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1 Introduction

Asymptotically flat space-times are of particular interest in physics. The null infinity of

four-dimensional asymptotically flat spacetimes is the product of conformal two-sphere

(celestial sphere) CS2 with a null line. In the 1960s, Bondi, van der Burg, Metzner and

Sachs discovered an infinite-dimensional symmetry group, the BMS group [1, 2] that relates

physically inequivalent, asymptotically flat, solutions of general relativity. The BMS group

is an extension of the Poincaré group, where the usual global translations become local

symmetries — supertranslations that depend on the CS2 coordinates. In that sense the
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asymptotic symmetry group is the semi-direct product of the Lorentz SL(2,C) and super-

translations groups. In 2010, Barnich and Troessaert discovered that the BMS group can be

further extended to the group of all local conformal transformations (superrotations), with

the global subgroup of SL(2,C) Lorentz transformations [3]. The algebra of the extended

BMS group is infinite-dimensional, consisting of superrotations and supertranslations.

It is also well known since the 1960s, that the soft theorem of Weinberg [4] im-

poses stringent constraints on scattering amplitudes, when a massless particle becomes

soft. These constraints determine the universal properties of amplitudes in the infra-red.

More recently in [5], the soft theorems were extended beyond the leading order and it

turns out that the universal structure of scattering processes persists at the subleading and

sub-subleading orders. In 2014, Strominger [6] showed that the extended BMS symmetry

is also a symmetry of the scattering S-matrix. The Ward identities for the asymptotic

symmetries [7] are actually equivalent to the soft theorems of Weinberg [4] and Cachazo-

Strominger [5].

One of the main motivations for further exploring the connection between soft theo-

rems and asymptotic symmetries is the endeavour to construct a holographic description of

quantum gravity in four-dimensional flat space-time [8]. The emergence of the conformal

(Virasoro) superrotations subgroup in the BMS group is a very strong indication. Indeed, a

Mellin transform over energies recasts the scattering amplitudes into conformal correlation

functions on the celestial sphere [9, 10]. A particular kind of two-dimensional celestial con-

formal field theory (CCFT) could then describe four-dimensional dynamics. This putative

CCFT is expected to provide a holographic description of four-dimensional physics.

The states of CCFT are labeled by their scaling dimension ∆ and spin helicity !, which

can be obtained from the conformal weights (h, h̄) via ∆ = h+ h̄, ! = h− h̄. It turns out

that states with particular values of the scaling dimension, the conformally soft ones —

∆ → 1 for gauge and ∆ → 1, 0 for gravity — are identified as the generators of the BMS

symmetries of CCFT and their correlators lead to Ward identities [11–19]. Conformally

soft modes of gauge bosons are conserved currents of the CCFT, generate a Kač-Moody

symmetry and correspond to asymptotically large gauge transformations in 4d. Similarly,

conformally soft gravitons give the Virasoro and supertranslation generators of the CCFT

and represent asymptotically large diffeomorphisms in 4d. On the other hand, collinear

limits of 4d scattering amplitudes are particularly interesting from the CCFT point of view.

They probe OPEs of CCFT operators, because identical momentum directions correspond

to the operator insertion points coinciding on CS2. In [12, 19] we investigated the structure

of OPEs of the operators generating BMS transformations and established a connection

between these OPEs and the extended BMS algebra bms4.

As discussed above, the BMS algebra is an infinite-dimensional generalization of the

global bosonic algebra of the generators of the Poincaré group. A natural question arises,

whether such an infinite-dimensional generalization exists for supersymmetry. In the early

days of BMS, such generalization was discussed in [20]. In the last few years, recent de-

velopments have revived the interest in supersymmetric generalizations of the BMS group

and its corresponding algebra sbms. In particular for 3d space-times, a connection to the

BTZ blackhole and asymptotically AdS3 spacetimes can be established for asymptotically
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flat space-times. In three spacetime dimensions, the BMS group of symmetries, for asymp-

totically flat space-times, is related to the asymptotic symmetries of AdS3 spaces in the

limit where the AdS radius is sent to infinity [21]. In a similar context, an appropriate

infinite radius limit of a BTZ black hole corresponds to flat space cosmologies [22, 23].

Supersymmetric generalizations of bms3 appeared in [24–26]. Nevertheless our interest will

be the asymptotically flat 4d space-times, which are relevant to the attempt to formulate

a precise flat space holography in 4d with a CCFT.

In the present work we discuss sbms4, the N = 1 supersymmetric extension of the bms4
algebra. In section 2 we lay down the main formulas we use for conformal primary operators

and their relation to the Mellin transforms of 4d scattering amplitudes. In section 3 we

construct supermultiplets of conformal primary wave functions for bosonic and fermionic

states and demonstrate how they are related via supersymmetry transformations. We use

the quantum mode expansion of these fields to identify the operators they correspond to

in the supersymmetric CCFT (SCCFT). In section 4 we use the collinear singularities of

amplitudes in supersymmetric EYM theory to extract the OPEs of the SCCFT operators.

