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Abstract

We present a mixed finite element method for a five-field formulation of the Biot system of poroelasticity that reduces
to a cell-centered pressure—displacement system on simplicial and quadrilateral grids. A mixed stress—displacement—rotation
formulation for elasticity with weak stress symmetry is coupled with a mixed velocity—pressure Darcy formulation. The
spatial discretization is based on combining the multipoint stress mixed finite element (MSMFE) method for elasticity and the
multipoint flux mixed finite element (MFMFE) method for Darcy flow. It uses the lowest order Brezzi—Douglas—Marini mixed
finite element spaces for the poroelastic stress and Darcy velocity, piecewise constant displacement and pressure, and continuous
piecewise linear or bilinear rotation. A vertex quadrature rule is applied to the velocity, stress, and stress—rotation bilinear forms,
which block-diagonalizes the corresponding matrices and allows for local velocity, stress, and rotation elimination. This leads
to a cell-centered positive-definite system for pressure and displacement at each time step. We perform error analysis for the
semidiscrete and fully discrete formulations, establishing first order convergence for all variables in their natural norms. The
numerical tests confirm the theoretical convergence rates and illustrate the locking-free property of the method.

(© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The Biot system of poroelasticity [8,46] models fluid flow within deformable porous media. It has been
extensively studied in the literature due to its wide range of applications. Examples include geosciences, such
as groundwater cleanup, hydraulic fracturing, and carbon sequestration, as well as biomedical applications, such
as modeling of arterial flows and organ tissue. The system consists of an equilibrium equation for the solid and
a mass balance equation for the fluid. This is a fully coupled system, as the fluid pressure contributes to the
solid stress, while the divergence of the solid displacement affects the fluid content. There is a large literature on
the numerical solution of the Biot system. Schemes for the two-field displacement—pressure formulation include
finite difference [18], finite volume [36], and finite element methods [31,44]. The finite element methods are
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either based on inf—sup stable pairs [31,44] or employ a suitable stabilization to avoid pressure oscillations [44].
The three-field displacement—pressure—Darcy velocity formulation has also been studied extensively. It has the
advantage that stable mixed finite element spaces for the Darcy velocity and the pressure can be utilized, resulting in
accurate fluid velocity and local mass conservation. Various choices of displacement discretizations have been used
in the three-field formulation, including continuous, [38,39,45,55], nonconforming [20,27,53], and discontinuous
elements [29,40]. The last two choices provide locking-free approximations. Alternatively, stabilized continuous
displacement elements can be used to suppress pressure oscillations [45,55]. Locking-free discretizations for a
different three-field displacement—pressure—total pressure formulation are developed in [28,37]. A least squares
method based on a stress—displacement—velocity—pressure formulation is developed in [24]. More recently, fully-
mixed formulations of the Biot system have been studied [25,54]. In [54], a stress—displacement mixed elasticity
formulation is coupled with a velocity—pressure mixed Darcy model. This approach is extended in [25], where a
weakly symmetric stress—displacement—rotation elasticity formulation is considered.

In this paper we develop a new fully-mixed finite element method for the quasistatic Biot system of poroelasticity.
The advantages of fully-mixed approximations include locking-free behavior, robustness with respect to the
physical parameters, local mass and momentum conservation, and accurate stress and velocity approximations
with continuous normal components across element edges or faces. They can also handle discontinuous full tensor
permeabilities and Lamé coefficients that are often encountered in modeling subsurface flows. A disadvantage of
fully-mixed methods is that they result in large algebraic systems of saddle point type at each time step. In particular,
the methods developed in [54] and [25] involve four-field and five-field formulations, respectively. Our goal is to
develop a fully-mixed method that can be reduced to a positive definite cell-centered displacement—pressure system.
As a result, the method inherits all the advantages of fully-mixed finite element methods, while having a significantly
reduced computational cost. In fact, the number of unknowns in the reduced algebraic system is smaller than in any
of the aforementioned finite element methods. It is comparable to the cost of the finite volume method developed
in [36].

Our approach is based on the five-field formulation proposed in [25]. We couple the recently developed multipoint
stress mixed finite element (MSMFE) method for elasticity [2,3] with weak stress symmetry and the multipoint
flux mixed finite element (MFMFE) method for Darcy flow [21,50,52]. The MFMFE method is related to the
finite volume multipoint flux approximation (MPFA) method [1,15]. The MFMFE method provides a variational
formulation for the MPFA method, which allows for utilizing mixed finite element tools for its analysis. It uses the
lowest order Brezzi—Douglas—Marini BDAM [12,33] spaces for the Darcy velocity and piecewise constant pressure.
The vertex quadrature rule for the velocity bilinear form gives a block-diagonal mass matrix with blocks associated
with the mesh vertices and allows for local velocity elimination, resulting in a cell-centered pressure system. The
MFMFE method is analyzed on simplices and smooth quadrilateral and hexahedral grids, i.e., with elements that
are O(h?)-perturbations of parallelograms, in [21,52]. A similar approach on simplices is proposed in [13]. A non-
symmetric version of the MFMFE method for general quadrilateral and hexahedral grids is developed in [50]; see
also an alternative formulation based on a broken Raviart-Thomas velocity space in [23]. The MSMFE method for
elasticity with weak stress symmetry was recently developed in [3] on simplices and in [2] on smooth quadrilateral
grids. It uses BDM elements for the stress, piecewise constant displacement, and continuous piecewise linear
rotation. The vertex quadrature rule is applied for the stress bilinear form, as well as the two stress—rotation bilinear
forms. This allows for local stress and rotation elimination around the mesh vertices, resulting in a cell-centered
displacement system. The development of the MSMFE method was motivated by the finite volume multipoint stress
approximation (MPSA) method for elasticity introduced in [34] and analyzed in [35] as a discontinuous Galerkin
(DG) method. A weak symmetry MPSA method, which is more closely related to the MSMFE method has been
developed in [22].

In this work we develop and analyze a coupled MSMFE-MFMFE method for the Biot system of poroelasticity.
Starting with the five-field stress—displacement—rotation—velocity—pressure formulation from [25], we employ the
vertex quadrature rule for the stress, stress—rotation, and velocity bilinear forms. Since the stress, rotation, and
velocity degrees of freedom can be associated with the mesh vertices, the quadrature rule localizes their interaction
around the vertices, resulting in block-diagonal matrices. The stress and velocity, and consequently the rotation, can
then be locally eliminated by solving small vertex-based linear systems. This procedure reduces the five-field saddle
point system to a cell-centered displacement—pressure system. The elimination procedure resembles the approach
in the finite volume method for the Biot system developed in [36], which couples the MPSA and MPFA methods,
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although the method there is not based on weak symmetry and does not explicitly involve rotations. We also note
that in our method we utilize a symmetric quadrature rule, as in the symmetric MFMFE method [21,52] and the
MSMFE method [2,3]. As the individual methods, our coupled method is suitable for simplicial grids in two and
three dimensions and quadrilateral grids with elements that are O(h?)-perturbations of parallelograms. While a
non-symmetric MFMFE method on general quadrilaterals and hexahedra is available [50], such non-symmetric
MSMEFE method for elasticity has not yet been developed.

We perform solvability, stability, and error analysis for the semidiscrete continuous-in-time and the fully discrete
methods. The well-posedness of the semidiscrete formulation utilizes techniques from degenerate evolution operators
[47,48]. For this purpose, we differentiate in time the constitutive elasticity equation and introduce as new variables
the time derivatives of the displacement and the rotation. Stability is obtained for all variables in their natural spatial
norms in both L2(0, T') and L*(0, T'). In order to obtain control of the divergence of the Darcy velocity, a bound on
the time derivative of the pressure is first derived, using time differentiation of the rest of the equations. First order
spatial convergence is proven for all variables by combining stability arguments with bounds on the quadrature
and approximation errors. It is important to note that the stability and convergence bounds are independent of the
storativity coefficient ¢y and are valid even for ¢y = 0. As the regime of small ¢, results in locking effects [41],
our theory confirms the locking-free property of the method. We also present the fully-discrete scheme, based on
backward Euler time discretization. The analysis of the fully-discrete scheme uses the framework developed for the
semidiscrete formulation, combined with standard tools for treating the discrete time derivatives.

The rest of the paper is organized as follows. The Biot system and its fully mixed five-field weak formulation
are presented in Section 2. The semidiscrete MSMFE-MFMFE method is developed in Section 3. Its solvability
and stability are established in Sections 4 and 5, respectively. The error analysis for the semidiscrete method is
carried out in Section 6. Section 7 is devoted to the fully-discrete MSMFE-MFMFE method, where in addition
to its analysis, the procedure for reducing the algebraic system to a cell-centered displacement—pressure system
is presented. It is further shown that the resulting system is positive definite. Numerical results that confirm the
theoretical convergence rates and illustrate the robustness with respect to ¢y and the locking-free behavior of the
method are presented in Section 8.

2. Model problem and a fully mixed weak formulation

In this section we describe the poroelasticity system and its fully mixed formulation based on a weak stress
symmetry, Let {2 be a simply connected bounded domain of R?, d = 2, 3, occupied by a poroelastic media saturated
with fluid. Let M, S, and N be the spaces of real d x d matrices, symmetric matrices, and skew-symmetric matrices,
respectively. The divergence operator div : RY — R is the usual divergence for vector fields. It also acts on matrix
fields, div : M — R¢ by applying the divergence row-wise. We will also utilize the operator curl acting on scalar
fields in two dimensions, curl : R — R?, defined as curl ¢ = (8,0, —1¢).

The stress—strain constitutive relationship for the poroelastic body is

Ao, = €(u), 2.1)

where at each point x € 2, A(x) : S — S, extendible to A(x) : M — M, is a symmetric, bounded and
uniformly positive definite linear operator representing the compliance tensor, o, is the elastic stress, u is the solid
displacement, and €(u) = %(Vu + VuT). In the case of a homogeneous and isotropic body,

1
= — o — ——
2,u< 2u 4+ da

where [ is the d x d identity matrix and p > 0, A > 0 are the Lamé coefficients. In this case the elastic stress is
o, = 2ue(u) + Adivu I. The poroelastic stress, which includes the effect of the fluid pressure p, is given as

Ao tr(o)I) ,

o =o0,—apl, 2.2)

where 0 < o < 1 is the Biot—Willis constant.
Given a vector field f representing the body forces and a source term ¢, the quasi-static Biot system [8] that
governs the fluid flow within the poroelastic media is as follows:

—dive = f in 2 x (0, T, 2.3)
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K 'z4+Vp=0 in 2 x(0,T], (2.4)

) . . .
E(cop+adlvu)+d1vz =g in 2 x(0,T], (2.5)

where z is the Darcy velocity, ¢y > 0 is a mass storativity coefficient, and K is a symmetric and positive definite
tensor representing the permeability of the porous media divided by the fluid viscosity. The system is closed with
the boundary conditions

u=g, on I x(0,T], on=0 on I} x (0, T], (2.6)
p=g, onIH* x(0,T], z-n=0 on I} x(0,T], (2.7)

and the initial condition p(x, 0) = po(x) in §2, where Ff)”"’l Urgres = [P Uy = 342 and n is the outward unit
normal vector field on d{2. To avoid technical issues due to non-uniqueness in the case of pure Neumann boundary
conditions, we assume that |[I'j| > 0, for * = {displ, pres}. We note that Egs. (2.3) and (2.4), which do not
include time derivatives, are assumed to hold at = 0. This is used to construct compatible initial data for the rest
of the variables. The well posedness of the above system has been studied in [46].

