the pipe to clean out potential debris. RCB coring in Hole
U1511A began at 0425 h. After retrieving Core 3R at 0810 h, we had
to pull the drill string clear of the seafloor due to excessive heave
and wind. Cores 1R through 3R penetrated from 0 to 26.6 m and
recovered 7.9 m (30%). A total of 19.25 h or 0.8 days were spent on
Hole U1511A.

After waiting from 0845 h on 17 September to 0145 h on 18 Sep-
tember (17 h) for the weather to improve, with the drill string sus-
pended just above the seafloor, we began Hole U1511B by washing
down (i.e., drilling without coring and without a center bit installed)
to 19.8 m, near the total depth of Hole U1511A (26.6 m). We re-
sumed coring from 0215 to 1015 h on 18 September and Cores 2R
through 7R penetrated from 19.8 to 77.2 m. At 1015 h, we deployed
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a center bit and drilled without coring from 77.2 to 192.2 m to accel-
erate penetration and reach the target depth in the time remaining
for operations on Expedition 371. At 1500 h on 18 September, we
resumed coring and Cores 9R through 41R penetrated from 192.2 to
508.8 m. At 1630 h on 20 September, coring was suspended due to
excessive heave and the drill string was raised ~37 m above the bot-
tom of the hole (472 m), while maintaining circulation and rotation
in the hole. While waiting for the weather to improve, the ship was
having difficulties maintaining position. At 0315-0630 h on 21 Sep-
tember, the drill string was raised to 163 mbsf as a precaution. As
the swell began to subside, the drill string was lowered back to the
bottom of the hole at 1030—1400 h. After pumping a 25 barrel mud
sweep and recovering the wash barrel, coring resumed at 1600 h on
21 September, following 23.5 h of waiting, and ended with the re-
covery of the last core (47R) at 0450 h on 22 September.

During the course of drilling and coring in Hole U1511B, a total
of 265 barrels of high-viscosity mud were pumped in 15-20 barrel
mud sweeps for hole cleaning. The cored interval was 431.4 m and
recovery was 279.3 m (65%). The two intervals drilled without cor-
ing amount to 134.8 m.

The rig floor was secured for transit to Hobart at 1630 h on 22
September, ending Hole U1511B and Site U1511. A total of 110.75 h
or 4.6 days were spent on Hole U1511B. The total time spent at Site
U1511 was 130.0 h or 5.4 days. This included 40.5 h lost because of
weather.

Expedition 371 ended with the first line ashore at 0930 h on 26
September.

Education, outreach, and media

E&O immediately before, during, and immediately after an
IODP expedition present a wonderful but challenging aspiration.
Clearly, media exposure helps the broad public to understand the
necessity of ocean drilling.

The current IODP framework importantly includes an E&O
component. However, the translation of these efforts to maximize
science impact remains uncertain.

Expedition 371 received special media attention, in part because
a paper entitled “Zealandia: Earth’s Hidden Continent” (Mortimer
et al.,, 2017) was widely circulated in media and its basic contents
were widely read across the globe before the expedition. Anticipat-
ing high media attention, we thought to have two education and
outreach personnel (a teacher and a videographer) with somewhat
overlapping work-shifts and also to document the experience.

Video conferencing

A total of 52 ship to shore video links were established with 41
different international education institutions: 22 in the USA, 22 in
Australia, 4 in New Zealand, and 5 in Europe and South America.
Approximately 2600 students and teachers participated (Table T2).
In addition, 8 video links were made with media outlets that
reached an audience exceeding 100,000 (Table T2).

Other conferencing events

ABC filmed three ship to shore links with the goal of compiling
a documentary on the JOIDES Resolution education and outreach
program run by IODP:

Pascack Hills High School, New Jersey, USA
Monterey Peninsula, California, USA
Pennsylvania State College, Pennsylvania, USA
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Education projects completed at sea

« A senior high school task was prepared with the topic of inter-
preting a sedimentary sequence from drill hole data and recon-
structing a terrestrial Cretaceous landscape. Students determine
what major tectonic events may have occurred for the present
sequence to have subsided into a marine sedimentary basin.

» A lower to middle primary school task was prepared with the
topic of interviewing a geoscientist and looking at how they
travel back through time to recreate a paleolandscape.

Videography

The videographer operated the camera for all Zoom sessions
and assisted in social media posting by delivering photos and videos
and setting up scientists with accounts for posting blogs.

Seven video clips were uploaded to YouTube and the JOIDES
Resolution website (Table T3). These videos cover different topics
from leaving port in Townsville, drone footage of the ship, and the
drilling and core sampling process. The video titled “Exploring Zea-
landia” has reached more than 4900 acknowledged views so far
since being uploaded. During the expedition, 15 interviews with sci-
entists, technical staff, and the drill crew also were recorded.

Media impact

Expedition 371 had significant media activity (international TV,
radio, web, and newspapers) associated with both port calls. A full
analysis of the Townsville port call was not attempted, but a brief
search of Google News and an analysis done for GNS Science iden-
tified >150 media stories that reached an audience of at least two
million people (Table T4). Stories ran in the major newspapers of
many countries (e.g., New York Times, Le Figaro, Vangardia, Sydney
Morning Herald, etc.). Both Co-Chief Scientists and several of the
scientists wrote stories and/or communicated with journalists nu-
merous times during the expedition (e.g., the story written by
Sutherland in The Conversation obtained 20,000 views in the week
it was written; and was republished by media organizations).

It was a challenge for the Co-Chief Scientists and many of the
scientists involved to manage the time involved in outreach activi-
ties and to monitor/quantify the very high levels of media interest
during the expedition. Certainly, two people are needed to conduct
appropriate E&O activities during IODP expeditions with heavy
media attention. This is in part because, at a basic level, one person
needs to film and one person needs to interview. How the overall
effort should be balanced between a focus on small intimate groups
or a focus on large generic populations is a great question. We also
acknowledge interesting problems in terms of assessment, namely
that a video might be downloaded and presented elsewhere (e.g., in
a classroom environment) so as to be seen by many, but a more per-
sonal contact might impact an individual to become the next great
oceanographer.

Preliminary scientific assessment and
further work

The primary drilling objectives of the expedition were mostly
completed. All six sites provide new regional stratigraphic and
paleogeographic information that can be put into regional context
through seismic-stratigraphic interpretation and hence provide
strong constraints on geodynamic models of subduction zone initi-
ation. Our new observations can be related directly to the timing of
plate failure, the magnitude and timing of vertical motions, and the
timing and type of volcanism.
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Secondary paleoclimate objectives were not completed as
planned for three primary reasons: (1) the selected sites targeted
tectonic objectives, (2) the stratigraphy in this vast region is (with
hindsight) more complicated than predicted, and (3) complications
due to weather and other unforeseen factors. Nonetheless, signifi-
cant new records of southwest Pacific oceanography and climate in
the past were obtained. Sediments that were cored were more indu-
rated and diagenetically altered than expected. Core recovery was
poorer than expected. Operational issues resulted in a lack of time,
and hence it was not possible to build spliced intervals. Notably,
strata deposited during Eocene hyperthermal events were systemat-
ically poorly recovered, even when recovery was good above and
below. This was possibly due to higher clay and lower carbonate
content (based on wireline logs at Sites U1507 and U1508). We re-
covered a MECO section at Site U1511, but the site is affected by
diagenesis and fluid-mediated reactions. Site U1511 also appears
barren of organic carbon suitable for biomarker analysis and has lit-
tle biogenic carbonate preserved. Miocene sediment that was recov-
ered provides a useful supplement to material collected during Leg
90. A Pliocene—Quaternary spliced section at Site U1510 has orbital
cycles evident in physical properties and may provide a significant
climate record at a key location.

All sites were cored to near planned target depths, but opera-
tions did not go precisely as anticipated. The original plan included
3.0 days of port call, 12.5 days of transit, and 45.5 days of operations.
We lost operational time due to weather, longer transits than
planned, stuck logging tools, and a medical emergency, leaving a to-
tal of 36.4 days of on-site operations. The breaks in drilling resulted
in lower overall efficiency due to time spent tripping drill pipe and
re-establishing coring (e.g., through starting a new hole and drilling
down with overlap). Wireline logging tools became stuck at Site
U1508 and required 2 km of logging cable to be cut from the winch,
which meant it was impossible to log subsequent Site U1511 due to
the water depth. Our logging program was abandoned due to sea
conditions at Sites U1509 and U1510. We intended to double
APC/XCB core at four sites, but a combination of time pressure and
hard sediments made this impossible at any site. Despite these oper-
ational challenges, the first-order results obtained are highly signifi-
cant and Expedition 371 can be considered a success.

Regional stratigraphy resulting from Expedition 371 creates a
new framework for understanding the continent of Zealandia, the
onshore geology of New Caledonia and New Zealand, and sediment
cores collected at DSDP sites in the region. Our results likely will
influence a wide range of future studies and provide a new basis for
understanding fundamental processes of plate tectonics and paleo-
climate.

References

Adams, C.J., Cluzel, D., and Griffin, W.L., 2009. Detrital-zircon ages and geo-
chemistry of sedimentary rocks in basement Mesozoic terranes and their
cover rocks in New Caledonia, and provenances at the Eastern Gondwa-
naland margin. Australian Journal of Earth Sciences, 56(8):1023—-1047.
https://doi.org/10.1080/08120090903246162

Aitchison, J.C., Alj, J.R., and Davis, A.M., 2007. When and where did India
and Asia collide? Journal of Geophysical Research: Solid Earth,
112(B5):B05423. https://doi.org/10.1029/2006JB004706

Aitchison, J.C., Clarke, G.L., Meffre, S., and Cluzel, D., 1995. Eocene arc-conti-
nent collision in New Caledonia and implications for regional southwest
Pacific tectonic evolution. Geology, 23(2):161-164.
https://doi.org/10.1130/0091-7613(1995)023<0161:EAC-
CIN>2.3.CO;2


https://doi.org/10.1080/08120090903246162
https://doi.org/10.1029/2006JB004706
https://doi.org/10.1130/0091-7613(1995)023<0161:EACCIN>2.3.CO;2
https://doi.org/10.1130/0091-7613(1995)023<0161:EACCIN>2.3.CO;2

R. Sutherland et al.

Aitchison, ].C., Ireland, T.R., Clarke, G.L., Cluzel, D., Davis, A.M., and Meffre,
S., 1998. Regional implications of U/Pb SHRIMP age constraints on the
tectonic evolution of New Caledonia. Tectonophysics, 299(4):333—343.
https://doi.org/10.1016/S0040-1951(98)00211-X

Andrews, P.B, Gostin, V.A., Hampton, M.A., Margolis, S.V., and Ovenshine,
AT, 1975. Synthesis—sediments of the Southwest Pacific Ocean, South-
east Indian Ocean, and South Tasman Sea. In Kennett, J.P,, Houtz, R.E. et
al,, Initial Reports of the Deep Sea Drilling Project, 29: Washington, DC
(U.S. Govt. Printing Office), 1147-1153.
https://doi.org/10.2973/dsdp.proc.29.143.1975

Andrews, PB., and Ovenshine, A.T., 1975. Terrigenous silt and clay facies:
deposits of the early phase of ocean basin evolution. I Kennett, J.P,
Houtz, R.E. et al,, Initial Reports of the Deep Sea Drilling Project, 29:
Washington, DC (U.S. Government Printing Office), 1049-1063.
https://doi.org/10.2973/dsdp.proc.29.131.1975

