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Abstract
We consider the densest k-subgraph problem, which seeks to identify the k-node
subgraph of a given input graph with maximum number of edges. This problem is
well-known to be NP-hard, by reduction to the maximum clique problem. We pro-
pose a new convex relaxation for the densest k-subgraph problem, based on a nuclear
norm relaxation of a low-rank plus sparse decomposition of the adjacency matrices
of k-node subgraphs to partially address this intractability. We establish that the dens-
est k-subgraph can be recovered with high probability from the optimal solution of
this convex relaxation if the input graph is randomly sampled from a distribution of
random graphs constructed to contain an especially dense k-node subgraph with high
probability. Specifically, the relaxation is exact when the edges of the input graph
are added independently at random, with edges within a particular k-node subgraph
added with higher probability than other edges in the graph. We provide a suffi-
cient condition on the size of this subgraph k and the expected density under which
the optimal solution of the proposed relaxation recovers this k-node subgraph with
high probability. Further, we propose a first-order method for solving this relaxation
based on the alternating direction method of multipliers, and empirically confirm
our predicted recovery thresholds using simulations involving randomly generated
graphs, as well as graphs drawn from social and collaborative networks.
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1 Introduction

We consider the densest k-subgraph problem: given graph G = (V , E), identify the
k-node subgraph of G of maximum density, i.e., maximum average degree. Equiv-
alently, the problem reduces to finding the k-node subgraph of G with maximum
number of edges. It is easy to see that the densest k-subgraph problem is NP-hard by
reduction to the maximum clique problem, well-known to be NP-hard [1]. Indeed,
if G contains a clique of size k, it would induce the densest k-subgraph of G;
any polynomial-time algorithm for densest k-subgraph would immediately provide
a polynomial-time algorithm for maximum clique. Moreover, it has been shown by
[2–4] that the densest k-subgraph problem does not admit polynomial-time approx-
imation schemes in general. Despite this intractability, the identification of dense
subgraphs plays a significant role in many practical applications, especially in the
analysis of web graphs, and social and biological networks [5–10].

We propose a new convex relaxation for the densest k-subgraph problem to
address this intractability. Although we do not, and should not, expect our algorithm
to provide a good approximation of the densest k-subgraph for all graphs, we will
show that it is functionally equivalent to the densest k-subgraph problem for a large
class of problem instances. In particular, suppose that the random input graph con-
sists of a k-node subgraph H with edges added with significantly higher probability
than those edges outside H . We will show that if k is sufficiently large then H is the
densest k-subgraph of G, and it can be recovered from the optimal solution of our
convex relaxation.

This result can be thought of as a specialization of recent developments regarding
the recovery of clusters in graphs. In graph clustering, one seeks to partition the nodes
of a given graph into dense subgraphs. Several recent results [11–28], among others,
have established sufficient conditions on the generative model under which dense
subgraphs can be recovered in a random graph, typically from the solution of some
convex relaxation. These results assume that the random graph is generated using
some generalization of the stochastic block model (see [29]), which assumes that the
edges are added within blocks or clusters with higher frequency than between blocks,
and provide sufficient conditions on the number and relative sizes of clusters, and the
probabilities of adding edges that guarantee that the underlying block structure can
be recovered in polynomial-time. The recent survey article [30] provides an overview
of such recovery guarantees.

Relatively few analogous results exist for the densest k-subgraph problem. Ames
and Vavasis [31, 32] consider convex relaxations for the maximum clique problem.
Given an input graph, the maximum clique problem aims to identify the largest clique
in the graph, that is, the vertex set of the largest complete subgraph (see [33, 34]
for further discussion of the maximum clique problem). Ames and Vavasis [31, 32]
establish that the maximum clique can be recovered from the optimal solution of
particular convex relaxation if the input graph consists of a single large complete
graph that is obscured by noise in the form of random edge additions and deletions.
In particular, both results show that hidden cliques of size at least Ω(

√
n) can be
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identified with high probability for n-node random graphs constructed so that the
probability of adding an edge between nodes in the hidden clique is significantly
higher than adding other potential edges to the graph. The notation f (x) = Ω(g(x))

indicates that there is some constant C such that f (x) ≥ Cg(x) for all sufficiently
large x and we say that an event occurs with high probability if the probability of the
event tends to 1 polynomially as the size of the graph N tends to ∞. The latter result
recasts the hidden clique problem as that of finding the densest k-subgraph, where k

is the size of the hidden clique. Similar theoretical recovery guarantees can be found
in [35–40]. We delay the derivation of our convex relaxation and statement of the
general recovery guarantee until Section 2.

We generalize these results for the densest subgraph problem to obtain an anal-
ogous recovery guarantee for the densest submatrix problem, which seeks to find
the densest submatrix of given size. That is, we seek the submatrix of desired size
with maximum number of nonzero entries. Similar results for the submatrix local-
ization problem, where one seeks to find a block of entries with elevated mean in a
random matrix, were presented in [41–43]. We will see that our convex relaxation
correctly identifies the densest submatrix (of fixed size) in random matrices provided
that entries within this submatrix are significantly more likely to be nonzero than an
arbitrary entry of the matrix. We present our generalization of the densest subgraph
problem to the densest submatrix problem and the statement of our theoretical recov-
ery guarantees in Section 3. We provide proofs of our main results in Section 4 and
conclude with discussion of a first-order method for solving our convex relaxations
and empirical results illustrating efficacy of our approach in Section 5.

2 Relaxation of the Densest k-Subgraph Problem and Perfect
Recovery of a Planted Clique

Our relaxation hinges on the observation, made in [32], that the adjacency matrix of
any subgraph of G can be represented as the difference of a rank-one matrix and a
binary correction matrix; this observation is closely related to the sparse plus low-
rank decomposition of clustered graphs first considered in [25, 44], although with the
restriction to submatrices of the adjacency matrix. Let V̂ ⊆ V be a subset of nodes
of G = (V , E). We denote by G(V̂ ) the subgraph induced by V̂ ; that is, G(V̂ ) is
the graph with node set V̂ and edge set given by the subset of E with both endpoints
in V̂ . Let v ∈ RV be the characteristic vector of V̂ : vi = 1 if i ∈ V̂ and vi = 0
otherwise for all i ∈ V . The matrix X̂ = vvT is a rank-one binary matrix with
nonzero entries indexed by V̂ × V̂ . If G(V̂ ) is a complete subgraph, i.e., ij ∈ E for
all i, j ∈ V̂ , then X̂ is equal to the sum of the adjacency matrix of G(V̂ ) and the
binary diagonal matrix I

V̂
with nonzero entries indexed by V̂ ; we call this sum the

perturbed adjacency matrix of G(V̂ ), and denote it by Ã
G(V̂ )

.