Throughout the paper, C denotes a generic positive constant that is independent of the discretization parameter
h. We will also use the following standard notation. For a domain G C R?, the L?(G) inner product and norm for
scalar, vector, or tensor valued functions are denoted (-, -); and || - ||, respectively. The norms and seminorms of
the Sobolev spaces W*?(G), k € R, p > 0 are denoted by | - lk.p.c and |- | , g, respectively. The norms and
seminorms of the Hilbert spaces H k(G) are denoted by |- llx,c and | - |; 5. respectively. We omit G in the subscript
if G = 2. For a section of the domain or element boundary S ¢ R?~! we write (-, -)s and || - ||s for the L?(S)
inner product (or duality pairing) and norm, respectively. We will also use the spaces

H(div; 2) = {v e L*(2,R?) : divv € L}(2)},
H(div; 2,M) = {r € L>(2, M) : divt € L*(2, R},

equipped with the norm
Illan = (172 + lidive)2)”.

We next present the mixed weak formulation, which has been proposed in [25]. Using (2.1) and (2.2), we have

divu = tr(e(u)) = tr(Ao,) = tr A(oc + apl),

which can be substituted in (2.5) to give
3, (cop +atrA(c +apl))+divz =g,

where 0; is a short notation for % In the weakly symmetric stress formulation, we allow for ¢ to be non-symmetric
and introduce the Lagrange multiplier y = Skew(Vu), Skew(r) = %(‘L’ — 1T, from the space of skew-symmetric
matrices. The constitutive equation (2.1) can be rewritten as

A(c +apl)=Vu —y.

The mixed weak formulation of the Biot problem reads: find (o, u, y,z, p) : [0, T]— X x V x Q x Z x W such
that p(0) = po and, for a.e. t € (0, T),

(A(c +apl), t) + (u,divt) + (¥, 1) = (8u, T n)Fg,-xpz, VT eX, (2.8)
(divo,v) = —(f,v), Yv eV, (2.9)
(0,6) =0, VE € Q, (2.10)
(K7'2.¢) = (p.dive) = —(g,. ¢ -n) ppres, V¢ € Z, (2.11)
(co0rp, w) + a (0;A(o + apl), wl) + (divz, w) = (¢, w), Yw e W, (2.12)

where we have used the identity (tr At, w) = (At, wl) and the functional spaces are defined as
X={reHWdiv; 2,M):tn=0o0n Iy}, V=L"2,RY), Q=L*2N),
Z={¢eHWiv; 2,R):¢-n=00n Iy}, W=L*0).
4
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We refer the reader to [46] for the analysis of the well-posedness of a related displacement—pressure weak
formulation. In Section 4 we establish existence, uniqueness, and stability for the semidiscrete continuous-in-time
approximation of (2.8)—(2.12). The arguments there also apply to the weak formulation (2.8)—(2.12) itself. We make
a remark here on the initial data py(x). In particular, we assume that

po€ H' (), pox)=gy(x,0)on I')*, and KVpye Z. (2.13)

A similar assumption is also made in [46]. In our case, we can set zo = —KVpy € Z and show that it satisfies
(2.11). We can also determine oy, ug, and yp by solving the elasticity problem (2.8)—(2.10) with p, given as data.
We refer to the initial data obtained by this procedure as compatible initial data. It is needed for the well posedness
of the (2.8)—(2.12), as we will discuss in Section 4.

3. Mixed finite element discretization

We begin with the discretization of the fully mixed weak formulation of the poroelasticity system (2.8)—(2.12),
based on mixed finite element methods for elasticity and Darcy flow. We then present the multipoint stress—
multipoint flux mixed finite element method, which employs the vertex quadrature rule for the stress, rotation,
and velocity bilinear forms and can be reduced to a positive definite cell centered system for displacement and
pressure only.

3.1. Mixed finite element spaces

We next present the MFE discretization of (2.8)—(2.12). For simplicity, assume that {2 is a polygonal domain.
Let 7, be a shape-regular and quasi-uniform [14] finite element partition of {2, consisting of triangles and/or
quadrilaterals in two dimensions and tetrahedra in three dimensions. Let h = maxge7; diam(E). For any element
E € 7T, there exists a bijection mapping Fg : E — E, where E is a reference element. We denote the
Jacobian matrix by DFg and let Jg = |det(D Fg)|. We note that the mapping is affine with constant D Fg in
the case of simplicial elements and bilinear with linear D F in the case of quadrilaterals. The shape-regularity and
quasiuniformity of the grids imply that

IDFEllg oo ~he WEllgo s~ VYE €T 3.1)

dxdskew on simplicial elements or (BDM;)? x (Qp)? x

Let X, x Vj, x Q) be the triple (BDM,)? x (Po)* x (P{")
(Q‘l'”)zxz’xkew on quadrilaterals, where P, denotes the space of polynomials of total degree k and Oy denotes the
space of polynomials of degree k in each variable. This triple has been shown to be inf—sup stable for mixed elasticity
with weak stress symmetry in [9,10,16] on simplices, in [26] on rectangles, and in [2] on quadrilaterals; see also
related spaces with constant rotations on simplices [7] and quadrilaterals [5]. For the Darcy flow discretization we
consider Z, x W), to be the lowest order BDM ;| x Py MFE spaces [11,12,33]. On the reference simplex, these
spaces are defined as

A A a d A oA ~ A A ~
X(b) = (PuBY') V(E) = Po(EY, QE) = Py(Eydter, (3:2)
Z(E) = Pi(E), W(E) = Po(E). (3.3)

On the reference square, the spaces are defined as

A A A 2
R(E) = (P1 (EY? + rcurl (325) + s curl (& yz))
_ (X By +rn+ rx2+ 25189 @k + Bad + y2 — 2rRY — 512
3k + B33 + y3 + X + 25089 auk + Bud + yu — 2mxy — 592 )
V(E) =Py(EY, QE) = Qi(E)¥ ke, (34)
ask + Bsy + ys +r3x? + 2S3£9>

Z(E) = Py(E)? + rcurl (329) + s curl (9?) = . . N N
(E) 1(E) (x7y) (xy9) ask + BeF + Vs — 21359 — 8352

W(E) = Py(E).
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These spaces satisfy

divX(E) = V(E), div Z(E) = W(E); Vi e X(E), V¢ € Z(E), Yé € dE, ths € P1(&), ¢ - hs € P1(é).
It is known [11,12] that the degrees of freedom for BDM can be chosen to be the values of the normal fluxes at
any two points on each edge ¢ of E in 2d or any three points on each face ¢ of E in 3d; similarly for the normal
stresses in the case of (BDM)?. Here we choose these points to be at the vertices of é for both the velocity and

stress spaces. This choice is motivated by the use of the vertex quadrature rule introduced in the next section.
To define the above spaces on any physical element E € 7y, the following transformations are used

. 1 . _ . P : b
t<7—)>r:rT=J—DFErToFE', v<—>v:v=voFEl, E(—)S:S:EOFEI,
E
P 2 1 2 —1 ~ ~ -1
§<—>§:§=J—DFE§OF , wewiw=woF;,
E

fortreX,veV,€e€Q ¢ e Zand w e W. The velocity vector and stress tensor are mapped by the Piola
transformation, where the stress is transformed row-wise. The Piola transformation preserves the normal components

and the divergence of the stress and velocity on element edges or faces. In particular, it can be shown that
: tig, ¢ : ¢ g, di dive, dive=—dvi, (.5)

= ———"—Tiy, Mg = ————( -1, divt = —div?, dive = —divg, .

|JEDFThglga ¢ ¢ | JeDFThg|ga ¢ JE JE

where | - |ga denotes the Euclidean vector norm. The finite element spaces on 7, are defined as

TN,

X, =(reX: 1]y &% teX(E) VEeT),
Vi={veV:vg< deV(E) VEeT
Q= e H'(QN:Elp o & & cQE) VE €T, (3.6)
Zn=1{ceZ:tlp B¢ teZ(E) VEeT),
Wy={weW:wlg<w, we WE) VEeT,).
Remark 3.1. Due to (3.5), on each E € 7Ty, it holds that divX, = ﬁVh and divZ;, = %Wh. In several places we

will make choices for test functions, on each E, v = Jgdivt or w = Jg div¢. On quadrilaterals, Jg is linear and
positive. On simplices, Jg is a positive constant, so in this case divX, =V, and div Z;, = W,,.

3.2. The coupled BDM | mixed finite element method
With the finite element spaces defined above, the semidiscrete five-field mixed finite element approximation of the

Biot poroelasticity system (2.8)—(2.12) reads as follows: find (o3, us, Vi, z2n, pr) : [0, T]1 = X x Vi xQp X Z x W,
such that, for a.e. t € (0, T),

(A(op +appl), T) + (up, divt) + (Vp, ) = (gu, T n)ng.;pz, vVt € Xy, 3.7
(divoy, v) = — (f,v), Yv eV, (3.8)
(0n,8) =0, vE € Qp, (3.9
(K*IZh,C)—(ph,diVO=—(gp»§-n)p5m, V¢ € Zy, (3.10)
(cod; pp, w) + o (0, Aoy, + appl), wl) + (divz,, w) = (g, w), Yw € Wy, (3.11)

with initial condition p,(0) = pj;.0, where p, o is a suitable approximation of py. The convergence of the above
method is studied in [25], where it is shown that the method is robust for small storage coefficient and for nearly
incompressible materials. With an implicit time discretization, it requires the solution of a large five-field saddle point
system at each time step, which is computationally expensive. Motivated by the MFMFE [52] and MSMFE [2,3]
methods, in the next sections we develop a coupled MSMFE-MFMFE method based on a vertex quadrature rule that
allows for local elimination of the stress, rotation, and velocity without loss of accuracy, resulting in a significantly
more efficient positive-definite cell-centered displacement—pressure system.

6
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3.3. A quadrature rule

For any element-wise continuous vector or tensor functions ¢ and v on {2, we denote by

(@, V)0 =Y @ V)ok

EeTy

the application of the element-wise vertex quadrature rule for computing (¢, ¥). The integration on any element
E is performed by mapping to the reference element E. Let ¢ and y be the mapped functions on E, using the
standard change of variables. Since (¢, ¥)g = (¢, ¥ Jg)z, we define

- s - N
@ V)o.x = 'sﬂ D¢ - TG IEG) = 'f—' Db - YD e,
i=1 i=1
where s is the number of vertices of E, r; and r;, i = 1, ..., s, are the vertices of E and E , respectively, and - has
a meaning of inner product for both vector and tensor valued functions.

The quadrature rule will be applied to the velocity, stress, and stress—rotation bilinear forms. All three variables
have degrees of freedom associated with the mesh vertices. The quadrature rule decouples degrees of freedom
associated with a vertex from the rest of the degrees of freedom, resulting in block-diagonal matrices corresponding
to these bilinear forms. Therefore the velocity, stress, and rotation can be locally eliminated, reducing the method
to solving a cell-centered pressure—displacement system. More details on this reduction will be provided in the
following sections.

