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Abstract

We present a mixed finite element method for a five-field formulation of the Biot system of poroelasticity that reduces
o a cell-centered pressure–displacement system on simplicial and quadrilateral grids. A mixed stress–displacement–rotation
ormulation for elasticity with weak stress symmetry is coupled with a mixed velocity–pressure Darcy formulation. The
patial discretization is based on combining the multipoint stress mixed finite element (MSMFE) method for elasticity and the
ultipoint flux mixed finite element (MFMFE) method for Darcy flow. It uses the lowest order Brezzi–Douglas–Marini mixed
nite element spaces for the poroelastic stress and Darcy velocity, piecewise constant displacement and pressure, and continuous
iecewise linear or bilinear rotation. A vertex quadrature rule is applied to the velocity, stress, and stress–rotation bilinear forms,
hich block-diagonalizes the corresponding matrices and allows for local velocity, stress, and rotation elimination. This leads

o a cell-centered positive-definite system for pressure and displacement at each time step. We perform error analysis for the
emidiscrete and fully discrete formulations, establishing first order convergence for all variables in their natural norms. The
umerical tests confirm the theoretical convergence rates and illustrate the locking-free property of the method.
c 2020 Elsevier B.V. All rights reserved.

eywords: Mixed finite elements; Cell-centered finite differences; Multipoint stress; Multipoint flux; Poroelasticity

1. Introduction

The Biot system of poroelasticity [8,46] models fluid flow within deformable porous media. It has been
xtensively studied in the literature due to its wide range of applications. Examples include geosciences, such
s groundwater cleanup, hydraulic fracturing, and carbon sequestration, as well as biomedical applications, such
s modeling of arterial flows and organ tissue. The system consists of an equilibrium equation for the solid and
mass balance equation for the fluid. This is a fully coupled system, as the fluid pressure contributes to the

olid stress, while the divergence of the solid displacement affects the fluid content. There is a large literature on
he numerical solution of the Biot system. Schemes for the two-field displacement–pressure formulation include
nite difference [18], finite volume [36], and finite element methods [31,44]. The finite element methods are
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either based on inf–sup stable pairs [31,44] or employ a suitable stabilization to avoid pressure oscillations [44].
The three-field displacement–pressure–Darcy velocity formulation has also been studied extensively. It has the
advantage that stable mixed finite element spaces for the Darcy velocity and the pressure can be utilized, resulting in
accurate fluid velocity and local mass conservation. Various choices of displacement discretizations have been used
in the three-field formulation, including continuous, [38,39,45,55], nonconforming [20,27,53], and discontinuous
elements [29,40]. The last two choices provide locking-free approximations. Alternatively, stabilized continuous
displacement elements can be used to suppress pressure oscillations [45,55]. Locking-free discretizations for a
different three-field displacement–pressure–total pressure formulation are developed in [28,37]. A least squares
method based on a stress–displacement–velocity–pressure formulation is developed in [24]. More recently, fully-
mixed formulations of the Biot system have been studied [25,54]. In [54], a stress–displacement mixed elasticity
formulation is coupled with a velocity–pressure mixed Darcy model. This approach is extended in [25], where a
weakly symmetric stress–displacement–rotation elasticity formulation is considered.

In this paper we develop a new fully-mixed finite element method for the quasistatic Biot system of poroelasticity.
he advantages of fully-mixed approximations include locking-free behavior, robustness with respect to the
hysical parameters, local mass and momentum conservation, and accurate stress and velocity approximations
ith continuous normal components across element edges or faces. They can also handle discontinuous full tensor
ermeabilities and Lamé coefficients that are often encountered in modeling subsurface flows. A disadvantage of

fully-mixed methods is that they result in large algebraic systems of saddle point type at each time step. In particular,
the methods developed in [54] and [25] involve four-field and five-field formulations, respectively. Our goal is to
develop a fully-mixed method that can be reduced to a positive definite cell-centered displacement–pressure system.
As a result, the method inherits all the advantages of fully-mixed finite element methods, while having a significantly
reduced computational cost. In fact, the number of unknowns in the reduced algebraic system is smaller than in any
of the aforementioned finite element methods. It is comparable to the cost of the finite volume method developed
in [36].

Our approach is based on the five-field formulation proposed in [25]. We couple the recently developed multipoint
stress mixed finite element (MSMFE) method for elasticity [2,3] with weak stress symmetry and the multipoint
flux mixed finite element (MFMFE) method for Darcy flow [21,50,52]. The MFMFE method is related to the
finite volume multipoint flux approximation (MPFA) method [1,15]. The MFMFE method provides a variational
formulation for the MPFA method, which allows for utilizing mixed finite element tools for its analysis. It uses the
lowest order Brezzi–Douglas–Marini BDM1 [12,33] spaces for the Darcy velocity and piecewise constant pressure.
The vertex quadrature rule for the velocity bilinear form gives a block-diagonal mass matrix with blocks associated
with the mesh vertices and allows for local velocity elimination, resulting in a cell-centered pressure system. The
MFMFE method is analyzed on simplices and smooth quadrilateral and hexahedral grids, i.e., with elements that
are O(h2)-perturbations of parallelograms, in [21,52]. A similar approach on simplices is proposed in [13]. A non-
symmetric version of the MFMFE method for general quadrilateral and hexahedral grids is developed in [50]; see
also an alternative formulation based on a broken Raviart–Thomas velocity space in [23]. The MSMFE method for
elasticity with weak stress symmetry was recently developed in [3] on simplices and in [2] on smooth quadrilateral
grids. It uses BDM1 elements for the stress, piecewise constant displacement, and continuous piecewise linear
otation. The vertex quadrature rule is applied for the stress bilinear form, as well as the two stress–rotation bilinear
orms. This allows for local stress and rotation elimination around the mesh vertices, resulting in a cell-centered
isplacement system. The development of the MSMFE method was motivated by the finite volume multipoint stress
pproximation (MPSA) method for elasticity introduced in [34] and analyzed in [35] as a discontinuous Galerkin
DG) method. A weak symmetry MPSA method, which is more closely related to the MSMFE method has been
eveloped in [22].

In this work we develop and analyze a coupled MSMFE–MFMFE method for the Biot system of poroelasticity.
tarting with the five-field stress–displacement–rotation–velocity–pressure formulation from [25], we employ the
ertex quadrature rule for the stress, stress–rotation, and velocity bilinear forms. Since the stress, rotation, and
elocity degrees of freedom can be associated with the mesh vertices, the quadrature rule localizes their interaction
round the vertices, resulting in block-diagonal matrices. The stress and velocity, and consequently the rotation, can
hen be locally eliminated by solving small vertex-based linear systems. This procedure reduces the five-field saddle
oint system to a cell-centered displacement–pressure system. The elimination procedure resembles the approach

n the finite volume method for the Biot system developed in [36], which couples the MPSA and MPFA methods,
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although the method there is not based on weak symmetry and does not explicitly involve rotations. We also note
that in our method we utilize a symmetric quadrature rule, as in the symmetric MFMFE method [21,52] and the
MSMFE method [2,3]. As the individual methods, our coupled method is suitable for simplicial grids in two and
three dimensions and quadrilateral grids with elements that are O(h2)-perturbations of parallelograms. While a

on-symmetric MFMFE method on general quadrilaterals and hexahedra is available [50], such non-symmetric
SMFE method for elasticity has not yet been developed.
We perform solvability, stability, and error analysis for the semidiscrete continuous-in-time and the fully discrete

ethods. The well-posedness of the semidiscrete formulation utilizes techniques from degenerate evolution operators
47,48]. For this purpose, we differentiate in time the constitutive elasticity equation and introduce as new variables
he time derivatives of the displacement and the rotation. Stability is obtained for all variables in their natural spatial
orms in both L2(0, T ) and L∞(0, T ). In order to obtain control of the divergence of the Darcy velocity, a bound on
he time derivative of the pressure is first derived, using time differentiation of the rest of the equations. First order
patial convergence is proven for all variables by combining stability arguments with bounds on the quadrature
nd approximation errors. It is important to note that the stability and convergence bounds are independent of the
torativity coefficient c0 and are valid even for c0 = 0. As the regime of small c0 results in locking effects [41],
ur theory confirms the locking-free property of the method. We also present the fully-discrete scheme, based on
ackward Euler time discretization. The analysis of the fully-discrete scheme uses the framework developed for the
emidiscrete formulation, combined with standard tools for treating the discrete time derivatives.

The rest of the paper is organized as follows. The Biot system and its fully mixed five-field weak formulation
re presented in Section 2. The semidiscrete MSMFE–MFMFE method is developed in Section 3. Its solvability
nd stability are established in Sections 4 and 5, respectively. The error analysis for the semidiscrete method is
arried out in Section 6. Section 7 is devoted to the fully-discrete MSMFE–MFMFE method, where in addition
o its analysis, the procedure for reducing the algebraic system to a cell-centered displacement–pressure system
s presented. It is further shown that the resulting system is positive definite. Numerical results that confirm the
heoretical convergence rates and illustrate the robustness with respect to c0 and the locking-free behavior of the

ethod are presented in Section 8.

. Model problem and a fully mixed weak formulation

In this section we describe the poroelasticity system and its fully mixed formulation based on a weak stress
ymmetry, Let Ω be a simply connected bounded domain of Rd , d = 2, 3, occupied by a poroelastic media saturated

with fluid. Let M, S, and N be the spaces of real d ×d matrices, symmetric matrices, and skew-symmetric matrices,
espectively. The divergence operator div : Rd

→ R is the usual divergence for vector fields. It also acts on matrix
fields, div : M → Rd by applying the divergence row-wise. We will also utilize the operator curl acting on scalar
fields in two dimensions, curl : R → R2, defined as curlφ = (∂2φ,−∂1φ).

The stress–strain constitutive relationship for the poroelastic body is

Aσe = ϵ(u), (2.1)

here at each point x ∈ Ω , A(x) : S → S, extendible to A(x) : M → M, is a symmetric, bounded and
niformly positive definite linear operator representing the compliance tensor, σe is the elastic stress, u is the solid
isplacement, and ϵ(u) =

1
2 (∇u + ∇uT ). In the case of a homogeneous and isotropic body,

Aσ =
1

2µ

(
σ −

λ

2µ+ dλ
tr(σ )I

)
,

where I is the d × d identity matrix and µ > 0, λ ≥ 0 are the Lamé coefficients. In this case the elastic stress is
e = 2µϵ(u) + λdiv u I . The poroelastic stress, which includes the effect of the fluid pressure p, is given as

σ = σe − αpI, (2.2)

where 0 < α ≤ 1 is the Biot–Willis constant.
Given a vector field f representing the body forces and a source term q , the quasi-static Biot system [8] that

governs the fluid flow within the poroelastic media is as follows:
−div σ = f in Ω × (0, T ], (2.3)

3
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K −1z + ∇ p = 0 in Ω × (0, T ], (2.4)
∂

∂t
(c0 p + α div u) + div z = q in Ω × (0, T ], (2.5)

where z is the Darcy velocity, c0 ≥ 0 is a mass storativity coefficient, and K is a symmetric and positive definite
tensor representing the permeability of the porous media divided by the fluid viscosity. The system is closed with
the boundary conditions

u = gu on Γ
displ
D × (0, T ], σ n = 0 on Γ stress

N × (0, T ], (2.6)

p = gp on Γ
pres
D × (0, T ], z · n = 0 on Γ vel

N × (0, T ], (2.7)

and the initial condition p(x, 0) = p0(x) in Ω , where Γ
displ
D ∪Γ stress

N = Γ
pres
D ∪Γ vel

N = ∂Ω and n is the outward unit
normal vector field on ∂Ω . To avoid technical issues due to non-uniqueness in the case of pure Neumann boundary
onditions, we assume that |Γ ∗

D| > 0, for ∗ = {displ, pres}. We note that Eqs. (2.3) and (2.4), which do not
include time derivatives, are assumed to hold at t = 0. This is used to construct compatible initial data for the rest
of the variables. The well posedness of the above system has been studied in [46].

Throughout the paper, C denotes a generic positive constant that is independent of the discretization parameter
h. We will also use the following standard notation. For a domain G ⊂ Rd , the L2(G) inner product and norm for
scalar, vector, or tensor valued functions are denoted (·, ·)G and ∥ · ∥G , respectively. The norms and seminorms of
the Sobolev spaces W k,p(G), k ∈ R, p > 0 are denoted by ∥ · ∥k,p,G and | · |k,p,G , respectively. The norms and
seminorms of the Hilbert spaces H k(G) are denoted by ∥ · ∥k,G and | · |k,G , respectively. We omit G in the subscript
if G = Ω . For a section of the domain or element boundary S ⊂ Rd−1 we write ⟨·, ·⟩S and ∥ · ∥S for the L2(S)
inner product (or duality pairing) and norm, respectively. We will also use the spaces

H (div ;Ω ) = {v ∈ L2(Ω ,Rd ) : div v ∈ L2(Ω )},

H (div ;Ω ,M) = {τ ∈ L2(Ω ,M) : div τ ∈ L2(Ω ,Rd )},

equipped with the norm

∥τ∥div =
(
∥τ∥2

+ ∥div τ∥2)1/2
.

We next present the mixed weak formulation, which has been proposed in [25]. Using (2.1) and (2.2), we have

div u = tr(ϵ(u)) = tr(Aσe) = tr A(σ + αpI ),

hich can be substituted in (2.5) to give

∂t (c0 p + α tr A(σ + αpI )) + div z = q,

here ∂t is a short notation for ∂
∂t . In the weakly symmetric stress formulation, we allow for σ to be non-symmetric

and introduce the Lagrange multiplier γ = Skew(∇u), Skew(τ ) =
1
2 (τ − τ T ), from the space of skew-symmetric

matrices. The constitutive equation (2.1) can be rewritten as

A(σ + αpI ) = ∇u − γ.