If G(V̂ ) is not a complete subgraph, then there is some (i, j) ∈ V ×V , i �= j such
that ij /∈ E. Let Ω denote the set of all such (i, j). For each (i, j) ∈ Ω , we have
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X̂ij = 1, while [Ã
G(V̂ )

]
ij

= 0. It follows that Ã
G(V̂ )

= X̂ − PΩ(X̂), where PΩ is

the projection onto the set of matrices having support contained in Ω , defined by

[PΩ(M)] =
{

Mij , if(i, j) ∈ Ω

0, otherwise.

We call (X̂, Ŷ ) := (X̂, PΩ(X̂)) thematrix representation of the subgraph G(V̂ ). The
density of G(V̂ ) is given by

d(G(V̂ )) = 1

k

((
k

2

)
− 1

2
‖PΩ(X̂)‖0

)
,

where ‖M‖0 denotes the number of nonzero entries of M , because ‖PΩ(X̂)‖0
is equal to twice the number of nonadjacent nodes in V̂ . Moreover, the entries
of the correction matrix PΩ(X̂) are binary, which implies that ‖PΩ(X̂)‖0 =∑

i,j∈V [PΩ(X̂)]ij . Therefore, we may pose the densest k-subgraph problem as the
rank-constrained binary program

min Tr(YeeT )

s.t. Tr(XeeT ) = k2, PΩ(X − Y ) = 0, rank(X) = 1
X = XT , Y = Y T , X ∈ {0, 1}V ×V , Y ∈ {0, 1}V ×V ,

(1)

where Tr : Rn×n → Rn denotes the matrix trace function, and e denotes the all-
ones vector in RV . Unfortunately, combinatorial optimization problems involving
rank and binary constraints are intractable in general. In particular, the densest k-
subgraph problem is NP-hard and, hence, we cannot expect to be able to solve (1)
efficiently. Relaxing the rank constraint with a nuclear norm penalty term given by
‖X‖∗ = ∑N

i=1 σi(X) as in [45], the binary constraints with box constraints, and
ignoring the symmetry constraints yields the convex program

min ‖X‖∗ + γTr(YeeT )

s.t. Tr(XeeT ) = k2, PΩ(X − Y ) = 0, 0 ≤ X ≤ eeT , 0 ≤ Y ,
(2)

where γ > 0 is a regularization parameter chosen to control emphasis between the
two objectives.

As mentioned earlier, we do not expect the solution of Eq. 2 to give a good approx-
imation of the densest k-subgraph for an arbitrary graph. We instead restrict our focus
to those graphs which we can expect to contain a single especially dense k-subgraph
with high probability.

Definition 2.1 We construct the edge set of an N-node random graph G = (V , E)

as follows. Let V ∗ ⊆ V be a k-subset of nodes; for each (i, j) ∈ V ∗ ×V ∗, we add ij

to E independently with probability q. For each (i, j) ∈ (V × V ) − (V ∗ × V ∗), we
add ij to E independently with probability p < q. We say such a graph G is sampled
from the planted dense k-subgraph model.

This model, considered in [32], is a generalization of the planted clique model con-
sidered in [31], where q is chosen to be q = 1. On the other hand, the planted dense
k-subgraph model is a special case of the generalized stochastic block model [44],
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corresponding to a graph with exactly one cluster of size k and N − k outlier nodes.
Note that any graph G sampled from the planted dense k-subgraph contains a k-
subgraph, G(V ∗), with higher density than the rest of the graph in expectation. Our
goal is to derive conditions on the size k of this subgraph and the edge densities p

and q that ensure recovery of the planted subgraph G(V ∗) from the optimal solution
of Eq. 2. The following theorem provides such a sufficient condition.

Theorem 2.1 Suppose that the N-node graph G = (V , E) is sampled from the
planted dense k-subgraph model with edge probabilities q and p respectively. Let
(X∗, Y ∗) denote the matrix representation of the planted dense k-subgraph G(V ∗).
Then, constants c1, c2, c3 > 0 exist such that if

q − p ≥ c1 max

{√
max{σ 2

q , σ 2
p} logN

k
,
logN

k

√
σ 2

pN,
(logN)3/2

k

}
(3)

then (X∗, Y ∗) is the unique optimal solution of Eq. 2 for penalty parameter

γ ∈
(

c2

(q − p)k
,

c3

(q − p)k

)
, (4)

and G(V ∗) is the unique densest k-subgraph of G with high probability; here σ 2
q and

σ 2
p are equal to the edge creation variances q(1−q) and p(1−p) inside and outside

of the planted dense k-subgraph, respectively.

Here, and in the rest of the paper, an event holding with high probability (w.h.p.)
means that the event occurs with probability tending polynomially to one asN → ∞;
that is, there are scalars ĉ1, ĉ2 > 0 such that the event occurs with probability at least
1− ĉ1N

−ĉ2 . Note that Eq. 3 is only satisfiable when k = Ω((logN)3/2). To illustrate
the contribution of Theorem 2.1, we consider a few choices of p, q, and k.

First, suppose that p and q are fixed so that the edge densities in G are fixed as we
vary N . In this case, Theorem 2.1 states that we may recover G(V ∗), with high prob-
ability, provided that k = �

(√
N
)
. This bound is identical to that found many times

in the planted clique literature [31, 35, 46–48], up to constants and the logarithmic
term. It is widely believed that finding planted cliques of size o(

√
N) is intractable;

indeed, several heuristic approaches have recently been proven to fail to recover
planted cliques of size o(

√
N) in polynomial-time [2–4] and this intractability has

been exploited in cryptographic applications [49].
On the other hand, our bound shows that planted cliques of size much smaller

than
√

N can be recovered in the presence of sparse noise. This should not be seen
as a proof that we can recover planted cliques of size o(

√
N) in general, but rather

evidence of the intimate relationship between the size of hidden cliques recoverable
and the noise obscuring them. If very little noise in the form of diversionary edges is
hiding the signal, here the planted clique, we should expect the signal to be signifi-
cantly easier to recover. This is reflected in the fact that we can recover significantly
smaller cliques than o(

√
N) in this setting. For example, let q be a fixed constant

and let p vary with N such that p ≤ logN/N . The probability of adding an edge
outside of G(V ∗) tends to zero as k, N → ∞. Further, the left-hand side of Eq. 3
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tends to q as N → ∞, and the dominant term in the right-hand side is (logN)3/2/k.
This implies that we can have exact recovery of the hidden clique w.h.p. provided
k = Ω

(
(logN)3/2

)
. This lower bound on the size of recoverable k-subgraph matches

that for identifying clusters in sparse graphs provided in the graph clustering litera-
ture, albeit for the case where the graph contains the single cluster indexed by V ∗
surrounded by many outlier nodes (see [30] and the references within). Moreover,
this lower bound improves significantly upon that given by [32], where it is shown
to that k = Ω(N1/3) is sufficient for exact recovery w.h.p. in the presence of sparse
noise.