Arculus, R J., Ishizuka, O., Bogus, K., Aljahdali, M.H., Bandini-Maeder, A.N.,,
Barth, A.P, Brandl, P.A., do Monte Guerra, R., Drab, L., Gurnis, M.C.,
Hamada, M., Hickey-Vargas, R.L,, Jiang, F., Kanayama, K., Kender, S.,
Kusano, Y., Li, H., Loudin, L.C., Maffione, M., Marsaglia, K.M., McCarthy,
A., Meffre, S., Morris, A., Neuhaus, M., Savov, L.P, Sena Da Silva, C.A,,
Tepley, EJ., I, van der Land, C., Yogodzinski, G.M., and Zhang, Z., 2015a.
Expedition 351 summary. In Arculus, R.J., Ishizuka, O., Bogus, K., and the
Expedition 351 Scientists, Proceedings of the International Ocean Discov-
ery Program, Expedition 351: Izu-Bonin-Mariana Arc Origins: College
Station, TX (International Ocean Discovery Program).
https://doi.org/10.14379/iodp.proc.351.101.2015

Arculus, R J., Ishizuka, O., Bogus, K.A., Gurnis, M., Hickey-Vargas, R., Aljah-
dali, M.H., Bandini-Maeder, A.N,, et al., 2015b. A record of spontaneous
subduction initiation in the Izu-Bonin-Mariana arc. Nature Geoscience,
8:728-733. https://doi.org/10.1038/ngeo2515

Bache, F., Mortimer, N., Sutherland, R., Collot, J., Rouillard, P, Stagpoole, V.,
and Nicol, A., 2014. Seismic stratigraphic record of transition from Meso-
zoic subduction to continental breakup in the Zealandia sector of eastern
Gondwana. Gondwana Research, 26(3—4):1060-1078.
https://doi.org/10.1016/j.gr.2013.08.012

Bache, F, Sutherland, R., Stagpoole, V., Herzer, R., Collot, J., and Rouillard, P,
2012. Stratigraphy of the southern Norfolk Ridge and the Reinga Basin: a
record of initiation of Tonga—Kermadec—Northland subduction in the
southwest Pacific. Earth and Planetary Science Letters, 321-322:41-53.
https://doi.org/10.1016/j.epsl.2011.12.041

Baldwin, S.L., Rawling, T., and Fitzgerald, P.G., 2007. Thermochronology of
the New Caledonian high-pressure terrane: implications for middle Ter-
tiary plate boundary processes in the southwest Pacific. Special Paper—
Geological Society of America, 419:117—-134.
https://doi.org/10.1130/2006.2419(06)

Barron, E.J., 1987. Eocene Equator-to-pole surface ocean temperatures: a sig-
nificant climate problem? Paleoceanography, 2(6):729-739.
https://doi.org/10.1029/PA002i006p00729

Baur, J., Sutherland, R., and Stern, T., 2014. Anomalous passive subsidence of
deep-water sedimentary basins: a prearc basin example, southern New
Caledonia Trough and Taranaki Basin, New Zealand. Basin Research,
26(2):242-268. https://doi.org/10.1111/bre.12030

Becker, T.W., and O’Connell, R.J., 2001. Predicting plate velocities with mantle
circulation models. Geochemistry, Geophysics, Geosystems, 2(12):1060.
https://doi.org/10.1029/2001GC000171

Beerling, D.J., and Royer, D.L., 2011. Convergent Cenozoic CO, history.
Nature Geoscience, 4(7):418—420. https://doi.org/10.1038/nge01186

Bijl, PK., Schouten, S., Sluijs, A., Reichart, G.-]., Zachos, ].C., and Brinkhuis,
H., 2009. Early Palaeogene temperature evolution of the southwest Pacific
Ocean. Nature, 461(7265):776-779.
https://doi.org/10.1038/nature08399

Billen, ML, and Gurnis, M., 2005. Constraints on subducting plate strength
within the Kermadec Trench. Journal of Geophysical Research: Solid
Earth, 110(B5):B05407. https://doi.org/10.1029/2004JB003308

Brinkhuis, H., Schouten, S., Collinson, M.E,, Sluijs, A., Sinninghe Damst¢, J.S.,
Dickens, G.R., Huber, M., et al., 2006. Episodic fresh surface waters in the

27

Expedition 371 Preliminary Report

Eocene Arctic Ocean. Nature, 441(7093):606—609.
https://doi.org/10.1038/nature04692

Browne, G.H., Lawrence, M.J.E,, Mortimer, N., Clowes, C.D., Morgans,
H.E.G,, Hollis, C.J.,, Beu, A.G., Black, J.A., Sutherland, R., and Bache, F,,
2016. Stratigraphy of Reinga and Aotea basins, NW New Zealand: con-
straints from dredge samples on regional correlations and reservoir char-
acter. New Zealand Journal of Geology and Geophysics, 59(3):396—-415.
https://doi.org/10.1080/00288306.2016.1160940

Brummer, G.J.A., and van Eijden, A.].M., 1992. “Blue-ocean” paleoproductiv-
ity estimates from pelagic carbonate mass accumulation. Marine Micro-
paleontology, 19(1-2):99-117. https://doi.org/10.1016/0377-
8398(92)90023-D

Bryan, S.E., Constantine, A.E., Stephens, C.J., Ewart, A., Schon, R.W., and
Parianos, J., 1997. Early Cretaceous volcano-sedimentary successions
along the eastern Australian continental margin: implications for the
break-up of eastern Gondwana. Earth and Planetary Science Letters,
153(1-2):85-102. https://doi.org/10.1016/S0012-821X(97)00124-6

Buffett, B.A., 2006. Plate force due to bending at subduction zones. Journal of
Geophysical Research: Solid Earth, 111(B9):B09405.
https://doi.org/10.1029/2006)JB004295

Burns, R.E., and Andrews, ].E., 1973. Regional aspects of deep sea drilling in
the southwest Pacific. In Burns, R.E., Andrews, .E., et al., Initial Reports
of the Deep Sea Drilling Project, 21: Washington, DC (U.S. Govt. Printing
Office), 897-906. https://doi.org/10.2973/dsdp.proc.21.128.1973

Cande, S.C,, Patriat, P, and Dyment, J., 2010. Motion between the Indian,
Antarctic and African plates in the early Cenozoic. Geophysical Journal
International, 183(1):127-149.
https://doi.org/10.1111/j.1365-246X.2010.04737.x

Cande, S.C., and Stock, ].M., 2004. Pacific—Antarctic—Australia motion and
the formation of the Macquarie plate. Geophysical Journal International,
157(1):399-414. https://doi.org/10.1111/j.1365-246X.2004.02224.x

Cande, S.C., Stock, .M., Miiller, R.D., and Ishihara, T., 2000. Cenozoic motion
between east and west Antarctica. Nature, 404(6774):145—-150.
https://doi.org/10.1038/35004501

Caress, D.W., Menard, H.W., and Hey, R.N., 1988. Eocene reorganization of
the Pacific-Farallon spreading center north of the Mendocino Fracture
Zone. Journal of Geophysical Research: Solid Earth, 93(B4):2813-2838.
https://doi.org/10.1029/JB093iB04p02813

Carter, R.M., McCave, LN,, and Carter, L., 2004. Leg 181 synthesis: fronts,
flows, drifts, volcanoes, and the evolution of the southwestern gateway to
the Pacific Ocean, eastern New Zealand. In Richter, C. (Ed.), Proceedings
of the Ocean Drilling Program, Scientific Results, 181: College Station, TX
(Ocean Drilling Program), 1-111.
https://doi.org/10.2973/odp.proc.sr.181.210.2004

Cluzel, D., Adams, C.J., Meffre, S., Campbell, H., and Maurizot, P, 2010. Dis-
covery of Early Cretaceous rocks in New Caledonia: new geochemical
and U-Pb zircon age constraints on the transition from subduction to
marginal breakup in the southwest Pacific. Journal of Geology,
118(4):381-397. https://doi.org/10.1086/652779

Cluzel, D., Aitchison, J.C., and Picard, C., 2001. Tectonic accretion and under-
plating of mafic terranes in the late Eocene intraoceanic fore-arc of New
Caledonia (southwest Pacific): geodynamic implications. Tectonophysics,
340(1-2):23-59. https://doi.org/10.1016/S0040-1951(01)00148-2

Cluzel, D., and Meffre, S., 2002. The Boghen Terrane (New Caledonia, SW
Pacific): a Jurassic accretionary complex. Preliminary U-Pb radiochrono-
logical data on detrital zircon. Comptes Rendus Geoscience, 334(11):867—
874. https://doi.org/10.1016/S1631-0713(02)01823-0

Cluzel, D., Meffre, S., Maurizot, P., and Crawford, A.J., 2006. Earliest Eocene
(53 Ma) convergence in the southwest Pacific: evidence from pre-obduc-
tion dikes in the ophiolite of New Caledonia. Terra Nova, 18(6):395-402.
https://doi.org/10.1111/j.1365-3121.2006.00704.x

Collot, J., Geli, L., Lafoy, Y., Vially, R., Cluzel, D., Klingelhoefer, F., and Nouzé,
H., 2008. Tectonic history of northern New Caledonia Basin from deep
offshore seismic reflection: relation to late Eocene obduction in New
Caledonia, southwest Pacific. Tectonics, 27(6):TC6006.
https://doi.org/10.1029/2008TC002263


https://doi.org/10.1016/S0040-1951(98)00211-X
https://doi.org/10.2973/dsdp.proc.29.143.1975
https://doi.org/10.2973/dsdp.proc.29.131.1975
https://doi.org/10.14379/iodp.proc.351.101.2015
https://doi.org/10.1038/ngeo2515
https://doi.org/10.1016/j.epsl.2011.12.041
https://doi.org/10.1130/2006.2419(06)
https://doi.org/10.1029/PA002i006p00729
https://doi.org/10.1111/bre.12030
https://doi.org/10.1029/2001GC000171
https://doi.org/10.1038/ngeo1186
https://doi.org/10.1038/nature08399
https://doi.org/10.1029/2004JB003308
http://dx.doi.org/10.1038/nature04692
https://doi.org/10.1080/00288306.2016.1160940
https://doi.org/10.1016/0377-8398(92)90023-D
https://doi.org/10.1016/0377-8398(92)90023-D
https://doi.org/10.1016/S0012-821X(97)00124-6
https://doi.org/10.1029/2006JB004295
https://doi.org/10.2973/dsdp.proc.21.128.1973
https://doi.org/10.1111/j.1365-246X.2010.04737.x
https://doi.org/10.1111/j.1365-246X.2004.02224.x 
https://doi.org/10.1038/35004501
https://doi.org/10.1029/JB093iB04p02813
https://doi.org/10.2973/odp.proc.sr.181.210.2004
https://doi.org/10.1086/652779
https://doi.org/10.1016/S0040-1951(01)00148-2
https://doi.org/10.1016/S1631-0713(02)01823-0
https://doi.org/10.1111/j.1365-3121.2006.00704.x
https://doi.org/10.1029/2008TC002263
https://doi.org/10.1016/j.gr.2013.08.012

R. Sutherland et al.

Collot, J., Herzer, R., Lafoy, Y., and Géli, L., 2009. Mesozoic history of the Fair-
way-Aotea Basin: implications for the early stages of Gondwana fragmen-
tation. Geochemistry, Geophysics, Geosystems, 10(12):Q120109.
https://doi.org/10.1029/2009GC002612