The mixed weak formulation of the Biot problem reads: find (σ, u, γ, z, p) : [0, T ] ↦→ X × V × Q × Z × W such
that p(0) = p0 and, for a.e. t ∈ (0, T ),

(A(σ + αpI ), τ )+ (u, div τ)+ (γ, τ ) = ⟨gu, τ n⟩
Γ

displ
D

, ∀τ ∈ X, (2.8)

(div σ, v) = − ( f, v) , ∀v ∈ V, (2.9)

(σ, ξ) = 0, ∀ξ ∈ Q, (2.10)(
K −1z, ζ

)
− (p, div ζ ) = −⟨gp, ζ · n⟩Γ

pres
D
, ∀ζ ∈ Z , (2.11)

(c0∂t p, w)+ α (∂t A(σ + αpI ), w I )+ (div z, w) = (q, w) , ∀w ∈ W, (2.12)

here we have used the identity (tr Aτ,w) = (Aτ,w I ) and the functional spaces are defined as

X =
{
τ ∈ H (div ;Ω ,M) : τ n = 0 on Γ stress

N

}
, V = L2(Ω ,Rd ), Q = L2(Ω ,N),{ d vel} 2
Z = ζ ∈ H (div ;Ω ,R ) : ζ · n = 0 on ΓN , W = L (Ω ).

4
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We refer the reader to [46] for the analysis of the well-posedness of a related displacement–pressure weak
formulation. In Section 4 we establish existence, uniqueness, and stability for the semidiscrete continuous-in-time
approximation of (2.8)–(2.12). The arguments there also apply to the weak formulation (2.8)–(2.12) itself. We make
a remark here on the initial data p0(x). In particular, we assume that

p0 ∈ H 1(Ω ), p0(x) = gp(x, 0) on Γ
pres
D , and K∇ p0 ∈ Z . (2.13)

A similar assumption is also made in [46]. In our case, we can set z0 = −K∇ p0 ∈ Z and show that it satisfies
(2.11). We can also determine σ0, u0, and γ0 by solving the elasticity problem (2.8)–(2.10) with p0 given as data.
We refer to the initial data obtained by this procedure as compatible initial data. It is needed for the well posedness
of the (2.8)–(2.12), as we will discuss in Section 4.

3. Mixed finite element discretization

We begin with the discretization of the fully mixed weak formulation of the poroelasticity system (2.8)–(2.12),
based on mixed finite element methods for elasticity and Darcy flow. We then present the multipoint stress–
multipoint flux mixed finite element method, which employs the vertex quadrature rule for the stress, rotation,
and velocity bilinear forms and can be reduced to a positive definite cell centered system for displacement and
pressure only.

3.1. Mixed finite element spaces

We next present the MFE discretization of (2.8)–(2.12). For simplicity, assume that Ω is a polygonal domain.
Let Th be a shape-regular and quasi-uniform [14] finite element partition of Ω , consisting of triangles and/or
quadrilaterals in two dimensions and tetrahedra in three dimensions. Let h = maxE∈Th diam(E). For any element
E ∈ Th there exists a bijection mapping FE : Ê → E , where Ê is a reference element. We denote the
Jacobian matrix by DFE and let JE = |det(DFE )|. We note that the mapping is affine with constant DFE in
the case of simplicial elements and bilinear with linear DFE in the case of quadrilaterals. The shape-regularity and
quasiuniformity of the grids imply that

∥DFE∥0,∞,Ê ∼ h, ∥JE∥0,∞,Ê ∼ hd
∀E ∈ Th . (3.1)

Let Xh ×Vh ×Qh be the triple (BDM1)
d
×(P0)

d
×
(
Pcts

1

)d×d,skew on simplicial elements or (BDM1)
2
×(Q0)

2
×

Qcts
1

)2×2,skew on quadrilaterals, where Pk denotes the space of polynomials of total degree k and Qk denotes the
pace of polynomials of degree k in each variable. This triple has been shown to be inf–sup stable for mixed elasticity
ith weak stress symmetry in [9,10,16] on simplices, in [26] on rectangles, and in [2] on quadrilaterals; see also

elated spaces with constant rotations on simplices [7] and quadrilaterals [5]. For the Darcy flow discretization we
onsider Zh × Wh to be the lowest order BDM1 × P0 MFE spaces [11,12,33]. On the reference simplex, these
paces are defined as

X̂(Ê) =

(
P1(Ê)d

)d
, V̂ (Ê) = P0(Ê)d , Q̂(Ê) = P1(Ê)d×d,skew, (3.2)

Ẑ (Ê) = P1(Ê)d , Ŵ (Ê) = P0(Ê). (3.3)

n the reference square, the spaces are defined as

X̂(Ê) =

(
P1(Ê)2

+ r curl (x̂2 ŷ) + s curl (x̂ ŷ2)
)2

=

(
α1 x̂ + β1 ŷ + γ1 + r1 x̂2

+ 2s1 x̂ ŷ α2 x̂ + β2 ŷ + γ2 − 2r1 x̂ ŷ − s1 ŷ2

α3 x̂ + β3 ŷ + γ3 + r2 x̂2
+ 2s2 x̂ ŷ α4 x̂ + β4 ŷ + γ4 − 2r2 x̂ ŷ − s2 ŷ2

)
,

V̂ (Ê) = P0(Ê)d , Q̂(Ê) = Q1(Ê)2×2,skew,

Ẑ (Ê) = P1(Ê)2
+ r curl (x̂2 ŷ) + s curl (x̂ ŷ2) =

(
α5 x̂ + β5 ŷ + γ5 + r3 x̂2

+ 2s3 x̂ ŷ
α6 x̂ + β6 ŷ + γ6 − 2r3 x̂ ŷ − s3 ŷ2

)
,

ˆ ˆ ˆ

(3.4)
W (E) = P0(E).
5
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These spaces satisfy

div X̂(Ê) = V̂ (Ê), div Ẑ (Ê) = Ŵ (Ê); ∀τ̂ ∈ X̂(Ê), ∀ζ̂ ∈ Ẑ (Ê), ∀ê ∈ ∂ Ê, τ̂ n̂ê ∈ P1(ê)d , ζ̂ · n̂ê ∈ P1(ê).

t is known [11,12] that the degrees of freedom for BDM1 can be chosen to be the values of the normal fluxes at
ny two points on each edge ê of Ê in 2d or any three points on each face ê of Ê in 3d; similarly for the normal
tresses in the case of (BDM1)d . Here we choose these points to be at the vertices of ê for both the velocity and
tress spaces. This choice is motivated by the use of the vertex quadrature rule introduced in the next section.

To define the above spaces on any physical element E ∈ Th , the following transformations are used

τ
P
↔ τ̂ : τ T

=
1
JE

DFE τ̂
T

◦ F−1
E , v ↔ v̂ : v = v̂ ◦ F−1

E , ξ ↔ ξ̂ : ξ = ξ̂ ◦ F−1
E ,

ζ
P
↔ ζ̂ : ζ =

1
JE

DFE ζ̂ ◦ F−1
E , w ↔ ŵ : w = ŵ ◦ F−1

E ,

or τ ∈ X, v ∈ V , ξ ∈ Q, ζ ∈ Z and w ∈ W . The velocity vector and stress tensor are mapped by the Piola
ransformation, where the stress is transformed row-wise. The Piola transformation preserves the normal components
nd the divergence of the stress and velocity on element edges or faces. In particular, it can be shown that

τ ne =
1

|JE DF−T n̂ê|Rd
τ̂ n̂ê, ζ · ne =

1
|JE DF−T n̂ê|Rd

ζ̂ · n̂ê, div τ =
1
JE

div τ̂ , div ζ =
1
JE

div ζ̂ , (3.5)

here | · |Rd denotes the Euclidean vector norm. The finite element spaces on Th are defined as

Xh = {τ ∈ X : τ |E
P
↔ τ̂ , τ̂ ∈ X̂(Ê) ∀E ∈ Th},

Vh = {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂ (Ê) ∀E ∈ Th},

Qh = {ξ ∈ H 1(Ω ,N) : ξ |E ↔ ξ̂ , ξ̂ ∈ Q̂(Ê) ∀E ∈ Th},

Zh = {ζ ∈ Z : ζ |E
P
↔ ζ̂ , ζ̂ ∈ Ẑ (Ê) ∀E ∈ Th},

Wh = {w ∈ W : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê) ∀E ∈ Th}.

(3.6)

Remark 3.1. Due to (3.5), on each E ∈ Th , it holds that divXh =
1

JE
Vh and div Zh =

1
JE

Wh . In several places we
will make choices for test functions, on each E, v = JE div τ or w = JE div ζ . On quadrilaterals, JE is linear and

ositive. On simplices, JE is a positive constant, so in this case divXh = Vh and div Zh = Wh .

.2. The coupled BDM1 mixed finite element method

With the finite element spaces defined above, the semidiscrete five-field mixed finite element approximation of the
iot poroelasticity system (2.8)–(2.12) reads as follows: find (σh, uh, γh, zh, ph) : [0, T ] ↦→ Xh ×Vh ×Qh × Zh ×Wh

uch that, for a.e. t ∈ (0, T ),

(A(σh + αph I ), τ )+ (uh, div τ)+ (γh, τ ) = ⟨gu, τ n⟩
Γ

displ
D

, ∀τ ∈ Xh, (3.7)

(div σh, v) = − ( f, v) , ∀v ∈ Vh, (3.8)

(σh, ξ) = 0, ∀ξ ∈ Qh, (3.9)(
K −1zh, ζ

)
− (ph, div ζ ) = −⟨gp, ζ · n⟩Γ

pres
D
, ∀ζ ∈ Zh, (3.10)

(c0∂t ph, w)+ α (∂t A(σh + αph I ), w I )+ (div zh, w) = (q, w) , ∀w ∈ Wh, (3.11)

ith initial condition ph(0) = ph,0, where ph,0 is a suitable approximation of p0. The convergence of the above
ethod is studied in [25], where it is shown that the method is robust for small storage coefficient and for nearly

ncompressible materials. With an implicit time discretization, it requires the solution of a large five-field saddle point
ystem at each time step, which is computationally expensive. Motivated by the MFMFE [52] and MSMFE [2,3]
ethods, in the next sections we develop a coupled MSMFE–MFMFE method based on a vertex quadrature rule that

llows for local elimination of the stress, rotation, and velocity without loss of accuracy, resulting in a significantly
ore efficient positive-definite cell-centered displacement–pressure system.
6
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3.3. A quadrature rule

For any element-wise continuous vector or tensor functions φ and ψ on Ω , we denote by

(ϕ,ψ)Q =

∑
E∈Th

(ϕ,ψ)Q,E

he application of the element-wise vertex quadrature rule for computing (ϕ,ψ). The integration on any element
E is performed by mapping to the reference element Ê . Let φ̃ and ψ̃ be the mapped functions on Ê , using the
standard change of variables. Since (φ,ψ)E = (φ̃, ψ̃ JE )Ê , we define

(φ,ψ)Q,E =
|Ê |

s

s∑
i=1

φ̃(r̂i ) · ψ̃(r̂i )JE (r̂i ) =
|Ê |

s

s∑
i=1

φ(ri ) · ψ(ri )JE (r̂i ),

here s is the number of vertices of E , ri and r̂i , i = 1, . . . , s, are the vertices of E and Ê , respectively, and · has
meaning of inner product for both vector and tensor valued functions.
The quadrature rule will be applied to the velocity, stress, and stress–rotation bilinear forms. All three variables

ave degrees of freedom associated with the mesh vertices. The quadrature rule decouples degrees of freedom
ssociated with a vertex from the rest of the degrees of freedom, resulting in block-diagonal matrices corresponding
o these bilinear forms. Therefore the velocity, stress, and rotation can be locally eliminated, reducing the method
o solving a cell-centered pressure–displacement system. More details on this reduction will be provided in the
ollowing sections.

The analysis of the MSMFE–MFMFE method will utilize the following continuity and coercivity properties of
he quadrature bilinear forms.

emma 3.1. There exist positive constants C1 and C2 independent of h, such that for any linear uniformly bounded
nd positive-definite operator L and for all φ,ψ ∈ Xh,Qh, Zh,Wh ,

(Lφ, φ)Q ≥ C1∥φ∥
2, (Lφ,ψ)Q ≤ C2∥φ∥∥ψ∥. (3.12)

roof. The proof for functions in Xh,Qh, Zh has been shown in [2,3,52]. The proof for functions in Wh is
imilar. □

Lemma 3.1 implies the following norm equivalence.

orollary 3.1. (Lφ, φ)1/2Q is a norm equivalent to ∥φ∥, which will be denoted by ∥L1/2φ∥Q .

.4. The coupled multipoint stress–multipoint flux mixed finite element method

We first note that there is a slight difference in the incorporation of the Dirichlet boundary conditions between
he simplicial and quadrilateral grids. In particular, in the case of quadrilaterals, the L2 projection of the boundary
ata onto the space of piecewise constants must be used in order to obtain optimal approximation of the boundary
erm. On the other hand, such projection should not be used on simplices, since it would result in non-optimal
pproximation. The difference is due to different properties of the quadrature rules on simplicial and quadrilateral
rids, see [2,3,51]. For the conformity and simplicity of the presentation, for the rest of the paper we consider

gu = gp = 0.
Our method, referred to as the MSMFE–MFMFE method, in its semidiscrete form is defined as follows: find

σh, uh, γh, zh, ph) : [0, T ] ↦→ Xh × Vh × Qh × Zh × Wh such that ph(0) = ph,0 and, for a.e. t ∈ (0, T ),

(A(σh + αph I ), τ )Q + (uh, div τ)+ (γh, τ )Q = 0, ∀τ ∈ Xh, (3.13)

(div σh, v) = − ( f, v) , ∀v ∈ Vh, (3.14)

(σh, ξ)Q = 0, ∀ξ ∈ Qh, (3.15)(
K −1zh, ζ

)
Q − (ph, div ζ ) = 0, ∀ζ ∈ Zh, (3.16)

(c0∂t ph, w)+ α (∂t A(σh + αph I ), w I )Q + (div zh, w) = (q, w) , ∀w ∈ Wh . (3.17)
7
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Remark 3.2. We note that the quadrature rule is employed for both (A(σh + αph I ), τ )Q in (3.13) and α (∂t A(σh
+αph I ), w I )Q in (3.17), since these two terms will be combined to obtain a coercive term in the well-posedness
nalysis, while only quadrature rule on the stress term (Aσh, τ )Q in (3.13) is needed for local stress elimination.