The analysis of the MSMFE-MFMFE method will utilize the following continuity and coercivity properties of
the quadrature bilinear forms.

Lemma 3.1. There exist positive constants Cy and C, independent of h, such that for any linear uniformly bounded
and positive-definite operator L and for all ¢, € X, Qp, Zy,, Wy,

(Lo, d)g = Cilpl, (Lo, ¥)g < CalilllIv . (3.12)

Proof. The proof for functions in X, Q,, Z, has been shown in [2,3,52]. The proof for functions in W, is
similar. [J

Lemma 3.1 implies the following norm equivalence.
Corollary 3.1. (L¢, qb)lQ/2 is a norm equivalent to ||¢||, which will be denoted by ||L1/2¢||Q.
3.4. The coupled multipoint stress—multipoint flux mixed finite element method

We first note that there is a slight difference in the incorporation of the Dirichlet boundary conditions between
the simplicial and quadrilateral grids. In particular, in the case of quadrilaterals, the L? projection of the boundary
data onto the space of piecewise constants must be used in order to obtain optimal approximation of the boundary
term. On the other hand, such projection should not be used on simplices, since it would result in non-optimal
approximation. The difference is due to different properties of the quadrature rules on simplicial and quadrilateral
grids, see [2,3,51]. For the conformity and simplicity of the presentation, for the rest of the paper we consider
gu=2¢8p=0.

Our method, referred to as the MSMFE-MFMEFE method, in its semidiscrete form is defined as follows: find
@n, tny Vs 20, ) 2 10, Tl = X, X V), x Qi X Zj, x Wy, such that p,(0) = py o and, for a.e. r € (0, T),

(A(on +appl), ) + (up, dive) + (v, 7)o =0, vVt e Xy, (3.13)
(divoy,v) = — (f,v), Yv eV, 3.14)
(0n,§) o =0, vE € Qu, (3.15)
(K~"z, ;)Q — (pn,dive) =0, V¢ € Zy, (3.16)
(€00 pr> w) + & (3; Aoy + appl), wl)y + (divzy, w) = (g, w), Yw € W, 3.17)
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Remark 3.2. We note that the quadrature rule is employed for both (A(o, + ap,1), T)g in (3.13) and « (3, Aoy
+appl), wl), in (3.17), since these two terms will be combined to obtain a coercive term in the well-posedness
analysis, while only quadrature rule on the stress term (Aoy, T)¢ in (3.13) is needed for local stress elimination.

In the next sections we proceed with establishing existence, uniqueness, stability, and error analysis for the
semidiscrete MSMFE-MFMFE method (3.13)—(3.17). In Section 7 we present the fully-discrete MSMFE-MFMFE
method and discuss the reduction of the algebraic system at each time step to a positive definite cell-centered
displacement—pressure system.

4. Existence and uniqueness for the semidiscrete MSMFE-MFMFE method

We first state the inf—sup stability of the mixed Darcy and elasticity spaces, which will be utilized in the analysis.
It is known [11] that the spaces Z;, x W), satisfy the inf-sup condition
(wp, div¢)
381 > 0 such that Vw;, € W, sup ———— = Bi|lwa|l- 4.1)
ozcez, NSl
The inf-sup stability for the mixed elasticity spaces X; x Vj, x Q, with quadrature has been studied in [3] on
simplices and in [2] on quadrilaterals. In the case of quadrilaterals, the following assumptions on the grid are
needed [2]:

(M1) Each element E has at most one edge on 'y,

(M2) The mesh size h is sufficiently small and there exists a constant C such that for every pair of neighboring
elements E and E such that E or E is a non-parallelogram, and every pair of edges e C dE\JE, & C dE\JE
that share a vertex,

|re - ré|]R2 = Chzv
where r, and r; are the vectors corresponding to e and e, respectively.

We note that (M2) can be thought of as a smoothness assumption on the grid and it is not needed if the
grid consists entirely of parallelograms. For the rest of the paper we will tacitly assume that (M1)-(M2) hold
on quadrilaterals.

We have the following inf—sup condition on simplices [3] and quadrilaterals [2]:

(vhv le ‘C) + (éhv T)Q

38, > O such that Vv, € Vj,, §, € Q,,  sup > Ba(llvrll + N&xD- 4.2)
0£7eX), 17 llaiv

We note that the semidiscrete method (3.13)—(3.17) is a system of differential-algebraic equations and the
standard theory for ordinary differential equations cannot be directly applied. Instead, the well posedness analysis
of (3.13)—(3.17) will be based on the existence theory for degenerate parabolic systems, in particular [48, Theorem
6.1(b)].

Theorem 4.1. Let the linear, symmetric and monotone operator N' be given for the real vector space E to its
algebraic dual E*, and let E, be the Hilbert space which is the dual of E with the seminorm

Ixl, = Wx@)'/*, xekE.
Let M C E x Ej be a relation with domain D = {x € E : M(x) # 0}. Assume M is monotone and
RgN + M) = E,. Then, for each x, € D and for each F € wbtlo, T; E}), there is a solution x of

ad

" WNx(@®) + M x@®) > F(t), ae 0<t<T, (4.3)
with

Nx e W0, T; E)), x(t) e D, forall0 <t <T, and Nx(0) = Nxo.
Theorem 4.2. For each f € W', T;L*(2)), ¢ € W">®(0,T; L*({2)), and compatible initial data
(Oh.05 Un.05 Yh.0s 2005 Pno), the semidiscrete MSMFE-MFMFE method (3.13)—(3.17) has a unique solution (o}, up,

Vs Zhs i) € WH(0, T3 L*(02, M) N L0, T; X)) x L0, T; Vi) x L0, T; Qp) x L®0, T; Zy) x WhHe
0. T; Wy).
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Proof. In order to fit (3.13)—(3.17) in the form of Theorem 4.1, we consider a slightly modified formulation, with
(3.13) differentiated in time and the new variables u;, and y, representing d,u;, and 9y, respectively:

0, A(on +appl), 7)o + (Up, dive) + (Yn, 7)o =0, VT €X,. 4.4)
Introducing the operators

(Asoon, T) = (Aop, T) g, (Agpon, w) = a (Ao, wl)g, (Aguon, v) = (divoy, v), (Asyon, §) = (on,§)g .,

(Azth, §) = (K 'z, C)Qa (Appn, w) = — divzy, w),  (Apppn, w) = (copn, w) + & (Aappl, wl)g ,

we have a system in the form of (4.3), where

o Aew 0 0 0 AT o AL, AL, 0 0 0
i 0 000 O —Aeu O 0 0 0 —f
i=|m|l. N=l o o000 of|. M=|-4, 0 0 o o, Fr=|o
o 0 000 O 0 0 0 A, Al 0
i Aoy 0 0 0 A, 0 0 0 —A, O q

The dual space Ej, is L*(£2, M) x 0 x 0 x 0 x L*({2), and the condition F € W!!(0, T; E}) in Theorem 4.1 allows
for non-zero source terms only in the equations with time derivatives. In our case this means f = 0. We can reduce
our problem to a system with f = 0 by solving for each ¢ € (0, T'] an elasticity problem with a source term f,
cf. [47] for a similar approach:

AUU A({u A({y O-hf 0
—Asu 0 0 il | =1-r],
—A,y O 0 7}}{ 0

and subtracting this solution from the solution to (3.13)—(3.17), resulting in a problem with a modified right hand
side F = (Ago(0] —8,0/),0,0,0,q9 — Aypdia) ).

The range condition Rg(N' + M) = E; can be verified by showing that the square finite dimensional
homogeneous system: find (64, ip, Vi, Zns Pr) € Xp X Vi x Q x Z;, x W), such that

(A + apnl), 'L')Q + (dn, dive) + (7, r)Q =0, vVt € Xy, (4.5)

(diV o, v) =0, Yv eV, (4.6)

(6n.8) 0=0. VE € Qy, .7

(K™'2,£) = (Bndive) =0, V¢ € Zy, (4.8)

(coﬁh,w)—i—a(A(&h +appl), wI)Q+(diV2h,w) =0, Yw € Wy, 4.9)

has only the zero solution, see also [25, Section 3.4]. Taking (z, v, &, £, w) = (64, Up, Vi, Zn, Pr) and combining
the equations implies [| A28y +apu DI% + ey pull> + |1 K ~1/22411% = 0, which gives &, +apyl = 0 and 2, = 0,
using the positive definiteness of A and K and the coercivity (3.12). Then the Darcy inf-sup condition (4.1) implies
that p, = 0, and therefore 6, = 0. The elasticity inf-sup condition (4.2) now implies that iz, = 0 and p;, = 0.

The above argument can also be used to conclude that A" and M are non-negative, and therefore, due to their
linearity, monotone.

Finally, we need compatible initial data %y € D, i.e., Mx; € E,. Let us consider first initial data xo =
(01,0, Un.0, Yn.0, 20,05 Pi.o) for the non-differentiated problem (3.13)—(3.17). We take xq to be the elliptic projection
of the initial data Xy = (o9, ug, Y0, 20, pPo) for the weak formulation (2.8)—(2.12), which is constructed from p, by
the procedure described at the end of Section 2. With the reduction to a problem with f = 0, the construction
satisfies (N + M)X, € E;. Since we have

N 4+ M)xg = N + M), (4.10)

this implies that Mxy = (N + M)Xy — N'xo € E,. For the initial data of the differentiated problem (4.4),(3.14)—
(3.17), we simply take %o = (on,0, 0, 0, 24,0, Pr,0), Which also satisfies Mx, € E,. We note that u; ¢ and y; ¢ are
not needed for the differentiated problem, but will be used to recover the solution of the original problem.

Now, all conditions of Theorem 4.1 are satisfied and we conclude the existence of a solution to (4.4), (3.14)—
(3.17) with o, € W1’°°(0, T; LZ(Q, M)) N LOO(O, T; Xh), Ph € W“"’(O, T; Wp), O’h(O) = 0},0, and ph(O) = Dh,0-

9
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From the equations we can further conclude that iz, € L*°(0, T; V},), v, € L0, T; Q) and z, € L*(, T; Z;).
By taking + — 0 in (3.16) and using that zj ¢ and pj o satisfy (3.16) at = 0, we also have that z,(0) = zj.0.
Next, we recover the solution of the original problem. Let us define

t

t
up(t) = upo +/ upds,  v(t) = Vo +/ yvrds, Yt el0,T]. 4.11)
0 0

By construction, u,(0) = uj.0 and y,(0) = yp 0. Integrating (4.4) in time from O to any ¢ € (0, T] and using that
On.0, Un,0, and yp o satisfy (3.13) at + = 0, we conclude that (3.13) holds for all ¢. This completes the existence
proof. Uniqueness follows from the stability bound given in Theorem 5.1 in the next section. [

Remark 4.1. The above argument and the stability bound below do not require ¢y > 0, implying well posedness
even for ¢cg = 0.