Collot, J., Vendé-Leclerc, M., Rouillard, P, Lafoy, Y., and Géli, L., 2012. Map
helps unravel complexities of the southwestern Pacific Ocean. Eos, Trans-
actions of the American Geophysical Union, 93(1):1-2.
https://doi.org/10.1029/2012E0010001

Crawford, A.J., Meffre, S., and Symonds, P.A., 2003. 120 to 0 Ma tectonic evo-
lution of the southwest Pacific and analogous geological evolution of the
600 to 220 Ma Tasman fold belt system. I Hillis, R.R., and Miiller, R.D.
(Eds.), Evolution and Dynamics of the Australian Plate. Special Paper -
Geological Society of America, 372:383-403.
https://doi.org/10.1130/0-8137-2372-8.383

Dallanave, E., Agnini, C., Bachtadse, V., Muttoni, G., Crampton, J.S., Strong,
C.P, Hines, B.R., Hollis, C.J., and Slotnick, B.S., 2015. Early to middle
Eocene magneto-biochronology of the southwest Pacific Ocean and cli-
mate influence on sedimentation: insights from the Mead Stream section,
New Zealand. Geological Society of America Bulletin, 127(5—6):643—660.
https://doi.org/10.1130/B31147.1

Davy, B., Hoernle, K., and Werner, R., 2008. Hikurangi Plateau: crustal struc-
ture, rifted formation, and Gondwana subduction history. Geochemistry,
Geophysics, Geosystems, 9(7):Q07004.
https://doi.org/10.1029/2007GC001855

DeConto, R.M., and Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica
induced by declining atmospheric CO,. Nature, 421(6920):245-249.
https://doi.org/10.1038/nature01290

Dickens, G.R., and Owen, R.M., 1999. The latest Miocene—early Pliocene bio-
genic bloom: a revised Indian Ocean perspective. Marine Geology,
161(1):75-91. https://doi.org/10.1016/S0025-3227(99)00057-2

Dickens, G.R., Koelling, M., Smith, D.C., Schneiders, L., and the IODP Expe-
dition 302 Scientists, 2007. Rhizon sampling of pore waters on scientific
drilling expeditions: an example from the IODP Expedition 302, Arctic
Coring Expedition (ACEX). Scientific Drilling, 4:22—25.
http://dx.doi.org/10.2204/iodp.sd.4.08.2007

Douglas, PM.J., Affek, H.P, Ivany, L.C., Houben, A.J.P, Sijp, W.P, Sluijs, A.,
Schouten, S., and Pagani, M., 2014. Pronounced zonal heterogeneity in
Eocene southern high-latitude sea surface temperatures. Proceedings of
the National Academy of Sciences of the United States of America,
111(18):6582—-6587. https://doi.org/10.1073/pnas.1321441111

Edgar, K.M., Wilson, P.A., Sexton, PF,, and Suganuma, Y., 2007. No extreme
bipolar glaciation during the main Eocene calcite compensation shift.
Nature, 448(7156):908-911. https://doi.org/10.1038/nature06053

Edwards, A.R., 1973. Southwest Pacific regional unconformities encountered
during Leg 21. In Burns, R.E., Andrews, J.E., et al., Initial Reports of the
Deep Sea Drilling Project, 21: Washington, DC (U.S. Government Printing
Office), 701-720. https://doi.org/10.2973/dsdp.proc.21.120.1973

Edwards, A.R., 1975. Further comments on the Southwest Pacific Paleogene
regional unconformities. [n Andrews, J.E., Packham, G, et al., Initial
Reports of the Deep Sea Drilling Project, 30: Washington (U.S. Govern-
ment Printing Office), 663-666.
https://doi.org/10.2973/dsdp.proc.30.122.1975

Etienne, S., Collot, J., Sutherland, R., Patriat, M., Bache, F., Rouillard, P,, Hen-
rys, S., Barker, D., and Juan, C,, in press. Deepwater sedimentation and
Cenozoic deformation in the southern New Caledonia Trough (northern
Zealandia, SW Pacific). Marine and Petroleum Geology.
https://doi.org/10.1016/j.marpetgeo.2017.12.007

Exon, N.E, Brinkhuis, H., Robert, C.M., Kennett, ].P, Hill, PJ., and Macphail,
M.K,, 2004a. Tectono-sedimentary history of uppermost Cretaceous
through Oligocene sequences from the Tasmanian region: a temperate
Antarctic margin. In Exon, N.F, Kennett, ].P,, and Malone, M. (Eds.), The
Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change
between Australia and Antarctica. Geophysical Monograph, 151:319—
344. https://doi.org/10.1029/151GM18

Exon, N.F, Kennett, J.P,, and Malone, M. (Eds.), 2004b. The Cenozoic South-
ern Ocean: tectonics, sedimentation and climate change between Austra-
lia and Antarctica. Geophysical Monograph, 151.

28

Expedition 371 Preliminary Report

Farrell, ].W., Raffi, L, Janecek, T.R., Murray, D.W., Levitan, M., Dadey, K.A.,
Emeis, K.-C,, Lyle, M., Flores, ].-A., and Hovan, S., 1995. Late Neogene
sedimentation patterns in the eastern equatorial Pacific Ocean. I Pisias,
N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H.
(Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 138:
College Station, TX (Ocean Drilling Program), 717-756.
https://doi.org/10.2973/odp.proc.sr.138.143.1995

Gaina, C., Miiller, D.R., Royer, J.-Y., Stock, J., Hardebeck, J., and Symonds, P,
1998. The tectonic history of the Tasman Sea: a puzzle with 13 pieces.
Journal of Geophysical Research: Solid Earth, 103(B6):12413-12433.
https://doi.org/10.1029/98JB00386

Grant, K.M., and Dickens, G.R., 2002. Coupled productivity and carbon iso-
tope records in the southwest Pacific Ocean during the late Miocene—
early Pliocene biogenic bloom. Palaeogeography, Palaeoclimatology,
Palaeoecology, 187(1-2):61-82.
https://doi.org/10.1016/S0031-0182(02)00508-4

Gurnis, M., Hall, C., and Lavier, L., 2004. Evolving force balance during incipi-
ent subduction. Geochemistry, Geophysics, Geosystems, 5(7):Q07001.
https://doi.org/10.1029/2003GC000681

Hall, C.E., Gurnis, M., Sdrolias, M., Lavier, L.L., and Dietmar Miiller, R., 2003.
Catastrophic initiation of subduction following forced convergence across
fracture zones. Earth and Planetary Science Letters, 212(1-2):15-30.
https://doi.org/10.1016/S0012-821X(03)00242-5

Hancock, H.J.L., Dickens, G.R., Strong, C.P, Hollis, C.J., and Field, B.D., 2003.
Foraminiferal and carbon isotope stratigraphy through the Paleocene—
Eocene transition at Dee Stream, Marlborough, New Zealand. New Zea-
land Journal of Geology and Geophysics, 46(1):1-19.
https://doi.org/10.1080/00288306.2003.9514992

Hayes, D.E., and Ringis, ., 1973. Seafloor spreading in the Tasman Sea.
Nature, 243(5408):454—458. https://doi.org/10.1038/243454a0

Herzer, R.H., 1995. Seismic stratigraphy of a buried volcanic arc, Northland,
New Zealand and implications for Neogene subduction. Marine and
Petroleum Geology, 12(5):511-531. https://doi.org/10.1016/0264-
8172(95)91506-K

Herzer, R.H., Chaproniere, G.C.H., Edwards, A.R., Hollis, C.J., Pelletier, B.,
Raine, ]I, Scott, G.H., Stagpoole, V., Strong, C.P., Symonds, P.,, Wilson,
G.J., and Zhu, H., 1997. Seismic stratigraphy and structural history of the
Reinga Basin and its margins, southern Norfolk Ridge system. New Zea-
land Journal of Geology and Geophysics, 40: 425—451.
https://doi.org/10.1080/00288306.1997.9514774

Herzer, R.H., Davy, B.W., Mortimer, N., Quilty, PG., Chaproniere, G.C.H.,
Jones, C.M., Crawford, A.J., and Hollis, C.J., 2009. Seismic stratigraphy
and structure of the Northland Plateau and the development of the Ven-
ing Meinesz transform margin, SW Pacific Ocean. Marine Geophysical
Researches, 30(1):21-60. https://doi.org/10.1007/s11001-009-9065-1

Herzer, R.H., and Mascle, J., 1996. Anatomy of a continent-backarc trans-
form—the Vening Meinesz Fracture Zone northwest of New Zealand.
Marine Geophysical Researches, 18(2):401-427.
https://doi.org/10.1007/BF00286087

Herzer, R.H., Sykes, R, Killops, S.D., Funnell, R.H., Burggraf, D.R., Townend,
J., Raine, ].I., and Wilson, G.J., 1999. Cretaceous carbonaceous rocks from
the Norfolk Ridge system, southwest Pacific: implications for regional
petroleum potential. New Zealand Journal of Geology and Geophysics,
42(1):57-73. https://doi.org/10.1080/00288306.1999.9514831

Higgins, K., Hashimoto, T., Fraser, G., Rollet, N., and Colwell, J., 2011. Ion
microprobe (SHRIMP) U-Pb dating of Upper Cretaceous volcanics from
the northern Lord Howe Rise, Tasman Sea. Australian Journal of Earth
Sciences, 58(2):195-207.
https://doi.org/10.1080/08120099.2011.543150

Hollis, C.J., 2006. Radiolarian faunal turnover through the Paleocene—Eocene
transition, Mead Stream, New Zealand. Eclogae Geologicae Helvetiae,
99(1):S79-S99. https://doi.org/10.1007/s00015-006-0604-3

Hollis, C.J., Dickens, G.R,, Field, B.D., Jones, C.M., and Strong, C.P,, 2005. The
Paleocene—Eocene transition at Mead Stream, New Zealand: a southern
Pacific record of early Cenozoic global change. Palaeogeography, Palaeo-
climatology, Palaeoecology, 215(3—4):313-343.
https://doi.org/10.1016/j.palaeo.2004.09.011


https://doi.org/10.1029/2009GC002612
https://doi.org/10.1029/2012EO010001
https://doi.org/10.1130/0-8137-2372-8.383
https://doi.org/10.1130/B31147.1
https://doi.org/10.1029/2007GC001855
https://doi.org/10.1038/nature01290
https://doi.org/10.1016/S0025-3227(99)00057-2
https://doi.org/10.1073/pnas.1321441111
https://doi.org/10.1038/nature06053
https://doi.org/10.2973/dsdp.proc.21.120.1973
https://doi.org/10.2973/dsdp.proc.30.122.1975
https://doi.org/10.1029/151GM18
https://doi.org/10.2973/odp.proc.sr.138.143.1995
https://doi.org/10.1029/98JB00386
https://doi.org/10.1016/S0031-0182(02)00508-4
https://doi.org/10.1029/2003GC000681
https://doi.org/10.1016/S0012-821X(03)00242-5
https://doi.org/10.1080/00288306.2003.9514992
https://doi.org/10.1038/243454a0
https://doi.org/10.1016/0264-8172(95)91506-K
https://doi.org/10.1016/0264-8172(95)91506-K
https://doi.org/10.1080/00288306.1997.9514774
https://doi.org/10.1007/s11001-009-9065-1
https://doi.org/10.1007/BF00286087
https://doi.org/10.1080/00288306.1999.9514831
https://doi.org/10.1080/08120099.2011.543150
https://doi.org/10.1007/s00015-006-0604-3
https://doi.org/10.1016/j.palaeo.2004.09.011
http://dx.doi.org/10.2204/iodp.sd.4.08.2007
https://doi.org/10.1016/j.marpetgeo.2017.12.007