As in our previous study of the bosonic CCFT [19], in sections 5 and 6, we shift gears

towards the conformally soft theorems for fermionic states. The fermionic soft theorems

of [27–29] are discussed from the point of view of the SCCFT. We use Mellin transform

to recast the 4d supersymmetric Ward identities [30–32] in CCFT language. We find an

interesting sequence of conformal soft limits and supersymmetry transformations which

relate the subleading gauge theorem to the soft gaugino theorem and subsequently the

leading soft gauge theorem. The same picture arises in the case of the conformally soft

gravitons and gravitinos. Supersymmetric Ward identities, leading gauge and gravity soft

theorems are known to be exact, therefore this sequence supports earlier arguments [33]

that the BMS Ward identities are not anomalous. We discuss the importance of the shadow

of the gravitino and its OPEs with primaries. In the bosonic case the stress energy tensor

corresponds to the shadow of a spin two, dimension zero soft graviton operator [18, 34, 35].

In close analogy, we show that the shadows of the spin ! = ±3
2 , soft gravitinos with

dimension ∆ = 1
2 correspond to the supercurrents and generate supersymmetries of sbms4.

These generators are infinite-dimensional extensions of N = 1 supersymmetry generators.

In section 7, in close analogy with the bosonic case [19], we use soft theorems to derive

the sbms4 algebra. While the bosonic BMS group has a subgroup which is a product

of holomorphic and antiholomorphic conformal (Virasoro) groups, this is not so for the

super BMS group. At the level of the algebra, the two supersymmetry generators do not

anti-commute therefore sbms4 does not split into superconformal algebras. Already in

ref. [20], by using the symmetries of supergravity in asymptotically flat space-times, it was

conjectured that the infinite-dimensional extension of supersymmetry in sbms4 appears as

a “square root” of supertranslations. Indeed we find that the supertranslation P operator

of [36], which encodes all supertranslation modes, can be written as a composite operator

of two supercharges,1 therefore confirming these expectations. Finally, in section 8 we

1This construction resembles the Sugawara construction of the energy momentum tensor for affine Lie

algebras. See [37] for a recent discussion, where it was shown that the energy momentum tensor and

supertranslation current [11] can be constructed as composite operators of conformally soft gluon states.
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derive the mode expansions of the sbms4 generators and derive their algebra. As in the

bosonic case, the realization in terms of modes requires studying the action of commutators

of generators on the primaries. Appendix A has a detailed analysis of the collinear limits

of gaugino and gravitino states in scattering amplitudes as well as technical details of the

4d soft limits of scattering amplitudes and their Mellin transforms. In appendix B we give

a derivation, based on the method of [17], of the leading and subleading conformal soft

theorems for gluons. We use this form of the theorems in section 5.

2 Notation

The connection between light-like four-momenta pµ of massless particles and points z ∈ CS2

relies on the following parametrization:

pµ = ωqµ, qµ =
1

2
(1 + |z|2,−z − z̄,−i(z − z̄), 1− |z|2) , (2.1)

where ω is the light-cone energy and qµ is a null vector — the direction along which

the massless state propagates, determined by z. The basis of wave functions required for

transforming scattering amplitudes into CCFT correlators consist of conformal wave pack-

ets characterized by z, dimension ∆ and helicity ! or equivalently by z and the conformal

weights h = (∆+ !)/2, h̄ = (∆− !)/2.

We will be using conventions and spinor helicity notation of ref. [38]. The four-

dimensional momentum vector can be written as

pαα̇ = pµ(σ
µ)αα̇ = ω

(
|z|2 z

z̄ 1

)
= ωqαα̇ , (2.2)

p̄ α̇α = pµ(σ̄
µ) α̇α = ω

(
1 −z

−z̄ |z|2

)
= ωq̄ α̇α , (2.3)

where σµ = (1,$σ) and σ̄µ = (1,−$σ). The spinor helicity variables are

|p〉α =
√
ω

(
z

1

)
=

√
ω|q〉α [p|α̇ =

√
ω

(
z̄

1

)
=

√
ω[q|α̇ (2.4)

〈p|α =
√
ω

(
1

−z

)
=

√
ω〈q|α |p]α̇ =

√
ω

(
1

−z̄

)
=

√
ω|q]α̇ .