5. Stability analysis of the semidiscrete MSMFE-MFMFE method

In this section we derive a stability bound for the MSMFE-MFMFE method (3.13)—(3.17). We remark that
stability analysis for the BDAM | MFE method (3.7)—(3.11) was not performed in [25], where only error analysis
was carried out. The stability analysis is more involved than the error analysis, since controlling the boundary
condition term (g, { - n) ppres Tequires bounding ||div z;, ||. Even though we consider g, = 0, we derive a bound on
|ldiv z, ||, thus obtaining full control on 1z ldiv -

Theorem 5.1. There exists a positive constant C independent of h and cg, such that the solution of (3.13)—(3.17)
satisfies

lon | Looo,7; Hdiv; 2)) + Ilutn ”LOO(O,T;LZ(Q)) + llvn ”LOO(O,T;LZ(Q)) + llzn ”LOO(O,T;LZ(Q)) + ||Ph||L00(o,T;L2(Q))
+ lonll 120, 7: Haaiv: 2y + Munll 2070202y + 1Vl 20, 7: 2200y + 120l 20,7 Hediv: 2)) T 1PRll 20, 7:22(62))
<C (||f||H1(o,T;L2(Q)) + gl a10,7:02002)) + I Poll a1y + ||KVP0||H(div;Q)) . (5.1)

Proof. We differentiate (3.13) in time, choose (z, v, &, ¢, w) = (oy, d:un, 0:Vn, zn, pr) in Egs. (3.13)—(3.17), and
combine them to obtain

(3:(Aay, +apyl), o + apyD) g + (cod; ph. pr) + (K~ 'zp, Zh)Q = (f, dun) + (q, pn) »
implying
1
S0 [ 1A 20+ apu DI + ey pul? | + 1K~ 221 = (£ 0) + (@ po) - (52)

Next, integrating (5.2) in time from O to an arbitrary ¢ € (0, 7] results in
1 t
3 [142@ +apu DI + ey P12 + f K22, 1% ds
0
! Lr o an > 12 )
= [ g pw) = @ foun))ds + 5 [IIA (on +aprDO), + iy pr(O)l ] + (f, un)®) — (f, un)(0).
0
Applying the Cauchy—Schwartz and Young’s inequalities, we obtain
t
1A (04 + apn DO + llcy* I + 2/ IK~"2z401% ds
0

t 1 t
<€ <||uh<r)||2+/0 (lpall* + ||uh||2)ds) t o <||f(r)||2+f0 (llg1I* + ||a,f||2)ds>

+ 1A (03, + apa DO + llcy> pr(O)I + llun )] + [ FO)]I. (5.3)

10
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Using the inf—sup condition (3.13) and (4.2), we bound |lu;|| and ||y;|| as follows,
(up, dive) + (vn, Tg

lunll + Nyl < C sup

0£7eX), 1T llaiv
— (A"2(0n + apiD), A7), i
=C sup < ClAY(oy + api D), (5.4)
0£7eX), 1T llaiv

where in the last step we used the equivalence of norms as stated in Corollary 3.1. We also note that

t t
/0 (luall® + lyall?) ds < C/o (lowll* + 1l pal?) ds. (5.5)
Similarly, using the inf—sup condition (3.16) and (4.1), we have

(pn.dive) (K™'2n. ¢)

Ipull < C sup g < ClK ). (5.6)

o£cez, ¢ llaiv otcez, ¢ |laiv

To obtain a bound on fof llon |I>ds, which appears on the right hand side of (5.5), we take t = oy, v =uy, § =
in (3.13)—(3.15), and use Cauchy—Schwartz and Young’s inequalities, to obtain

ol < € (1 pal’® + exllunl® + 6—12||f||2). (5.7)
Also, testing (3.14) with v = Jg divoy, on each E € T, we obtain a bound on the stress divergence:
divop|l < || fII. (5.8)
Combining inequalities (5.3)—(5.8) and choosing €, small enough, then €; small enough, we obtain
1/2

IA"2(on + ap DON + Nlun O + 1yl + licy” pr@®I + lIdiv o3, ()]

t
+f (llow 11> =+ lunll® + Nyull® + 1K 220 01> + I pall> + Idiv oy ||?) ds
0

< C(Ilf(t)||2+/0 (hg I + 117 + 19, £117) ds

+ o)1 + IpuOI + s O + 11 FO)IF). (5.9)

Estimate for divz,. We note that (5.9) is a self-contained stability estimate. We now proceed with obtaining a
bound on ||div z,||. In the process, we also obtain a bound on ||K ~'/2z,(¢)|| for all ¢, and as a result, a bound on
lpr(2)| for all ¢ that is independent of ¢y. We choose on each E € T, w;, = Jg divz, in (3.17) and obtain

ldiv 2l = € (e, pal + 18,41 + apu DIl + g1 (5.10)

To control the first two terms on the right hand side of (5.10), we differentiate Eqgs. (3.13)—(3.16) in time and
combine them with (3.17) as it was done in (5.2)—(5.3), with the choice (z, v, &, ¢, w) = (3,01, O;up, O Vi, Zn, 0: Ph),
resulting in

t
2/ (||atA‘/2(oh +ap D% + ||c$/za,ph||2) ds + | K~ 22,0113
0

2 ' 2 1 2 ' 2
<e€ (IIph(t)II +/ 9w dS) +2 (IIq(t)II +/ 119, £l dS)
0 0

t
+ / (Ipall® + 19:q11*) ds + 11K~ 22,01 + 1 paO)I* + [lg(O)]1>. (5.11)
0
Using the inf-sup condition (3.13) and (4.2), differentiated in time, we have

I3;unll + 3 vull < ClI3,A"*(03, + app Dl (5.12)
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Combining (5.11), (5.12), and (5.6), we get

t
/ (00, A2 + cupn DI + 19,2 + 10,712 + e/ >0, pul?) ds + 1K~ P20 + 1l pu(0)]1
0

<C (/ (lpall> + 19: 1> + 113, £17) ds + llg@OI* + 1zxO)I* + [l pa(O) 1> + ||q<0>||2> : (5.13)
0

Integrating (5.10) in time and using (5.9) and (5.13), results in

1
1K 2211 + Il pa(®))1* + / Idiv z4 1 *ds
0

< C(IIq(t)||2+|If(t)||2+/0 (hg I + A1+ 10q I* + 19, £11%) ds

+ oI + I 2O I* + [lunO)I* + llzx(O)I* + llg(O)]I* + I|f(0)||2)- (5.14)
We note that the control on ||A'/2(o), + ap,I)(t)|| and || p,(2)|| also implies a bound on |07, (2)]:
lowll < CUIAY(on + apa DIl + Il pall)- (5.15)

Finally, we recall the construction of the initial data (oy, ug, Yo, 2o, po) for the weak formulation (2.8)—(2.12), see
Section 2, and that the discrete initial data (oy,0, 4.0, Y10, Zh.0> Ph,0) 1S taken as its elliptic projection, see (4.10).
Then following the steady-state version of the arguments presented in (5.2)—(5.15), we obtain

lon (O + lun (O + I yaO) + 1| pa (O + [IzaO) | = C(llooll + lluoll + lIvoll + Il poll + lIzolD)
< Clpollgr(e) + 1KV poll Hiv:2))- (5.16)
The proof is completed by combining (5.9), (5.8), (5.14), (5.15), and (5.16). O
Remark 5.1. The constant in (5.1) does not depend on ¢, so we have stability even for ¢y = 0. Furthermore, since
we did not use Gronwall’s inequality in the proof, the constant also does not involve exponential growth in time,
resulting in a long-time stability.
6. Error analysis

In this section we establish optimal order error estimates for all variables in their natural norms.
6.1. Preliminaries
We begin with several auxiliary results that will be used to bound the approximation and quadrature errors. Due

to the reduced approximation properties of the MFE spaces on general quadrilaterals [6], we restrict the quadrilateral
elements to be O(h?)-perturbations of parallelograms:

Ir3s — ro1|| < ChZ. 6.1)
In this case it is easy to verify (see [52] for details) that
1 )
|IDFg|, .. ; <Ch* and |—DFg <Ch' j=1,2. (6.2)
o JE j,oo,é

Let Q°: L?(£2) — W), be a projection operator satisfying for any ¢ € L>({2),
(0% — ¢, h); =0, Ve W(E), Q% =0%oF;" VEeT.
We will also use Q° : L?(£2, RY) — V,,, which is the above operator applied component-wise. It follows from (3.5)
that
Vo e LA2.RY), (0% —¢.dive) =0, VreX,,
Vo e L), (Q°—¢.div)=0, Vi€
12

(6.3)



1. Ambartsumyan, E. Khattatov and 1. Yotov Computer Methods in Applied Mechanics and Engineering 372 (2020) 113407

Let Q' : L?(£2,N) — Qj, be the L>-projection operator satisfying for any ¢ € L>(£2, N),
(Q'¢—9.6)=0, VEeQ,. (6.4)

Let IT : XN H'(£2, M) — X, be the canonical mixed projection operator acting on tensor valued functions. We will
also use the same notation for the projection operator acting on vector valued functions, I : ZNH'(2,RY) — Z,,.
It is shown in [11,12] and [49] that I satisfies

vy e H'(2,M), (div(Ty — ¢),v) =0, Yv eV,
vy € HY(2,RY), (div(ITy — ¢), w) =0, Yw € W,

We will also make use of the mixed projection operator onto the lowest order Raviart-Thomas space R7
[11,32,42]. This additional construction is needed only for the error analysis on quadrilaterals, although for
uniformity in the forthcoming proofs we will treat the simplicial case in the same fashion. We denote the RT o-based
spaces by X2 and Z,? for tensors and vectors, respectively, where the former is obtained from d copies of the latter.
The degrees of freedom of X or Z are constant values of the normal stress or velocity on all edges (faces). The
RT o mixed projection operator, denoted by I7°, has properties similar to the BDM projection operator I1. It also
satisfies

divII°t =divt and |II't|| <C|t| VreX,,
divIl°c =dive and ||II%| < Cli¢|l V¢ € Zy.

The following lemma summarizes well-known continuity and approximation properties of the projection
operators, where H e {M, R¢}.

(6.5)

(6.6)

Lemma 6.1. There exists a constant C > 0 such that

lp — Q°¢ll < Cligl ", V¢ € H'(12), 0<r=1, (6.7)
lp — Q'¢ll < Cligll A", V¢ € H'(2,N), 0<r=1, (6.8)
Iy — Iyl < Cliyll-h", Yy € H' (12, H), l=<r=2 (6.9)
Iy — % || < Cllylhh, Vy € H'(2, H), (6.10)
Idiv ( — Tyl + [|div (¥ — %) < Cldivyl,h", Vi € H™(02, H), 0<r=<1. (6.11)
In addition, for all elements E € Ty, there exists a constant C > 0, such that

10°1lz < Clidlle. V¢ € L*(E), (6.12)
10'¢ll.e < Cligl.e. V$ € H'(E,N), (6.13)
1HIY e < CllY e, Vi € H'(E, H). (6.14)

Proof. The proof of bounds for the L2-projections (6.7)—(6.8) can be found in [14]; and bounds (6.9)—(6.11)
can be found in [11,43] for affine elements and [6,49] for hz-parallelograms. Finally, (6.12) is the stability of the
L?-projection and the proof of (6.13)-(6.14) was presented in [52]. [

The following result is needed in the error analysis.