R. Sutherland et al.

Hollis, C.J., Handley, L., Crouch, E.M., Morgans, H.E.G., Baker, ].A., Creech,
]., Collins, K.S., Gibbs, S.J., Huber, M., Schouten, S., Zachos, J.C., and Pan-
cost, R.D., 2009. Tropical sea temperatures in the high latitude South
Pacific during the Eocene. Geology, 37(2):99-102.
https://doi.org/10.1130/G25200A.1

Hollis, C.J., Taylor, K.W.R., Handley, L., Pancost, R.D., Huber, M., Creech, ].B.,
Hines, B.R., Crouch, E.M., Morgans, H.E.G., Crampton, ].S., Gibbs, S.,
Pearson, PN., and Zachos, J.C., 2012. Early Paleogene temperature history
of the Southwest Pacific Ocean: reconciling proxies and models. Earth
and Planetary Science Letters, 349-350:53—66.
https://doi.org/10.1016/j.epsl.2012.06.024

Huber, M., Brinkhuis, H., Stickley, C.E., D66s, K., Sluijs, A., Warnaar, J., Schel-
lenberg, S.A., and Williams, G.L., 2004. Eocene circulation of the South-
ern Ocean: was Antarctica kept warm by subtropical waters?
Paleoceanography, 19(4):PA4026.
https://doi.org/10.1029/2004PA001014

Huber, M., and Caballero, R., 2011. The early Eocene equable climate problem
revisited. Climate of the Past, 7(2):603-633. https://doi.org/10.5194/cp-
7-603-2011

Keller, W.R., 2003. Cenozoic plate tectonic reconstructions and plate bound-
ary processes in the southwest Pacific [Ph.D. dissertation]. California
Institute of Technology. http://resolver.caltech.edu/CaltechETD:etd-
01102005-223039

Kennett, J.P., 1977. Cenozoic evolution of Antarctic glaciation, the circum-
Antarctic Ocean, and their impact on global paleoceanography. Journal of
Geophysical Research: Oceans and Atmospheres, 82(27):3843-3860.
https://doi.org/10.1029/JC082i027p03843

Kennett, ].P.,, and Exon, N.E, 2004. Paleoceanographic evolution of the Tasma-
nian seaway and its climatic implications. In Exon, N.F,, Kennett, J.P,, and
Malone, M.J. (Eds.), The Cenozoic Southern Ocean: Tectonics, Sedimenta-
tion, and Climate Change between Australia and Antarctica. Geophysical
Monograph, 151:345-367. https://doi.org/10.1029/151GM19

Kennett, J.P, Houtz, R.E., Andrews, P.B., Edwards, A.R., Gostin, V.A., Hajés,
M., Hampton, M., Jenkins, D.G., Margolis, S.V., Ovenshine, A.T., and
Perch-Nielsen, K., 1975. Cenozoic paleoceanography in the southwest
Pacific Ocean, Antarctic glaciation, and the development of the Circum-
Antarctic Current. In Kennett, ].P., Houtz, R.E,, et al,, Initial Reports of the
Deep Sea Drilling Project, 29: Washington, DC (U.S. Government Printing
Office), 1155-1169. https://doi.org/10.2973/dsdp.proc.29.144.1975

Kennett, J.P, and Shackleton, N.J., 1976. Oxygen isotopic evidence for the
development of the psychrosphere 38 Myr ago. Nature, 260(5551):513—
515. https://doi.org/10.1038/260513a0

Kennett, J.P, and von der Borch, C.C., 1986. Southwest Pacific Cenozoic pale-
oceanography. In Kennett, ].P.,, von der Borch, C.C,, et al,, Initial Reports
of the Deep Sea Drilling Project, 90: Washington, DC (U.S. Government
Printing Office), 1493-1517.
https://doi.org/10.2973/dsdp.proc.90.148.1986

Kent, D.V,, and Muttoni, G., 2008. Equatorial convergence of India and early
Cenozoic climate trends. Proceedings of the National Academy of Sciences
of the United States of America, 105(42):16065-16070.
https://doi.org/10.1073/pnas.0805382105

King, PR., and Thrasher, G.P,, 1996. Cretaceous—Cenozoic geology and petro-
leum systems of the Taranaki Basin, New Zealand. Inustitute of Geological
& Nuclear Sciences Monograph, 2.

Klingelhoefer, F., Lafoy, Y., Collot, J., Cosquer, E., Géli, L., Nouzé, H., and
Vially, R., 2007. Crustal structure of the basin and ridge system west of
New Caledonia (southwest Pacific) from wide-angle and reflection seis-
mic data. Journal of Geophysical Research: Solid Earth, 112(B11):B11102.
https://doi.org/10.1029/2007JB005093

Laird, M.G., 1993. Cretaceous continental rifts: New Zealand region. Iz Bal-
lance, PF. (Ed.), Sedimentary Basins of the World (Volume 2): South
Pacific Sedimentary Basins: Amsterdam (Elsevier), 37-49.

Lee, C.-T.A,, Shen, B,, Slotnick, B.S., Liao, K., Dickens, G.R., Yokoyama, Y.,
Lenardic, A., Dasgupta, R., Jellinek, M., Lackey, ].S., et al., 2013. Continen-
tal arc—island arc fluctuations, growth of crustal carbonates, and long-
term climate change. Geosphere, 9(1):21-36.
https://doi.org/10.1130/GES00822.1

29

Expedition 371 Preliminary Report

Leng, W., and Gurnis, M., 2015. Subduction initiation at relic arcs. Geophysi-
cal Research Letters, 42(17):7014—7021.
https://doi.org/10.1002/2015GL064985

Lithgow-Bertelloni, C., and Richards, M.A., 1998. The dynamics of Cenozoic
and Mesozoic plate motions. Reviews of Geophysics, 36(1):27-78.
https://doi.org/10.1029/97RG02282

Lunt, D.J., Dunkley Jones, T., Heinemann, M., Huber, M., LeGrande, A.,
Winguth, A., Loptson, C., Marotzke, J., Roberts, C.D., Tindall, J., Valdes,
P, etal., 2012. A model-data comparison for a multi-model ensemble of
early Eocene atmosphere-ocean simulations: EOMIP. Climate of the Past,
8(2):1716-1736. https://doi.org/10.5194/cpd-8-1229-2012

Lunt, D.J., Otto-Bliesner, B., Poulsen, C.J., Rosenbloom, N., and Tabor, C.R.,
2014. Pre-Pliocene PMIP Working Group: Results So Far, and Questions for
Discussion. Working Group Report of the Paleoclimate Modelling Inter-
comparison Project.

Maurizot, P, 2012. Palaeocene age for the Adio Limestone, New Caledonia:
stratigraphic and regional context. New Zealand Journal of Geology and
Geophysics, 56(1):16-26.
https://doi.org/10.1080/00288306.2012.735677

McKenzie, D.P, 1977. The initiation of trenches: a finite amplitude instabil-
ity. In Talwani, M., and Pitman, W.C., Il (Eds.), Island Arcs, Deep Sea
Trenches and Back-Arc Basins. Maurice Ewing Series, 1:57-61.
http://www.agu.org/books/me/v001/ME001p0057/ME001p0057.pdf

Meffre, S., Falloon, T.J., Crawford, T.J., Hoernle, K., Hauff, F,, Duncan, R.A.,
Bloomer, S.H., and Wright, D.J., 2012. Basalts erupted along the Tongan
fore arc during subduction initiation: evidence from geochronology of
dredged rocks from the Tonga fore arc and trench. Geochemistry, Geo-
Pphysics, Geosystems, 13(12):Q12003.
https://doi.org/10.1029/2012GC004335

Mortimer, N., 2004a. Basement gabbro from the Lord Howe Rise. New Zea-
land Journal of Geology and Geophysics, 47(3):501-507.
https://doi.org/10.1080/00288306.2004.9515072

Mortimer, N., 2004b. New Zealand’s geological foundations. Gondwana
Research, 7(1):261-272. https://doi.org/10.1016/S1342-
937X(05)70324-5

Mortimer, N., Campbell, H.J,, Tulloch, A.J., King, P.R., Stagpoole, V.M., Wood,
R.A,, Rattenbury, M..S,, et al., 2017. Zealandia: Earth’s hidden continent.
GSA Today, 27(3):27-35. https://doi.org/10.1130/GSATG321A.1

Mortimer, N., Hauff, F,, and Calvert, A.T., 2008. Continuation of the New
England orogen, Australia, beneath the Queensland Plateau and Lord
Howe Rise. Australian Journal of Earth Sciences, 55(2):195-209.
https://doi.org/10.1080/08120090701689365

Mortimer, N., Herzer, R.H., Gans, P.B., Laporte-Magoni, C., Calvert, A.T., and
Bosch, D., 2007. Oligocene—Miocene tectonic evolution of the South Fiji
Basin and Northland Plateau, SW Pacific Ocean: evidence from petrology
and dating of dredged rocks. Marine Geology, 237(1-2):1-24.
https://doi.org/10.1016/j.margeo.2006.10.033

Mortimer, N., Herzer, R.H., Gans, PB., Parkinson, D.L., and Seward, D., 1998.
Basement geology from Three Kings Ridge to West Norfolk Ridge, south-
west Pacific Ocean: evidence from petrology, geochemistry and isotopic
dating of dredge samples. Marine Geology, 148(3—4):135-162.
https://doi.org/10.1016/S0025-3227(98)00007-3

Mortimer, N., Tulloch, A.].,, Spark, R.N., Walker, N.W¥., Ladley, E., Allibone, A.,
and Kimbrough, D.L., 1999. Overview of the Median Batholith, New Zea-
land: a new interpretation of the geology of the Median Tectonic Zone
and adjacent rocks. Journal of African Earth Sciences, 29(1):257-268.
https://doi.org/10.1016/S0899-5362(99)00095-0

Miiller, R.D., Gaina, C., Tikku, A., Mihut, D., Cande, S.C., and Stock, ].M.,
2000. Mesozoic/Cenozoic tectonic events around Australia. Iz Richards,
M.A., Gordon, R.G., and Van Der Hilst, R.D. (Eds.), The History and
Dynamics of Global Plate Motions. Geophysical Monograph, 121:161—
188. https://doi.org/10.1029/GM121p0161