3 The Densest Submatrix Problem

The densest k-subgraph problem is a specialization of the far more general densest
submatrix problem. Let [M] = {1, 2, . . . , M} for each positive integer M . Given a
matrixA ∈ RM×N , the densest m×n-submatrix problem seeks subsets Ū ⊆ [M] and
V̄ ⊆ [N] of cardinality |Ū | = m and |V̄ | = n, respectively, such that the submatrix
A[Ū , V̄ ] with rows index by Ū and columns indexed by V̄ contains the maximum
number of nonzero entries. It should be clear that this specializes immediately to
the densest k-subgraph problem when the input matrix is the perturbed adjacency
matrix A = AG + I of the input graph and m = n = k. However, the densest
m × n-submatrix problem allows far more flexible problem settings.

For example, the densest submatrix problem also specializes immediately to the
maximum edge/density biclique problem. Let G = (U, V, E) be a bipartite graph.
Given integer m, n, the decision version of the maximum edge biclique problem
determines if G contains an m×n biclique, i.e., whether there are vertex sets Ū ⊆ U ,
V̄ ⊆ V of cardinality |Ū | = m and |V̄ | = n such that each vertex in Ū is adjacent
to every vertex in V̄ . This problem immediately specializes to the densest m × n-
submatrix problem with A equal to the (U, V )-block of the adjacency matrix of
G. Similar specializations exist for finding the densest subgraph in directed graphs,
hypergraphs, and so on.

Let Ω denote the index set of zero entries of a given matrix A ∈ RM×N . Without
loss of generality, we may assume that the entries of A are binary. If not, then we may
replace A with the binary matrix having the same sparsity pattern without changing
the index set of the densest m × n-submatrix. We would like to obtain a rank-one
matrix X with mn nonzero entries with minimum number of disagreements A on Ω:

min
X,Y∈{0,1}M×N

Tr(YeeT )

s.t. Tr(XeeT ) = mn, PΩ(X − Y ) = 0, rankX = 1,
(5)

where Y is used to count the number of disagreements between A and X. Relaxing
binary and rank constraints as before, we obtain the convex relaxation

min ‖X‖∗ + γTr(YeeT )

s.t. Tr(XeeT ) = mn, PΩ(X − Y ) = 0, 0 ≤ X ≤ eeT , 0 ≤ Y ,
(6)
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where γ > 0 is a regularization parameter chosen to tune between the two objectives.
As before, we should expect to recover the solution of Eq. 5 from that of Eq. 6 when
A contains a single large dense m × n block. The following definition proposes a
class of random matrices with this property.

Definition 3.1 We construct an M × N random binary matrix A as follows. Let
U∗ ⊆ [M] and V ∗ ⊆ [N] be m and n-index sets. For each i ∈ U∗ and
j ∈ V ∗, we let aij = 1 with probability q and 0 otherwise. For each remain-
ing (i, j), we set aij = 1 with probability p < q and take aij = 0 otherwise.
We say such a matrix A is sampled from the planted dense m × n-submatrix
model.

The following theorem provides a sufficient condition for exact recovery of a
planted dense m × n-submatrix generalizing the analogous result for recovery of a
planted dense k-subgraph given by Theorem 2.1.

Theorem 3.1 Suppose that the matrix A ∈ RM×N is sampled from the planted
dense m × n-subgraph model with edge probabilities q and p, respectively, with
rows and columns of the planted dense subgraph indexed by U∗ and V ∗, respec-
tively. Let (X∗, Y ∗) denote the matrix representation of A(U∗, V ∗). Let Nmax :=
max{M, N} and nmin := min{m, n}. Then, there are constants c1, c2, c3 > 0 such
that if

q − p ≥ c1 max

{√
max{σ 2

q , σ 2
p} logNmax

nmin
,
logNmax

nmin

√
σ 2

pNmax,
(logNmax)

3/2

nmin

}
(7)

then (X∗, Y ∗) is the unique optimal solution of Eq. 6 for penalty parameter γ =
t/((q − p)nmin) for all c2 ≤ t ≤ c3, and A(U∗, V ∗) is the unique densest m ×
n-submatrix of A with high probability.

In the case when M = N and m = n, the inequality Eq. 7 specializes to Eq. 3,
although the constants c1, c2, c3 should differ due to the lack of an assumption of
symmetry of X∗ and Y ∗ in Theorem 3.1.

4 Derivation of the Recovery Guarantees

This section will consist of a proof of Theorem 3.1. The proof of Theorem 2.1
is identical except for minor modifications due to the symmetry of A. We begin
with the following theorem, which provides the required optimality conditions for
Eq. 6.

Theorem 4.1 Let Ū ⊆ {1, . . . , M} be an m-subset of [M] and let V̄ ⊆ {1, . . . , N}
be an n-subset of [N], and ū, v̄ be their characteristic vectors. Then, the solutions
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X̄ = ūv̄T and Ȳ = PΩ(X̄) are optimal for Eq. 6 if and only if there are dual
multipliers λ ≥ 0, Λ ∈ RM×N+ , Ξ ∈ RM×N+ , and W ∈ RM×N satisfying

ūv̄T

√
mn

+ W − λeeT + γ eeT − Ξ + Λ = 0 (8a)

Tr(ΛT (X̄ − eeT )) = 0 (8b)

Tr(ΞT Ȳ ) = 0 (8c)

W T ū = 0, Wv̄ = 0, ‖W‖ ≤ 1. (8d)

The proof of Theorem 4.1 is nearly identical to that of [32, Theorem 4.1] and is
omitted. Suppose that A is sampled from the planted dense (m, n)-subgraph model
with edge probabilities q > p. Our goal is to establish the conditions on m, n, q, p

given by Theorem 3.1 that guarantee exact recovery (w.h.p.) of the matrix represen-
tation (X̄, Ȳ ) of the planted submatrix with rows and columns given by Ū and V̄

respectively. Our approach follows that of [32, Section 4]. We first explicitly con-
struct dual multipliersW andΞ using the duality feasibility condition given by Eq. 8a
and the complementary slackness conditions given by Eq. 8b and Eq. 8c. We then
use the characterization of the subdifferential of the nuclear norm given by Eq. 8d to
construct the remaining dual variables λ, Λ. We conclude the proof by using concen-
tration inequalities to establish feasibility of the proposed dual variables under the
hypothesis of Theorem 3.1.

We choose W and Ξ according to the dual feasibility condition given by Eq. 8a so
that the orthogonality conditions Wv̄ = 0 and W T ū = 0 are satisfied. We consider
the following cases.