In the next sections we proceed with establishing existence, uniqueness, stability, and error analysis for the
emidiscrete MSMFE–MFMFE method (3.13)–(3.17). In Section 7 we present the fully-discrete MSMFE–MFMFE
ethod and discuss the reduction of the algebraic system at each time step to a positive definite cell-centered

isplacement–pressure system.

. Existence and uniqueness for the semidiscrete MSMFE–MFMFE method

We first state the inf–sup stability of the mixed Darcy and elasticity spaces, which will be utilized in the analysis.
t is known [11] that the spaces Zh × Wh satisfy the inf–sup condition

∃β1 > 0 such that ∀wh ∈ Wh, sup
0̸=ζ∈Zh

(wh, div ζ )
∥ζ∥div

≥ β1∥wh∥. (4.1)

he inf–sup stability for the mixed elasticity spaces Xh × Vh × Qh with quadrature has been studied in [3] on
implices and in [2] on quadrilaterals. In the case of quadrilaterals, the following assumptions on the grid are
eeded [2]:

M1) Each element E has at most one edge on Γ stress
N ,

M2) The mesh size h is sufficiently small and there exists a constant C such that for every pair of neighboring
elements E and Ẽ such that E or Ẽ is a non-parallelogram, and every pair of edges e ⊂ ∂E\∂ Ẽ , ẽ ⊂ ∂ Ẽ\∂E
that share a vertex,

|re − rẽ|R2 ≤ Ch2,

where re and rẽ are the vectors corresponding to e and ẽ, respectively.

We note that (M2) can be thought of as a smoothness assumption on the grid and it is not needed if the
grid consists entirely of parallelograms. For the rest of the paper we will tacitly assume that (M1)–(M2) hold
on quadrilaterals.

We have the following inf–sup condition on simplices [3] and quadrilaterals [2]:

∃β2 > 0 such that ∀ vh ∈ Vh, ξh ∈ Qh, sup
0̸=τ∈Xh

(vh, div τ)+ (ξh, τ )Q

∥τ∥div
≥ β2(∥vh∥ + ∥ξh∥). (4.2)

We note that the semidiscrete method (3.13)–(3.17) is a system of differential–algebraic equations and the
tandard theory for ordinary differential equations cannot be directly applied. Instead, the well posedness analysis
f (3.13)–(3.17) will be based on the existence theory for degenerate parabolic systems, in particular [48, Theorem
.1(b)].

heorem 4.1. Let the linear, symmetric and monotone operator N be given for the real vector space E to its
lgebraic dual E∗, and let E ′

b be the Hilbert space which is the dual of E with the seminorm

|x |b = (N x (x))1/2 , x ∈ E .

et M ⊂ E × E ′

b be a relation with domain D = {x ∈ E : M(x) ̸= ∅}. Assume M is monotone and
Rg(N + M) = E ′

b. Then, for each x0 ∈ D and for each F ∈ W 1,1(0, T ; E ′

b), there is a solution x of

∂

∂t
(N x(t))+ M (x(t)) ∋ F(t) , a.e. 0 < t < T, (4.3)

with

N x ∈ W 1,∞(0, T ; E ′

b) , x(t) ∈ D , for all 0 ≤ t ≤ T , and N x(0) = N x0 .

heorem 4.2. For each f ∈ W 1,∞(0, T ; L2(Ω )), q ∈ W 1,∞(0, T ; L2(Ω )), and compatible initial data
(σh,0, uh,0, γh,0, zh,0, ph,0), the semidiscrete MSMFE–MFMFE method (3.13)–(3.17) has a unique solution (σh, uh,

γh, zh, ph) ∈ W 1,∞(0, T ; L2(Ω ,M)) ∩ L∞(0, T ;Xh) × L∞(0, T ; Vh) × L∞(0, T ;Qh) × L∞(0, T ; Zh) × W 1,∞
0, T ; Wh).

8
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Proof. In order to fit (3.13)–(3.17) in the form of Theorem 4.1, we consider a slightly modified formulation, with
(3.13) differentiated in time and the new variables u̇h and γ̇h representing ∂t uh and ∂tγh , respectively:

(∂t A(σh + αph I ), τ )Q + (u̇h, div τ)+ (γ̇h, τ )Q = 0, ∀τ ∈ Xh . (4.4)

Introducing the operators

(Aσσσh, τ ) = (Aσh, τ )Q , (Aσ pσh, w) = α (Aσh, w I )Q , (Aσuσh, v) = (div σh, v) , (Aσγ σh, ξ ) = (σh, ξ)Q ,

(Azzζh, ζ ) =
(
K −1zh, ζ

)
Q , (Azpζh, w) = − (div zh, w) , (App ph, w) = (c0 ph, w)+ α (Aαph I, w I )Q ,

e have a system in the form of (4.3), where

ẋ =

⎛⎜⎜⎜⎜⎝
σh

u̇h

γ̇h

zh

ph

⎞⎟⎟⎟⎟⎠ , N =

⎛⎜⎜⎜⎜⎝
Aσσ 0 0 0 AT

σ p
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Aσ p 0 0 0 App

⎞⎟⎟⎟⎟⎠ , M =

⎛⎜⎜⎜⎜⎝
0 AT

σu AT
σγ 0 0

−Aσu 0 0 0 0
−Aσγ 0 0 0 0

0 0 0 Azz AT
zp

0 0 0 −Azp 0

⎞⎟⎟⎟⎟⎠ , F =

⎛⎜⎜⎜⎜⎝
0

− f
0
0
q

⎞⎟⎟⎟⎟⎠ .
he dual space E ′

b is L2(Ω ,M) × 0 × 0 × 0 × L2(Ω ), and the condition F ∈ W 1,1(0, T ; E ′

b) in Theorem 4.1 allows
or non-zero source terms only in the equations with time derivatives. In our case this means f = 0. We can reduce
ur problem to a system with f = 0 by solving for each t ∈ (0, T ] an elasticity problem with a source term f ,
f. [47] for a similar approach:⎛⎝ Aσσ AT

σu AT
σγ

−Aσu 0 0
−Aσγ 0 0

⎞⎠
⎛⎜⎝σ

f
h

u̇ f
h

γ̇
f

h

⎞⎟⎠ =

⎛⎝ 0
− f
0

⎞⎠ ,
nd subtracting this solution from the solution to (3.13)–(3.17), resulting in a problem with a modified right hand
ide F = (Aσσ (σ f

h − ∂tσ
f

h ), 0, 0, 0, q − Aσ p∂tσ
f

h )T .
The range condition Rg(N + M) = E ′

b can be verified by showing that the square finite dimensional
omogeneous system: find (σ̂h, ûh, γ̂h, ẑh, p̂h) ∈ Xh × Vh × Qh × Zh × Wh such that(

A(σ̂h + α p̂h I ), τ
)

Q +
(
ûh, div τ

)
+
(
γ̂h, τ

)
Q = 0, ∀τ ∈ Xh, (4.5)(

div σ̂h, v
)

= 0, ∀v ∈ Vh, (4.6)(
σ̂h, ξ

)
Q = 0, ∀ξ ∈ Qh, (4.7)(

K −1 ẑh, ζ
)

Q −
(

p̂h, div ζ
)

= 0, ∀ζ ∈ Zh, (4.8)(
c0 p̂h, w

)
+ α

(
A(σ̂h + α p̂h I ), w I

)
Q +

(
div ẑh, w

)
= 0, ∀w ∈ Wh, (4.9)

has only the zero solution, see also [25, Section 3.4]. Taking (τ, v, ξ, ζ, w) = (σ̂h, ûh, γ̂h, ẑh, p̂h) and combining
the equations implies ∥A1/2(σ̂h +α p̂h I )∥2

Q +∥c1/2
0 p̂h∥

2
+∥K −1/2 ẑh∥

2
Q = 0, which gives σ̂h +α p̂h I = 0 and ẑh = 0,

using the positive definiteness of A and K and the coercivity (3.12). Then the Darcy inf–sup condition (4.1) implies
that p̂h = 0, and therefore σ̂h = 0. The elasticity inf–sup condition (4.2) now implies that ûh = 0 and γ̂h = 0.

The above argument can also be used to conclude that N and M are non-negative, and therefore, due to their
linearity, monotone.

Finally, we need compatible initial data ẋ0 ∈ D, i.e., Mẋ0 ∈ E ′

b. Let us consider first initial data x0 =

(σh,0, uh,0, γh,0, zh,0, ph,0) for the non-differentiated problem (3.13)–(3.17). We take x0 to be the elliptic projection
of the initial data x̃0 = (σ0, u0, γ0, z0, p0) for the weak formulation (2.8)–(2.12), which is constructed from p0 by
the procedure described at the end of Section 2. With the reduction to a problem with f = 0, the construction
satisfies (N + M)x̃0 ∈ E ′

b. Since we have

(N + M)x0 = (N + M)x̃0, (4.10)

this implies that Mx0 = (N + M)x̃0 − N x0 ∈ E ′

b. For the initial data of the differentiated problem (4.4),(3.14)–
(3.17), we simply take ẋ0 = (σh,0, 0, 0, zh,0, ph,0), which also satisfies Mẋ0 ∈ E ′

b. We note that uh,0 and γh,0 are
not needed for the differentiated problem, but will be used to recover the solution of the original problem.

Now, all conditions of Theorem 4.1 are satisfied and we conclude the existence of a solution to (4.4), (3.14)–
1,∞ 2 ∞ 1,∞
(3.17) with σh ∈ W (0, T ; L (Ω ,M)) ∩ L (0, T ;Xh), ph ∈ W (0, T ; Wh), σh(0) = σh,0, and ph(0) = ph,0.

9
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From the equations we can further conclude that u̇h ∈ L∞(0, T ; Vh), γ̇h ∈ L∞(0, T ;Qh) and zh ∈ L∞(0, T ; Zh).
By taking t → 0 in (3.16) and using that zh,0 and ph,0 satisfy (3.16) at t = 0, we also have that zh(0) = zh,0.

Next, we recover the solution of the original problem. Let us define

uh(t) = uh,0 +

∫ t

0
u̇hds, γh(t) = γh,0 +

∫ t

0
γ̇hds, ∀ t ∈ [0, T ]. (4.11)

By construction, uh(0) = uh,0 and γh(0) = γh,0. Integrating (4.4) in time from 0 to any t ∈ (0, T ] and using that
σh,0, uh,0, and γh,0 satisfy (3.13) at t = 0, we conclude that (3.13) holds for all t . This completes the existence
proof. Uniqueness follows from the stability bound given in Theorem 5.1 in the next section. □

Remark 4.1. The above argument and the stability bound below do not require c0 > 0, implying well posedness
even for c0 = 0.

5. Stability analysis of the semidiscrete MSMFE–MFMFE method

In this section we derive a stability bound for the MSMFE–MFMFE method (3.13)–(3.17). We remark that
stability analysis for the BDM1 MFE method (3.7)–(3.11) was not performed in [25], where only error analysis
was carried out. The stability analysis is more involved than the error analysis, since controlling the boundary
condition term ⟨gp, ζ · n⟩Γ

pres
D

requires bounding ∥div zh∥. Even though we consider gp = 0, we derive a bound on
∥div zh∥, thus obtaining full control on ∥zh∥div .