Nelson, C.S., and Cooke, PJ., 2001. History of oceanic front development in
the New Zealand sector of the Southern Ocean during the Cenozoic—a
synthesis. New Zealand Journal of Geology and Geophysics, 44(4):535—
553. https://doi.org/10.1080/00288306.2001.9514954


https://doi.org/10.1130/G25200A.1
https://doi.org/10.1016/j.epsl.2012.06.024
https://doi.org/10.1029/2004PA001014
https://doi.org/10.5194/cp-7-603-2011
https://doi.org/10.5194/cp-7-603-2011
http://resolver.caltech.edu/CaltechETD:etd-01102005-223039
http://resolver.caltech.edu/CaltechETD:etd-01102005-223039
https://doi.org/10.1029/JC082i027p03843
https://doi.org/10.1029/151GM19
https://doi.org/10.2973/dsdp.proc.29.144.1975
https://doi.org/10.1038/260513a0
https://doi.org/10.2973/dsdp.proc.90.148.1986
https://doi.org/10.1073/pnas.0805382105
https://doi.org/10.1029/2007JB005093
https://doi.org/10.1130/GES00822.1
https://doi.org/10.1002/2015GL064985
https://doi.org/10.1029/97RG02282 
https://doi.org/10.5194/cpd-8-1229-2012
https://doi.org/10.1080/00288306.2012.735677
http://www.agu.org/books/me/v001/ME001p0057/ME001p0057.pdf
https://doi.org/10.1029/2012GC004335
https://doi.org/10.1080/00288306.2004.9515072
https://doi.org/10.1016/S1342-937X(05)70324-5
https://doi.org/10.1016/S1342-937X(05)70324-5
https://doi.org/10.1130/GSATG321A.1
https://doi.org/10.1080/08120090701689365
https://doi.org/10.1016/j.margeo.2006.10.033
https://doi.org/10.1016/S0025-3227(98)00007-3
https://doi.org/10.1016/S0899-5362(99)00095-0
https://doi.org/10.1029/GM121p0161
https://doi.org/10.1080/00288306.2001.9514954

R. Sutherland et al.

Nelson, C.S., and Hancock, G.E., 1984. Composition and origin of temperate
skeletal carbonate sediments on South Maria Ridge, northern New Zea-
land. New Zealand Journal of Marine and Freshwater Research,
18(2):221-239. https://doi.org/10.1080/00288330.1984.9516044

Nicolo, M.J., Dickens, G.R., and Hollis, C.J., 2010. South Pacific intermediate
water oxygen depletion at the onset of the Paleocene-Eocene Thermal
Maximum as depicted in New Zealand margin sections. Paleoceanogra-
phy, 25(4). https://doi.org/10.1029/2009PA001904

Nicolo, M.J., Dickens, G.R., Hollis, C.J., and Zachos, ].C., 2007. Multiple early
Eocene hyperthermals: their sedimentary expression on the New Zealand
continental margin and in the deep sea. Geology, 35(8):699-702.
https://doi.org/10.1130/G23648A.1

Pagani, M., Huber, M., Liu, Z., Bohaty, S.M., Henderiks, J., Sijp, W., Krishnan,
S., and DeConto, R.M., 2011. The role of carbon dioxide during the onset
of Antarctic glaciation. Science, 334(6060):1261-1264.
https://doi.org/10.1126/science.1203909

Pearson, PN., Foster, G.L., and Wade, B.S., 2009. Atmospheric carbon dioxide
through the Eocene—Oligocene climate transition. Nature,
461(7267):1110-1113. https://doi.org/10.1038/nature08447

Pross, J., Contreras, L., Bijl, PK., Greenwood, D.R., Bohaty, S.M., Schouten, S.,
Bendle, J.A., et al.,, 2012. Persistent near-tropical warmth on the Antarctic
continent during the early Eocene epoch. Nature, 488(7409):73-77.
https://doi.org/10.1038/nature11300

Rait, G., Chanier, E, and Waters, D.W., 1991. Landward- and seaward-directed
thrusting accompanying the onset of subduction beneath New Zealand.
Geology, 19(3):230—233. https://doi.org/10.1130/0091-
7613(1991)019<0230:LASDTA>2.3.CO;2

Rea, D.K,, Basov, A, Krissek, L.A., and the Leg 145 Scientific Party, 1995.
Scientific results of drilling the North Pacific transect. In Rea, D.K., Basov,
LA, Scholl, D.W., and Allan, ].E. (Eds.), Proceedings of the Ocean Drilling
Program, Scientific Results, 145: College Station, TX (Ocean Drilling Pro-
gram), 577-596. https://doi.org/10.2973/odp.proc.sr.145.146.1995

Reagan, M.K., McClelland, W.C., Girard, G., Goff, K.R., Peate, D.W., Ohara, Y.,
and Stern, R.J,, 2013. The geology of the southern Mariana fore-arc crust:
implications for the scale of Eocene volcanism in the western Pacific.
Earth and Planetary Science Letters, 380:41-51.
http://dx.doi.org/10.1016/j.epsl.2013.08.013

Rintoul, S.R., Hughes, C., and Olbers, D., 2001. The Antarctic circumpolar
current system. [n Siedler, G., Church, J., and Gould, J. (Eds.), Ocean Cir-
culation and Climate. International Geophysics, 77:271-302.
https://doi.org/10.1016/S0074-6142(01)80124-8

Royer, J.-Y., and Rollet, N., 1997. Plate-tectonic setting of the Tasmanian
region. In Exon, N.F, and Crawford, A.J. (Eds.), West Tasmanian Margin
and Offshore Plateaus: Geology, Tectonic and Climatic History, and
Resource Potential. Australian Journal of Earth Sciences, 44(5):543—-560.
https://doi.org/10.1080/08120099708728336

Schellart, W.P, Lister, G.S., and Toy, V.G., 2006. A Late Cretaceous and Ceno-
zoic reconstruction of the Southwest Pacific region: tectonics controlled
by subduction and slab rollback processes. Earth-Science Reviews, 76(3—
4):191-233. https://doi.org/10.1016/j.earscirev.2006.01.002

Seton, M., Miiller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G.,
Talsma, A., Gurnis, M., Turner, M., Maus, S., and Chandler, M., 2012.
Global continental and ocean basin reconstructions since 200 Ma. Earth-
Science Reviews, 113(3—4):212-270. https://doi.org/10.1016/j.earsci-
rev.2012.03.002

Sharp, W.D., and Clague, D.A., 2006. 50-Ma initiation of Hawaiian-Emperor
Bend records major change in Pacific plate motion. Science,
313(5791):1281-1284. https://doi.org/10.1126/science.1128489

Shipboard Scientific Party, 1973a. Site 206. With contributions by D. Burns
and PN. Webb. In Burns, R.E., Andrews, J.E., et al,, Initial Reports of the
Deep Sea Drilling Project, 21: Washington, DC (U.S. Government Printing
Office), 103-195. https://doi.org/10.2973/dsdp.proc.21.106.1973

Shipboard Scientific Party, 1973b. Site 207. With contributions by D. Burns,
W.A. Watters, and P.N. Webb. In Burns, R.E., Andrews, ].E., et al., Initial
Reports of the Deep Sea Drilling Project, 21: Washington, DC (U.S. Gov-
ernment Printing Office), 197-269.
http://dx.doi.org/10.2973/dsdp.proc.21.107.1973

30

Expedition 371 Preliminary Report

Shipboard Scientific Party, 1973c. Site 208. With contributions by D. Burns
and PN. Webb. In Burns, R.E., Andrews, ].E., et al,, Initial Reports of the
Deep Sea Drilling Project, 21: Washington, DC (U.S. Government Printing
Office), 271-331. https://doi.org/10.2973/dsdp.proc.21.108.1973

Slotnick, B.S., Dickens, G.R., Nicolo, M.J., Hollis, C.J., Crampton, ].S., Zachos,
J.C., and Sluijs, A., 2012. Large-amplitude variations in carbon cycling and
terrestrial weathering during the latest Paleocene and earliest Eocene: the
record at Mead Stream, New Zealand. The Journal of Geology,
120(5):487-505. https://doi.org/10.1086/666743

Snyder, G.T, Hiruta, A., Matsumoto, R., Dickens, G.R., Tomaru, H., Takeuchi,
R., Komatsubara, J., Ishida, Y., and Yu, H., 2007. Pore water profiles and
authigenic mineralization in shallow marine sediments above the meth-
ane-charged system on Umitaka Spur, Japan Sea. Deep-Sea Research, Part
I, 54(11-13):1216-1239. https://doi.org/10.1016/j.dsr2.2007.04.001

Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L.C., Alisic, L., and Ghattas, O.,
2010. The dynamics of plate tectonics and mantle flow: from local to
global scales. Science, 329(5995):1033—-1038.
https://doi.org/10.1126/science.1191223

Stagpoole, V., and Nicol, A., 2008. Regional structure and kinematic history of
a large subduction back thrust: Taranaki Fault, New Zealand. Journal of
Geophysical Research: Solid Earth, 113(B1):B01403.
https://doi.org/10.1029/2007])B005170

Steinberger, B., Sutherland, R., and O’Connell, R.J., 2004. Prediction of
Emperor—Hawaii Seamount locations from a revised model of global
plate motion and mantle flow. Nature, 430(6996):167-173.
https://doi.org/10.1038/nature02660

Stern, R.J., 2004. Subduction initiation: spontaneous and induced. Earth and
Planetary Science Letters, 226(3—4):275-292.
http://dx.doi.org/10.1016/j.epsl.2004.08.007

Stern, R.J.,, and Bloomer, S.H., 1992. Subduction zone infancy: examples from
the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geological
Society of America Bulletin, 104(12):1621-1636.
https://doi.org/10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2

Sutherland, R., 1995. The Australia-Pacific boundary and Cenozoic plate
motions in the SW Pacific: some constraints from Geosat data. Tectonics,
14(4):819-831. https://doi.org/10.1029/95TC00930

Sutherland, R., 1999. Basement geology and tectonic development of the
greater New Zealand region: an interpretation from regional magnetic
data. Tectonophysics, 308(3):341-362. https://doi.org/10.1016/S0040-
1951(99)00108-0

Sutherland, R., Collot, J., Bache, E, Henrys, S., Barker, D., Browne, G., Law-
rence, M., Morgans, H., Hollis, C., and Clowes, C., 2017. Widespread
compression associated with Eocene Tonga-Kermadec subduction initia-
tion. Geology, 45(4)3255-358. https://doi.org/10.1130/G38617.1

Sutherland, R., Collot, ., Lafoy, Y., Logan, G.A., Hackney, R., Stagpoole, V.,
Uruski, C,, et al,, 2010. Lithosphere delamination with foundering of
lower crust and mantle caused permanent subsidence of New Caledonia
Trough and transient uplift of Lord Howe Rise during Eocene and Oligo-
cene initiation of Tonga-Kermadec subduction, western Pacific. Tectonics,
29(2). https://doi.org/10.1029/2009TC002476

Sutherland, R., Dickens, G.R., and Blum, P, 2016. Expedition 371 Scientific
Prospectus: Tasman Frontier Subduction Initiation and Paleogene Cli-
mate. International Ocean Discovery Program.
http://dx.doi.org/10.14379/iodp.sp.371.2016

Sutherland, R., Dickens, G.R., and Blum, P, 2016. Expedition 371 Scientific
Prospectus: Tasman Frontier Subduction Initiation and Paleogene Cli-
mate. International Ocean Discovery Program.
http://dx.doi.org/10.14379/iodp.sp.371.2016

Toth, J., and Gurnis, M., 1998. Dynamics of subduction initiation at preexist-
ing fault zones. Journal of Geophysical Research: Solid Earth,
103(B8):18053—-18067. https://doi.org/10.1029/98]B01076

Tripati, A.K., Delaney, M.L., Zachos, J.C., Anderson, L.D., Kelly, D.C., and
Elderfield, H., 2003. Tropical sea-surface temperature reconstruction for
the early Paleogene using Mg/Ca ratios of planktonic foraminifera. Pale-
oceanography, 18(4):1101-1113.
https://doi.org/10.1029/2003PA000937