Case 1. If (i, j) ∈ Ū × V̄ − Ω , then Eq. 8a implies that

Wij = λ − 1√
mn

− Λij =: λ̃ − Λij ,

if we take Ξij = γ and define λ̃ := λ − 1/
√

mn.
Case 2. If i ∈ Ū , j ∈ V̄ , and (i, j) ∈ Ω , then we have X̄ij = Ȳij = 1/

√
mn, so

Ξij = 0 by Eq. 8c. It follows that Wij = λ̃ − γ − Λij in this case.
Case 3. If (i, j) /∈ Ū × V̄ such that (i, j) /∈ Ω then we take Wij = λ and
Ξij = γ .
Case 4. If i /∈ Ū , j /∈ V̄ such that (i, j) ∈ Ω , we take Wij = −λp/(1 − p) and
Ξij = γ − λ/(1 − p).
Case 5. If i ∈ Ū and j /∈ V̄ such that (i, j) ∈ Ω , we take

Wij = −λ

(
νj

m − νj

)
,

where νj denotes the number of nonzero entries in the j th column of A indexed
by rows in Ū , so that [W T ū]j = 0. By our choice of Wij , we have

Ξij = γ − λm

m − νj

.
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Case 6. If i /∈ Ū , j ∈ V̄ , and (i, j) ∈ Ω then we take

Wij = − λμi

n − μi

Ξij = γ − λn

n − μi

,

where μi denotes the number nonzero entries in the ith row of A indexed by
columns in V̄ .

By our choice of W and Ξ , we have [Wv̄]i = 0 for all i /∈ Ū and [W T ū]i = 0 for
all i /∈ V̄ . We choose the remaining dual variables λ and Λ so that [Wv̄]i = 0 for all
i ∈ Ū and [W T ū]i = 0 for all i ∈ V̄ .

The orthogonality conditions W T ū = 0 and Wv̄ = 0 define a linear system with
m + n equations for the mn unknown entries of Λ when all other dual variables
are fixed. To obtain a particular solution of this underdetermined linear system, we
make the additional assumption that Λ(Ū , V̄ ) has rank at most 2, taking the form
Λ(Ū , V̄ ) = yeT + ezT for some y ∈ Rm and z ∈ Rn. Under this assumption, the
conditions [Wv]i = 0, i ∈ Ū and [W T u]j = 0, j ∈ V̄ yield the linear system

(
nI eeT

eeT mI

)(
y

z

)
=

( −γ μ̄ + nλ̃e

−γ ν̄ + mλ̃e

)
, (9)

where the vectors μ̄ and ν̄ are defined by μ̄i = n−μi for all i ∈ Ū and ν̄j = m− νj

for all j ∈ V̄ . It is easy to see that this system is singular with null space spanned by
(e; −e). However, it is also easy to see that the unique solution of

(
nI + eeT 0

0 mI + eeT

)(
y

z

)
=

( −γ μ̄ + nλ̃e

−γ ν̄ + mλ̃e

)
(10)

is a solution of Eq. 9; see [32, Section 4.2] for further details. Applying the Sherman-
Morrison-Woodbury formula (see [50, Equation (2.1.4)]), we have

y = 1

n

(
λ̃

n2

m + n
−γ μ̄ + γ

μ̄T e

m + n
e

)
, z= 1

m

(
λ̃

m2

m + n
− γ ν̄ + γ

ν̄T e

m + n
e

)
. (11)

The entries of μ̄ and ν̄ are binomial random variables corresponding to n and m

independent Bernoulli trials ith probability of success 1− q, respectively. Therefore,
we have

E[y] = n

m + n

(
λ̃ − γ (1 − q)

)
e, E[z] = m

m + n

(
λ̃ − γ (1 − q)

)
e. (12)

Choosing λ = 1√
mn

+ γ (1− q) + γ τ for some τ > 0 to be chosen later ensures that

the entries of Λ are strictly positive in expectation.
We next describe how to choose τ so that the entries of y and z are positive with

high probability. To do so, we will make repeated use of the following specializa-
tion of the classical Bernstein inequality to bound the sum of independent Bernoulli
random variables (see, for example, [51, Section 2.8]).
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Lemma 4.1 Let x1, . . . , xk be a sequence of k independent {0, 1} Bernoulli random
variables, each with probability of success ρ. Let s = ∑k

i=1 xi be the binomially
distributed random variable denoting the number of successes. Then,

Pr
(
|s − ρk| > 6max

{√
ρ(1 − ρ)k log t, log t

})
≤ 2t−6. (13)

Applying Lemma 4.1 with t = N to each component of μ̄ and ν̄ and the union
bound shows that

|μ̄i − (1 − q)n| ≤ 6max{
√

σ 2
q n logN, logN} (14)

|ν̄j − (1 − q)m| ≤ 6max{
√

σ 2
q m logN, logN} (15)

for all i ∈ Ū and j ∈ V̄ w.h.p., where σ 2
q = q(1 − q). On the other hand, ν̄T e =

μ̄T e is equal to the number of nonzero entries in the Ū × V̄ block of A. Therefore,
ν̄T e = μ̄T e is a binomially distributed random variable, with E[ν̄T e] = E[μ̄T e] =
mn(1 − q). Applying Lemma 4.1 with t = N again establishes that

|ν̄T e − (1 − q)mn| = |μ̄T e − (1 − q)mn| ≤ 6max{
√

σ 2
q mn logN, logN} (16)

w.h.p. It follows immediately that

|yi − E[yi]| ≤ γ

n

(
|μ̄i − E[μ̄i]| + 1

m + n
|μ̄T e − E[μ̄T e]|

)

≤ 6γ

(
1 + 1√

m

)
max

{√
σ 2

q

logN

n
,
logN

n

}
(17)

for each i ∈ Ū if Eqs. 14 and 16 are satisfied. Following an identical argument, we
see that

|zi − E[zi]| ≤ 6γ

(
1 + 1√

n

)
max

{√
σ 2

q

logN

m
,
logN

m

}
(18)

if Eqs. 15 and 16 hold. Substituting Eqs. 17 and 18 into the formula for Λij shows
that

Λij = yi + zj ≥ E[yi] − |yi − E[yi]| + E[zj ] − |zj − E[zj ]|

≥ γ τ − 12γ

(
1 + 1√

m

)
max

{√
σ 2

q

logN

m
,
logN

m

}

for all i ∈ Ū , j ∈ V̄ w.h.p.; here, we use the assumption that m ≤ n. Choosing

τ = 12

(
1 + 1√

m

)
max

{√
σ 2

q

logN

m
,
logN

m

}
(19)

ensures that the entries of Λ are nonnegative w.h.p.
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4.1 Nonnegativity ofΞ

We next establish conditions on the regularization parameter γ ensuring that the
entries of the dual variable Ξ are nonnegative. Recall that Ξij takes value 0 or γ for
all (i, j) except those corresponding to Cases 4 through 6 in the choice of W and Ξ .