Lemma 6.2. Forany 7T € X(E) and e Z2(E),

(f — 1%, f())Q . =0 Jfor all constant tensors T, (6.15)
E

(2 - ]AYOE, 20) o =0 for all constant vectors 20. (6.16)

Proof. The property (6.16) was shown in [52, Lemma 2.2] on the reference square. The proof on the reference
simplex follows in a similar way. The property (6.15) follows from (6.16). U
For ¢, ¥ € X;, Qp, Z;,, Wy, denote the quadrature error by
VE €Ty, Oe(Ld,¥) =L, V)e— (Lo, Vo, 0L, Y) = (Lo, ¥)— (Lo, ¥)o. (6.17)

13
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The next result summarizes the quadrature error bounds.

Lemma 6.3. Forall E € Ty, if K'|g € WH(E) and Alp € WY(E), then there is a constant C > 0
independent of h such that

0k (K™'¢, p)| < CAIK oo £ ¢ Il Elpl E, Vi € Zi. p € Z), (6.18)
10k (AT, 01 < Chl| Al ol Tl el X e, VT € X, x €X). (6.19)
108 (AT, wh)| < Chl| Al co£ Tl Ellw]le. VT e Xp, w e Wi, (6.20)
10k (Awl,rD)| < Chl| Al £ lwll £l £, Y, r € Wi, (6.21)
10k (z.6)| < Chllzlli.£lE e, V7 € X & € Qi (6.22)
10k (.6)] < ChllT|£lIE £, Vi e Xj. £ € Q. (6.23)
(K10, 6 = 11%) 5 | = CHIK It ol £ N, Vp. L € Zn, (6.24)
(A +wD, T = 11°7), | < ChIAT s el e + wlplTls, YT eXpwe Wi (629)
(6.7 - 1°0) 5 | = Chlgl Il V6 € Qu T € X (6.26)

Proof. The estimates (6.18) and (6.24) can be found in [52]. We note that (6.24) was stated only on quadrilaterals in
[52], but it also holds on simplices, since it follows from mapping to the reference element and (6.16). Bounds (6.19)
and (6.22)—(6.23) were proven in [3] on simplices and in [2] on quadrilaterals. The proofs of bounds (6.20)—(6.21)
for the two element types are similar to the respective proofs of (6.19). Bounds (6.25) and (6.26) were shown in [2]
on quadrilaterals. Their proof on simplices is similar, using (6.15). O

Remark 6.1. We note that, since the BDM space on quadrilaterals involves quadratic terms, the quadrature
bounds (6.18), (6.19), and (6.23) require restricting one of the test functions to the R7T space, which also leads
to the additional error terms in (6.24)—(6.26). This restriction is not necessary on simplices, where BDM; is the
space of linear polynomials. In order to present a unified convergence proof for simplices and quadrilaterals, we
make the restriction to R7 on simplices as well. A simplified proof without this restriction on simplices is also
possible, following the approaches in [52] and [3].

The above bounds are stated on an element E € 7. In the convergence proof they will be used by summing
over all elements. We will assume that |K ~'||{.0o.z and ||Al|1.00.z are uniformly bounded independently of & and
will denote this space by WT

6.2. Main convergence result

Theorem 6.1. If A € W}roo, le WT , and the solution of (2.8)—(2.12) is sufficiently smooth, then there exists
a positive constant C mdependent of h and co, such that the solution of (3.13)—(3.17) satisfies

lo — Uh||L°°(0,T;H(div;.Q)) + flu — Mh”LOO(o,T;LZ(Q)) +ly — Vh”LDO(O,T;LZ(Q)) +llz — Zh”LOO(o_T;LZ(Q))
+ 1P — Pullpo@r.2¢2y + 16 — onll 207 m@iv: 2y T 18— wnll 200,72 12002
+ 1Y — Vulli2o.7: 2202y + 12 — 20l 20,7 meaiv: 29y + 1P — Prll 20,72 122y
< Ch(||o||H|(0,T;H1(Q)) 1AV 0 [l o071 2y + 1AV O | 200,72 11120
+lull 20,7112y + Nl Lo 7112y + 1V 10,711 (02))

+ 1zl o, m oy + 14V 2l 20 711 (2)) + “p”Hl(O,T;Hl(.Q)))‘ (6.27)

Proof. The derivation of the error bounds follows the structure of the stability analysis. It involves special
manipulation of the error system, combined with estimation of the approximation errors and the quadrature errors.
We form the error system by subtracting the discrete problem (3.13)—(3.17) from the continuous one (2.8)—(2.12):

(A(o +apl), v) — (Alop +appl), V) g + (u —up, divt) + (v, 1) — (. 1) =0, VT eX,, (6.28)
14
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(div(c —ap), v) =0, Yv € Vj, (6.29)
(0,8) — (0w, §)o =0, vE € Qy, (6.30)
(K'2.¢) — (K 'z, ;)Q —(p—pp,dive) =0, V¢ € Zy, (6.31)
(co0:(p — pn), w) + & (3, Al +apl), wl) — a (3, A(o, + apyl), wl)y

+ (div(z — z), w) = 0, Yw € W,,. (6.32)

We split the errors into approximation and discrete errors as follows:
o—op=(0—1lo)+lo —on) = Ys + o,
w—up = — Q%) +(Q%u — up) = Yu + ¢u,
y=r=0=0'")+Qy —m) =¥y, + ¢,
= =@+ Ulz—2z4) =V, + ¢,
p=pi=0p—0p)+(Q°p —pi) =V, + o,
We first manipulate the error system (6.28)—(6.32) to obtain error terms that can be bounded using either the

orthogonality and approximation properties of the projection operators, (6.3)—(6.5) and (6.7)—(6.11), or the estimates
for the quadrature error terms, (6.18)—(6.26). We rewrite the first equation (6.28) in the following way:

(Ao +agpD). T), + (Gu. dive) + (¢, 7)
= — (A0 +apD), 1) + (AUIo +aQ’pI). T) , + (Y, dive) + (Q'y. 7) , — (v, D).

It follows from (6.3) that (v, divt) = 0. With the goal to use a test function I/ O, which is needed to bound the
quadrature error, we manipulate the rest of the terms as follows:

(Ao +adpD). T), + (Pu, divT) + (4. 7),,
=—(A(c +apD), v — II't) — (AWs + @y, 1), II°T) — (A(lo + aQ°pI), I1°T)
+ (AUIo +aQ’pD), Hor)Q + (Allo +aQ’pI), T — H%)Q

—(y,t—1I°7) = (v, I°7) — (Q'y, 1I°7) + (Q'y, HO‘L’)Q +(Q'y.t - Hot)Q . (6.33)
Taking T — IT O¢ as a test function in (2.8) and using (6.6), we obtain
(A +apD),r — 1I°7) + (y,t — I°T) = 0. (6.34)

Combining (6.33)—(6.34) and using the quadrature error notation, we get

(Ao +agyD), 7) , + (b, divT) + (8, 7),,
= — (AWo +ay,D), I°7) — (Y, 1°T) — 0 (AUIo +aQ°pI), II°T) — 6 (Q'y, II°7)
+ (AlIo +aQ’pI), T — HOT)Q +(Q'y,t - HO‘L’)Q . (6.35)

We proceed with the manipulation of the rest of the equations in the error system (6.28)—(6.32). Using (6.5) and
taking v = Jg div ¢, on each E € T, the second error Eq. (6.29) implies

divg, = 0. (6.36)
We rewrite the third error Eq. (6.30) as
(Yo, 8)+0(Ulo,8) + (¢, 6)p =0. (6.37)

We rewrite the Darcy’s law error Eq. (6.31) in a way similar to (6.33)—(6.35):
(K™'¢..6) = (bpodive) = = (K 'z, ¢ = 11°0) = (K~ '(z = [2), 1°¢) — (K~ 'z, 11°F)
+ (K™ Iz, 11%) , + (K™ Iz, ¢ = 11°C) , + (. div ).
Using (6.3), we have that (v, div¢) = 0. Also, testing (2.11) with ¢ — IT1°¢ yields (K 'z, ¢ — I1°¢) = 0, hence,
we have
(K'¢., g)Q — (¢p.dive) = — (K", I°¢) — 0 (K "1z, 1°¢) + (K 'z, ¢ — H%)Q. (6.38)
15
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Finally, using (6.5), we rewrite the last equation in the error system, (6.32), as follows,
(codi¢pp, w) + & (8, APy + agpp 1), wI)Q + (div ¢, w)
= — (coa,w,,, w) -« (8,A(1ﬂg +ay,l), wI) —af (B,A(Ha +aQ°pl), wI) . (6.39)

We next combine the equations and make an appropriate choice of the test functions. In particular, we differentiate
(6.35) in time, set T = ¢, § = 0,0, & = P, w = ¢, and combine (6.35)—(6.39):

1 _
S0 (1412, + g, DIG + ey 9, 17) + 1K1

= — (o Vp. ¢p) — (AW + ¥y, 1), Iy + adyl) — (91, ;) — (K~ "z, I°¢.) + (Vo 1y
— 0 (8, AlIo +aQ°pI), I°¢, +ag,I) — 6 (3,0'y, I°¢,) — 0 (K~ IIz, I°¢.) + 6 (Lo, 8,$,)
+ (Ao +aQ°pl), ¢y — I°0s) , + (3,0'y, bs — I°s) , + (K™ 2. ¢ — II°%;),,  (6.40)

where we have listed first the terms involving approximation error, followed by quadrature error terms, and the
three extra terms arising from the use of operator I7°. We note that there are two terms involving 0;¢,,, which will
be handled by integration by parts after time integration. We proceed by deriving bounds for the rest of the terms
appearing on the right-hand side. For the approximation error terms, using (6.6) and (6.7)—(6.9), we have

[(cod¥rp, p) + (3 AGW6 + @, D), %y + adpI) + (3,0, I°¢s) + (K", 11°9.)|
< CR2(I13a 11} + 13, P + 13,1} + 121D + e1(llgo I + N 1> + N 1) (6.41)

For the quadrature error terms, applying (6.18)—(6.14) and (6.21)—(6.12) results in

0 (8, AUlo +aQ°pI), I°, + ag,I) + 60 (3,Q'y, 1) + 6 (K ' Iz, I°9.)|
< CR(130 [T+ 19:pIT + 18,7 1T + 121D + e1Cligo 1> + 16,17 + 16:11%). (6.42)

For the last three terms in (6.40), due to (6.24)—(6.14) and (6.26)—(6.13), we obtain

\(a,A(Ho +aQ'pl), do — 11°s) , + (3,0, ¢ — I°05) , + (K Iz, . — H°¢Z)Q\
< CR (19,0117 + 19, p1IT + 19:¥ 17 + 11D + €1l 17 + 182117 (6.43)
Next, we combine (6.40)—(6.43) and integrate in time from O to an arbitrary ¢ € (0, T']:

1A (@5 + gy DO + ey dp011* + fo IK~"2¢.115 ds
< /0 (Yo, 0:py) + 6 (Io, 0,0)) ds + € /0 U6 1I” + llgplI” + llp=11%) ds

t
+Ch? f U313+ 13, I3 + 13,713 + 21D ds + 1A (g6 + ad, DS + llcy *dp O, (6.44)
0

For the first two terms on the right-hand side we use integration by parts:
| (@ 08,) +6 (1.08,)) s
=- /0 (3o, ¢y) +6 (3110, ¢,)) ds + (Yo, by) () + 6 (Lo, dy) (1) = (V0. ¢y) (0) — 6 (1o, ¢,,) (0)