Theorem 5.1. There exists a positive constant C independent of h and c0, such that the solution of (3.13)–(3.17)
satisfies

∥σh∥L∞(0,T ;H (div;Ω)) + ∥uh∥L∞(0,T ;L2(Ω)) + ∥γh∥L∞(0,T ;L2(Ω)) + ∥zh∥L∞(0,T ;L2(Ω)) + ∥ph∥L∞(0,T ;L2(Ω))

+ ∥σh∥L2(0,T ;H (div;Ω)) + ∥uh∥L2(0,T ;L2(Ω)) + ∥γh∥L2(0,T ;L2(Ω)) + ∥zh∥L2(0,T ;H (div;Ω)) + ∥ph∥L2(0,T ;L2(Ω))

≤ C
(
∥ f ∥H1(0,T ;L2(Ω)) + ∥q∥H1(0,T ;L2(Ω)) + ∥p0∥H1(Ω) + ∥K∇ p0∥H (div;Ω)

)
. (5.1)

roof. We differentiate (3.13) in time, choose (τ, v, ξ, ζ, w) = (σh, ∂t uh, ∂tγh, zh, ph) in Eqs. (3.13)–(3.17), and
ombine them to obtain

(∂t (Aσh + αph I ), σh + αph I )Q + (c0∂t ph, ph)+
(
K −1zh, zh

)
Q = ( f, ∂t uh)+ (q, ph) ,

mplying

1
2
∂t

[
∥A1/2(σh + αph I )∥2

Q + ∥c1/2
0 ph∥

2
]

+ ∥K −1/2zh∥
2
Q = ( f, ∂t uh)+ (q, ph) . (5.2)

ext, integrating (5.2) in time from 0 to an arbitrary t ∈ (0, T ] results in

1
2

[
∥A1/2(σh + αph I )(t)∥2

Q + ∥c1/2
0 ph(t)∥2

]
+

∫ t

0
∥K −1/2zh∥

2
Q ds

=

∫ t

0
((q, ph)− (∂t f, uh)) ds +

1
2

[
∥A1/2(σh + αph I )(0)∥2

Q + ∥c1/2
0 ph(0)∥2

]
+ ( f, uh)(t) − ( f, uh)(0).

pplying the Cauchy–Schwartz and Young’s inequalities, we obtain

∥A1/2(σh + αph I )(t)∥2
Q + ∥c1/2

0 ph(t)∥2
+ 2

∫ t

0
∥K −1/2zh∥

2
Q ds

≤ ϵ1

(
∥uh(t)∥2

+

∫ t

0
(∥ph∥

2
+ ∥uh∥

2) ds
)

+
1
ϵ1

(
∥ f (t)∥2

+

∫ t

0

(
∥q∥

2
+ ∥∂t f ∥

2) ds
)

+ ∥A1/2(σh + αph I )(0)∥2
+ ∥c1/2 ph(0)∥2

+ ∥uh(0)∥2
+ ∥ f (0)∥2. (5.3)
Q 0

10
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Using the inf–sup condition (3.13) and (4.2), we bound ∥uh∥ and ∥γh∥ as follows,

∥uh∥ + ∥γh∥ ≤ C sup
0̸=τ∈Xh

(uh, div τ)+ (γh, τ )Q

∥τ∥div

= C sup
0̸=τ∈Xh

−
(

A1/2(σh + αph I ), A1/2τ
)

Q

∥τ∥div
≤ C∥A1/2(σh + αph I )∥, (5.4)

where in the last step we used the equivalence of norms as stated in Corollary 3.1. We also note that∫ t

0

(
∥uh∥

2
+ ∥γh∥

2) ds ≤ C
∫ t

0

(
∥σh∥

2
+ ∥ph∥

2) ds. (5.5)

imilarly, using the inf–sup condition (3.16) and (4.1), we have

∥ph∥ ≤ C sup
0̸=ζ∈Zh

(ph, div ζ )
∥ζ∥div

= C sup
0̸=ζ∈Zh

(
K −1zh, ζ

)
Q

∥ζ∥div
≤ C∥K −1/2zh∥. (5.6)

To obtain a bound on
∫ t

0 ∥σh∥
2ds, which appears on the right hand side of (5.5), we take τ = σh, v = uh, ξ = γh

in (3.13)–(3.15), and use Cauchy–Schwartz and Young’s inequalities, to obtain

∥σh∥
2

≤ C
(
∥ph∥

2
+ ϵ2∥uh∥

2
+

1
ϵ2

∥ f ∥
2
)
. (5.7)

Also, testing (3.14) with v = JE div σh on each E ∈ Th , we obtain a bound on the stress divergence:

∥div σh∥ ≤ ∥ f ∥. (5.8)

Combining inequalities (5.3)–(5.8) and choosing ϵ2 small enough, then ϵ1 small enough, we obtain

∥A1/2(σh + αph I )(t)∥2
+ ∥uh(t)∥2

+ ∥γh(t)∥2
+ ∥c1/2

0 ph(t)∥2
+ ∥div σh(t)∥2

+

∫ t

0

(
∥σh∥

2
+ ∥uh∥

2
+ ∥γh∥

2
+ ∥K −1/2zh∥

2
+ ∥ph∥

2
+ ∥div σh∥

2) ds

≤ C
(
∥ f (t)∥2

+

∫ t

0

(
∥q∥

2
+ ∥ f ∥

2
+ ∥∂t f ∥

2) ds

+ ∥σh(0)∥2
+ ∥ph(0)∥2

+ ∥uh(0)∥2
+ ∥ f (0)∥2

)
. (5.9)

Estimate for div zh . We note that (5.9) is a self-contained stability estimate. We now proceed with obtaining a
ound on ∥div zh∥. In the process, we also obtain a bound on ∥K −1/2zh(t)∥ for all t , and as a result, a bound on
ph(t)∥ for all t that is independent of c0. We choose on each E ∈ Th , wh = JE div zh in (3.17) and obtain

∥div zh∥ ≤ C
(
∥c1/2

0 ∂t ph∥ + ∥∂t A1/2(σh + αph I )∥ + ∥q∥

)
. (5.10)

o control the first two terms on the right hand side of (5.10), we differentiate Eqs. (3.13)–(3.16) in time and
ombine them with (3.17) as it was done in (5.2)–(5.3), with the choice (τ, v, ξ, ζ, w) = (∂tσh, ∂t uh, ∂tγh, zh, ∂t ph),
esulting in

2
∫ t

0

(
∥∂t A1/2(σh + αph I )∥2

Q + ∥c1/2
0 ∂t ph∥

2
)

ds + ∥K −1/2zh(t)∥2
Q

≤ ϵ

(
∥ph(t)∥2

+

∫ t

0
∥∂t uh∥

2ds
)

+
1
ϵ

(
∥q(t)∥2

+

∫ t

0
∥∂t f ∥

2ds
)

+

∫ t

0

(
∥ph∥

2
+ ∥∂t q∥

2) ds + ∥K −1/2zh(0)∥2
Q + ∥ph(0)∥2

+ ∥q(0)∥2. (5.11)

sing the inf–sup condition (3.13) and (4.2), differentiated in time, we have

1/2

∥∂t uh∥ + ∥∂tγh∥ ≤ C∥∂t A (σh + αph I )∥. (5.12)

11
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Combining (5.11), (5.12), and (5.6), we get∫ t

0

(
∥∂t A1/2(σh + αph I )∥2

+ ∥∂t uh∥
2
+ ∥∂tγh∥

2
+ ∥c1/2

0 ∂t ph∥
2
)

ds + ∥K −1/2zh(t)∥2
+ ∥ph(t)∥2

≤ C
(∫ t

0

(
∥ph∥

2
+ ∥∂t q∥

2
+ ∥∂t f ∥

2) ds + ∥q(t)∥2
+ ∥zh(0)∥2

+ ∥ph(0)∥2
+ ∥q(0)∥2

)
. (5.13)

ntegrating (5.10) in time and using (5.9) and (5.13), results in

∥K −1/2zh(t)∥2
+ ∥ph(t)∥2

+

∫ t

0
∥div zh∥

2ds

≤ C
(
∥q(t)∥2

+ ∥ f (t)∥2
+

∫ t

0

(
∥q∥

2
+ ∥ f ∥

2
+ ∥∂t q∥

2
+ ∥∂t f ∥

2) ds

+ ∥σh(0)∥2
+ ∥ph(0)∥2

+ ∥uh(0)∥2
+ ∥zh(0)∥2

+ ∥q(0)∥2
+ ∥ f (0)∥2

)
. (5.14)

e note that the control on ∥A1/2(σh + αph I )(t)∥ and ∥ph(t)∥ also implies a bound on ∥σh(t)∥:

∥σh∥ ≤ C(∥A1/2(σh + αph I )∥ + ∥ph∥). (5.15)

inally, we recall the construction of the initial data (σ0, u0, γ0, z0, p0) for the weak formulation (2.8)–(2.12), see
ection 2, and that the discrete initial data (σh,0, uh,0, γh,0, zh,0, ph,0) is taken as its elliptic projection, see (4.10).
hen following the steady-state version of the arguments presented in (5.2)–(5.15), we obtain

∥σh(0)∥ + ∥uh(0)∥ + ∥γh(0)∥ + ∥ph(0)∥ + ∥zh(0)∥ ≤ C(∥σ0∥ + ∥u0∥ + ∥γ0∥ + ∥p0∥ + ∥z0∥)

≤ C(∥p0∥H1(Ω) + ∥K∇ p0∥H (div;Ω)). (5.16)

he proof is completed by combining (5.9), (5.8), (5.14), (5.15), and (5.16). □

emark 5.1. The constant in (5.1) does not depend on c0, so we have stability even for c0 = 0. Furthermore, since
e did not use Gronwall’s inequality in the proof, the constant also does not involve exponential growth in time,

esulting in a long-time stability.

. Error analysis

In this section we establish optimal order error estimates for all variables in their natural norms.

.1. Preliminaries

We begin with several auxiliary results that will be used to bound the approximation and quadrature errors. Due
o the reduced approximation properties of the MFE spaces on general quadrilaterals [6], we restrict the quadrilateral
lements to be O(h2)-perturbations of parallelograms:

∥r34 − r21∥ ≤ Ch2. (6.1)

n this case it is easy to verify (see [52] for details) that

|DFE |1,∞,Ê ≤ Ch2 and
⏐⏐⏐⏐ 1

JE
DFE

⏐⏐⏐⏐
j,∞,Ê

≤ Ch j−1, j = 1, 2. (6.2)

Let Q0
: L2(Ω ) → Wh be a projection operator satisfying for any φ ∈ L2(Ω ),

(Q̂0φ̂ − φ̂, ŵ)Ê = 0, ∀ ŵ ∈ Ŵ (Ê), Q0φ = Q̂0φ̂ ◦ F−1
E ∀E ∈ Th .

e will also use Q0
: L2(Ω ,Rd ) → Vh , which is the above operator applied component-wise. It follows from (3.5)

hat

∀φ ∈ L2(Ω ,Rd ), (Q0φ − φ, div τ ) = 0, ∀ τ ∈ Xh,

2 0 (6.3)

∀φ ∈ L (Ω ), (Q φ − φ, div ζ ) = 0, ∀ ζ ∈ Zh .

12
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Let Q1
: L2(Ω ,N) → Qh be the L2-projection operator satisfying for any φ ∈ L2(Ω ,N),

(Q1φ − φ, ξ ) = 0, ∀ ξ ∈ Qh . (6.4)

Let Π : X∩ H 1(Ω ,M) → Xh be the canonical mixed projection operator acting on tensor valued functions. We will
also use the same notation for the projection operator acting on vector valued functions, Π : Z ∩ H 1(Ω ,Rd ) → Zh .
t is shown in [11,12] and [49] that Π satisfies

∀ψ ∈ H 1(Ω ,M), (div (Πψ − ψ), v) = 0, ∀v ∈ Vh,

∀ψ ∈ H 1(Ω ,Rd ), (div (Πψ − ψ), w) = 0, ∀w ∈ Wh .
(6.5)

e will also make use of the mixed projection operator onto the lowest order Raviart–Thomas space RT 0
11,32,42]. This additional construction is needed only for the error analysis on quadrilaterals, although for
niformity in the forthcoming proofs we will treat the simplicial case in the same fashion. We denote the RT 0-based
paces by X0

h and Z0
h for tensors and vectors, respectively, where the former is obtained from d copies of the latter.

he degrees of freedom of X0
h or Z0

h are constant values of the normal stress or velocity on all edges (faces). The
T 0 mixed projection operator, denoted by Π 0, has properties similar to the BDM1 projection operator Π . It also

atisfies
divΠ 0τ = div τ and ∥Π 0τ∥ ≤ C∥τ∥ ∀τ ∈ Xh,

divΠ 0ζ = div ζ and ∥Π 0ζ∥ ≤ C∥ζ∥ ∀ζ ∈ Zh .
(6.6)

The following lemma summarizes well-known continuity and approximation properties of the projection
perators, where H ∈ {M,Rd

}.

emma 6.1. There exists a constant C > 0 such that

∥φ − Q0φ∥ ≤ C∥φ∥r hr , ∀φ ∈ H r (Ω ), 0 ≤ r ≤ 1, (6.7)

∥φ − Q1φ∥ ≤ C∥φ∥r hr , ∀φ ∈ H r (Ω ,N), 0 ≤ r ≤ 1, (6.8)

∥ψ − Πψ∥ ≤ C∥ψ∥r hr , ∀ψ ∈ H r (Ω ,H), 1 ≤ r ≤ 2, (6.9)

∥ψ − Π 0ψ∥ ≤ C∥ψ∥1h, ∀ψ ∈ H 1(Ω ,H), (6.10)

∥div (ψ − Πψ)∥ + ∥div (ψ − Π 0ψ)∥ ≤ C∥divψ∥r hr , ∀ψ ∈ H r+1(Ω ,H), 0 ≤ r ≤ 1. (6.11)

n addition, for all elements E ∈ Th , there exists a constant C > 0, such that

∥Q0φ∥E ≤ C∥φ∥E , ∀φ ∈ L2(E), (6.12)

∥Q1φ∥1,E ≤ C∥φ∥1,E , ∀φ ∈ H 1(E,N), (6.13)

∥Πψ∥1,E ≤ C∥ψ∥1,E , ∀ψ ∈ H 1(E,H). (6.14)

roof. The proof of bounds for the L2-projections (6.7)–(6.8) can be found in [14]; and bounds (6.9)–(6.11)
an be found in [11,43] for affine elements and [6,49] for h2-parallelograms. Finally, (6.12) is the stability of the

L2-projection and the proof of (6.13)–(6.14) was presented in [52]. □

The following result is needed in the error analysis.

emma 6.2. For any τ̂ ∈ X̂(Ê) and ζ̂ ∈ Ẑ (Ê),(
τ̂ − Π̂ 0τ̂ , τ̂0

)
Q̂,Ê

= 0 for all constant tensors τ̂0, (6.15)(
ζ̂ − Π̂ 0ζ̂ , ζ̂0

)
Q̂,Ê

= 0 for all constant vectors ζ̂0. (6.16)

roof. The property (6.16) was shown in [52, Lemma 2.2] on the reference square. The proof on the reference
implex follows in a similar way. The property (6.15) follows from (6.16). □

For φ, ψ ∈ Xh,Qh, Zh,Wh , denote the quadrature error by
∀E ∈ Th, θE (Lφ,ψ) := (Lφ,ψ)E − (Lφ,ψ)Q,E , θ(Lφ,ψ) := (Lφ,ψ) − (Lφ,ψ)Q . (6.17)

13
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The next result summarizes the quadrature error bounds.