We begin with Case 5 in the construction of W and Ξ . Recall that

Ξij = γ − λm

m − νj

= 1

m − νj

(
γ (mq − νj ) − γmτ − m√

mn

)
(20)

if i ∈ Ū and j /∈ V̄ such that ij ∈ Ω . Since νj is a binomial random
variable corresponding to m independent Bernoulli trials with probability of suc-
cess p, applying Bernsteins inequality, given by Eq. 13 shows that νj ≥ pm +
6max{

√
σ 2

pm logN, logN}, and, hence,

Ξij ≥ m

m − νj

(
γ

(
q − p − 6max

{√
σ 2

p

logN

m
,
logN

m

}
− τ

)
− 1√

mn

)

w.h.p., where σ 2
p := p(1 − p). Under the gap assumption

q − p ≥ 18

(
1 + 1√

m

)
max

{
max{σq, σp}

√
logN

m
,
logN

m

}
(21)

and the choice of τ given by Eq. 19, we see that

Ξij ≥ m

m − νj

(
γ

c̃
(q − p) − 1√

mn

)

w.h.p. for some constant c̃ ≥ 3. An identical bound holds for entries ofΞ correspond-
ing to Case 6 by symmetry. Finally, the bound for Case 4 follows by substituting
νi = pm in Eq. 20 which establishes that Ξij ≥ 0 if γ (q −p) ≥ 3/

√
mn in this case.

Applying the union bound over all entries in Ξ establishes that Ξ is nonnegative
w.h.p. if q and p satisfy the gap assumption given by Eq. 21 and

γ ≥ c̃

(q − p)
√

mn
. (22)

4.2 A Bound on theMatrixW

To complete the proof, we derive a sufficient condition involving m, n, M, N, p, and
q that ensures that W , as constructed above, satisfies ‖W‖ < 1 with high probability.
To simplify our notation, we again make the assumption that m ≤ n and M ≤ N .
Our analysis will translate superficially to the cases when m ≤ n and M ≥ N , m ≥ n

and M ≤ N , and m ≥ n and M ≥ N . We bound ‖W‖ using the triangle inequality
and the decomposition W = γQ + λS, where γQij = Wij if i ∈ Ū , j ∈ V̄ and
γQij = 0 otherwise. To bound the norms of Q and S, we will make repeated use of
the following bound on the norm of a random matrix. Specifically, Lemma 4.2 is a
special case of the matrix concentration inequality given by [52, Corollary 3.11] on
the spectral norm of matrices with i.i.d. mean zero bounded entries.
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Lemma 4.2 Let A = [aij ] ∈ Rm×n be a random matrix with i.i.d. mean zero entries
aij having variance σ 2 and satisfying |aij | ≤ B. Let nmax = max{m, n}. Then, there
is a constant c > 0 such that

Pr
(
‖A‖ > cmax

{√
σ 2nmax,

√
B log t

})
≤ nmaxt

−7 (23)

for all t > 0.

The following lemma provides the desired bound on ‖Q‖.

Lemma 4.3 Suppose that the matrix W is constructed according to Cases 1 through
6 for a matrix A sampled from the planted dense submatrix model with m ≤ n and
M ≤ N . Then, there is a constant CQ > 0 such that

‖Q‖ ≤ CQ max

{√
σ 2

q n logN,

√
n

m
logN

}

with high probability.

We delay the proof of Lemma 4.3 until Appendix A. The following lemma pro-
vides the required bound on ‖S‖. Our analysis follows a similar argument to that
of [31, Section 4.2]; we include it here for completeness.

Lemma 4.4 Suppose that the matrix W is constructed according to Cases 1 through
6 for a matrix A sampled from the planted dense submatrix model with m ≤ n and
M ≤ N . Let σ̃ 2

p := p/(1−p) and B := max{1, σ̃ 2
p}. Assume that p is bounded away

from 1 so that B = O(1). Then, exists constant CS > 0 such that

‖S‖ ≤ CS max
{√

σ̃ 2
pN logN, logN

}√
logN

with high probability.

It follows immediately from Lemmas 4.3 and 4.4 that

‖W‖≤CQγ max

{√
σ 2

q n logN,

√
m

n
logN

}
+CS λ max

{√
σ̃ 2

pN logN, (logN)3/2
}

(24)

w.h.p. On the other hand,

λ = 1√
mn

+ γ (1 − q) + γ τ

≤ 1√
mn

(
1 + c̃

(q − p)
√

mn
1 − q + 1

2
(q − p)

)
≤ c̃

(q − p)
√

mn
(1 − p),

where we obtain the first inequality by substituting the choice of γ given by Eq. 22
and the upper bound τ ≤ 3(q − p)/2 ≤ c̃(q − p)/2. We obtain the last inequality
using the fact that (1/c̃ + 1/2)(q − p) ≤ q − p. Further, we have

λσ̃p ≤ c̃(1 − p)

(q − p)
√

mn

√
p

1 − p
= c̃

√
p(1 − p)

(q − p)
√

mn
= c̃σp

(q − p)
√

mn
.
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Substituting back into Eq. 24, we see that

‖W‖ = O

(
1

(q − p)
√

mn

(
max

{√
σ 2

q n logN,

√
n

m
logN

}
+ max

{√
σ 2

pN logN, (logN)3/2
}))

= O

⎛
⎝ 1

q − p
max

⎧⎨
⎩
√

σ 2
q logN

m
,

√
σ 2

pN

mn
logN,

(logN)3/2

m

⎫⎬
⎭
⎞
⎠ (25)

w.h.p. Enforcing q − p so that Eq. 21 holds and the right-hand side of Eq. 25 is
bounded above by 1 establishes Theorem 3.1. This completes the proof.

5 A First-order Method Based on the Alternating DirectionMethod
of Multipliers

We conclude with discussion of an optimization algorithm for solution of Eq. 6 based
on the alternating direction method of multipliers (ADMM); see [53] for details
regarding the ADMM. We first present a derivation of the method and then empir-
ically validate its performance using randomly generated matrices and real-world
collaboration and communication networks.