The invariant spinor products are defined as

〈12〉 = 〈p1|α|p2〉α =
√
ω1ω2(z2 − z1) , [12] = [p1|α̇|p2]α̇ =

√
ω1ω2(z̄1 − z̄2) , (2.5)

so that

〈12〉[21] = 2p1p2 = ω1ω2|z12|2 , z12 ≡ z1 − z2 . (2.6)

Note that under SL(2,C) Lorentz transformations, |q〉 and [q| transform in the fundamental

and anti-fundamental representations with additional chiral weight factors of (−1/2, 0) and

(0,−1/2), respectively.
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3 Supermultiplets

We begin by constructing spin 1
2 conformal wave packets, by following the same route as

for the scalar fields. We will set our discussion in the framework of supersymmetry. The

massless scalar conformal wave packets of weight ∆ are obtained by Mellin transforms of

plane wave functions:

ϕ±
∆(X

µ, z, z̄) =

∫ ∞

0
dω ω∆−1e±iωq·X−εω =

(∓i)∆Γ(∆)

(−q ·X ∓ iε)∆
. (3.1)

They are normalizable with respect to the Klein-Gordon norm only if Re(∆) = 1 [9]. Then

(ϕ±
∆1

,ϕ±
∆2

) = −i

∫
d3X[ϕ±

∆1
(X)∂X0(ϕ±

∆2
(X))∗ − ∂X0ϕ±

∆1
(X)(ϕ±

∆2
(X))∗]

= ±8π4δ(λ1 − λ2)δ
(2)(z1 − z2) , (3.2)

where λ ≡ Im(∆), i.e.∆ = 1+iλ. In order to construct conformal wave packets of fermions,

we take the Mellin transforms of plane waves of helicity spinors. For helicity ! = −1/2,

ψ±
∆,α(X, z, z̄) =

∫ ∞

0
dω|p〉αω∆−1e±iωq·X−εω = |q〉α

∫
dωω∆+ 1

2−1e±iωq·X−εω

= |q〉αϕ±
∆+ 1

2

(X, z, z̄). (3.3)

Note that the conformal wave packets ψ±
∆,α(X, z, z̄) have chiral weights (h, h̄) = (∆/2 −

1/4,∆/2 + 1/4). The spinor wave functions (3.3) satisfy Weyl equation

(σ̄µ)α̇α∂µψ
±
∆,α̇(X, z, z̄) ∼ (q · σ̄)α̇α|q〉α = 0 . (3.4)

For helicity ! = +1
2 , the wave functions

χ̄±, α̇
∆ (X, z, z̄)l=+ 1

2
= |q]α̇ϕ±

∆+1/2(X, z, z̄) (3.5)

have chiral weights (∆/2 + 1/4,∆/2− 1/4). We can also construct Dirac spinors

Ψ±
∆,$=− 1

2

(X, z, z̄) =

(
ψ±
∆,α

0

)
, Ψ±

∆,$=+ 1
2

(X, z, z̄) =

(
0

χ̄±α̇
∆

)
. (3.6)

Fermionic wave functions will be normalized with respect to the Dirac inner product

(Ψ±
∆1,$

,Ψ±
∆2,$′

) =
1

2

∫
d3X[Ψ∆2,$′(X, z2, z̄2)γ

0Ψ∆1,$(X, z1, z̄1)

+ Ψ∆1,$(X, z1, z̄1)γ
0Ψ∆2,$′(X, z2, z̄2)] (3.7)

= δ$,$′(Ψ
±
∆1,$

,Ψ±
∆2,$

) .

For ! = +1/2,
(
Ψ±

∆1,
1
2

,Ψ±
∆2,

1
2

)
= 〈q1|ασ0αα̇|q2]α̇

∫
d3Xϕ±∗

∆2+
1
2

(X)ϕ±
∆1+

1
2

(X) + (1 ↔ 2)

= 〈q1|ασ0αα̇|q2]α̇
∫

dω1dω2(2π)
3δ(3)(ω1q

i
1 − ω2q

i
2)ω

∆1− 1
2

1 ω
∆∗

2−
1
2

2 + (1 ↔ 2)

= 2i

∫
d3X[ϕ±

∆1
(X)∂X0(ϕ±

∆2
(X))∗ − ∂X0ϕ±

∆1
(X)(ϕ±

∆2
(X))∗], (3.8)

– 5 –
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where we used q01δ
(3)(ω1qi1 − ω2qi2) =

1
4ω2

1
δ(ω1 − ω2)δ(2)(z1 − z2). As in the scalar case, this

inner product is well-defined only if Re(∆) = 1, i.e. ∆ = 1 + iλ. Then

(Ψ±
∆1,$

,Ψ±
∆2,$′

) = ±8π4δ(λ1 − λ2)δ
(2)(z1 − z2)δ$$′ . (3.9)

From now on, we will often use λ instead of ∆ to label conformal dimensions.