Lemma 6.3. For all E ∈ Th , if K −1
|E ∈ W 1,∞(E) and A|E ∈ W 1,∞(E), then there is a constant C > 0

independent of h such that⏐⏐θE
(
K −1ζ, ρ

)⏐⏐ ≤ Ch∥K −1
∥1,∞,E∥ζ∥1,E∥ρ∥E , ∀ζ ∈ Zh, ρ ∈ Z0

h, (6.18)

|θE (Aτ, χ)| ≤ Ch∥A∥1,∞,E∥τ∥1,E∥χ∥E , ∀τ ∈ Xh, χ ∈ X0
h, (6.19)

|θE (Aτ,w I )| ≤ Ch∥A∥1,∞,E∥τ∥1,E∥w∥E , ∀τ ∈ Xh, w ∈ Wh, (6.20)

|θE (Aw I, r I )| ≤ Ch∥A∥1,∞,E∥w∥E∥r∥E , ∀w, r ∈ Wh, (6.21)

|θE (τ, ξ)| ≤ Ch∥τ∥1,E∥ξ∥E , ∀τ ∈ Xh, ξ ∈ Qh, (6.22)

|θE (τ, ξ)| ≤ Ch∥τ∥E∥ξ∥1,E , ∀τ ∈ X0
h, ξ ∈ Qh, (6.23)⏐⏐⏐(K −1ρ, ζ − Π 0ζ

)
Q,E

⏐⏐⏐ ≤ Ch∥K −1
∥1,∞,E∥ρ∥1,E∥ζ∥E , ∀ρ, ζ ∈ Zh, (6.24)⏐⏐⏐(A(χ + w I ), τ − Π 0τ

)
Q,E

⏐⏐⏐ ≤ Ch∥A∥1,∞,E (∥χ∥1,E + ∥w∥E )∥τ∥E , ∀χ, τ ∈ Xh, w ∈ Wh, (6.25)⏐⏐⏐(ξ, τ − Π 0τ
)

Q,E

⏐⏐⏐ ≤ Ch∥ξ∥1,E∥τ∥E , ∀ξ ∈ Qh, τ ∈ Xh . (6.26)

roof. The estimates (6.18) and (6.24) can be found in [52]. We note that (6.24) was stated only on quadrilaterals in
52], but it also holds on simplices, since it follows from mapping to the reference element and (6.16). Bounds (6.19)
nd (6.22)–(6.23) were proven in [3] on simplices and in [2] on quadrilaterals. The proofs of bounds (6.20)–(6.21)
or the two element types are similar to the respective proofs of (6.19). Bounds (6.25) and (6.26) were shown in [2]
n quadrilaterals. Their proof on simplices is similar, using (6.15). □

emark 6.1. We note that, since the BDM1 space on quadrilaterals involves quadratic terms, the quadrature
ounds (6.18), (6.19), and (6.23) require restricting one of the test functions to the RT 0 space, which also leads
o the additional error terms in (6.24)–(6.26). This restriction is not necessary on simplices, where BDM1 is the
pace of linear polynomials. In order to present a unified convergence proof for simplices and quadrilaterals, we
ake the restriction to RT 0 on simplices as well. A simplified proof without this restriction on simplices is also

ossible, following the approaches in [52] and [3].

The above bounds are stated on an element E ∈ Th . In the convergence proof they will be used by summing
ver all elements. We will assume that ∥K −1

∥1,∞,E and ∥A∥1,∞,E are uniformly bounded independently of h and
ill denote this space by W 1,∞

Th
.

.2. Main convergence result

heorem 6.1. If A ∈ W 1,∞
Th

, K −1
∈ W 1,∞

Th
, and the solution of (2.8)–(2.12) is sufficiently smooth, then there exists

positive constant C independent of h and c0, such that the solution of (3.13)–(3.17) satisfies

∥σ − σh∥L∞(0,T ;H (div;Ω)) + ∥u − uh∥L∞(0,T ;L2(Ω)) + ∥γ − γh∥L∞(0,T ;L2(Ω)) + ∥z − zh∥L∞(0,T ;L2(Ω))

+ ∥p − ph∥L∞(0,T ;L2(Ω)) + ∥σ − σh∥L2(0,T ;H (div;Ω)) + ∥u − uh∥L2(0,T ;L2(Ω))

+ ∥γ − γh∥L2(0,T ;L2(Ω)) + ∥z − zh∥L2(0,T ;H (div;Ω)) + ∥p − ph∥L2(0,T ;L2(Ω))

≤ Ch
(
∥σ∥H1(0,T ;H1(Ω)) + ∥div σ∥L∞(0,T ;H1(Ω)) + ∥div σ∥L2(0,T ;H1(Ω))

+ ∥u∥L2(0,T ;H1(Ω)) + ∥u∥L∞(0,T ;H1(Ω)) + ∥γ ∥H1(0,T ;H1(Ω))

+ ∥z∥H1(0,T ;H1(Ω)) + ∥div z∥L2(0,T ;H1(Ω)) + ∥p∥H1(0,T ;H1(Ω))

)
. (6.27)

roof. The derivation of the error bounds follows the structure of the stability analysis. It involves special
anipulation of the error system, combined with estimation of the approximation errors and the quadrature errors.
e form the error system by subtracting the discrete problem (3.13)–(3.17) from the continuous one (2.8)–(2.12):
(A(σ + αpI ), τ )− (A(σh + αph I ), τ )Q + (u − uh, div τ)+ (γ, τ )− (γh, τ )Q = 0, ∀τ ∈ Xh, (6.28)

14



I. Ambartsumyan, E. Khattatov and I. Yotov Computer Methods in Applied Mechanics and Engineering 372 (2020) 113407

W

W
o
f

I
q

T

C

W
t

W

W

U
w

(div (σ − σh), v) = 0, ∀v ∈ Vh, (6.29)

(σ, ξ)− (σh, ξ)Q = 0, ∀ξ ∈ Qh, (6.30)(
K −1z, ζ

)
−
(
K −1zh, ζ

)
Q − (p − ph, div ζ ) = 0, ∀ζ ∈ Zh, (6.31)

(c0∂t (p − ph), w)+ α (∂t A(σ + αpI ), w I )− α (∂t A(σh + αph I ), w I )Q

+ (div (z − zh), w) = 0, ∀w ∈ Wh . (6.32)

e split the errors into approximation and discrete errors as follows:

σ − σh = (σ − Π σ ) + (Π σ − σh) := ψσ + φσ ,

u − uh = (u − Q0u) + (Q0u − uh) := ψu + φu,

γ − γh = (γ − Q1γ ) + (Q1γ − γh) := ψγ + φγ ,

z − zh = (z − Π z) + (Π z − zh) := ψz + φz,

p − ph = (p − Q0 p) + (Q0 p − ph) := ψp + φp.

e first manipulate the error system (6.28)–(6.32) to obtain error terms that can be bounded using either the
rthogonality and approximation properties of the projection operators, (6.3)–(6.5) and (6.7)–(6.11), or the estimates
or the quadrature error terms, (6.18)–(6.26). We rewrite the first equation (6.28) in the following way:(

A(φσ + αφp I ), τ
)

Q + (φu, div τ)+
(
φγ , τ

)
Q

= − (A(σ + αpI ), τ )+
(

A(Π σ + αQ0 pI ), τ
)

Q + (ψu, div τ)+
(
Q1γ, τ

)
Q − (γ, τ ) .

t follows from (6.3) that (ψu, div τ) = 0. With the goal to use a test function Π 0τ , which is needed to bound the
uadrature error, we manipulate the rest of the terms as follows:(

A(φσ + αφp I ), τ
)

Q + (φu, div τ)+
(
φγ , τ

)
Q

= −
(

A(σ + αpI ), τ − Π 0τ
)
−
(

A(ψσ + αψp I ),Π 0τ
)
−
(

A(Π σ + αQ0 pI ),Π 0τ
)

+
(

A(Π σ + αQ0 pI ),Π 0τ
)

Q +
(

A(Π σ + αQ0 pI ), τ − Π 0τ
)

Q

−
(
γ, τ − Π 0τ

)
−
(
ψγ ,Π

0τ
)
−
(
Q1γ,Π 0τ

)
+
(
Q1γ,Π 0τ

)
Q +

(
Q1γ, τ − Π 0τ

)
Q . (6.33)

aking τ − Π 0τ as a test function in (2.8) and using (6.6), we obtain(
A(σ + αpI ), τ − Π 0τ

)
+
(
γ, τ − Π 0τ

)
= 0. (6.34)

ombining (6.33)–(6.34) and using the quadrature error notation, we get(
A(φσ + αφp I ), τ

)
Q + (φu, div τ)+

(
φγ , τ

)
Q

= −
(

A(ψσ + αψp I ),Π 0τ
)
−
(
ψγ ,Π

0τ
)
− θ

(
A(Π σ + αQ0 pI ),Π 0τ

)
− θ

(
Q1γ,Π 0τ

)
+
(

A(Π σ + αQ0 pI ), τ − Π 0τ
)

Q +
(
Q1γ, τ − Π 0τ

)
Q . (6.35)

e proceed with the manipulation of the rest of the equations in the error system (6.28)–(6.32). Using (6.5) and
aking v = JE divφσ on each E ∈ Th , the second error Eq. (6.29) implies

divφσ = 0. (6.36)

e rewrite the third error Eq. (6.30) as

(ψσ , ξ)+ θ (Π σ, ξ)+ (φσ , ξ)Q = 0. (6.37)

e rewrite the Darcy’s law error Eq. (6.31) in a way similar to (6.33)–(6.35):(
K −1φz, ζ

)
Q −

(
φp, div ζ

)
= −

(
K −1z, ζ − Π 0ζ

)
−
(
K −1(z − Π z),Π 0ζ

)
−
(
K −1Π z,Π 0ζ

)
+
(
K −1Π z,Π 0ζ

)
Q +

(
K −1Π z, ζ − Π 0ζ

)
Q +

(
ψp, div ζ

)
.

sing (6.3), we have that
(
ψp, div ζ

)
= 0. Also, testing (2.11) with ζ − Π 0ζ yields

(
K −1z, ζ − Π 0ζ

)
= 0, hence,

e have(
K −1φ , ζ

)
−
(
φ , div ζ

)
= −

(
K −1ψ ,Π 0ζ

)
− θ

(
K −1Π z,Π 0ζ

)
+
(
K −1Π z, ζ − Π 0ζ

)
. (6.38)
z Q p z Q

15
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Finally, using (6.5), we rewrite the last equation in the error system, (6.32), as follows,(
c0∂tφp, w

)
+ α

(
∂t A(φσ + αφp I ), w I

)
Q + (divφz, w)

= −
(
c0∂tψp, w

)
− α

(
∂t A(ψσ + αψp I ), w I

)
− αθ

(
∂t A(Π σ + αQ0 pI ), w I

)
. (6.39)

e next combine the equations and make an appropriate choice of the test functions. In particular, we differentiate
6.35) in time, set τ = φσ , ξ = ∂tφγ , ζ = φz, w = φp, and combine (6.35)–(6.39):

1
2
∂t

(
∥A1/2(φσ + αφp I )∥2

Q + ∥c1/2
0 φp∥

2
)

+ ∥K −1/2φz∥
2
Q

= −
(
c0∂tψp, φp

)
−
(
∂t A(ψσ + αψp I ),Π 0φσ + αφp I

)
−
(
∂tψγ ,Π

0φσ
)
−
(
K −1ψz,Π

0φz
)
+
(
ψσ , ∂tφγ

)
− θ

(
∂t A(Π σ + αQ0 pI ),Π 0φσ + αφp I

)
− θ

(
∂t Q1γ,Π 0φσ

)
− θ

(
K −1Π z,Π 0φz

)
+ θ

(
Π σ, ∂tφγ

)
+
(
∂t A(Π σ + αQ0 pI ), φσ − Π 0φσ

)
Q +

(
∂t Q1γ, φσ − Π 0φσ

)
Q +

(
K −1Π z, φz − Π 0φz

)
Q , (6.40)

here we have listed first the terms involving approximation error, followed by quadrature error terms, and the
hree extra terms arising from the use of operator Π 0. We note that there are two terms involving ∂tφγ , which will
e handled by integration by parts after time integration. We proceed by deriving bounds for the rest of the terms
ppearing on the right-hand side. For the approximation error terms, using (6.6) and (6.7)–(6.9), we have⏐⏐(c0∂tψp, φp

)
+
(
∂t A(ψσ + αψp I ),Π 0φσ + αφp I

)
+
(
∂tψγ ,Π

0φσ
)
+
(
K −1ψz,Π

0φz
)⏐⏐

≤ Ch2(∥∂tσ∥
2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥z∥2

1) + ϵ1(∥φσ∥2
+ ∥φp∥

2
+ ∥φz∥

2). (6.41)

or the quadrature error terms, applying (6.18)–(6.14) and (6.21)–(6.12) results in⏐⏐θ (∂t A(Π σ + αQ0 pI ),Π 0φσ + αφp I
)
+ θ

(
∂t Q1γ,Π 0φσ

)
+ θ

(
K −1Π z,Π 0φz

)⏐⏐
≤ Ch2(∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥z∥2

1) + ϵ1(∥φσ∥2
+ ∥φp∥

2
+ ∥φz∥

2). (6.42)

or the last three terms in (6.40), due to (6.24)–(6.14) and (6.26)–(6.13), we obtain⏐⏐⏐(∂t A(Π σ + αQ0 pI ), φσ − Π 0φσ
)

Q +
(
∂t Q1γ, φσ − Π 0φσ

)
Q +

(
K −1Π z, φz − Π 0φz

)
Q

⏐⏐⏐
≤ Ch2(∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥z∥2

1) + ϵ1(∥φσ∥2
+ ∥φz∥

2). (6.43)

ext, we combine (6.40)–(6.43) and integrate in time from 0 to an arbitrary t ∈ (0, T ]:

∥A1/2(φσ + αφp I )(t)∥2
Q + ∥c1/2

0 φp(t)∥2
+

∫ t

0
∥K −1/2φz∥

2
Q ds

≤

∫ t

0

((
ψσ , ∂tφγ

)
+ θ

(
Π σ, ∂tφγ

))
ds + ϵ1

∫ t

0
(∥φσ∥2

+ ∥φp∥
2
+ ∥φz∥

2) ds

+ Ch2
∫ t

0
(∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥z∥2

1) ds + ∥A1/2(φσ + αφp I )(0)∥2
Q + ∥c1/2

0 φp(0)∥2. (6.44)

or the first two terms on the right-hand side we use integration by parts:∫ t

0

((
ψσ , ∂tφγ

)
+ θ

(
Π σ, ∂tφγ

))
ds

= −

∫ t

0

((
∂tψσ , φγ

)
+ θ

(
∂tΠ σ, φγ

))
ds +

(
ψσ , φγ

)
(t) + θ

(
Π σ, φγ

)
(t) −

(
ψσ , φγ

)
(0) − θ

(
Π σ, φγ

)
(0)

≤ ϵ1

(
∥φγ (t)∥2

+

∫ t

0
∥φγ ∥

2ds
)

+ C∥φγ (0)∥2
+ Ch2

(
∥σ (t)∥2

1 + ∥σ (0)∥2
1 +

∫ t

0
∥∂tσ∥

2
1 ds

)
. (6.45)

here we used (6.9), (6.22), and (6.14) in the last step. We proceed with bounding the terms involving ∥φσ∥, ∥φp∥,

φz∥, and ∥φγ ∥ that appear on the right-hand sides of (6.44) and (6.45). Using the elasticity inf–sup condition
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(4.2) together with (6.28), we get

∥φu∥ + ∥φγ ∥ ≤C sup
0̸=τ∈Xh

(φu, div τ)+
(
φγ , τ

)
Q

∥τ∥div

= C sup
0̸=τ∈Xh

(A(σh + αph I ), τ )Q − (A(σ + αpI ), τ )+
(
Q1γ, τ

)
Q − (γ, τ )

∥τ∥div
. (6.46)

Using manipulations as in (6.33)–(6.35), along with the bounds (6.7)–(6.9), (6.19), (6.22) and (6.25)–(6.26), we
have

(A(σh + αph I ), τ )Q − (A(σ + αpI ), τ )+
(
Q1γ, τ

)
− (γ, τ )Q

= −
(

A(φσ + αφp I ), τ
)

Q −
(

A(ψσ + αψp I ),Π 0τ
)
−
(

A(Π σ + αQ0 pI ), τ − Π 0τ
)

Q

+ θ
(

A(Π σ + αQ0 pI ),Π 0τ
)

Q +
(
Q1γ, τ − Π 0τ

)
Q − θ

(
Q1γ,Π 0τ

)
−
(
ψγ ,Π

0τ
)

≤ C
(
h(∥σ∥1 + ∥p∥1 + ∥γ ∥1) + ∥A1/2(φσ + αφp I )∥

)
∥τ∥. (6.47)

ombining (6.46) and (6.47), we obtain

∥φu∥ + ∥φγ ∥ ≤ Ch(∥σ∥1 + ∥p∥1 + ∥γ ∥1) + C∥A1/2(φσ + αφp I )∥, (6.48)

s well as∫ t

0

(
∥φu∥

2
+ ∥φγ ∥

2) ds ≤ Ch2
∫ t

0

(
∥σ∥

2
1 + ∥p∥

2
1 + ∥γ ∥

2
1

)
ds + C

∫ t

0

(
∥φσ∥

2
+ ∥φp∥

2) ds. (6.49)

or ∥φp∥, using the fact that Z0
h × Wh is a stable Darcy pair, (6.9), (6.18) and (6.31), we obtain

∥φp∥ ≤ C sup
0̸=ζ∈Z0

h

(
div ζ, φp

)
∥ζ∥div

= C sup
0̸=ζ∈Z0

h

(
K −1z, ζ

)
−
(
K −1zh, ζ

)
Q

∥ζ∥div

= C sup
0̸=ζ∈Z0

h

(
K −1φz, ζ

)
Q −

(
K −1ψz, ζ

)
+ θ

(
K −1Π z, ζ

)
∥ζ∥div

≤ C(h∥z∥1 + ∥K −1/2φz∥), (6.50)

mplying∫ t

0
∥φp∥

2ds ≤ C
∫ t

0

(
h2

∥z∥2
1 + ∥K −1/2φz∥

2) ds. (6.51)

inally, to obtain a bound on
∫ t

0 ∥φσ∥
2ds, which appears on the right hand side in (6.49), we choose τ = φσ in

6.35) and ξ = φγ in (6.37) and combine them, using also (6.36), to obtain

∥A1/2φσ∥
2
Q = −α

(
Aφp I, φσ

)
Q −

(
A(ψσ + αψp I ),Π 0φσ

)
−
(
ψγ ,Π

0φσ
)

− θ
(

A(Π σ + αQ0 pI ),Π 0φσ
)
− θ

(
Q1γ,Π 0φσ

)
+
(

A(Π σ + αQ0 pI ), φσ − Π 0φσ
)

Q

+
(
Q1γ, φσ − Π 0φσ

)
Q + (ψσ , φγ ) + θ (Π σ, φγ )

≤ Ch2(∥σ∥
2
1 + ∥p∥

2
1 + ∥γ ∥

2
1) + C∥φp∥

2
+ ϵ2(∥φγ ∥2

+ ∥φσ∥
2),

here in the last step we used (6.6), (6.7)–(6.9), (6.19), (6.22), (6.23), (6.25), and (6.26). Thus, we have∫ t

0
∥φσ∥

2 ds ≤ Ch2
∫ t

0
(∥σ∥

2
1 + ∥p∥

2
1 + ∥γ ∥

2
1) ds + C

∫ t

0
∥φp∥

2ds + ϵ2

∫ t

0
∥φγ ∥

2ds. (6.52)

ombining (6.36), (6.44)–(6.52) and choosing ϵ2 small enough, then ϵ1 small enough, gives the estimate

∥A1/2(φσ + αφp I )(t)∥2
+ ∥φu(t)∥2

+ ∥φγ (t)∥2
+ ∥c1/2

0 φp(t)∥2
+ ∥divφσ∥2

+

∫ t

0

(
∥φσ∥

2
+ ∥φu∥

2
+ ∥φγ ∥

2
+ ∥K −1/2φz∥

2
+ ∥φp∥

2
+ ∥divφσ∥2) ds

≤ C
(

h2
∫ t (

∥∂tσ∥
2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥σ∥

2
1 + ∥p∥

2
1 + ∥γ ∥

2
1 + ∥z∥2

1

)
ds
0
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+ h2 (
∥σ (t)∥2

1 + ∥p(t)∥2
1 + ∥γ (t)∥2

1 + ∥σ (0)∥2
1

)
+ ∥φσ (0)∥2

+ ∥φp(0)∥2
+ ∥φγ (0)∥2

)
. (6.53)

stimate for divφz . We note that (6.53) is a self-contained error estimate. Similarly to the stability argument,
e proceed with bounding ∥divφz∥, obtaining also bounds on ∥K −1/2φz(t)∥ and ∥φp(t)∥ for all t . We choose
= JE divφz on each E ∈ Th in (6.39), which yields

∥J 1/2
E divφz∥

2
= − (c0∂tφp, JE divφz) − (c0∂tψp, JE divφz) − α

(
∂t A(φσ + αφp I ), JE (divφz)I

)
Q

− α
(
∂t A(ψσ + αψp I ), JE (divφz)I

)
− αθ

(
∂t A(Π σ + αQ0 pI ), JE (divφz)I

)
.

sing (6.7), (6.9) and (6.19)–(6.22), we obtain

∥divφz∥ ≤ C
(
∥c1/2

0 ∂tφp∥ + ∥∂t A1/2(φσ + αφp I )∥ + h(∥∂t p∥1 + ∥∂tσ∥1)
)
. (6.54)

t remains to bound the first two terms on the right-hand side of (6.54). Similarly to the stability argument, cf. (5.11),
e differentiate (6.35)–(6.38) in time, set τ = ∂tφσ , ξ = ∂tφγ , ζ = φz, w = ∂tφp, and combine (6.35)–(6.39),

esulting in a time-differentiated version of (6.40):

1
2
∂t∥K −1/2φz∥

2
Q + ∥∂t A1/2(φσ + αφp I )∥2

Q + ∥c1/2
0 ∂tφp∥

2

= −
(
c0∂tψp, ∂tφp

)
−
(
∂t A(ψσ + αψp I ), ∂t (Π 0φσ + αφp I )

)
−
(
∂tψγ , ∂tΠ

0φσ
)
−
(
∂t K −1ψz,Π

0φz
)

+
(
∂tψσ , ∂tφγ

)
− θ

(
∂t A(Π σ + αQ0 pI ), ∂t (Π 0φσ + αφp I )

)
− θ

(
∂t Q1γ, ∂tΠ

0φσ
)

− θ
(
∂t K −1Π z,Π 0φz

)
+ θ

(
∂tΠ σ, ∂tφγ

)
+
(
∂t A(Π σ + αQ0 pI ), ∂t (φσ − Π 0φσ )

)
Q

+
(
∂t Q1γ, ∂t (φσ − Π 0φσ )

)
Q +

(
∂t K −1Π z, φz − Π 0φz

)
Q . (6.55)

efore bounding the terms on the right above, we note that we would like the bounds to be in terms of
∂t A1/2(φσ + αφp I )∥, since we do not have separate control of ∥∂tφσ∥ and ∥∂tφp∥. To this end, we first note
hat the projector Π 0 is defined element by element and let Π 0

E : H 1(E,M) ↦→ X0
h |E be the local RT 0 projector

n an element E ∈ Th . Using that for each E , αφp I |E ∈ X0
h |E , we have that Π 0

E (αφp I ) = (αφp I )|E . Then, for the
econd and the sixth term above we have

(Π 0φσ + αφp I )|E = Π 0
E (φσ + αφp I ).

imilarly, for the tenth and the eleventh term we have

(φσ − Π 0φσ )|E = (φσ + αφp I )|E − Π 0
E (φσ + αφp I ).

lso, since φp I is a symmetric matrix, for the third and seventh terms we have(
∂tψγ , ∂tΠ

0φσ
)

E =
(
∂tψγ , ∂tΠ

0
E (φσ + αφp I )

)
E , θE

(
∂t Q1γ, ∂tΠ

0φσ
)

= θE
(
∂t Q1γ, ∂tΠ

0
E (φσ + αφp I )

)
.

ow, noting that the terms on the right in (6.55) can be expressed as sums over mesh elements, we use the above
dentities and bound these terms as in (6.41)–(6.43):⏐⏐(c0∂tψp, ∂tφp

)
+
(
∂t A(ψσ + αψp I ), ∂t (Π 0φσ + αφp I )

)
+
(
∂tψγ , ∂tΠ

0φσ
)

+
(
∂t K −1ψz,Π

0φz
)
+
(
∂tψσ , ∂tφγ

)⏐⏐
≤ Ch2(∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥∂t z∥2

1)

+ ϵ(∥c1/2
0 ∂tφp∥

2
+ ∥∂t A1/2(φσ + αφp I )∥2

+ ∥∂tφγ ∥
2
+ ∥φz∥

2), (6.56)⏐⏐θ (∂t A(Π σ + αQ0 pI ), ∂t (Π 0φσ + αφp I )
)
+ θ

(
∂t Q1γ, ∂tΠ

0φσ
)
+ θ

(
∂t K −1Π z,Π 0φz

)
+ θ

(
∂tΠ σ, ∂tφγ

)⏐⏐
≤ Ch2(∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥∂t z∥2

1) + ϵ(∥∂t A1/2(φσ + αφp I )∥2
+ ∥∂tφγ ∥

2
+ ∥φz∥

2), (6.57)⏐⏐⏐(∂t A(Π σ + αQ0 pI ), ∂t (φσ − Π 0φσ )
)

Q +
(
∂t Q1γ, ∂t (φσ − Π 0φσ )

)
Q +

(
∂t K −1Π z, φz − Π 0φz

)
Q

⏐⏐⏐
≤ Ch2(∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥∂t z∥2

1) + ϵ(∥∂t A1/2(φσ + αφp I )∥2
+ ∥φz∥

2). (6.58)
18
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Combining (6.55)–(6.58), taking ϵ small enough, and integrating in time, we get

∥K −1/2φz(t)∥2
Q +

∫ t

0

(
∥∂t A1/2(φσ + αφp I )∥2

Q + ∥c1/2
0 ∂tφp∥

2
)

ds

≤ ∥K −1/2φz(0)∥2
Q + ϵ

∫ t

0

(
∥∂tφγ ∥

2
+ ∥φz∥

2) ds

+ Ch2
∫ t

0

(
∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥∂t z∥2

1

)
ds. (6.59)

imilarly to (6.48), the elasticity inf–sup condition (4.2), differentiated in time, implies∫ t

0

(
∥∂tφu∥

2
+ ∥∂tφγ ∥

2) ds ≤ Ch2
∫ t

0

(
∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1

)
ds + C

∫ t

0
∥∂t A1/2(φσ + αφp I )∥2ds.