5.1 The Optimization Algorithm

To apply the ADMM to Eq. 6, we first introduce artificial variables Q, W , Z to
obtain the equivalent convex optimization problem

(26)

where ΩQ, ΩW, ΩZ denote the constraint sets

ΩQ :={Q : PΩ(Q) = 0},ΩW :={W : eT We=mn },ΩZ:= ={Z : Zij ≤1 ∀(i, j)∈M × N },

where Ω indicates the set of (i, j) ∈ V × V such that aij = 0, and PΩ denotes
the projection onto the set of all matrices having support contained in Ω . Here,

is the indicator function of the set S ⊆ RM×N , such
that , and +∞ otherwise. We solve Eq. 26 iteratively using the
ADMM. Specifically, we update each primal variable by minimizing the augmented
Lagrangian in Gauss-Seidel fashion with respect to each primal variable. Then,
the dual variables are updated using the updated primal variables. The augmented
Lagrangian of Eq. 26 is given by

where τ is a regularization parameter chosen so that Lτ is strongly convex in each
primal variable. Minimization of the augmented Lagrangian with respect to each of
the artificial primal variables Q, W , and Z is equivalent to projection onto each of
the sets ΩQ, ΩW , and ΩZ; each of these projections has an analytic expression.
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We update Y using projection onto the nonnegative cone: PRM×N+
(M) is the matrix

with ij th entry mij if mij ≥ 0 and 0 otherwise. On the other hand, we update X using
the proximal function for the nuclear norm ‖·‖∗, which can be computed by applying
the soft thresholding operator defined by Sφ(x) = sign(x)max {|x| − φe, 0} to the
vector of singular values. Here, sign(x) is the vector whose entries are the signs of the
corresponding entries of x, |x| denotes the vector whose entries are the magnitudes
of the corresponding entries of x, and the maximum denotes the vector of pairwise
maximums. We declare the algorithm to have converged when the primal and dual
residuals ‖Xl+1 − W l+1‖F , ‖Xl+1 − Zl+1‖F , ‖W l+1 − W l‖F , ‖Zl+1 − Zl‖F , and
‖Ql+1 − Ql‖F are smaller than a desired error tolerance. The steps of the algorithm
are summarized in Algorithm 1.1

1A MATLAB implementation of Algorithm 1 is available from http://bpames.people.ua.edu/software and
an R implementation of Algorithm 1 is available from the Comprehensive R Archive Network (CRAN) as
the package admmDensestSubmatrix.
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5.2 RandomMatrices

We empirically verified the theoretical phase transitions provided by Theorem 3.1
using matrices randomly sampled from the planted dense subgraph model with fixed
noise edge probability p and varied the submatrix size n and in-submatrix probabil-
ity q. We perform two sets of experiments: one where the matrix is sparse outside
the planted submatrix and another when the noise obscuring the planted subma-
trix is relatively dense. For the dense graph simulations, we choose p = 0.25 and
q ∈ {0.25, 0.30, . . . , 0.95, 1}. In the sparse experiments, we choose p = 1/

√
N

and q = tp for ten equally spaced t spanning the interval [2, √N ]. For each set of
simulations, we vary n ∈ {10, 20, 30, . . . , 240, 250} and set m = 2n. In the sparse
experiments, we have M = N = 1000 and we use M = N = 500 in dense exper-
iments. In both the dense and sparse graph simulations, we generate 10 matrices
according to the planted dense submatrix model for each choice of the parameters
q and n (with remaining parameters p, M , and N chosen as described above). We
call Algorithm 1 to solve the instance of Eq. 6 corresponding to each randomly sam-
pled matrix. The regularization parameter γ = 6/(q − p)n, augmented Lagrangian
parameter τ = 0.35, and stopping tolerance ε = 10−4 are used in each call of
Algorithm 1. We declared the planted submatrix to be recovered if the relative error
‖X∗ − X0‖F /‖X0‖F is less than 10−3, where X∗ is the solution returned by Algo-
rithm 1 and X0 is the matrix representation of the planted submatrix. The empirical
probability of recovery of planted submatrices is plotted in Fig. 1. The color of a
square indicates rate of recovery in the corresponding simulations, with black corre-
sponding to 0 and white corresponding to 10 recoveries out of 10 trials. The dashed
curves show the phase transition to perfect recovery predicted by Theorem 3.1. The
empirical recovery rates observed in these trials closely match that predicted by
Theorem 3.1. The discrepancy between the observed phase transition and that more
conservatively predicted by Theorem 3.1 is due to the presence of the logarithmic
terms in Eq. 3; a slight modification of our proof to follow that of [31, Theorem 7]

Fig. 1 Recovery rates for randomly generated matrices (a) Dense 500× 500 matrices with probability of
adding nonzero entry outside of planted submatrix equal to p = 0.25. (b) Sparse 1000 × 1000 matrices
with probability of adding nonzero entry outside of planted submatrix equal to p = 1/

√
1000
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eliminates these terms when p and q are constants and the gap q − p is sufficiently
large.

5.2.1 Collaboration and Communication Networks

We also applied our algorithm to identify communities in networks taken from the
10th DIMACs Implementation Challenge, which focused on graph partitioning and
clustering [54, 55]. The first graph (JAZZ) represents a collaboration network with
198 musicians and 2742 edges, and was compiled by [56]. Here, two musicians
are connected if they have performed together. Earlier studies [10] showed that this
network contains a cluster of 100 musicians. We apply Algorithm 1 to the adja-
cency matrix of this network with regularization parameter τ = 0.85, stopping
tolerance ε = 10−2, and m = n = 100. Our algorithm converges to the dense
submatrix representing this community after 50 iterations. Figure 2 is a visualiza-
tion of this network using the software package Gephi [57] and the ForceAtlas2
algorithm [58]. The statistics function of Gephi is used to identify three com-
munities within this network, including the community of size n = 100 identified by
Algorithm 1.

We also consider the graph (EMAIL) representing the network of e-mail inter-
changes between faculty, researchers, technicians, managers, administrators, and
graduate students of the Univeristy Rovira i Virgili (Tarragona). Two individuals
are connected if they exchanged an e-mail. There are 1133 nodes and 5451 edges.
From [59], we know that the EMAIL graph has a dense subgraph of 289 vertices,
representing a community of 289; additionally, we can identify 7 clusters using the
statistics function of Gephi corresponding to academic units within this univer-
sity, including this community. Applying Algorithm 1 with m = n = 289, τ = 0.35,
and stopping criteria ε = 10−2 finds this subgraph in 15 iterations. The results of
these analyses are summarized in Table 1.

(a) JAZZ Network (b) Extracted communities

Fig. 2 JAZZ Network. Each color corresponds to membership in one of 3 clusters, isolated in the plot on
the right
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Table 1 Densest subgraphs extracted with ADMM

Graph Number of vertices Number of edges Size of dense subgraph Running time

JAZZ 198 2742 100 0.605735 s

EMAIL 1133 5451 289 20.139186 s

6 Conclusions

We have presented an analysis of new convex relaxations for the densest subgraph
and submatrix problems and have established sufficient conditions under which the
optimal solution of the original combinatorial problem coincides with that of these
relaxations. In particular, these sufficient conditions characterize a signal-to-noise
ratio (SNR) for matrices sampled from a particular distribution of random matrices,
such that if this ratio is sufficiently large then we can expect to recover the combina-
torial solution from the solution of the relaxation. Here, we expect perfect recovery
if the strength of signal, as measured by the gap between probabilities of existence of
nonzero within-group edges and out-group entries, is sufficiently larger than noise, as
measured by variability of presence of nonzero entries. Further, the SNR correspond-
ing to this phase transition to perfect recovery matches the current state of the art
identified in the previous literature (up to constant and logarithmic terms); see [43].