Tulloch, A.J., Kimbrough, D.L., and Wood, R.A., 1991. Carboniferous granite
basement dredged from a site on the southwest margin of the Challenger


http://dx.doi.org/10.14379/iodp.sp.371.2016
https://doi.org/10.1029/2009PA001904
https://doi.org/10.1130/G23648A.1
https://doi.org/10.1126/science.1203909
https://doi.org/10.1038/nature08447
https://doi.org/doi:10.1038/nature11300
https://doi.org/10.1130/0091-7613(1991)019<0230:LASDTA>2.3.CO;2
https://doi.org/10.1130/0091-7613(1991)019<0230:LASDTA>2.3.CO;2
https://doi.org/10.2973/odp.proc.sr.145.146.1995
https://doi.org/10.1016/S0074-6142(01)80124-8
https://doi.org/10.1080/08120099708728336
https://doi.org/10.1016/j.earscirev.2006.01.002
https://doi.org/10.1016/j.earscirev.2012.03.002
https://doi.org/10.1016/j.earscirev.2012.03.002
https://doi.org/10.1126/science.1128489
https://doi.org/10.2973/dsdp.proc.21.106.1973
http://dx.doi.org/10.2973/dsdp.proc.21.107.1973
https://doi.org/10.2973/dsdp.proc.21.108.1973
https://doi.org/10.1086/666743
https://doi.org/10.1126/science.1191223
https://doi.org/10.1029/2007JB005170
https://doi.org/10.1038/nature02660
http://dx.doi.org/10.1016/j.epsl.2004.08.007
https://doi.org/10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
https://doi.org/10.1029/95TC00930
https://doi.org/10.1016/S0040-1951(99)00108-0
https://doi.org/10.1016/S0040-1951(99)00108-0
https://doi.org/10.1130/G38617.1
https://doi.org/10.1029/2009TC002476
https://doi.org/10.1029/98JB01076
https://doi.org/10.1029/2003PA000937
http://dx.doi.org/10.1016/j.epsl.2013.08.013
https://doi.org/10.1016/j.dsr2.2007.04.001
https://doi.org/10.1080/00288330.1984.9516044

R. Sutherland et al.

Plateau, Tasman Sea. New Zealand Journal of Geology and Geophysics,
34(2):121-126. https://doi.org/10.1080/00288306.1991.9514449

Tulloch, A.J., Ramezani, J., Mortimer, N., Mortensen, J., van den Bogaard, P,
and Maas, R., 2009. Cretaceous felsic volcanism in New Zealand and Lord
Howe Rise (Zealandia) as a precursor to final Gondwana break-up. In
Ring, U,, and Wernicke, B. (Eds.), Extending a Continent: Architecture,
Rheology and Heat Budget. Geological Society Special Publication,
321(1):89-118. https://doi.org/10.1144/SP321.5

Turcotte, D.L., Haxby, W.F,, and Ockendon, J.R., 1977. Lithospheric instabili-
ties. In Talwani, M., and Pitman, W.C., IlI (Eds.), Island Arcs, Deep Sea
Trenches and Back-Arc Basins. Maurice Ewing Series, 1:63—69.
http://onlinelibrary.wiley.com/doi/10.1029/ME001p0063/summary

Uruski, C., and Wood, R., 1991. A new look at the New Caledonia Basin, an
extension of the Taranaki Basin, offshore North Island, New Zealand.
Marine and Petroleum Geology, 8(4):379-391.
https://doi.org/10.1016/0264-8172(91)90061-5

Uruski, C.I., 2008. Deepwater Taranaki, New Zealand: structural development
and petroleum potential. Exploration Geophysics, 39(2):94—107.
https://doi.org/10.1071/EG08013

van Andel, T.H., Heath, G.R., and Moore, T.C,, Jr., 1975. Cenozoic history of
the central equatorial Pacific Ocean: a synthesis based on Deep Sea Drill-
ing Project data. In Sutton, G.H., Manghnani, M.H., Moberly, R., and
Mcafee, E.U. (Eds.), The Geophysics of the Pacific Ocean Basin and its

31

Expedition 371 Preliminary Report

Margin. Geophysical Monograph, 19:281-295.
https://doi.org/10.1029/GM019p0281

Weissel, ].K., and Hayes, D.E., 1977. Evolution of the Tasman Sea reappraised.
Earth and Planetary Science Letters, 36(1):77-84.
https://doi.org/10.1016/0012-821X(77)90189-3

Whattam, S.A., Malpas, J., Alj, ].R., and Smith, I.E.M., 2008. New SW Pacific
tectonic model: cyclical intraoceanic magmatic arc construction and
near-coeval emplacement along the Australia-Pacific margin in the Ceno-
zoic. Geochemistry, Geophysics, Geosystems, 9(3):Q03021.
https://doi.org/10.1029/2007GC001710

Whittaker, ].M., Miiller, R.D., Leitchenkov, G., Stagg, H., Sdrolias, M., Gaina,
C., and Goncharov, A., 2007. Major Australian-Antarctic plate reorgani-
zation at Hawaiian-Emperor Bend time. Science, 318(5847):83-86.
https://doi.org/10.1126/science.1143769

Wood, R., and Woodward, D., 2002. Sediment thickness and crustal structure
of offshore western New Zealand from 3D gravity modelling. New Zea-
land Journal of Geology and Geophysics, 45(2):243-255.
https://doi.org/10.1080/00288306.2002.9514971

Wood, R.A., Lamarche, G., Herzer, R.H., Delteil, ]., and Davy, B., 1996. Paleo-
gene seafloor spreading in the southeast Tasman Sea. Tectonics,
15(5):966-975. https://doi.org/10.1029/96TC00129

Zachos, ].C., Dickens, G.R., and Zeebe, R.E., 2008. An early Cenozoic per-
spective on greenhouse warming and carbon-cycle dynamics. Nature,
451(7176):279—283. https://doi.org/10.1038/nature06588


https://doi.org/10.1080/00288306.1991.9514449
https://doi.org/10.1144/SP321.5
http://onlinelibrary.wiley.com/doi/10.1029/ME001p0063/summary
https://doi.org/10.1016/0264-8172(91)90061-5
https://doi.org/10.1071/EG08013
https://doi.org/10.1029/GM019p0281
https://doi.org/10.1016/0012-821X(77)90189-3
https://doi.org/10.1029/2007GC001710
https://doi.org/10.1038/35093085
http://dx.doi.org/10.1126/science.1143769
https://doi.org/10.1080/00288306.2002.9514971
https://doi.org/10.1029/96TC00129
https://doi.org/10.1038/nature06588

R. Sutherland et al. Expedition 371 Preliminary Report

Table T1. Hole summary, Expedition 371. Drilled intervals were purposefully drilled without collecting core. DSF = drilling depth below seafloor. APC =
advanced piston corer, XCB = extended core barrel, RCB = rotary core barrel.