We can write the mode expansion of the quantum field operators in the following way:

ϕ(X) =

∫
d2zdλ

[
a∆+(z)ϕ

−
∆∗(X, z) + a†∆−(z)ϕ

+
∆(X, z)

]
, (3.10)

ψα(X) =

∫
d2zdλ

[
b∆+(z)ψ

−
∆∗,α(X, z) + b†∆−(z)ψ

+
∆,α(X, z)

]
. (3.11)

The scalar annihilation operator a∆+(z) has conformal weights (1 − ∆∗/2, 1 − ∆∗/2) =

(∆/2,∆/2), that is dimension ∆ = 1 + iλ and helicity ! = 0. The fermionic annihilation

operator b∆+(z) has conformal weights (1−∆∗/2+1/4, 1−∆∗/2−1/4) = (∆/2+1/4,∆/2−
1/4), that is dimension ∆ = 1 + iλ and helicity ! = 1

2 .

The canonical commutation relations for Klein-Gordon and anti-commutation relations

for Weyl fields imply

[aλ±(z), a
†
λ′±(z

′)] = 8π4δ(λ− λ′)δ(2)(z − z′), (3.12)

{bλ±(z), b†λ′±(z
′)} = 8π4δ(λ− λ′)δ(2)(z − z′). (3.13)

It is easy to see that these operators are related by Mellin transformations to the standard

creation and annihilation operators in momentum space:

a∆±(z) =

∫ ∞

0
dω ω∆−1 a±($p ) , b∆±(z) =

∫ ∞

0
dω ω∆−1 b±($p ) . (3.14)

The amplitudes describing the scattering of plane waves with definite momentum are given

by vacuum expectation values of in creation and out annihilation operators. Their Mellin

transforms evaluate vacuum expectation values of the conformal creation and annihilation

operators. Hence celestial holography amounts to the mapping

a∆±, b∆± +→ O∆,$(z, z̄) , |0〉D=4 +→ |0〉CS2 . (3.15)

The simplest way of constructing supersymmetry generators on CS2 is to analyze

supersymmetry transformations of a chiral multiplet consisting of a complex scalar and a

chiral fermion. For free (on-shell) fields, the supersymmetry transformations read:

δη,η̄ϕ = [〈ηQ〉+ [η̄Q̄], ϕ] =
√
2ηψ

δη,η̄ψ = [〈ηQ〉+ [η̄Q̄], ψ] = i
√
2σµη̄∂µϕ . (3.16)

In order to simplify further discussion, we will absorb
√
2 into the definition of η. Eqs. (3.10),

(3.11) and (3.16) imply the following supersymmetry transformations properties of confor-

mal annihilation operators:

[〈ηQ〉, a∆+] = 〈ηq〉b(∆+ 1
2)+

, [[η̄Q̄], a∆+] = 0,

[〈ηQ〉, b∆+] = 0 , [[η̄Q̄], b∆+] = [η̄q̄]a(∆+ 1
2)+

. (3.17)

– 6 –
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Acting on the bosonic annihilation operator, the supersymmetry generator Q increases

both the dimension and helicity by 1/2, which is equivalent to shifting the conformal weight

h → h + 1
2 . Acting on the fermionic annihilation operator, the supersymmetry generator

Q̄ increases the dimension by 1/2 but decreases helicity by −1/2, which is equivalent to

shifting the conformal weight h̄ → h̄+ 1
2 . These operators can be mapped to CS2 according

to eq. (3.15):

a∆+ → Oh,h̄(z, z̄) , b∆+ → Oh+ 1
4 ,h̄−

1
4
(z, z̄) , with (h, h̄) =

(
1 + iλ

2
,
1 + iλ

2

)
. (3.18)

We can also introduce a two-dimensional superfield depending on z, z̄ and one Grassmann

variable θ:

O∆(z, z̄, θ) = Oh,h̄(z, z̄) +Oh+ 1
4 ,h̄−

1
4
(z, z̄)θ (∆ = 1 + iλ). (3.19)

In CS2 superspace, supersymmetry is generated by

Qα =
∂

∂θ
|q〉αe

∂h+∂h̄
4 , Q̄α̇ = θ|q]α̇e

∂h+∂h̄
4 , (3.20)

which satisfy the usual four-dimensional supersymmetry algebra

{Qα, Q̄α̇} = σµαα̇Pµ , with Pµ = qµe
∂h+∂h̄

2 . (3.21)

Note that the above supersymmetry transformations rely on the relation between the

bosonic and fermionic wave functions of eqs. (3.1) and (3.3):

ψ±
∆,α(X, z, z̄) = |q〉αe

∂h+∂h̄
4 ϕ±

∆(X, z, z̄) . (3.22)

For spin 1, Maxwell’s equations are solved by

vµ±∆,$(X, z, z̄) = εµ$ (q, r)ϕ
±
∆(X, z, z̄), (3.23)

with the polarization vectors

εµ$=+1(q, r) =
〈r|σµ|q]√
2〈rq〉

, εµ$=−1(q, r) =
[r|σ̄µ|q〉√

2[qr]
, (3.24)

where r is an arbitrary reference spinor. The gauge fixing constraint is rµvµ = 0, with

rµ = 〈r|σµ|r]. Note that r can be also identified with a point on CS2. The conformal mode

expansion of the gauge field is

vµ(X) =
∑

$=±1

∫
d2zdλ

[
a∆,$(z)v

µ−
∆∗,−$(X, z, z̄) + a†∆,−$(z)v

µ+
∆,$(X, z, z̄)