<e <||¢y<r)||2+ fo ||¢y||2ds) +C||¢y<0>||2+Ch2(||o(r>||%+ lo(0))1? + /0 ||aza||%ds>. (6.45)

where we used (6.9), (6.22), and (6.14) in the last step. We proceed with bounding the terms involving ||¢q ||, (¢, I,
l¢:1l, and |l¢, || that appear on the right-hand sides of (6.44) and (6.45). Using the elasticity inf-sup condition

16
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(4.2) together with (6.28), we get

(pu,divt) + (¢, T
I$ull + ¢, | <C  sup (#r:7)

0£7€X,, 7 1l giv
(Alon +apul), 1) — (A(c +apl), ) + (Q'y, T)Q — (.7
=C sup . (6.46)
0£7eX), T Il div

Using manipulations as in (6.33)—(6.35), along with the bounds (6.7)-(6.9), (6.19), (6.22) and (6.25)—(6.26), we
have

(Alow +apal). 1)g — (Al +apD), 1) + (Q'y.7) — (. T)g
= — (A(¢s +agp]), r)Q — (AW +ay, ), 1°T) — (Ao +aQ’pI), T — H%)Q
+ 6 (Allo +aQ’pD), 1I°7) , + (Q'y, Tt — I't) , — 6 (Q'y, 1I°T) — (¥, 1I°7)

< C (h(lolly + Ipll + Iy 1) + 1AY(@s + g, DI) lT]l. (6.47)
Combining (6.46) and (6.47), we obtain
Idull + llo, | < Ch(llalls + Iplli + Iy 1) + CIIAY (¢ + ag, DI, (6.48)
as well as
t t t
/ (llpull® + llpy 117) ds < Chzf (ol +1plIT + I3 ds + C/ (llgo 11> + lI$,11%) ds. (6.49)
0 0 0

For ||¢,]l, using the fact that Z]? x W, is a stable Darcy pair, (6.9), (6.18) and (6.31), we obtain

div e, K='z2,0) — (K 'z, ¢
ol <c sp S0P o KO Jo
0scez) 1< Il aiv 0rcez? 1< lliv
(K¢, ¢) = (K72, §) +6 (K112, 8)
—=C sup — e < Chlzlly + 1K), (6.50)
O#CGZ;,) ”{ ”div
implying
t t
/ i, l1°ds sc/ (R*1IzII} + 11K "2, 11%) ds. (6.51)
0 0

Finally, to obtain a bound on for l¢o ||>ds, which appears on the right hand side in (6.49), we choose T = ¢, in
(6.35) and & = ¢, in (6.37) and combine them, using also (6.36), to obtain

1A 295 11G = —a (Adpl, b6) o, — (AGWs +ay, D), T0¢s) — (¥, IT00,)
—0(Allo +aQ’pD), 1I°,) — 0 (Q'y. I°,) + (AUlo +aQ°pI), ¢5 — H°¢¢,)Q
+ (0, 06 — °05) , + Vo, &) + 00, $,)
< CR(lo I} + 11T + Iy 11D + Cligpl* + ex(lidy > + llpo|I).
where in the last step we used (6.6), (6.7)—(6.9), (6.19), (6.22), (6.23), (6.25), and (6.26). Thus, we have

t t t t
/||¢g||2dssc1¢2/<||o||%+||p||%+||y||%>ds+c/ ||¢,,||2ds+eZ/ I, IPds. 652)
0 0 0 0

Combining (6.36), (6.44)—(6.52) and choosing ¢, small enough, then €; small enough, gives the estimate

1A 2@y + ag, DO + g (ON + 1dy N + llcy *¢p DI + IIdiv ¢, ||

t
+ / (1o 12+ a1 + 18 17 + 1K =2 117 + N, 7 + l1div ¢ I) s
0

t
< c(h2/ (1317 + 13, pIT + 18,y 1T + o I1F + NPT + Iy 1T+ 1217) ds
0

17



1. Ambartsumyan, E. Khattatov and 1. Yotov Computer Methods in Applied Mechanics and Engineering 372 (2020) 113407

+ 12 (lo®I + IlpOIT + Iy OIF + o))
+ [lgo O + 1l (O] + ||¢y<0>||2). (6.53)

Estimate for div¢,. We note that (6.53) is a self-contained error estimate. Similarly to the stability argument,
we proceed with bounding ||div ¢,||, obtaining also bounds on || K ~12¢_(1)| and lp,(®)]l for all . We choose
w = Jg dive, on each E € T, in (6.39), which yields

17:2div g 11” = = (codr by, T divp) — (codi sy, Ji div §.) — a (3, Ay + adpy 1), Jp(divpT)

—a (5 AWs +a, 1), Jp(divg)l) — ab (,AUTo +aQ°pl), Je(divé,)I).
Using (6.7), (6.9) and (6.19)—(6.22), we obtain

Idiv .l < € (It >0yl + 18,472 + gDl + k(1D Il + 18,511)) - (6.54)

It remains to bound the first two terms on the right-hand side of (6.54). Similarly to the stability argument, cf. (5.11),
we differentiate (6.35)—(6.38) in time, set T = 0;¢s, § = 0;¢,, { = ¢,, w = 9;¢,, and combine (6.35)—(6.39),
resulting in a time-differentiated version of (6.40):

%afulr”%znz +10,A (g + ad, DG + llcg 0,112
= — (codi¥p. d9p) — (A AW, + ayp D), 3,1y + g, D)) — (3. 9, 11°5) — (9, K"y, IT°¢.)
+ (35, 0i,) — 0 (3, AUTo +aQpI), 3,(IT°y + ag,D)) — 6 (3,0'y, 3, 11°¢,)
—0 (3K 'z, 11°.) + 0 (8,110, 8,¢,) + (3, AULo +aQ°pI), ,(¢s — HO%))Q
+(3:0'y, 9 (¢ — HO%))Q + (3K 'z, ¢, — H°¢Z)Q. (6.55)

Before bounding the terms on the right above, we note that we would like the bounds to be in terms of
18, AY2(¢py + ap,l)|, since we do not have separate control of ||3;¢, and [/9,¢,|. To this end, we first note
that the projector I7° is defined element by element and let IT EO :HY(E,M) — X2|E be the local RT projector
on an element E € 7. Using that for each E, a¢,/|g € XglE, we have that Hg(aq’)pl) = (a¢p,1)|g. Then, for the
second and the sixth term above we have

(IT°s + ad,Dle = 1T3($5 + ady]).
Similarly, for the tenth and the eleventh term we have
(b = I°0) g = (¢ +adpDlg — LI (bs + D).
Also, since ¢,/ is a symmetric matrix, for the third and seventh terms we have
0y, 0115 ), = (9 ¥ry, 0 1IQ(bs + appD)) . O (3,Q'y, 9, 11°h) = 6 (3,Q"y. 3 [I($s + 1)) .

Now, noting that the terms on the right in (6.55) can be expressed as sums over mesh elements, we use the above
identities and bound these terms as in (6.41)—(6.43):

[(cod:¥rp. 3i9p) + (A6 + @, 1), 3,(IT°¢s + gy D)) + (3,1, 3, 11°¢,)
+ (@K', %) + (3,5, 09 )|
< CR*130 117 + 13, pIIF + 18,113 + 13,211

+e(lled? 00,1 + 10, A2 (g0 + ad, D> + 18,0, 11> + 116-11%), (6.56)

60 (8, AUTo +aQ°pI), 3,(II°y + g, D)) + 0 (3, 0"y, 3,11°,) + 6 (3, K ' 11z, T°¢,) + 6 (3, ITa, 3,9,
< CRA(13,0 117 + 13: pIIT + 13, ¥ 11T + 13:2ID) + €13 A * (@6 + adp DI> + 13,8, II* + ll$[1), (6.57)

\(a,A(Ho +aQ"pD), 8,y — 1°s)) 5 + (3 Qv 9i(po — 11°00)) , + (3K~ Iz, ¢ — H°¢Z)Q(
< CR* (13,0113 + 18, pII3 + 18 113 + 118:2117) 4 €18, A (h5 + g, DI + 1162117 (6.58)
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Combining (6.55)—(6.58), taking € small enough, and integrating in time, we get

t
K200 + [ (10,40 +a0,DI + ey 0 ) ds
0

< IK~2¢.(0)I5, +e/0 (13:¢y 1> + ¢ 11%) ds

t
+Ch? f (13,0113 + 13, pUIE + BV 1T + 19,2113) ds. (6.59)
0

Similarly to (6.48), the elasticity inf—sup condition (4.2), differentiated in time, implies

t t t
/ (18,91l + 113:¢, 1I°) ds < Chz/() (18,011 + 119: pIIF + 13, 1IT) ds + C/O 19: AV (o + g, D *ds.
0

(6.60)
Combining (6.59)—(6.60) with (6.50), we conclude that
t
K200 + 10,01 + [ (1047 @n +ad, DI + ey 0, I) ds
0
t
<e / belPds + CR2 ()|
0
t
+ Chzf (19:a 117 + 19, 21T + 19,7117 + 19,2117) ds. (6.61)
0
Therefore, (6.54) and (6.61) give
t t
1K~ 2.0l + llgpOII* + / div ¢ [*ds < e / lp-1I* ds
0 0
t
+ Ch? ( / (3zl} + 3o 1T + 19, 11T + 0,y 1D ds + ||z(t>||%) . (6.62)
0

We also note that

Ipoll < C (I1AY*(do +adp DIl + dpl) - (6.63)
Finally, combining (6.53), (6.62) and (6.63), we obtain

1A (¢s + app DI + lldo DIy + 1DuO1 + lldy O + 1K~ 2d (011> + llpp (1)1

t
+/ (1go 5y + Null> + 8y 17 + 1K ~2¢.11* + lldiv ¢ 1I* + ll¢,1I%)
0

t
< c(hzf (10,0 1T+ 110, pIT + 10:v 1T+ 1:21F + o I1F + Ul + 1y 1T + 12117 ds
0
+ 1 (leOIF + 1pOIT + Iy OIF + lIzO1F + o O)]7)
+ llgo O + lgpO)* + lI¢, O)II* + ||¢z<0>||2). (6.64)

For the initial error, we recall that the discrete initial data is taken to be the elliptic projection of the continuous
initial data, see (4.10). Then, similarly to (5.16), we have

¢ (O + 1@, (Ol + 16, (O)Il + NP (O = CUIY6 O + 1O + 4 O + [0 + 19 (O)]).  (6.65)

Bounds (6.64)—(6.65), combined with the use of the triangle inequality and the approximation bounds (6.7)—(6.11),
imply the assertion of the theorem. [J

7. Fully-discrete MSMFE-MFMFE method

In this section we present the fully-discrete method based on the backward Euler time discretization and show
how the algebraic system at each time step can be reduced to a positive definite cell-centered displacement—pressure
system.
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Let0 =1 <t < --- <ty = T be a partition of the time interval [0, T] with time steps At, = t, — t,_1,
n=1,...,N, At = maxj<,<y At,. Let ¢" = ¢(t,) and 3"¢ = (¢" — ¢"~ ')/ At,. For a Banach space H on 2
with a norm || - ||z, we introduce the discrete-in-time norms

N 2
gy = At, 2 , ) = max .
Il i) (2; ol ) o elo.rm = max lloly
n=

The fully-discrete MSMFE-MFMFE method is: given compatible initial data (o), ul), ¥, 2%, p¥), find, for n =
L,...,N, (o), up, vi's 2y, Pp) € Xpp x Vi x Q) x Z x Wy, such that

(Ao} +appD), I)Q—i—(uz,divt)—i—(yg',t)Q:O, vt € X, (7.1
— (divoy, v) =(f"v), Yv €V, (7.2)
(ah, ) V& € Qp, (7.3)
( ) (ph, div ;) =0 V¢ e Zy, (7.4)
(coat phsw) +a (3 Aoy + apyD), wl) , + (divzy, w) = (¢" w). Yw € W (7.5)

Lemma 7.1. The fully discrete method (7.1)—(7.5) has a unique solution.