Water  Penetration  Cored  Recovered Drilled  Total APC XCB RCB Time
depth DSF interval length Recovery interval cores cores cores cores onhole
Hole Latitude Longitude (m) (m) (m) (m) (%) (m) (N) (N) (N) (N) (days)
U1506A  28°39.7180'S  161°44.4240'E 1495 306.1 306.1 1925 63 36 0 0 36 2.1
U1507A  26°29.3158'S  166°31.7039'E 3568 425.4 425.4 3527 83 46 26 20 0 36
U15078B 26°29.3158'S  166°31.7155'E 3568 864.4 488.4 3715 76 376.0 52 0 0 52 8.1
U1508A  34°26.8902'S  171°20.6073'E 1609 2103 210.3 201.1 96 23 23 0 0 1.5
U1508B 34°26.8975'S  171°20.5990'E 1609 503.4 316.7 1333 42 186.7 37 0 0 37 2.1
U1508C  34°26.8905'S  171°20.5889'E 1609 704.5 283.8 184.8 65 420.7 35 0 0 35 5.0
U1509A  34°39.1312'S  165°49.6599'E 2911 690.7 690.7 462.8 67 74 0 0 74 5.2
U1510A  36°19.7385'S  164°33.5220'E 1238 483.4 483.4 2559 53 52 17 35 0 2.5
U15108B 36°19.7392'S  164°33.5347'E 1238 66.3 66.3 64.7 98 7 7 0 0 0.4
U1511A  37°33.6665'S  160°18.9380'E 4847 26.6 26.6 7.9 30 3 0 0 3 0.8
U1511B 37°33.6656'S  160°18.9379'E 4847 566.2 431.4 279.3 65 134.8 45 0 0 45 5.1
Totals:  4847.3 3729.1 2506.4 67 11182 410 73 55 282 36.4
Table T2.Video conferencing, Expedition 371. (Continued on next page.)
Date Shiptime  Location (city, state, and country Attendees
(2017) (h) broadcasting to) Organization/School name Age level (N) Topic
3 Aug 0500 Washington, DC, USA Smithsonian/teachers workshop Adult 25 Plate tectonics, biostratigraphy, climate
9 Aug 0300 Los Angeles CA, USA Cerritos College 17-30 30 Education
9 Aug 1000 Brisbane, QLD, Australia Corinda SHS 16-17 25 Plate tectonics
10 Aug 1425 Sydney, NSW, Australia Barker College, NSW 17-18 25 Plate tectonics, biostratigraphy, climate
14 Aug 0935 Sydney, NSW, Australia Barker College, NSW 17-18 30 Plate tectonics, biostratigraphy, climate
15 Aug 0430 Cornwall, UK Royal Geological Society Adult 20 Stratigraphy
17 Aug 1320 Sydney, NSW, Australia Barker College, NSW 17-18 30 Plate tectonics
17 Aug 1315 Brisbane, QLD, Australia Kelvin Grove SHS 11-18 50 History of the earth
18 Aug 1200 Canberra, ACT, Australia Geoscience (Australia) Adult 50 Technology/climate change
21 Aug 1130 Brisbane, QLD, Australia Kenmore State School (STEM) Year 6 10-11 25 Life on the ship
21 Aug 1400 Brisbane, QLD, Australia Kenmore State School (STEM) Year 5/6 9-10 25 Life on the ship
21 Aug 1000 Gladstone, QLD, Australia Chanel College 12-13 25 Biostratigraphy, climate change, life on the ship
24 Aug 1000 Rockhampton, QLD, Australia Emmaus College 12-13 25 Plate tectonics
26 Aug 0315 Brooklyn NY, USA Brooklyn Public Library Adult 20 Teacher education
28 Aug 1000 Brisbane, QLD, Australia Kenmore State School (STEM) Year 5 10-11 25 Life on the ship, plate tectonics
26 Aug 0350 Tamalpais CA, USA Tamalpais High School 16-17 30 Oceanography
28 Aug 1515 Sydney, NSW, Australia Pymble Ladies College 17-18 20 Paleontology, biostratigraphy
29 Aug 0400 Tamalpais CA, USA Tamalpais High School 16-17 25 Oceanography, stratigraphy
30 Aug 0700 Tamalpais CA, USA Tamalpais High School 16-17 25 Oceanography, stratigraphy
30 Aug 0500 Tamalpais CA, USA Tamalpais High School 16-17 25 Oceanography, stratigraphy
30 Aug 0100 Tamalpais CA, USA Tamalpais High School 16-17 25 Oceanography, stratigraphy
1 Sep 0115 Los Angeles CA, USA Cerritos College 17-30 30 Education/plate tectonics
2 Sep 0100 Tamalpais CA, USA Tamalpais High School 16-17 25 Oceanography, stratigraphy
5Sep 0030 Santiago, Chile Lycee Jean d’Alembert 17-18 25 Oceanography, stratigraphy
6 Sep 0330 Fairfax VA, USA Robinson Secondary School 17-18 30 Plate tectonics, biostratigraphy, climate
6 Sep 2300 Bremen, Germany Osterholz-Scharmbeck 10-11 150 Life on the ship, plate tectonics
7 Sep 0400 Brasilia, Brazil Technical University of Brasilia Undergrad 75 Life on the ship, plate tectonics
7 Sep 1000 Victoria, Australia St Augustine’s College, Kyabram 13-14 25 Life on the ship, plate tectonics
7 Sep 1500 Cleveland, QLD, Australia Cleveland District High School 12-13 50 Life on the ship, plate tectonics
7 Sep 2330 Fairfax VA, USA Robinson Secondary School 17-18 35 Plate tectonics, biostratigraphy
8Sep 0315 Fairfax VA, USA Robinson Secondary School 17-18 70 Plate tectonics, biostratigraphy, ship life
9 Sep 1030 Brisbane, QLD, Australia Pullenvale State School 9-10 75 Life on the ship, plate tectonics
11 Sep 1230 Brisbane, QLD, Australia Pullenvale State School 8-9 25 Life on the ship, plate tectonics
11 Sep 0715 Dunedin, NZ University of Otago Undergrad 60 Oceanography, stratigraphy, plate tectonics
12 Sep 1130 Cleveland, QLD, Australia Cleveland District High School 12-13 25 Life on the ship, plate tectonics
12 Sep 0230 Middletown NY, USA Middletown High School 16-18 25 Plate tectonics, biostratigraphy, climate, ship life
13 Sep 0430 Fairfax, VA, US Robinson Secondary School 16-17 30 Oceanography, stratigraphy, plate tectonics, ship life
13 Sep 1400 Corinda, QLD, Australia Corinda State High Library Teachers 15 Oceanography, stratigraphy, plate tectonics, ship life
13 Sep 0945 Cleveland, QLD, Australia Cleveland District High School 12-13 100 Oceanography, stratigraphy, plate tectonics
14 Sep 1815 Rome, Italy Licei Gallei-Oberdan 16-18 300 Oceanography, stratigraphy, plate tectonics
14 Sep 2030 Wellington, NZ Pukerua Bay School 11-12 25 Life on the ship, plate tectonics
14 Aug 2230 Brisbane, QLD, Australia Clairvaux Mackillop College 12-13 100 Oceanography, stratigraphy, plate tectonics, ship life
15 Sep 1415 Brisbane, QLD, Australia Clairvaux Mackillop College 12-13 25 Oceanography, stratigraphy, plate tectonics, ship life
15 Sep 0100 Gayole, France Lycée Edouard Branly, la Porte Gayole 16-17 35 Oceanography, stratigraphy, plate tectonics
16 Sep 0815 Lower Hutt, NZ Naenae College, Year 10 15-16 25 Oceanography, stratigraphy, plate tectonics, ship life
18 Sep 1230 Kaitaia, NZ Ahipara, Primary School 10-11 25 Life on the ship, plate tectonics
18 Sep 1930 Switzerland Swiss Summer School 14-adult 65 Plate tectonics, biostratigraphy, climate
18 Sep 0200 Monterey Peninsula CA, USA Monterey Peninsula State College
19 Sep 0330 Manizales, Caldas, Colombia Universidad de Caldas 17-21 20 Oceanography, stratigraphy, plate tectonics, ship life
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Date Shiptime  Location (city, state, and country Attendees
(2017) (h) broadcasting to) Organization/School name Age level (N) Topic
19 Sep 0600 Queens NY, USA Reach the World x2 classes Staff 30 Oceanography, stratigraphy, plate tectonics,
biostratigraphy, ship life
19 Sep 0015 University Park PA, USA Pennsylvania State University 17-21 18 Stratigraphy, plate tectonics, biostratigraphy, ship life
20 Aug 0100 San Antonio TX, USA Science Technology Engineering, 17-21 200 Stratigraphy, plate tectonics, biostratigraphy
Maths Early College High School
20 Aug 0230 San Antonio TX, USA Science Technology Engineering, 16-17 30 Oceanography, stratigraphy, plate tectonics, ship life
Maths Early College High School
21 Aug 0400 Montvale NJ, USA Pascack Hills, Pascack Hills High School 16-17 25 Oceanography, stratigraphy, plate tectonics,
biostratigraphy, ship life
21 Aug 0400 Bronx NY, USA Reach the World Classes x2 classes 10-12 60 Stratigraphy, plate tectonics, biostratigraphy, ship life
21 Aug 1300 Birregurra, VIC, Australia Birregurra Primary School 5-7 25 Plate tectonics, biostratigraphy, ship life
22 Sep 0345 Cerritos CA, USA Cerritos Community College 17-adult 25 Oceanography, stratigraphy, plate tectonics,
biostratigraphy, ship life
23 Sep 0400 Bremen, Germany Bremen Cultural Centre Adult 100 Oceanography, stratigraphy, plate tectonics,
biostratigraphy, ship life
Total attendees: 2583
Media links
4 Aug 1900 London, England BBC, Radio Public ? Biostratigraphy, climate change, life on the ship
2 Aug 1300 Spain La Cadiera, Aragén Radio Adult Paleontology, climate, ship life
3 Aug 1030 Texas, USA KB Radio Adult ? Stratigraphy of Zealandia
4 Aug 1030 Houston TX, USA Maggie Martin, Houston Radio Adult ? Stratigraphy of Zealandia
10 Aug 0300 Madrid, Spain Radio Nacional de Espaia Adult ? Oceanography, climate, plate tectonics, ship life
10 Aug 0800 NYC, USA Press 4 Kids, Children’s newspaper 8-12 ? Education
11 Aug 0200 Colombia Colombia Radio Station Adult 100000+  Biostratigraphy, climate change, life on the ship
24 Aug 1415 Madrid, Spain El Pais, national news and online Adult 100,000  Paleontology, climate, ship life
broadcast
Table T3. Video captured and produced, Expedition 371.
Name Topics covered Author Link
The Adventure Begins: JOIDES Resolution, leaving ~ Adam Kurtz http://joidesresolution.org/video-link-the-adventure-begins-expedition-371-tasman-sea-frontier/
Expedition 371 Tasman port at Townsville
Sea Frontier
High above the JOIDES JOIDES Resolution, drone Adam Kurtz http://joidesresolution.org/video-link-high-above-the-joides-resolution-exp-371/
Resolution-Expedition footage
371 Tasman Sea Frontier
Exploring Zealandia- JOIDES Resolution, Adam Kurtz http://joidesresolution.org/video-link-exploring-zealandia-expedition-371-tasman-sea-frontier/
Expedition 371 Tasman Zealandia, findings from
Sea Frontier first drill site
Drilling 101-Expedition JOIDES Resolution, drilling ~ Adam Kurtz http://joidesresolution.org/video-link-drilling-101-expedition-371-tasman-sea-frontier/
371 Tasman Sea Frontier techniques, core samples
First Drill-Expedition 371 JOIDES Resolution, drill Adam Kurtz http://joidesresolution.org/video-link-first-drill-expedition-371-tasman-sea-frontier/
Tasman Sea Frontier string setup
Last Core on Deck- JOIDES Resolution, coring Adam Kurtz http://joidesresolution.org/video-link-last-core-on-deck-expedition-371-tasman-sea-frontier/
Expedition 371 Tasman process
Sea Frontier
Unedited footage-Google  JOIDES Resolution, drone Adam Kurtz https://drive.google.com/open?id=0B5ylHxTx5RDXLTFmMZV9acXpOWXc

drive
Den of Lore podcast,
Episode 050

footage, ship footage
Stratigraphy of Zealandia

Adam Kurtz/
Gerald Dickens

https://www.youtube.com/watch?v=Vu3Fu1YAN1Y

Table T4. Media outlets that ran stories associated with the Townsville port call. (Continued on next two pages.)

Date Shiptime Mediaitem Media outlet
(2017) (h) type Media outlet Media outlet state location Program/section name
31 Jul 1221 Onlinenews  NEWS.com.au Outside Australia  Online Other

30Jul 2021 Onlinenews  The Silver Ink Outside Australia  National http://www.thesilverink.com

30 Jul 1931 Onlinenews  Lastusa Outside Australia  National http://www.lastusa.com/health

30 Jul 1732 Onlinenews  US.Blasting.News Outside Australia  National http://us.blastingnews.com/world
29 Jul 1613 Onlinenews  Pakistan Today Outside Australia  National http://www.pakistantoday.com.pk
29 Jul 1548 Onlinenews  Borneo Bulletin Outside Australia  Online Other

29 Jul 1354 Onlinenews  Inverse Outside Australia  National http://www.inverse.com

29 Jul 0725 TV ABC News VIC Melbourne Weekend Breakfast

29 Jul 0725 TV ABC News NSW Regional NSW Weekend Breakfast

29 Jul 0725 TV ABC News QLD Brisbane Weekend Breakfast

29Jul 0725 TV ABC News SA Adelaide Weekend Breakfast

29 Jul 0725 TV ABC News WA Perth Weekend Breakfast

29Jul 0725 TV ABC News QLD Regional Queensland Weekend Breakfast

29 Jul 0725 TV ABC News TAS Hobart Weekend Breakfast
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Date Shiptime Mediaitem Media outlet

(2017) (h) type Media outlet Media outlet state location Program/section name
29Jul 0725 TV ABC News ACT Canberra Weekend Breakfast

29Jul 0725 TV ABC News VIC Regional Victoria Weekend Breakfast

29Jul 0725 TV ABC News WA Regional West Australia  Weekend Breakfast

29Jul 0725 TV ABC News NSW Sydney Weekend Breakfast

29Jul 0454 Online news  Inquisitr National Other

29Jul 0420 Onlinenews  MyRepublica.com National Online Other

29Jul 0358 Onlinenews  Signs of the Times National National http://www.sott.net

29 Jul 0000 Newspaper Townsville Bulletin QLD Townsville QLD General News

28 Jul 2247 TV ABC News VIC Melbourne The World

28Jul 2247 TV ABC News NSW Regional NSW The World

28 Jul 2247 TV ABC News QLD Brisbane The World

28Jul 2247 TV ABC News SA Adelaide The World

28 Jul 2247 TV ABC News WA Perth The World

28Jul 2247 TV ABC News QLD Regional Queensland The World

28 Jul 2247 TV ABC News TAS Hobart The World

28Jul 2247 TV ABC News ACT Canberra The World

28Jul 2247 TV ABC News VIC Regional Victoria The World

28Jul 2247 TV ABC News WA Regional West Australia  The World

28Jul 2247 TV ABC News NSW Sydney The World

28 Jul 2025 Onlinenews  Yahoo! UK & Ireland National Other

28 Jul 1944 TV ABC News VIC Melbourne ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News NSW Regional NSW ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News QLD Brisbane ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News SA Adelaide ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News WA Perth ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News QLD Regional Queensland ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News TAS Hobart ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News ACT Canberra ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News VIC Regional Victoria ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News WA Regional West Australia  ABC News Evenings With Grandstand
28 Jul 1944 TV ABC News NSW Sydney ABC News Evenings With Grandstand
28 Jul 1919 TV ABC ACT Canberra ABC News