]
. (3.25)

The vector supermultiplet consists of the gauge field vµ and gaugino χα, with the conformal

mode expansions given in eq. (3.11):

χα(X) =

∫
d2zdλ

[
b∆+(z)ψ

−
∆∗,α(X, z) + b†∆−(z)ψ

+
∆,α(X, z)

]
, (3.26)

χ̄α̇(X) =

∫
d2zdλ

[
b∆−(z)ψ̄

−,α̇
∆∗ (X, z) + b†∆+(z)ψ̄

+,α̇
∆ (X, z)

]
. (3.27)

– 7 –
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Under supersymmetry transformations,

δη,η̄vµ = −iχ̄σ̄µη + iη̄σ̄µχ , (3.28)

δη,η̄χα = (σµν)βαηβ(∂µvν − ∂νvµ) , (3.29)

δη,η̄χ̄
α̇ = (σ̄µν)α̇

β̇
η̄β̇(∂µvν − ∂νvµ). (3.30)

The gauge boson and gaugino wave functions are related in the following way:

ψ±
∆(X, z, z̄) =

1√
2
e

∂h+∂h̄
4 vµ±∆,$=−1(X, z, z̄)σµ|q] ,

ψ̄±
∆(X, z, z̄) =

1√
2
e

∂h+∂h̄
4 vµ±∆,$=+1(X, z, z̄)σ̄µ|q〉 . (3.31)

With the wave functions normalized as in eqs. (3.3), (3.5) and (3.23), the conformal an-

nihilation operators are direct Mellin transforms of the momentum space operators, cf.

eq. (3.14).

The supersymmetry transformations (3.29), (3.30) combined with the relations (3.31)

lead to the following supersymmetry transformations of the annihilation operators:

[〈ηQ〉, a∆,−1] = 〈ηq〉b(∆+ 1
2)−

, [[η̄Q̄], a∆,+1] = [η̄q̄]b(∆+ 1
2)+

,

[〈ηQ〉, b∆+] = 〈ηq〉a(∆+ 1
2)+1 , [[η̄Q̄], b∆−] = [η̄q̄]a(∆+ 1

2)−1 , (3.32)

with all other commutators vanishing. As in the chiral multiplet, Q increases h by 1/2

while Q̄ increases h̄ by the same amount. Here again, one could organize the supermultiplet

into θ-dependent CS2 superfields similar to eq. (3.19).

The gravitational multiplet is very similar to the gauge multiplet. It consists of spin 2

graviton hµν and spin 3/2 gravitino ψµ
α. Their conformal wave functions are given by

hµν±∆,$=±2(X, z, z̄) = εµ$=±1(q, r)v
ν±
∆,$=±1(X, z, z̄) ,

ψµ±
∆,$=−3/2(X, z, z̄) = εµ$=−1(q, r)ψ

±
∆(X, z, z̄) , (3.33)

ψ̄µ±
∆,$=+3/2(X, z, z̄) = εµ$=+1(q, r)ψ̄

±
∆(X, z, z̄)

and the mode expansions have the same form as eqs. (3.25), (3.26), (3.27). Furthermore,

the supersymmetry transformations are

[〈ηQ〉, a∆,−2] = 〈ηq〉b(∆+ 1
2)−3/2 , [[η̄Q̄], a∆,+2] = [η̄q̄]b(∆+ 1

2)+3/2 ,

[〈ηQ〉, b∆,+3/2] = 〈ηq〉a(∆+ 1
2),+2 , [[η̄Q̄], b∆,−3/2] = [η̄q̄]a(∆+ 1

2),−2 . (3.34)

To summarize, dimension ∆ conformal wave packets of fermions and bosons are prop-

erly normalized only if Re(∆) = 1, i.e. ∆ = 1 + iλ with real λ. Through the conformal

mode expansions of quantum fields, these packets are associated with conformal annihila-

tion (and creation) operators. These are in turn related by Mellin transformations to the

usual momentum space operators. Hence the Mellin transforms of scattering amplitudes

evaluate the vacuum expectation values of the respective chains of in and out conformal
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creation and annihilation operators. According to the rules of CS2 holography, they are

mapped into conformal correlators of the corresponding primary field operators:
(

N∏

n=1

∫
dωn ω

∆n−1
n

)
δ(4)

(
N∑

n=1

εnωnqn

)
M$1...$N (ωn, zn, z̄n) =

〈0|aoutλ1
· · · boutλk

· · · a†inλl
· · · b†inλN

|0〉 +→
〈

N∏

n=1

O∆n,$n(zn, z̄n)

〉
, (3.35)

where εn = +1 or −1 for out or in, respectively.