Proof. The assertion of the lemma follows from the solvability of the resolvent system (4.5)—(4.9) shown in the
proof of Theorem 4.2. O

The following convergence theorem can be proved using the framework in the proof of Theorem 6.1, combined
with standard tools for treating the discrete time derivatives.

Theorem 7.1. If A e W%”OO, K-'e W71-;,°°, and the solution of (2.8)—(2.12) is sufficiently smooth, then there exists
a positive constant C independent of h and c, such that the solution of (7.1)—(7.5) satisfies

lo = onllice,1: Hiv; 2 + 1 — unllioo. 71202y + 1V — Vallioo.1:02002)) + 112 — Znllieoo.7: 1202
+ 1P — Pullioo.r:r2c0y) T 10 = Onlliz.7: g 2y + 1 — wnlli20,7: 2029
+ Iy = valleo 7202y T 12 = 20ll20, 7. Heaiv: 2y T 112 — Prllizo, 02002y

< Ch<||0||H1(07T;H1(Q)) + ||diVU||L<>O(0,T;H1(Q)) + ||diVU||L2(0,T;H‘(Q))
Nl 20,712y + Nl Locio. 712y + 1Y 110,711 (2
+ Wzl 10,712y + 1AV 2l 220,711 (2 + ||P||H'<0,T;H1<rz>>)

+CAt (ol 20,7020 + 1l m20, 7,020 + 1Y 20, 7:02000) + 1P I20.7:120020) - (7.6)
7.1. Reduction to a cell-centered displacement—pressure system

The vertex quadrature rule applied to the stress and velocity bilinear forms, (Aa,;‘, 'L’) 0 in (7.1) and (K e ) 0
in (7.4), respectively results in the corresponding matrices A,, and A,; being block-diagonal with blocks associated
with the mesh vertices. More precisely, consider any interior vertex r shared by k edges or faces ey, ..., e; as
shown in Fig. 1. Let ¢y, ..., { be the velocity degrees of freedom associated with the vertex and let zj, ..., zx
be the corresponding normal velocity values, see Fig. 1(a). For the sake of visualization, the normal velocities are
drawn at a distance from the vertex. The vertex quadrature rule (K -1 -)o localizes the interaction of basis functions
around each vertex by decoupling them from the rest of the basis functions, so taking i, ..., & in (7.4) results
in a local k x k linear system. Therefore A, is block-diagonal with k x k blocks associated with mesh vertices.
Similarly, A, is block-diagonal with d k x d k blocks, see Fig. 1(b). Due to the positive definiteness of A and K and
Lemma 3.1, the blocks of A,, and A,, are symmetric and positive definite. Therefore the velocity and stress can be
easily eliminated by solving small local linear systems. Moreover, the rotation can be further eliminated as follows.
Let Ay, be the matrix corresponding to (o,’f, & ) 0 in (7.3). The localization of the basis function interaction around
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(a) Darcy degrees of freedom (b) Elasticity degrees of freedom

Fig. 1. Interactions of the degrees of freedom in the MSMFE-MFMFE method.

vertices due to the vertex quadrature rule implies that A, is block-diagonal with d(d — 1)/2 x dk blocks. After
the stress elimination, the rotation matrix is A(,VA;; A;,. Since A, is block-diagonal with dk x dk blocks, then

Asy A 4 AL is block-diagonal with d(d —1)/2 x d(d — 1)/2 blocks. In fact, for d = 2 the matrix is diagonal. Each
block couples the rotation degrees of freedom associated with the corresponding vertex. The blocks are symmetric
and positive definite due to the inf-sup condition (4.2) and the positive definiteness of A_!. Therefore the rotation
can be easily eliminated, resulting in a cell-centered displacement—pressure system. The above procedure can be

expressed in matrix form as follows, where o is the algebraic vector corresponding to oy, etc.:

Aso AL, AL, 0 AL\ (o
—Asw O 0 0 0 u
—Asy O 0 0 0 14
0 0 0 A, AZT‘,, z
Aop 0 0 —-A, Ay D
AUMA;;A(Y;u A(WA;;AZ;)/ 0 AUVA;;AZI) u
o=—Ags Aqui—Aso Ay v=Ase Az, | Agy AJLAT A AZLAT 0 Aoy A AL %
0 0 A, AL z
—ApAL AL, _AUPA;;A({;/ —Ayp App — AUI’A;(}'A(Y;p p
Z:_A;ZIAZTPP A;au Auay Auap u
Am;‘y AJ/;V AV"P 14
_Auop _Ayop APUZP p
y=—Ayay Ayopp—Ayay Al u ( Auou = Auoy Asa ALy, Auop — AWA;(}VAW) (u) a7
T T A=l AT T p-l ) .
_Auap + AyapAyoyAuay APO'ZP + AyapAyoyAWP p
where
Auou = AauA;;AZu’ Auay = AUMA;;A(Y;Vy
Ayoy = AUVA;;AZ;;/’ Auop = AUMA;;A(Y;p’
— —1 4T — —1 4T 14T
Ayop = Aoy AgeAgy: Aposp = App = AgpAge A, + A A Ay
Remark 7.1. The expression z = _A;zlAsz p above means that the normal velocity at each vertex is explicitly
expressed in terms of the pressures at the centers of the elements that share that vertex, see also Fig. 1(a). Similarly,
o =—-A AT u — A;;Agyy — Al Agp p means that the normal stress at each vertex is expressed in terms of

the displacements, rotations, and pressures at the centers of the elements that share the vertex. These expressions
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motivate the terms multipoint flux and multipoint stress. They are used to recover the velocity and the stress after
solving for the pressure and the displacement.

Proposition 7.1. The cell-centered displacement—pressure matrix obtained in (7.7) is block-skew-symmetric and
positive definite.

Proof. Let us denote the four blocks of the matrix in (7.7) by A;;, i, j = 1, 2. The block-skew-symmetric property
follows from

T -1 T T T -1 T
A = —(Auop — A”UVAVUVAV"P) = _Auap + A)/UPA)’UVAMO'V = Ay,

using that A, ., is symmetric. Therefore, for any (UT wT) # 0, we have

A A v
T T 11 12 T T
(v w )<A21 A22> < ) =v Ajjv+w Arw,

so we need to show that the diagonal blocks are positive definite. For A;; we have

Al = Auou — AuayA_l AT = AO'MA;OI-A

T —1 4T —1 4T -1 —1 4T
yoy“tucy —AcuA A (AUVAUJAU)/) AU)/AUGA

ou oco‘toy ou’

which is a Schur complement of the displacement—rotation matrix

A AL, AnAZLAT,
Aoy A AL, Ag,AiAT )

oco‘toy

The latter is symmetric and positive definite, since for any (vT 3 T) # 0,

A AZLAT AL AZLAT v
T T outtootou ou‘toco oy _ T T T -1 T T
due to the positive definiteness of A,, and the elasticity inf—sup condition (4.2). Then A;; is also symmetric and
positive definite, using [19, Theorem 7.7.6]. For Ay, we have

An = App = A(’PA;(,IYA(];[) + Asz;zlAsz + A}Y;(rpA;;yAVUP'

The matrix A,, — AUPA;;A(ZP is positive semidefinite, using [19, Theorem 7.7.6], since it is a Schur complement
of the matrix

e (tor 40
Aop  App
which is positive semidefinite, since (¢ w”) A% (v w)" = |A"*(z), + cw,I)||7). The middle matrix A,,AZ' AT
is positive definite, using that A_, is positive definite and the Darcy inf—sup condition (4.1). Finally, the matrix
AT A7l A, sp is positive semidefinite, since A, 4, is positive definite. Combined, the three properties imply that

yep “vov . . .
Ay, is symmetric and positive definite. [

Remark 7.2. The positive-definiteness of the matrix in (7.7) established in Proposition 7.1 allows for an efficient
Krylov space iterative solver like GMRES to be used for the solution of the reduced displacement—pressure system.
Moreover, since the diagonal blocks are symmetric and positive definite, the block-diagonal part of the matrix
provides an efficient preconditioner.

8. Numerical results

The proposed fully discrete MSMFE-MFMFE method has been implemented on simplicial grids using the
FEniCS Project [30] and on quadrilaterals using the deal.Il finite element library [4]. In this section we provide
several numerical tests verifying the theoretical convergence rates and illustrating the behavior of the method. We
also present an example showing the locking-free property of the method in the case of a small storativity coefficient.
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Table 1

Parameters for Examples 1.

Parameter Symbol Values
Lame coefficient nw 100.0
Lame coefficient A 100.0
Mass storativity co 1.0
Biot—Willis constant o 1.0
Total time T 10-3
Time step At 104

8.1. Example 1

We first verify the convergence of the method on simplicial grids in three dimensions. We use the unit cube as
a computational domain and choose the analytical solution for pressure and displacement as follows:
—0.1(e* — 1) sin(rx) sin(ry)
p=cos(t)(x +y+z+1.5), wu=sin@) [ —(e* — 1)y — cos({5)(y — 0.5) + sin({5)(z — 0.5) — 0.5)
—(e* — D(z —sin(5)(y — 0.5) — cos({5)(z — 0.5) — 0.5)

The permeability tensor is of the form

X2 +y?+1 0 0
K= 0 2+1  sinxy) |,
0 sin(xy) x2y? 41

and the rest of the parameters are presented in Table 1.

Using the analytical solution provided above and Egs. (2.3)—(2.4), we obtain the rest of variables and the right-
hand side functions. Dirichlet boundary conditions for the pressure and the displacement are specified on the entire
boundary of the domain.

In Table 2 we present the relative errors and spatial convergence rates on a sequence of mesh refinements. We take
a sufficiently small time step Az = 10~ to ensure that the time discretization error does not dominate. We observe
at least first order of convergence in all norms, as predicted by the theory. The error ||y — y; || exhibits convergence
of order higher than one, which can be attributed to the linear polynomial approximation. The numerical solution
on the finest level at the final time is shown in Fig. 2.