This recovery guarantee provides a sufficient condition for perfect recovery of the
planted subgraph or submatrix. It would be very interesting to determine if this con-
dition is also necessary. For example, we establish that we have perfect recovery of
planted dense k-submatrices and subgraphs if k ≥ Ω(N) when the probabilities q,
p are sufficiently large constants. It is unclear if it is possible, either using our relax-
ation or some other method, to efficiently recover planted submatrices and subgraphs
of size O(n1/2−ε) for some ε > 0.

A secondary open problem focuses on efficient solution of the proposed convex
relaxations. We currently solve these problems using a multi-block variant of the
ADMM. Each iteration of this algorithm requires O(N3) arithmetic operations; the
bulk of these operations are used by the calculation of the singular value decompo-
sition used to update X. This per-iteration cost scales unfavorably when N is large.
The recent manuscript by Sotirov [60] proposed a coordinate descent heuristic for
the densest k-subgraph, with empirical evidence that this heuristic efficiently solves
large-scale instances of the densest k-subgraph problem. However, sufficient condi-
tions for perfect recovery of a planted dense submatrix have not yet been established
for this method. Further research is needed to design efficient and scalable algo-
rithms, i.e., with per-iteration cost O(N), with provable theoretical guarantees of
recovery for the solution of the densest subgraph and submatrix problems.
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Appendix 1. Proof of Lemma 4.3

The proof is virtually identical to that of [32, Lemma 4.5]. We decompose Q as
Q = λeeT − H + yeT + ezT , where H is matrix defined by Hij = 1 if ij ∈ Ω and
Hij = 0 otherwise. We can further decompose Q as Q = Q1 + Q2 + Q3 + Q4,

where Q1, Q2, Q3, Q4 are constructed as below.
We first bound Q1 := (1− q)eeT − H . Note that Q1 has i.i.d. mean zero entries,

with variance σ 2 = σ 2
q and values either 1 − q with probability q or −q with

probability 1 − q. Applying Eq. 23 with B = 1 and t = N ,

‖Q1‖ = O
(
max

{√
σ 2

q n,
√
logN

})
(27)

w.h.p. Next, we let Q2 := 1
n
(μ̄eT − (1 − q)neeT ). Note that

‖Q2‖2 = 1
n
‖(μ̄ − (1−q)ne)eT ‖2 ≤ 1

n
‖μ̄ − (1−q)ne‖‖e‖ = 1√

n
‖μ̄ − (1−q)ne‖.

Applying Eq. 14 shows that μ̄i − (1 − q)n ≤ 6max
{√

σ 2
q n logN, logN

}
for all

i ∈ Ū w.h.p. It follows that

‖Q2‖ ≤ 6

√
m

n
max

{√
σ 2

q n logN, logN
}

(28)

w.h.p. Next, let Q3 := 1
m

eν̄T − (1 − q)eeT . An identical argument shows that

‖Q3‖ ≤ 6

√
n

m
max

{√
σ 2

q m logN, logN
}

(29)

w.h.p. Finally, we let

Q4 :=
(

(1 − q)mn − μ̄T e

mn

)
eeT .

It is easy to confirm that γ (Q1 + Q2 + Q3 + Q4) = W (Ū , V̄ ). Applying Eq. 16
shows that

‖Q4‖ ≤ 1√
mn

6max
{√

σ 2
q mn logN, logN

}
(30)

w.h.p. Combining Eqs. 27, 28, 29, and 30 establishes that

‖Q‖ ≤
4∑

i=1

‖Qi‖ = O

(
max

{√
σ 2

q n logN,

√
n

m
logN

})

w.h.p., as required.
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Appendix 2. Proof of Lemma 4.4

To obtain the desired bound on S, we first approximate S with a random matrix
with mean zero entries. In particular, we let S̃1 be the random matrix constructed as
follows. For all (i, j) /∈ Ū × V̄ such that ij /∈ Ω , or (i, j) ∈ ([M] − Ū ) × ([N] − V̄ )

such that (i, j) ∈ Ω , we let [S̃1]ij = Sij . All remaining entries of S̃1 are sampled
independently from the generalized Bernoulli distribution B, where x sampled from
B satisfy

x =
{

λ, with probability p,

−λ σ̃ 2
p, with probability 1 − p.

}

Note that S̃1 is a random matrix with i.i.d. mean zero entries sampled independently
from B by our choice of W . Applying Lemma 4.2 shows that

‖S̃1‖ = O
(
max

{√
σ̃ 2

pN,
√

B logN
})

(31)

w.h.p. The remainder of the proof establishes that S is well-approximated by S̃1, i.e.,
we complete the proof by bounding the norm of the error S − S̃1. We begin with the
error in the Ū × V̄ block. Let S̃2 = −S̃1(Ū , V̄ ). Applying Lemma 4.2 with t = N

again shows that

‖[S − S̃1](Ū , V̄ )‖ = ‖S̃2‖ = O
(
max

{√
σ̃ 2

pn,
√

B logN
})

(32)

w.h.p. We define S̃3 by

[S̃3]ij =
{

− νj

m−νj
+ p

1−p
, if (i, j) ∈ Ω, i ∈ Ū , j ∈ [N] − V̄ ,

0, otherwise.

}

To bound the norm of S̃3, we will use the following lemma, which provides a bound
on the spectral norm of random matrices of this form.

Lemma B.1 Let A be an n×N matrix whose entries are chosen according to B with
n ≤ N . Let Ã be the random matrix defined by

[Ã]ij :=
{
1, if Aij = 1,
−nj

n−nj
, if Aij = −σ̃ 2

p,

where nj is the number of 1’s in the j th column of A. Then, there are constants
c1, c2 > 0 such that

Pr
(
‖A − Ã‖ ≥ c1 max

{√
σ̃ 2

pN logN, (logN)3/2
})

≤ c2N
−5.

The proof of Lemma B.1 follows a similar argument to that of [31, Theorem 4]
and is included as Appendix C. It is easy to see that the nonzero block S̃3 has form
A − Ã as in the hypothesis of Lemma B.1. It follows that

‖[S − S1](Ū , [N] − V̄ )‖ = ‖S̃3‖ = O
(
max

{√
σ̃ 2

pN logN, (logN)3/2
})

(33)
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w.h.p. Similarly, we define the final correction matrix by

[S̃4]ij =
{

− μj

n−μj
+ p

1−p
, if (i, j) ∈ Ω, i ∈ [M] − Ū , j ∈ V̄ ,

0, otherwise.