The supersymmetry generators Q and Q̄ raise the conformal weights of the primary

fields by 1/2. They act in the following way:

[〈ηQ〉,O∆,$c ] = 〈ηq〉O(∆+ 1
2),$

, (3.36)

[[η̄Q̄],O∆,$] = [η̄q]O(∆+ 1
2),$c

, (3.37)

with ! and its complement set of !c = !− 1
2 restricted by the content of supermultiplets:

supermultiplet ! !c

chiral 0,+1
2 −1

2 , 0

gauge −1
2 ,+1 −1 ,+1

2

gravitational −3
2 ,+2 −2 ,+3

2

(3.38)

We will be always pairing !c with ! = !c + 1
2 .

4 OPEs of fermion fields in supersymmetric EYM theory

In this section, we discuss OPEs involving the fermions of SEYM: gauginos and gravitinos.

We follow the same path as in [19] and extract OPEs from the collinear singularities of

scattering amplitudes involving particles in parallel momentum configurations (z12, z̄12 →
0). The relevant collinear limits are derived in appendix A. Here, we limit ourselves to

collecting the results.

We begin with gauginos. The OPE of two gauginos with identical helicities is regular.

Two gauginos of opposite helicities can fuse into a gauge boson or, if they carry oppo-

site gauge charges, they can also fuse into a graviton via gravitational interactions.2 In

momentum space, the collinear limit of the respective Feynman matrix element reads

M
(
1a,−

1
2 , 2b,+

1
2 , · · ·

)
=
∑

c

fabc



 1

z̄12

ω
1
2
2

ω
1
2
1 ωP

M(P c,+1, · · · )+ 1

z12

ω
1
2
1

ω
1
2
2 ωP

M(P c,−1, · · · )





−δab


z12
z̄12

ω
3
2
2 ω

1
2
1

ω2
P

M(P+2, · · · )+ z̄12
z12

ω
1
2
2 ω

3
2
1

ω2
P

M(P−2, · · · )



+regular,

2We are setting the gauge coupling g = 1 and the gravitational coupling κ = 2. The CCFT operators

associated to particles will be normalized here as the creation/annihilation operators, that is in a different

way than in ref. [12].
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where a, b, c denote gauge charges. The corresponding OPE is:

Oa
∆1,− 1

2
(z1, z̄1)Ob

∆2,+
1
2
(z2, z̄2) =

∑

c

fabc

[
1

z̄12
B

(
∆1 −

1

2
,∆2 +

1

2

)
Oc

∆1+∆2−1,+1(z2, z̄2)

+
1

z12
B

(
∆1 +

1

2
,∆2 −

1

2

)
Oc

∆1+∆2−1,−1(z2, z̄2)

]

−δab
[
z12
z̄12

B

(
∆1 +

1

2
,∆2 +

3

2

)
O∆1+∆2,+2(z2z̄2) (4.1)

+
z̄12
z12

B

(
∆1 +

3

2
,∆2 +

1

2

)
O∆1+∆2,−2(z2z̄2)

]
+ regular.

Similar singularities appear in the gaugino-gauge boson channels:

M
(
1a,+

1
2 , 2b,+1, · · ·

)
=
∑

c

fabc 1

z12

ω1/2
P

ω1/2
1 ω2

M
(
P c,+ 1

2 , · · ·
)
+ δab

ω1/2
1

ω1/2
P

M
(
P+ 3

2 , · · ·
)
,

(4.2)

M
(
1a,+

1
2 , 2b,−1, · · ·

)
=
∑

c

fabc 1

z̄12

ω1/2
1

ω2ω
1/2
P

M
(
P c,+ 1

2 , · · ·
)
+ δab

z12
z̄12

ω3/2
1

ω3/2
P

M
(
P+ 3

2 , · · ·
)
.

After performing the Mellin transforms, we obtain

Oa
∆1,+

1
2
(z1, z̄1)Ob

∆2,+1(z2, z̄2) =
∑

c

fabc 1

z12
B

(
∆1 −

1

2
,∆2 − 1

)
Oc

∆1+∆2−1,+ 1
2
(z2, z̄2)

+δabB

(
∆1 +

1

2
,∆2

)
O∆1+∆2,+

3
2
(z2, z̄2) , (4.3)

Oa
∆1,+

1
2
(z1, z̄1)Ob

∆2,−1(z2, z̄2) =
∑

c

fabc 1

z̄12
B

(
∆1 +

1

2
,∆2 − 1

)
Oc

∆1+∆2−1,+ 1
2
(z2, z̄2)

+δab
z12
z̄12

B

(
∆1 +

3

2
,∆2

)
O∆1+∆2,+

3
2
(z2, z̄2) . (4.4)