8.2. Example 2

In the second test case we study the convergence of the method on h2-parallelogram grids. We consider the
analytical solution

3,4 2 : _ _ _
p = exp(®)(sin(wx) cos(y) + 10), u = exp(?) (()1( f x—;(xl j_ yS;?(_f_l( 1 f);;z +yc)())sc((;sy()l sin(y)g)) ,

and the permeability tensor
Ko (&t 12 +y%  sin(xy)
- sin(xy) x+D?)
In this example as elasticity parameters we use the Poisson ratio v and the Young’s modulus E. We set v = 0.2
and take E to vary over the domain, £ = sin(5wx)sin(5wy) + 5. The Lamé parameters are then computed using
the well known relations
Ev E
A ——— =
(1 4+v)(1 —2v) 2(1+v)
In this test case we also illustrate the behavior of the method for small mass storativity and set ¢ = 107>, The
Biot—Willis constant « and the time discretization parameters are the same as in Table 1.
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Table 2
Example 1, numerical errors and convergence rates.
h lo = onll200.7:12¢02)) ldiv (o — o)l L20,7: 12¢02)) lu — unll 20,7222y
Error Rate Error Rate Error Rate
1/4 1.55E—-02 - 2.29E-01 - 8.43E—01 -
1/8 4.97E—-03 1.6 1.14E—-01 1.0 2.30E—01 1.0
1/16 2.16E—03 1.2 5.65E—02 1.0 8.85E—02 1.0
1/32 1.03E-03 1.1 2.82E—02 1.0 4.11E-02 1.0
h ly = vn HLZ((),T;[}(Q)) llz = Z/l”LZ(o.T;LZ(_Q)) div (z — Zh)“LZ(o,T;LZ(Q))
Error Rate Error Rate Error Rate
1/4 7.65E—01 - 4.34E—04 - 5.85E—-02 -
1/8 2.32E-01 1.7 2.26E—04 0.9 2.31E—-02 1.3
1/16 7.04E—-02 1.7 1.14E—-04 1.0 1.05E—-02 1.1
1/32 2.13E-02 1.7 5.68E—05 1.0 5.00E—03 1.1
h P = pull 207120029 lo = onll oo, 7512029 e = unll oo, 7. 1202y
Error Rate Error Rate Error Rate
1/4 2.58E—01 - 2.29E—01 - 2.55E+00 -
1/8 1.26E—01 1.0 1.14E-01 1.0 7.12E-01 1.8
1/16 6.18E—02 1.0 5.67E—02 1.0 2.91E-01 1.3
1/32 3.09E-02 1.0 2.82E—02 1.0 1.38E—01 1.1
h ly —wn ”LOO((),T;LZ(Q)) Iz = zn ”LOO(O_T;LZ(Q)) lp— pn ”LOO((),T;LZ(_Q))
Error Rate Error Rate Error Rate
1/4 2.35E400 - 4.78E—04 - 2.58E—01 -
1/8 7.06E—01 1.7 2.57TE—04 0.9 1.26E—01 1.0
1/16 2.12E-01 1.7 1.33E—04 0.9 6.21E—02 1.0
1/32 6.37E—02 1.7 6.69E—05 1.0 3.09E-02 1.0

The computational domain for this case is obtained as follows. We start with the unit square and partition it into
a 4 x 4 square mesh with h = }1. We then move the mesh points using the map

x =% +0.03cos(3wx)cos(3wy), y=y—0.04cos(3wx)cos(3ry),

which gives a deformed computational domain with a 4 x 4 quadrilateral grid, see Fig. 3. A sequence of mesh
refinements is obtained by a uniform refinement of the elements of the coarse grid. The resulting sequence of meshes
satisfies the h2-parallelogram property (6.1).

As in the previous test case, we observe at least first order convergence for all variables in their respective
norms, see Table 3. The computed solution with 4 = é at the final time is shown in Fig. 3. This example not only
confirms the theoretical convergence rates on h2-parallelogram grids, but also illustrates that the method can handle
well variable elasticity parameters and small mass storativity.

8.3. Example 3

We next focus on studying the locking-free properties of the MSMFE-MFMFE method when applied to the
solution of a two-dimensional footing problem [17,37]. A load of given intensity oy is applied along a strip along
the top of a rectangular block of porous, saturated, and deformable soil. The lateral sides and the bottom of the
block are fixed. The entire boundary is free to drain. The computational domain is {2 = [—50, 50] x [0, 75]. We
label the middle section of the top boundary, x € [—50/3, 50/3], y = 75, by I, the rest of the top side by I%, and
all other boundaries by I3. The boundary conditions are as follows:

on=(0,—0p), on I,
on=(0,0)7, on I,
u=0,0), on I3,
p=0, on 32.
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v ' ' '
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08
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12 15 00 04 08 12 15 8
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Displacement, magnitude
0. 12 15 1.6e-07 1.5e-4 3.1e-04
— | — h—l—i - — o
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¥
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3.3e-06 3.0e-4 5.4e-04
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(f) Darcy velocity (g) Darcy pressure

Fig. 2. Example 1, computed solution with & = le at the final time.

Stress-X, magnitude tress-Y, magmtude
09 50 100 150 191

Displacement, magnitude
00 05 1.0 1.5 20
— |

Rotation
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67 140 220 300 373
— e — ——— | —

(a) Stress, z-component (b) Stress, y-component (c) Displacement (d) Rotation

* Velocity, magnitude
01 50 100 150 200 247

90 95 100 105 110
—t| | — —b | —

Pressure

(e) Darcy velocity (f) Darcy pressure

Fig. 3. Example 2, computed solution with & = 712 at the final time.

25



1. Ambartsumyan, E. Khattatov and 1. Yotov Computer Methods in Applied Mechanics and Engineering 372 (2020) 113407

Table 3
Example 2, numerical errors and convergence rates.
h lo = onll200.7:12¢02)) ldiv (o — o)l L20,7: 12¢02)) lu — unll 20,7222y
Error Rate Error Rate Error Rate
1/8 9.65E—02 - 1.30E—-01 - 8.02E—02 -
1/16 4.97E—-02 1.0 6.46E—02 1.0 3.97E-02 1.0
1/32 2.52E-02 1.0 3.23E-02 1.0 1.98E—02 1.0
1/64 1.27E-02 1.0 1.61E—-02 1.0 9.87E—03 1.0
1/128 6.35E—03 1.0 8.07E—03 1.0 4.93E—-03 1.0
h ly = vull20,7:02002)) lz = znll200,7: 1252 Idiv (z — z)ll 220, 7;22(02))
Error Rate Error Rate Error Rate
1/8 2.03E-01 - 1.44E-01 - 2.88E—01 -
1/16 7.51E-02 1.4 7.05E—02 1.0 1.75E—-01 0.7
1/32 2.77E-02 14 3.47E-02 1.0 8.18E—02 1.1
1/64 1.02E-02 1.5 1.72E-02 1.0 3.35E-02 1.3
1/128 3.70E—-03 1.5 8.60E—03 1.0 1.39E—-02 1.3
h ||l7 — Ph ||L2(0,T;L2(Q)) lo —on ”LOC((),T;LZ(Q)) llee — up HLOO((),T;LZ(Q))
Error Rate Error Rate Error Rate
1/8 8.97E—03 - 9.65E—02 - 8.02E—02 -
1/16 4.49E—03 1.0 4.97E—02 1.0 3.97E-02 1.0
1/32 2.24E—-03 1.0 2.52E—-02 1.0 1.98E—-02 1.0
1/64 1.12E-03 1.0 1.27E—-02 1.0 9.87E—03 1.0
1/128 5.61E—-04 1.0 6.35E—03 1.0 4.93E—-03 1.0
h ly —vu HLOO((),T;LZ(Q)) lz = Zh”Loc(o_T;Ll(Q)) lp— pn ”LOO(O.T;LZ(_Q))
Error Rate Error Rate Error Rate
1/8 2.03E-01 - 1.60E—01 - 9.03E—03 -
1/16 7.51E—02 14 8.07E—02 1.0 4.50E—03 1.0
1/32 2.77E-02 1.4 3.69E—02 1.1 2.24E—03 1.0
1/64 1.02E-02 1.5 1.75E—02 1.1 1.12E—-03 1.0
17128 3.70E—-03 1.5 8.64E—03 1.0 5.61E—04 1.0

The model parameters are: Young’s modulus E = 3 - 10* (N/m?), permeability K = 10~* (m?/Pa), load intensity
09 = 10* (N/m?) and mass storativity ¢y = 0.001. We test the behavior of the method in the incompressibility limit
by setting Poisson ratio v = 0.4995. The initial pressure and displacement are set to zero. We discretize the domain
into 62025 unstructured simplices and solve the problem for total time of 7' = 50s using time step of size Ar = Is.

It is observed in [17,37] that for this value of the Poisson ratio, inf—sup unstable discretizations may result in
spurious pressure modes and/or locking in the computed displacement. In Fig. 4 we show the solution obtained
by MSMFE-MFMFE method at the final time. For visualization purpose, the solution is plotted on the deformed
domain. Neither spurious oscillations in the pressure, nor locking effects in the displacement are present, illustrating
that the proposed method inherits the locking-free properties of the classical mixed method it is derived from. We
further note the smooth stress approximation and the accurate resolution of the pressure and velocity boundary
layers, as well as the rotation singularities.

8.4. Example 4

In the last example we further illustrate the locking-free properties of the MSMFE-MFMFE method in a different
parameter regime. It is shown in [41] that, with continuous finite elements for the elasticity part of the system,
locking occurs when the storativity and permeability coefficients are very small. In this regime, the locking is
exhibited as spurious pressure oscillations at early times. A typical model problem that illustrates such behavior is
the cantilever bracket problem [29]. The computational domain is the unit square. We impose a no-flow boundary
condition along all sides. The deformation is fixed along the left edge, and a downward traction is applied along the
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Stress X, magnitude Stress Y, magnitude Displacement, magnitude

29e+02 4000 6000  1.0e+04 6.96+01 400060008000 1.16+04 00 10 20 30 39
— — —— e | —em |
(a) Stress, z-component (b) Stress, y-component (c) Displacement

Rotation Velocity, magnitude Pressure
-0.8 -05 0.0 05 08 1.3e-09 le-5 1.5e-56 2.2e-05 -00 02 0.4 0.6 08
———— — s | ————— | —
(d) Rotation (e) Darcy velocity (f) Darcy pressure

Fig. 4. Example 3, computed solution at the final time on the deformed domain.

top. The bottom and right sides are traction-free. More precisely, with the sides of the domain labeled as I, ..., Iy,
starting from the bottom side and going counterclockwise, we impose

z-n=0, ondf2 =I1UI>UI3U Iy,

on=(0,-DT, on [%,

on=(0,0)7", on [T U I3,

u=(0,0)7, on I’).

We use the same physical parameters as in [41], as they typically induce locking:
E=10°, v=04, «=093, ¢=0K=10".

The time step is Az = 0.001 and the total simulation time is 7 = 1.

Fig. 5(a) shows that the MSMFE-MFMFE method yields a smooth pressure field, in contrast to the non-physical
checkerboard pattern that one obtains with continuous elasticity elements at the early time steps, see [41]. In
addition, Fig. 5(b) shows the pressure solution along different x-lines at time # = 0.005. It illustrates the lack
of oscillations and shows that our solution agrees with the one obtained by DG-mixed or stabilized CG-mixed
discretizations [29,41]. We remark that our method requires solving a much smaller algebraic system than these
two methods, which furthermore is positive definite and more efficient to solve.
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5% Cantilever bracket problem, t=0.005
g T T T T

Pressure

Pressure 06
20 -10 00 10 20 o 01 02 03 0.4 05 0.6 07 0.8 0.9 1
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(a) Pressure field, t = 0.001. (b) Pressure along different x—lines, ¢t = 0.005.

Fig. 5. Example 3, computed pressure solutions.
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