28 Jul 1912 TV ABC QLD Regional Queensland ABC News

28 Jul 1912 TV ABC QLD Brisbane ABC News

28 Jul 1911 TV ABC SA Adelaide ABC News

28 Jul 1814 Onlinenews  New York Times National Online Other

28 Jul 1806 TV Southern Cross Townsville QLD Townsville Nine News Townsville

28 Jul 1805 TV WIN Townsville QLD Townsville WIN News

28 Jul 1752 Online news  Brisbane Times National Online Other

28 Jul 1741 Onlinenews  Yahoo! News Australia National Online Other

28 Jul 1738 TV WIN Riverland SA Berri TEN Eyewitness News

28 Jul 1738 TV Ten Darwin NT Darwin TEN Eyewitness News

28 Jul 1738 TV Channel 10 SA Adelaide TEN Eyewitness News

28 Jul 1733 TV WIN Mildura VIC Mildura TEN Eyewitness News

28 Jul 1733 TV WIN Bendigo VIC Bendigo TEN Eyewitness News

28 Jul 1733 TV WIN Ballarat VIC Ballarat TEN Eyewitness News

28 Jul 1733 TV WIN Hobart TAS Hobart TEN Eyewitness News

28 Jul 1733 TV WIN Gippsland VIC Sale TEN Eyewitness News

28 Jul 1733 TV WIN Shepparton VIC Shepparton TEN Eyewitness News

28 Jul 1733 TV Channel 10 VIC Melbourne TEN Eyewitness News

28 Jul 1723 TV ABC News VIC Melbourne News Afternoons

28 Jul 1723 TV ABC News NSW Regional NSW News Afternoons

28 Jul 1723 TV ABC News QLD Brisbane News Afternoons

28 Jul 1723 TV ABC News SA Adelaide News Afternoons

28 Jul 1723 TV ABC News WA Perth News Afternoons

28 Jul 1723 TV ABC News QLD Regional Queensland News Afternoons

28 Jul 1723 TV ABC News TAS Hobart News Afternoons

28 Jul 1723 TV ABC News ACT Canberra News Afternoons

28 Jul 1723 TV ABC News VIC Regional Victoria News Afternoons

28 Jul 1723 TV ABC News WA Regional West Australia  News Afternoons

28 Jul 1723 TV ABC News NSW Sydney News Afternoons

28 Jul 1720 TV WIN Wagga NSW Wagga Wagga TEN Eyewitness News

28 Jul 1720 TV WIN Wollongong NSW Wollongong TEN Eyewitness News

28 Jul 1720 TV WIN Canberra ACT Canberra TEN Eyewitness News

28 Jul 1720 TV WIN Dubbo NSW Dubbo TEN Eyewitness News

28 Jul 1720 TV WIN Albury NSW Albury TEN Eyewitness News

28 Jul 1720 TV Ten Lismore NSW Lismore TEN Eyewitness News

28 Jul 1720 TV Ten Coffs Harbour NSW Coffs Harbour TEN Eyewitness News

28 Jul 1720 TV WIN Griffith NSW Griffith TEN Eyewitness News

28 Jul 1720 TV Ten Gold Coast QLD Gold Coast TEN Eyewitness News
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Table T4. (continued).

Expedition 371 Preliminary Report

Date Shiptime Mediaitem Media outlet

(2017) (h) type Media outlet Media outlet state location Program/section name
28 Jul 1720 TV Ten Tamworth NSW Tamworth TEN Eyewitness News
28 Jul 1720 TV Ten Taree NSW Port Macquarie TEN Eyewitness News
28 Jul 1720 TV Ten Newcastle NSW Newcastle TEN Eyewitness News
28 Jul 1720 TV WIN Orange NSW Orange TEN Eyewitness News
28 Jul 1720 TV Channel 10 NSW Sydney TEN Eyewitness News
28 Jul 1718 TV WIN Western Australia WA Perth TEN Eyewitness News
28 Jul 1718 TV West Digital Television WA Albany TEN Eyewitness News
28 Jul 1718 TV Channel 10 WA Perth TEN Eyewitness News
28 Jul 1713 TV Channel 10 WA Perth TEN Eyewitness News
28 Jul 1713 TV WIN Sunshine Coast QLD Sunshine Coast TEN Eyewitness News
28 Jul 1713 TV WIN Townsville QLD Townsville TEN Eyewitness News
28 Jul 1713 TV WIN Rockhampton QLD Rockhampton TEN Eyewitness News
28 Jul 1713 TV WIN Cairns QLD Cairns TEN Eyewitness News
28 Jul 1713 TV WIN Toowoomba QLD Toowoomba TEN Eyewitness News
28 Jul 1713 TV WIN Mackay QLD Mackay TEN Eyewitness News
28 Jul 1713 TV Ten Sunshine Coast QLD Sunshine Coast TEN Eyewitness News
28 Jul 1713 TV WIN Wide Bay QLD Bundaberg TEN Eyewitness News
28 Jul 1713 TV Channel 10 QLD Brisbane TEN Eyewitness News
28 Jul 1624 vV ABC News VIC Melbourne News Afternoons
28 Jul 1624 TV ABC News NSW Regional NSW News Afternoons
28 Jul 1624 TV ABC News QLD Brisbane News Afternoons
28 Jul 1624 TV ABC News SA Adelaide News Afternoons
28 Jul 1624 TV ABC News WA Perth News Afternoons
28 Jul 1624 TV ABC News QLD Regional Queensland News Afternoons
28 Jul 1624 TV ABC News TAS Hobart News Afternoons
28 Jul 1624 TV ABC News ACT Canberra News Afternoons
28 Jul 1624 TV ABC News VIC Regional Victoria News Afternoons
28 Jul 1624 TV ABC News WA Regional West Australia  News Afternoons
28 Jul 1624 TV ABC News NSW Sydney News Afternoons
28 Jul 1603 FM radio ABC Tropical North QLD Mackay 1600 News
28 Jul 1603 AM radio ABC North Queensland QLD Townsville 1600 News
28 Jul 1603 AM radio ABC Southern Queensland QLD Toowoomba 1600 News
28 Jul 1603 AM radio ABC Far North QLD Cairns 1600 News
28 Jul 1603 AM radio ABC Capricornia QLD Rockhampton 1600 News
28 Jul 1603 AM radio Radio National QLD Brisbane 1600 News
28 Jul 1603 FM radio ABC Sunshine Coast QLD Sunshine Coast 1600 News
28 Jul 1603 FM radio ABC Gold Coast QLD Gold Coast 1600 News
28 Jul 1603 AM radio ABC Western Queensland QLD Longreach 1600 News
28 Jul 1603 FM radio ABC Wide Bay QLD Bundaberg 1600 News
28 Jul 1603 FM radio ABC North West Qld QLD Mt Isa 1600 News
28 Jul 1603 AM radio ABC Radio Brisbane QLD Brisbane 1600 News
28 Jul 1536 FM radio ABC Western Plains NSW NSW Dubbo NSW Statewide Drive
28 Jul 1536 AM radio ABC Central West NSW NSW Orange NSW Statewide Drive
28 Jul 1536 FM radio ABC Coffs Coast NSW Coffs Harbour NSW Statewide Drive
28 Jul 1536 FM radio ABC North Coast NSW NSW Lismore NSW Statewide Drive
28 Jul 1536 AM radio ABC New England North West  NSW Tamworth NSW Statewide Drive
28 Jul 1536 FM radio ABC Riverina NSW Wagga Wagga NSW Statewide Drive
28 Jul 1536 AM radio ABC South East NSW NSW Bega NSW Statewide Drive
28 Jul 1536 FM radio ABC lllawarra NSW Wollongong NSW Statewide Drive
28 Jul 1536 FM radio ABC Mid North Coast NSW Taree NSW Statewide Drive
28 Jul 1532 AM radio ABC Radio Canberra ACT Canberra Drive
28 Jul 1516 Onlinenews  Viva.co.id National Other
28 Jul 1456 Onlinenews  Yahoo! UK &Ireland National Other
28 Jul 1324 Onlinenews  Ten Network National Other
28 Jul 1324 Onlinenews  Georgia Newsday National National http://www.georgianewsday.com/news/regional
28 Jul 1302 Onlinenews  TravelWireNews National National http://travelwirenews.com
28 Jul 1301 Onlinenews  Tech Investor News National National http://www.techinvestornews.com/Tech-News/Tech-Bloggers
28 Jul 1254 Onlinenews  Mashable National Other
28 Jul 1153 Onlinenews  Daily Mail Australia National Online Other
28Jul 0952 FM radio ABC Central Coast NSW Erina Mornings
28Jul 0952 AM radio ABC Radio Sydney NSW Sydney Mornings
28 Jul 0924 Online news  Business Insider Australia National Other
28 Jul 0800 Onlinenews  Lastusa National National http://www.lastusa.com/science
28Jul 0019 Onlinenews WA Today National Online Other
28 Jul 0000 Onlinenews  Canberra Times National Online Other
28Jul 0000 Newspaper Age VIC Melbourne General News
28 Jul 0000 Newspaper Sydney Morning Herald NSW Sydney General News
28Jul 0000 Newspaper Herald Sun VIC Melbourne General News
27 Jul 1400 Onlinenews  Herald Sun National Online Other
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Figure F1. Location of Izu-Bonin-Mariana and Tonga-Kermadec subduction systems in the western Pacific.
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Figure F2. Location of Sites U1506-U1511 (stars) in the southwest Pacific. Circles = relevant DSDP and ODP sites. The expedition departed from Townsville and
returned to Hobart. Dashed line = approximate location of Zealandia (Mortimer et al., 2017).
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Figure F3. Location of Sites U1506 and U1507 (stars) in northern part of Tasman Frontier in relation to New Caledonia, submarine physiographic features, and
DSDP sites (circles).
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Figure F4. Location of Sites U1508-U1511 (stars) in southern part of Tasman Frontier in relation to New Zealand, submarine physiographic features, and DSDP
sites (gray circles). White circles = petroleum boreholes.
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Figure F5. Stable carbon and oxygen isotope compositions of Cenozoic benthic foraminifers (Zachos et al., 2008) compared to global climate/ocean events
and regional tectonism. Note that the long-term decrease in §'80, interpreted as global cooling and greater continental ice volume, begins during the EECO at
~53-49 Ma and thus coincides with significant tectonic change around the Tasman Sea. Oi1 = Oligocene isotope Event 1, MECO = Middle Eocene Climatic
Optimum, PETM = Paleocene/Eocene Thermal Maximum.
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Figure F7. Primary ocean currents (C), fronts (F), and gyres (G) of the Southern Ocean (Rintoul et al., 2001). The Tasman Sea sector is affected by the ACC and
EAC.

Figure F8. Australia-Pacific relative plate motion history plotted on Tasman Frontier bathymetric features (NC = New Caledonia, R = ridge) (after Bache et al.,
2012). Australian plate points are reconstructed relative to a fixed Pacific plate at 1 My intervals. Dashed lines = relocated positions of Norfolk Ridge at 5 My
intervals, revealing that plate motion rates were low within New Zealand during the interval 45-25 Ma.
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Expedition 371 Preliminary Report

Figure F9. Scales of observation in relation to physical processes. Timing of events relative to each other, to plate motion parameters, and to global events will
be used as a discriminator between alternate tectonic models. Arrows = drill site locations.
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Figure F10. Lithostratigraphic comparison of sites cored during Expedition 371. Arrows = approximate location of ooze-chalk transition.
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Figure F11. Age-depth models for each site drilled during Expedition 371.
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Figure F12. Linear sedimentation rates (LSRs) determined during Expedition 371 compared to previously drilled sites in the region.
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Figure F13. Summary of porosity data collected during Expedition 371.
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