Finally, in the gaugino-graviton channel,

M
(
1−2, 2a,+

1
2 , · · ·

)
=

z12
z̄12

ω3/2
2

ω1ω
1/2
P

M
(
P a,+ 1

2 , · · ·
)
, (4.5)

M
(
1+2, 2a,+

1
2 , · · ·

)
=

z̄12
z12

ω1/2
2 ω1/2

P

ω1
M
(
P a,+ 1

2 , · · ·
)
, (4.6)

which yields

O∆1,−2(z1, z̄1)Oa
∆2,+

1
2
(z2, z̄2) =

z12
z̄12

B

(
∆1 − 1,∆2 +

3

2

)
Oa

∆1+∆2,+
1
2
(z2, z̄2) + regular ,

(4.7)

O∆1,+2(z1, z̄1)Oa
∆2,+

1
2
(z2, z̄2) =

z̄12
z12

B

(
∆1 − 1,∆2 +

1

2

)
Oa

∆1+∆2,+
1
2
(z2, z̄2) + regular .

(4.8)
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Next, we consider the OPEs involving the gravitino field. The OPE of two gravitinos

with identical helicities is regular. For two gravitinos with opposite helicities,

M
(
1−

3
2 , 2+

3
2 , · · ·

)
=

z12
z̄12

ω
5
2
2

ω
1
2
1 ω

2
P

M(P+2, · · · ) + z̄12
z12

ω
5
2
1

ω
1
2
2 ω

2
P

M(P−2, · · · ) . (4.9)

After Mellin transformation, we obtain

O∆1,− 3
2
(z1, z̄1)O∆2,+

3
2
(z2, z̄2) =

z12
z̄12

B

(
∆1 −

1

2
,∆2 +

5

2

)
O∆1+∆2,+2(z2, z̄2)

+
z̄12
z12

B

(
∆1 +

5

2
,∆2 −

1

2

)
O∆1+∆2,−2(z2, z̄2) . (4.10)

The collinear limit of the gravitino and gaugino is singular only if the two particles carry

opposite sign helicities:

M
(
1+

3
2 , 2a,−

1
2 , · · ·

)
=

z̄12
z12

ω3/2
2

ωPω
1/2
1

M(P a,−1, · · · ) , (4.11)

which leads to

O∆1,+
3
2
(z1, z̄1)Oa

∆2,− 1
2
(z2, z̄2) =

z̄12
z12

B

(
∆1 −

1

2
,∆2 +

3

2

)
Oa

∆1+∆2,−1(z2, z̄2) . (4.12)

Similarly, in the gravitino-gauge boson channel only one helicity configuration is singular:

M
(
1+

3
2 , 2a,+1, · · ·

)
=

z̄12
z12

(
ωP

ω1

) 1
2

M
(
P a, 12 , · · ·

)
. (4.13)

This leads to

O∆1,+
3
2
(z1, z̄1)Oa

∆2,+1(z2, z̄2) =
z̄12
z12

B

(
∆1 −

1

2
,∆2

)
Oa

∆1+∆2,+
1
2
(z2, z̄2) . (4.14)

Finally, in the gravitino-graviton channel

M
(
1+

3
2 , 2+2, · · ·

)
=

z̄12
z12

ω3/2
P

ω1/2
1 ω2

M(P+3/2, · · · ) , (4.15)

M
(
1+

3
2 , 2−2, · · ·

)
=

z12
z̄12

ω5/2
1

ω3/2
P ω2

M(P+3/2, · · · ) . (4.16)

At the end, we obtain

O∆1,+
3
2
(z1, z̄1)O∆2,+2(z2, z̄2) = B

(
∆1 −

1

2
,∆2 − 1

)
z̄12
z12

O∆1+∆2,+
3
2
(z2, z̄2) , (4.17)

O∆1,+
3
2
(z1, z̄1)O∆2,−2(z2, z̄2) = B

(
∆1 +

5

2
,∆2 − 1

)
z12
z̄12

O∆1+∆2,+
3
2
(z2, z̄2) . (4.18)

Another way of obtaining fermionic OPEs is by applying supersymmetry transforma-

tions to bosonic OPEs, along the lines of [19], where the symmetries implied by bosonic

soft theorems were employed to determine OPEs. In the following sections, we will show

how the relevant bosonic and fermionic soft theorems are related by supersymmetry.
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5 Soft gaugino

Yang-Mills amplitudes diverge when the energies of one or more gluons approach zero.

The divergent terms are of order ω−1. After Mellin transformation leading to celestial

amplitudes, these soft divergences appear as simple poles (∆ − 1)−1 in the correlators of

the primary field operators O∆,±1 associated to gauge bosons. In the “soft conformal”

∆ → 1 limit, these operators can be identified with the holomorphic currents and the soft

theorem takes the form of a Ward identity. A very interesting feature of the ω → 0 limit

is that the “subleading” finite terms of order ω0 are also universal: any amplitude with a

soft gluon can be factorized into an amplitude without the gluon times a universal factor.