(6.60)

ombining (6.59)–(6.60) with (6.50), we conclude that

∥K −1/2φz(t)∥2
+ ∥φp(t)∥2

+

∫ t

0

(
∥∂t A1/2(φσ + αφp I )∥2

+ ∥c1/2
0 ∂tφp∥

2
)

ds

≤ ϵ

∫ t

0
∥φz∥

2ds + Ch2
∥z(t)∥2

+ Ch2
∫ t

0

(
∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥∂t z∥2

1

)
ds. (6.61)

herefore, (6.54) and (6.61) give

∥K −1/2φz(t)∥2
Q + ∥φp(t)∥2

+

∫ t

0
∥divφz∥

2ds ≤ ϵ

∫ t

0
∥φz∥

2 ds

+ Ch2
(∫ t

0
(∥∂t z∥2

1 + ∥∂tσ∥
2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1) ds + ∥z(t)∥2

1

)
. (6.62)

e also note that

∥φσ∥ ≤ C
(
∥A1/2(φσ + αφp I )∥ + ∥φp∥

)
. (6.63)

inally, combining (6.53), (6.62) and (6.63), we obtain

∥A1/2(φσ + αφp I )(t)∥2
+ ∥φσ (t)∥2

div + ∥φu(t)∥2
+ ∥φγ (t)∥2

+ ∥K −1/2φz(t)∥2
+ ∥φp(t)∥2

+

∫ t

0

(
∥φσ∥

2
div + ∥φu∥

2
+ ∥φγ ∥

2
+ ∥K −1/2φz∥

2
+ ∥divφz∥

2
+ ∥φp∥

2)
≤ C

(
h2
∫ t

0

(
∥∂tσ∥

2
1 + ∥∂t p∥

2
1 + ∥∂tγ ∥

2
1 + ∥∂t z∥2

1 + ∥σ∥
2
1 + ∥p∥

2
1 + ∥γ ∥

2
1 + ∥z∥2

1

)
ds

+ h2 (
∥σ (t)∥2

1 + ∥p(t)∥2
1 + ∥γ (t)∥2

1 + ∥z(t)∥2
1 + ∥σ (0)∥2

1

)
+ ∥φσ (0)∥2

+ ∥φp(0)∥2
+ ∥φγ (0)∥2

+ ∥φz(0)∥2
)
. (6.64)

or the initial error, we recall that the discrete initial data is taken to be the elliptic projection of the continuous
nitial data, see (4.10). Then, similarly to (5.16), we have

∥φσ (0)∥ + ∥φp(0)∥ + ∥φγ (0)∥ + ∥φz(0)∥ ≤ C(∥ψσ (0)∥ + ∥ψp(0)∥ + ∥ψγ (0)∥ + ∥ψz(0)∥ + ∥ψu(0)∥). (6.65)

ounds (6.64)–(6.65), combined with the use of the triangle inequality and the approximation bounds (6.7)–(6.11),
mply the assertion of the theorem. □

. Fully-discrete MSMFE–MFMFE method

In this section we present the fully-discrete method based on the backward Euler time discretization and show
ow the algebraic system at each time step can be reduced to a positive definite cell-centered displacement–pressure

ystem.
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Let 0 = t0 < t1 < · · · < tN = T be a partition of the time interval [0, T ] with time steps ∆tn = tn − tn−1,
n = 1, . . . , N , ∆t = max1≤n≤N ∆tn . Let ϕn

= ϕ(tn) and ∂n
t ϕ = (ϕn

− ϕn−1)/∆tn . For a Banach space H on Ω
ith a norm ∥ · ∥H , we introduce the discrete-in-time norms

∥ϕ∥l2(0,T ;H ) :=

(
N∑

n=1

∆tn∥ϕ∥
2
H

) 1
2

, ∥ϕ∥l∞(0,T ;H ) := max
0≤n≤N

∥ϕ∥H .

The fully-discrete MSMFE–MFMFE method is: given compatible initial data (σ 0
h , u0

h, γ
0
h , z0

h, p0
h), find, for n =

, . . . , N , (σ n
h , un

h, γ
n
h , zn

h, pn
h ) ∈ Xh × Vh × Qh × Zh × Wh such that(

A(σ n
h + αpn

h I ), τ
)

Q +
(
un

h, div τ
)
+
(
γ n

h , τ
)

Q = 0, ∀τ ∈ Xh, (7.1)

−
(
div σ n

h , v
)

=
(

f n, v
)
, ∀v ∈ Vh, (7.2)(

σ n
h , ξ

)
Q = 0, ∀ξ ∈ Qh, (7.3)(

K −1zn
h, ζ

)
Q −

(
pn

h , div ζ
)

= 0 ∀ζ ∈ Zh, (7.4)(
c0∂

n
t ph, w

)
+ α

(
∂n

t A(σh + αph I ), w I
)

Q +
(
div zn

h, w
)

=
(
qn, w

)
, ∀w ∈ Wh . (7.5)

emma 7.1. The fully discrete method (7.1)–(7.5) has a unique solution.

roof. The assertion of the lemma follows from the solvability of the resolvent system (4.5)–(4.9) shown in the
roof of Theorem 4.2. □

The following convergence theorem can be proved using the framework in the proof of Theorem 6.1, combined
ith standard tools for treating the discrete time derivatives.

heorem 7.1. If A ∈ W 1,∞
Th

, K −1
∈ W 1,∞

Th
, and the solution of (2.8)–(2.12) is sufficiently smooth, then there exists

positive constant C independent of h and c0, such that the solution of (7.1)–(7.5) satisfies

∥σ − σh∥l∞(0,T ;H (div;Ω)) + ∥u − uh∥l∞(0,T ;L2(Ω)) + ∥γ − γh∥l∞(0,T ;L2(Ω)) + ∥z − zh∥l∞(0,T ;L2(Ω))

+ ∥p − ph∥l∞(0,T ;L2(Ω)) + ∥σ − σh∥l2(0,T ;H (div;Ω)) + ∥u − uh∥l2(0,T ;L2(Ω))

+ ∥γ − γh∥l2(0,T ;L2(Ω)) + ∥z − zh∥l2(0,T ;H (div;Ω)) + ∥p − ph∥l2(0,T ;L2(Ω))

≤ Ch
(
∥σ∥H1(0,T ;H1(Ω)) + ∥div σ∥L∞(0,T ;H1(Ω)) + ∥div σ∥L2(0,T ;H1(Ω))

+ ∥u∥L2(0,T ;H1(Ω)) + ∥u∥L∞(0,T ;H1(Ω)) + ∥γ ∥H1(0,T ;H1(Ω))

+ ∥z∥H1(0,T ;H1(Ω)) + ∥div z∥L2(0,T ;H1(Ω)) + ∥p∥H1(0,T ;H1(Ω))

)
+ C∆t

(
∥σ∥H2(0,T ;L2(Ω)) + ∥u∥H2(0,T ;L2(Ω)) + ∥γ ∥H2(0,T ;L2(Ω)) + ∥p∥H2(0,T ;L2(Ω))

)
. (7.6)

.1. Reduction to a cell-centered displacement–pressure system

The vertex quadrature rule applied to the stress and velocity bilinear forms,
(

Aσ n
h , τ

)
Q in (7.1) and

(
K −1zn

h, ζ
)

Q
n (7.4), respectively results in the corresponding matrices Aσσ and Azz being block-diagonal with blocks associated
ith the mesh vertices. More precisely, consider any interior vertex r shared by k edges or faces e1, . . . , ek as

hown in Fig. 1. Let ζ1, . . . , ζk be the velocity degrees of freedom associated with the vertex and let z1, . . . , zk

e the corresponding normal velocity values, see Fig. 1(a). For the sake of visualization, the normal velocities are
rawn at a distance from the vertex. The vertex quadrature rule (K −1

·, ·)Q localizes the interaction of basis functions
round each vertex by decoupling them from the rest of the basis functions, so taking ζ1, . . . , ζk in (7.4) results
n a local k × k linear system. Therefore Azz is block-diagonal with k × k blocks associated with mesh vertices.
imilarly, Aσσ is block-diagonal with d k×d k blocks, see Fig. 1(b). Due to the positive definiteness of A and K and
emma 3.1, the blocks of Aσσ and Azz are symmetric and positive definite. Therefore the velocity and stress can be
asily eliminated by solving small local linear systems. Moreover, the rotation can be further eliminated as follows.
et A be the matrix corresponding to

(
σ n, ξ

)
in (7.3). The localization of the basis function interaction around
σγ h Q
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Fig. 1. Interactions of the degrees of freedom in the MSMFE–MFMFE method.

vertices due to the vertex quadrature rule implies that Aσγ is block-diagonal with d(d − 1)/2 × dk blocks. After
the stress elimination, the rotation matrix is Aσγ A−1

σσ AT
σγ . Since Aσσ is block-diagonal with dk × dk blocks, then

Aσγ A−1
σσ AT

σγ is block-diagonal with d(d − 1)/2 × d(d − 1)/2 blocks. In fact, for d = 2 the matrix is diagonal. Each
block couples the rotation degrees of freedom associated with the corresponding vertex. The blocks are symmetric
and positive definite due to the inf–sup condition (4.2) and the positive definiteness of A−1

σσ . Therefore the rotation
can be easily eliminated, resulting in a cell-centered displacement–pressure system. The above procedure can be
expressed in matrix form as follows, where σ is the algebraic vector corresponding to σ n

h , etc.:⎛⎜⎜⎜⎜⎝
Aσσ AT

σu AT
σγ 0 AT

σ p
−Aσu 0 0 0 0
−Aσγ 0 0 0 0

0 0 0 Azz AT
zp

Aσ p 0 0 −Azp App

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
σ

u
γ

z
p

⎞⎟⎟⎟⎟⎠
σ=−A−1

σσ AT
σu u−A−1

σσ AT
σγ γ−A−1

σσ AT
σ p p

−−−−−−−−−−−−−−−−−−−−−→

⎛⎜⎜⎝
Aσu A−1

σσ AT
σu Aσu A−1

σσ AT
σγ 0 Aσu A−1

σσ AT
σ p

Aσγ A−1
σσ AT

σu Aσγ A−1
σσ AT

σγ 0 Aσγ A−1
σσ AT

σ p
0 0 Azz AT

zp
−Aσ p A−1

σσ AT
σu −Aσ p A−1

σσ AT
σγ −Azp App − Aσ p A−1

σσ AT
σ p

⎞⎟⎟⎠
⎛⎜⎜⎝

u
γ

z
p

⎞⎟⎟⎠
z=−A−1

zz AT
zp p

−−−−−−−→

⎛⎝ Auσu Auσγ Auσ p

AT
uσγ Aγ σγ Aγ σ p

−AT
uσ p −AT

γ σ p Apσ zp

⎞⎠⎛⎝u
γ

p

⎞⎠
γ=−A−1

γ σγ Aγ σ p p−A−1
γ σγ AT

uσγ u
−−−−−−−−−−−−−−−−−→

(
Auσu − Auσγ A−1

γ σγ AT
uσγ Auσ p − Auσγ A−1

γ σγ Aγ σ p

−AT
uσ p + AT

γ σ p A−1
γ σγ AT

uσγ Apσ zp + AT
γ σ p A−1

γ σγ Aγ σ p

)(
u
p

)
, (7.7)

here

Auσu := Aσu A−1
σσ AT

σu, Auσγ := Aσu A−1
σσ AT

σγ ,

Aγ σγ := Aσγ A−1
σσ AT

σγ , Auσ p := Aσu A−1
σσ AT

σ p,

Aγ σ p := Aσγ A−1
σσ AT

σ p, Apσ zp := App − Aσ p A−1
σσ AT

σ p + Azp A−1
zz AT

zp.

emark 7.1. The expression z = −A−1
zz AT

zp p above means that the normal velocity at each vertex is explicitly
xpressed in terms of the pressures at the centers of the elements that share that vertex, see also Fig. 1(a). Similarly,

= −A−1
σσ AT

σuu − A−1
σσ AT

σγ γ − A−1
σσ AT

σ p p means that the normal stress at each vertex is expressed in terms of

he displacements, rotations, and pressures at the centers of the elements that share the vertex. These expressions
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motivate the terms multipoint flux and multipoint stress. They are used to recover the velocity and the stress after
solving for the pressure and the displacement.

Proposition 7.1. The cell-centered displacement–pressure matrix obtained in (7.7) is block-skew-symmetric and
positive definite.

Proof. Let us denote the four blocks of the matrix in (7.7) by Ai j , i, j = 1, 2. The block-skew-symmetric property
ollows from

−AT
12 = −(Auσ p − Auσγ A−1

γ σγ Aγ σ p)T
= −AT

uσ p + AT
γ σ p A−1

γ σγ AT
uσγ = A21,

sing that Aγ σγ is symmetric. Therefore, for any
(
vT wT

)
̸= 0, we have(

vT wT
) (A11 A12

A21 A22

)(
v

w

)
= vT A11v + wT A22w,

o we need to show that the diagonal blocks are positive definite. For A11 we have

A11 = Auσu − Auσγ A−1
γ σγ AT

uσγ = Aσu A−1
σσ AT

σu − Aσu A−1
σσ AT

σγ (Aσγ A−1
σσ AT

σγ )−1 Aσγ A−1
σσ AT

σu,

hich is a Schur complement of the displacement–rotation matrix(
Aσu A−1

σσ AT
σu Aσu A−1

σσ AT
σγ

Aσγ A−1
σσ AT

σu Aσγ A−1
σσ AT

σγ

)
.

he latter is symmetric and positive definite, since for any
(
vT ξ T

)
̸= 0,(

vT ξ T
) (Aσu A−1

σσ AT
σu Aσu A−1

σσ AT
σγ

Aσγ A−1
σσ AT

σu Aσγ A−1
σσ AT

σγ

)(
v

ξ

)
= (AT

σuv + AT
σγ ξ )T A−1

σσ (AT
σuv + AT

σγ ξ ) > 0,

ue to the positive definiteness of Aσσ and the elasticity inf–sup condition (4.2). Then A11 is also symmetric and
ositive definite, using [19, Theorem 7.7.6]. For A22 we have

A22 = App − Aσ p A−1
σσ AT

σ p + Azp A−1
zz AT

zp + AT
γ σ p A−1

γ σγ Aγ σ p.

he matrix App − Aσ p A−1
σσ AT

σ p is positive semidefinite, using [19, Theorem 7.7.6], since it is a Schur complement
f the matrix

Aσ p
:=

(
Aσσ AT

σ p
Aσ p App

)
,

hich is positive semidefinite, since (τ T wT ) Aσ p (τ w)T
= ∥A1/2(τh + αwh I )∥2

Q . The middle matrix Azp A−1
zz AT

zp
s positive definite, using that Azz is positive definite and the Darcy inf–sup condition (4.1). Finally, the matrix
AT
γ σ p A−1

γ σγ Aγ σ p is positive semidefinite, since Aγ σγ is positive definite. Combined, the three properties imply that
A22 is symmetric and positive definite. □

emark 7.2. The positive-definiteness of the matrix in (7.7) established in Proposition 7.1 allows for an efficient
rylov space iterative solver like GMRES to be used for the solution of the reduced displacement–pressure system.
oreover, since the diagonal blocks are symmetric and positive definite, the block-diagonal part of the matrix

rovides an efficient preconditioner.