}

Applying Lemma B.1 to the transpose of S̃4, we have

‖S̃4‖=O
(
max

{√
σ̃ 2

pM logM, (logM)3/2
})

=O
(
max

{√
σ̃ 2

pN logN, (logN)3/2
})

(34)

w.h.p. Combining Eqs. 31, 32, 33, and 34 and applying the union bound completes
the proof.

Appendix 3. Proof of Lemma B.1

The result relies on an application of the Matrix Bernstein Inequality; see [61, The-
orem 6.1.1] and [62, Theorem 1.6] for further details. We first state the necessary
bound on the spectral norm of the sum of finitely many independent, bounded random
matrices.

Theorem C.1 (Matrix Bernstein Inequality) Let {Sk} be a finite sequence of inde-
pendent d1×d2 random matrices such that E[Sk] = 0 and ‖Sk‖ ≤ L for all k almost
surely. Let Z := ∑

k Sk and let v(Z) denote the matrix variance defined by

v(Z) = max
{‖E[ZZ∗]‖, ‖E[Z∗Z]‖} = max

{∥∥∥∥∑
k

E[SkS
∗
k]
∥∥∥∥ ,

∥∥∥∥∑
k

E[S∗
kSk]

∥∥∥∥
}
. (35)

Then,

Pr(‖Z‖ ≥ t) ≤ (d1 + d2) exp

( −t2/2

v(Z) + Lt/3

)
(36)

for all t > 0.

The remainder of the proof consists of a specialization of this inequality to the
special case Z = A − Ã. Indeed, let

Sj = dje
T
j , (37)

where dj := [A − Ã]j denotes the j th column of A − Ã and ej denotes the j th
standard basis vector. It is clear that Z = A − Ã = ∑N

j=1 Sj . It remains to estimate
an upper bound L on the spectral norms of the matrices {Sj } and an upper bound on
the variance v(Z). Once we have estimated these quantities, we will substitute them
into Eq. 36 to complete the proof.

We begin with the following estimate on L, which is an immediate consequence
of the standard Bernstein Inequality (Eq. 13).

Lemma C.1 There is a constant c1 > 0 such that matrices {Sj } defined by Eq. 37
satisfy

‖Sj‖ ≤ L := c1

√
max

{
1, σ̃ 2

p

}
logN
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for all j = 1, 2, . . . , N with probability at least 1 − 2N−5.

Proof Fix j ∈ {1, . . . , N}. Note that the ‖Sj‖ = ‖dje
T
j ‖ = ‖dj‖‖ej‖ = ‖dj‖.

Moreover, the Bernstein Inequality (Eq. 13) implies that

‖dj‖2 = (nj −pn)2

(1−p)2(n−nj )
≤ 36max{p(1−p)n logN,log2 N}

(1−p)2(n−6max{√p(1−p)n logN,logN}) =O
(
max{1, σ̃ 2

p} logN
)

with probability at least 1 − 2N−6, where the last inequality follows from the fact
that n − nj = O(n) w.h.p. (by Eq. 13) and logN = O(n) (by the gap assumption).
Taking the square root completes the proof.

We next bound the matrix variance v(Z).

Lemma C.2 The matrix Z = ∑
j Sj defined by Eq. 37 satisfies v(Z) ≤ cσ̃ 2

pN for
any constant c > 0 satisfying n − nj > (1/c)n for all j .

Proof It suffices to construct upper bounds on each of ‖E[ZZT ]‖ and ‖E[ZT Z]‖.
We begin with the latter. Note that ST

j ST
j = (dT

j dj )eje
T
j . This implies that ZT Z is a

diagonal matrix with j th diagonal entry equal to ‖dj‖2. It follows that ‖E(ZT Z)‖ =
maxj E[‖dj‖2]. For each j = 1, 2, . . . , N , we have

E[‖dj‖2] = E

[
(nj −pn)2

(1−p)2(n−nj )

]
≤ c

(1−p)2n
E[(nj −pn)2] = cp(1−p)n

(1−p)2n
= cσ̃ 2

p, (38)

where the inequality follows from the assumption that n − nj ≥ (1/c)n and the
second to last inequality follows from the fact that E[(nj − pn)2] is equal to the
variance of the binomial variable nj . This implies that

‖E[ZT Z]‖ ≤ cσ̃ 2
p . (39)

On the other hand, E[ZZT ] = ∑N
j=1 E[SjS

T
j ] = ∑N

j=1 E[djd
T
j ]. It follows

immediately that

‖E[ZZT ]‖ ≤
N∑

j=1

‖E[djd
T
j ]‖ ≤

N∑
j=1

E[‖djd
T
j ‖] =

N∑
j=1

E[‖dj‖2] (40)

by the triangle inequality and Jensen’s inequality. Applying Eq. 38, we see that

‖E[ZZT ]‖ ≤ cNσ̃ 2
p . (41)

Substituting Eq. 39 and 41 into the formula for v(Z), we see that we have v(Z) ≤
cNσ̃ 2

p .

We are now ready to complete the proof of Lemma B.1. Let’s consider the fol-

lowing cases. First, suppose that σ̃ 2
pN ≥ logN and let t = c̃

√
σ̃ 2

pN logN in Eq. 36.

Recall that applying the Bernstein Inequality (Eq. 13) to each binomial variable nj

implies that there is a constant c such that n − nj ≥ (1/c)n for all j with probability
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at least 1−2N−5. This implies that we have v(Z) ≤ cσ̃ 2
pN with the same probability.

Substituting into Eq. 36, along with the choice of L from Lemma C.1, we see that

Pr(‖Z‖ ≥ t) ≤ (N + n) exp

(
− c̃2σ̃ 2

pN log2 N/2

cσ̃ 2
pN+c̃

√
Bσ̃ 2

pN logN/3

)

using the assumption that
√
logN ≤

√
σ̃ 2

pN . Rearranging further, we see that

Pr(‖Z‖ ≥ t) ≤ (N + n) exp
(
− c̃2

c+c̃
√

B
logN

)
≤ (N + n) exp(−7 logN) ≤ 2N−6,

if we choose c̃ large enough that c̃2/(c + c̃
√

B) > 7 (which is possible if we impose
the assumption that B = O(1)).

Next, consider the case that logN > σ̃ 2
pN and let t = c̃ log3/2(N). Then, the

Matrix Bernstein Inequality (Eq. 36) implies that

Pr(‖Z‖ ≥ t) ≤ (N + n) exp

(
−c̃ log3 N/2

cσ̃ 2
pN+c̃

√
B log2 N/3

)
≤(N+n) exp(−7 logN)≤2N−6

for any c̃ satisfying c̃2/(c + c̃
√

B) > 7. Combining the two cases, we see that there
are constants c1, c2 > 0 such that

‖Z‖ = ‖A − Ã‖ ≤ c1 max
{√

σ̃ 2
pN logN, logN

}√
logN

with probability at least 1 − c2N
−5. This completes the proof.
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