. Numerical results

The proposed fully discrete MSMFE–MFMFE method has been implemented on simplicial grids using the
EniCS Project [30] and on quadrilaterals using the deal.II finite element library [4]. In this section we provide
everal numerical tests verifying the theoretical convergence rates and illustrating the behavior of the method. We

lso present an example showing the locking-free property of the method in the case of a small storativity coefficient.
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Table 1
Parameters for Examples 1.

Parameter Symbol Values

Lame coefficient µ 100.0
Lame coefficient λ 100.0
Mass storativity c0 1.0
Biot–Willis constant α 1.0
Total time T 10−3

Time step ∆t 10−4

8.1. Example 1

We first verify the convergence of the method on simplicial grids in three dimensions. We use the unit cube as
computational domain and choose the analytical solution for pressure and displacement as follows:

p = cos(t)(x + y + z + 1.5), u = sin(t)

⎛⎝ −0.1(ex
− 1) sin(πx) sin(πy)

−(ex
− 1)(y − cos( π12 )(y − 0.5) + sin( π12 )(z − 0.5) − 0.5)

−(ex
− 1)(z − sin( π12 )(y − 0.5) − cos( π12 )(z − 0.5) − 0.5)

⎞⎠ .
he permeability tensor is of the form

K =

⎛⎝x2
+ y2

+ 1 0 0
0 z2

+ 1 sin(xy)
0 sin(xy) x2 y2

+ 1

⎞⎠ ,
nd the rest of the parameters are presented in Table 1.

Using the analytical solution provided above and Eqs. (2.3)–(2.4), we obtain the rest of variables and the right-
and side functions. Dirichlet boundary conditions for the pressure and the displacement are specified on the entire
oundary of the domain.

In Table 2 we present the relative errors and spatial convergence rates on a sequence of mesh refinements. We take
sufficiently small time step ∆t = 10−4 to ensure that the time discretization error does not dominate. We observe

t least first order of convergence in all norms, as predicted by the theory. The error ∥γ −γh∥ exhibits convergence
f order higher than one, which can be attributed to the linear polynomial approximation. The numerical solution
n the finest level at the final time is shown in Fig. 2.

.2. Example 2

In the second test case we study the convergence of the method on h2-parallelogram grids. We consider the
nalytical solution

p = exp(t)(sin(πx) cos(πy) + 10), u = exp(t)
(

x3 y4
+ x2

+ sin((1 − x)(1 − y)) cos(1 − y)
(1 − x)4(1 − y)3

+ (1 − y)2
+ cos(xy) sin(x)

)
,

nd the permeability tensor

K =

(
(x + 1)2

+ y2 sin(xy)
sin(xy) (x + 1)2

)
.

n this example as elasticity parameters we use the Poisson ratio ν and the Young’s modulus E . We set ν = 0.2
nd take E to vary over the domain, E = sin(5πx) sin(5πy) + 5. The Lamé parameters are then computed using
he well known relations

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

.

In this test case we also illustrate the behavior of the method for small mass storativity and set c0 = 10−5. The
Biot–Willis constant α and the time discretization parameters are the same as in Table 1.
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Table 2
Example 1, numerical errors and convergence rates.

h ∥σ − σh∥L2(0,T ;L2(Ω)) ∥div (σ − σh )∥L2(0,T ;L2(Ω)) ∥u − uh∥L2(0,T ;L2(Ω))

Error Rate Error Rate Error Rate

1/4 1.55E−02 – 2.29E−01 – 8.43E−01 –
1/8 4.97E−03 1.6 1.14E−01 1.0 2.30E−01 1.0
1/16 2.16E−03 1.2 5.65E−02 1.0 8.85E−02 1.0
1/32 1.03E−03 1.1 2.82E−02 1.0 4.11E−02 1.0

h ∥γ − γh∥L2(0,T ;L2(Ω)) ∥z − zh∥L2(0,T ;L2(Ω)) ∥div (z − zh )∥L2(0,T ;L2(Ω))

Error Rate Error Rate Error Rate

1/4 7.65E−01 – 4.34E−04 – 5.85E−02 –
1/8 2.32E−01 1.7 2.26E−04 0.9 2.31E−02 1.3
1/16 7.04E−02 1.7 1.14E−04 1.0 1.05E−02 1.1
1/32 2.13E−02 1.7 5.68E−05 1.0 5.00E−03 1.1

h ∥p − ph∥L2(0,T ;L2(Ω)) ∥σ − σh∥L∞(0,T ;L2(Ω)) ∥u − uh∥L∞(0,T ;L2(Ω))

Error Rate Error Rate Error Rate

1/4 2.58E−01 – 2.29E−01 – 2.55E+00 –
1/8 1.26E−01 1.0 1.14E−01 1.0 7.12E−01 1.8
1/16 6.18E−02 1.0 5.67E−02 1.0 2.91E−01 1.3
1/32 3.09E−02 1.0 2.82E−02 1.0 1.38E−01 1.1

h ∥γ − γh∥L∞(0,T ;L2(Ω)) ∥z − zh∥L∞(0,T ;L2(Ω)) ∥p − ph∥L∞(0,T ;L2(Ω))

Error Rate Error Rate Error Rate

1/4 2.35E+00 – 4.78E−04 – 2.58E−01 –
1/8 7.06E−01 1.7 2.57E−04 0.9 1.26E−01 1.0
1/16 2.12E−01 1.7 1.33E−04 0.9 6.21E−02 1.0
1/32 6.37E−02 1.7 6.69E−05 1.0 3.09E−02 1.0

The computational domain for this case is obtained as follows. We start with the unit square and partition it into
4 × 4 square mesh with h =

1
4 . We then move the mesh points using the map

x = x̂ + 0.03 cos(3π x̂) cos(3π ŷ), y = ŷ − 0.04 cos(3π x̂) cos(3π ŷ),

hich gives a deformed computational domain with a 4 × 4 quadrilateral grid, see Fig. 3. A sequence of mesh
efinements is obtained by a uniform refinement of the elements of the coarse grid. The resulting sequence of meshes
atisfies the h2-parallelogram property (6.1).

As in the previous test case, we observe at least first order convergence for all variables in their respective
orms, see Table 3. The computed solution with h =

1
32 at the final time is shown in Fig. 3. This example not only

onfirms the theoretical convergence rates on h2-parallelogram grids, but also illustrates that the method can handle
ell variable elasticity parameters and small mass storativity.

.3. Example 3

We next focus on studying the locking-free properties of the MSMFE–MFMFE method when applied to the
olution of a two-dimensional footing problem [17,37]. A load of given intensity σ0 is applied along a strip along
he top of a rectangular block of porous, saturated, and deformable soil. The lateral sides and the bottom of the
lock are fixed. The entire boundary is free to drain. The computational domain is Ω = [−50, 50] × [0, 75]. We
abel the middle section of the top boundary, x ∈ [−50/3, 50/3], y = 75, by Γ1, the rest of the top side by Γ2, and
ll other boundaries by Γ3. The boundary conditions are as follows:

σ n = (0,−σ0)T , on Γ1,

σ n = (0, 0)T , on Γ2,

u = (0, 0)T , on Γ3,
p = 0, on ∂Ω .
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Fig. 2. Example 1, computed solution with h =
1
32 at the final time.

Fig. 3. Example 2, computed solution with h =
1
32 at the final time.
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Table 3
Example 2, numerical errors and convergence rates.

h ∥σ − σh∥L2(0,T ;L2(Ω)) ∥div (σ − σh )∥L2(0,T ;L2(Ω)) ∥u − uh∥L2(0,T ;L2(Ω))

Error Rate Error Rate Error Rate

1/8 9.65E−02 – 1.30E−01 – 8.02E−02 –
1/16 4.97E−02 1.0 6.46E−02 1.0 3.97E−02 1.0
1/32 2.52E−02 1.0 3.23E−02 1.0 1.98E−02 1.0
1/64 1.27E−02 1.0 1.61E−02 1.0 9.87E−03 1.0
1/128 6.35E−03 1.0 8.07E−03 1.0 4.93E−03 1.0

h ∥γ − γh∥L2(0,T ;L2(Ω)) ∥z − zh∥L2(0,T ;L2(Ω)) ∥div (z − zh )∥L2(0,T ;L2(Ω))

Error Rate Error Rate Error Rate

1/8 2.03E−01 – 1.44E−01 – 2.88E−01 –
1/16 7.51E−02 1.4 7.05E−02 1.0 1.75E−01 0.7
1/32 2.77E−02 1.4 3.47E−02 1.0 8.18E−02 1.1
1/64 1.02E−02 1.5 1.72E−02 1.0 3.35E−02 1.3
1/128 3.70E−03 1.5 8.60E−03 1.0 1.39E−02 1.3

h ∥p − ph∥L2(0,T ;L2(Ω)) ∥σ − σh∥L∞(0,T ;L2(Ω)) ∥u − uh∥L∞(0,T ;L2(Ω))

Error Rate Error Rate Error Rate

1/8 8.97E−03 – 9.65E−02 – 8.02E−02 –
1/16 4.49E−03 1.0 4.97E−02 1.0 3.97E−02 1.0
1/32 2.24E−03 1.0 2.52E−02 1.0 1.98E−02 1.0
1/64 1.12E−03 1.0 1.27E−02 1.0 9.87E−03 1.0
1/128 5.61E−04 1.0 6.35E−03 1.0 4.93E−03 1.0

h ∥γ − γh∥L∞(0,T ;L2(Ω)) ∥z − zh∥L∞(0,T ;L2(Ω)) ∥p − ph∥L∞(0,T ;L2(Ω))

Error Rate Error Rate Error Rate

1/8 2.03E−01 – 1.60E−01 – 9.03E−03 –
1/16 7.51E−02 1.4 8.07E−02 1.0 4.50E−03 1.0
1/32 2.77E−02 1.4 3.69E−02 1.1 2.24E−03 1.0
1/64 1.02E−02 1.5 1.75E−02 1.1 1.12E−03 1.0
1/128 3.70E−03 1.5 8.64E−03 1.0 5.61E−04 1.0

The model parameters are: Young’s modulus E = 3 · 104 (N/m2), permeability K = 10−4 (m2/Pa), load intensity
σ0 = 104 (N/m2) and mass storativity c0 = 0.001. We test the behavior of the method in the incompressibility limit

y setting Poisson ratio ν = 0.4995. The initial pressure and displacement are set to zero. We discretize the domain
nto 62025 unstructured simplices and solve the problem for total time of T = 50s using time step of size ∆t = 1s.

It is observed in [17,37] that for this value of the Poisson ratio, inf–sup unstable discretizations may result in
purious pressure modes and/or locking in the computed displacement. In Fig. 4 we show the solution obtained
y MSMFE–MFMFE method at the final time. For visualization purpose, the solution is plotted on the deformed
omain. Neither spurious oscillations in the pressure, nor locking effects in the displacement are present, illustrating
hat the proposed method inherits the locking-free properties of the classical mixed method it is derived from. We
urther note the smooth stress approximation and the accurate resolution of the pressure and velocity boundary
ayers, as well as the rotation singularities.

.4. Example 4

In the last example we further illustrate the locking-free properties of the MSMFE–MFMFE method in a different
arameter regime. It is shown in [41] that, with continuous finite elements for the elasticity part of the system,
ocking occurs when the storativity and permeability coefficients are very small. In this regime, the locking is
xhibited as spurious pressure oscillations at early times. A typical model problem that illustrates such behavior is
he cantilever bracket problem [29]. The computational domain is the unit square. We impose a no-flow boundary
ondition along all sides. The deformation is fixed along the left edge, and a downward traction is applied along the
26
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Fig. 4. Example 3, computed solution at the final time on the deformed domain.

op. The bottom and right sides are traction-free. More precisely, with the sides of the domain labeled as Γ1, . . . ,Γ4,
tarting from the bottom side and going counterclockwise, we impose

z · n = 0, on ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

σ n = (0,−1)T , on Γ3,

σ n = (0, 0)T , on Γ1 ∪ Γ2,

u = (0, 0)T , on Γ4.

e use the same physical parameters as in [41], as they typically induce locking:

E = 105, ν = 0.4, α = 0.93, c0 = 0, K = 10−7.

he time step is ∆t = 0.001 and the total simulation time is T = 1.
Fig. 5(a) shows that the MSMFE–MFMFE method yields a smooth pressure field, in contrast to the non-physical

heckerboard pattern that one obtains with continuous elasticity elements at the early time steps, see [41]. In
ddition, Fig. 5(b) shows the pressure solution along different x-lines at time t = 0.005. It illustrates the lack
f oscillations and shows that our solution agrees with the one obtained by DG-mixed or stabilized CG-mixed
iscretizations [29,41]. We remark that our method requires solving a much smaller algebraic system than these
wo methods, which furthermore is positive definite and more efficient to solve.
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Fig. 5. Example 3, computed pressure solutions.
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