In celestial amplitudes, this universal factor is encoded as the divergence of conformal

correlators in the limit of ∆ → 0.

The amplitudes involving gauginos are also divergent in the soft limit although in a

milder way, as ω−1/2. This leads to single poles in the ∆ → 1/2 limit. The amplitudes

may also involve a number of external gravitons and gravitinos however, as explained in

appendix A, gravitational interactions are regular in the soft gaugino limit. In appendix A,

soft gaugino terms are extracted from Feynman diagrams. The splitting factors yield soft

divergences only for specific helicity configurations. For an outgoing gaugino with helicity

+1/2, it needs to emerge from the SYM vertex together with another gaugino of helicity

−1/2 or a gauge boson with helicity +1.

In the amplitudes involving gauginos and other fermions, attention needs to be paid

to the ordering of operator insertions. For us, the relevant characteristics of the corre-

lators are σi, defined as the number of fermions preceding particle i, i.e. the number of

fermion operators inserted to the left of Oi. In the ∆ → 1/2 limit, the gaugino correlators

diverge as
〈
Oa

∆,+1/2(z, z̄)O
a1
∆1,!1

(z1, z̄1)Oa2
∆2,!2

(z2, z̄2) · · · OaN
∆N ,!N

(zN , z̄N )
〉

→ (5.1)

→ 1

∆− 1
2

N∑

i=1

∑

b

(−1)σifaaib

z−zi

〈
Oa1

∆1,!1
(z1, z̄1) · · · Ob

(∆i−1/2),(!i−1/2)(zi, z̄i) · · · O
aN
∆N ,!N

(zN , z̄N )
〉
.

The sum on the r.h.s. is restricted to the operators with !i ∈
{
−1

2 ,+1
}
, i.e. to the helicities

of gauge supermultiplets labeled as ! in the first column of eq. (3.38). There is a similar

anti-holomorphic expression for gaugino helicity −1
2 , with the helicities restricted to the

complement set of
{
−1,+1

2

}
and z → z̄.

The soft gaugino limit of eq. (5.1) is related by supersymmetry to both leading (∆ → 1)

and subleading (∆ → 0) soft limits of gauge bosons. In order to exhibit these rela-

tions, it is convenient to consider partial amplitudes associated to a single group factor

Tr(T T 1 · · ·TN ), with helicity + 1
2 gaugino associated to the group generator T . We first

focus on the subset
〈(

∆,+
1

2

)
(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
, (5.2)

with !i, i = 1, . . . , k in the set of ! in eq. (3.38) and !ci , i = k+1, . . . , N is in the complement

set of !c. As in eq. (5.1), soft gaugino is inserted at point z while the remaining particles
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at zi, i = 1, . . . , N . According to eq. (5.1), in the ∆ = 1
2 limit

〈(
∆,+

1

2

)
(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
(5.3)

=
1(

∆− 1
2

)
(z − z1)

〈(
∆1−

1

2
, !c1

)
· · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
,

where !c1 = !1 − 1
2 .

First, we will show that the ∆ → 1
2 soft gaugino limit leads to the well-known ∆ = 1

singularity of the gauge boson operator. To that end, we use the Ward identity implied by

the supersymmetry transformation 〈ηQ〉:

〈ηq〉
〈
(∆,+1)(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
(5.4)

= −
N∑

i=k+1

(−1)σi〈ηqi〉
〈(

∆− 1

2
,+

1

2

)
(∆1, !1) · · · (∆k, !k) · · ·

(
∆i +

1

2
, !i

)
· · · (∆N , !cN )

〉
,

where !i = !ci +
1
2 . The limit of ∆ = 1 corresponds to ∆ − 1

2 = 1
2 , therefore we can use

eq. (5.1) to transform the r.h.s. into

−
N∑

i=k+1

(−1)σi〈ηqi〉
(∆− 1)(z − z1)

〈(
∆1 −

1

2
, !c1

)
· · · (∆k, !k) · · ·

(
∆i +

1

2
, !i

)
· · · (∆N , !cN )

〉

− 〈ηqN 〉
(∆− 1)(z − zN )

〈
(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
. (5.5)

After using Ward identity again in the first term, we obtain

〈ηq〉
〈
(∆,+1)(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
(5.6)

=
1

∆− 1

(
〈ηq1〉
z − z1

− 〈ηqN 〉
z − zN

)〈
(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
.

We can choose η such that 〈ηq〉 = 〈ηqi〉 = η0, where η0 is a constant Grassmann number.

This leads to the well known expression for the ∆ → 1 limit of the gauge boson operator.

The same argument can be repeated for all other helicity configurations.

Next, we will show that the ∆ → 1
2 soft gaugino limit can be obtained from the

“subleading” ∆ = 0 singularity of the gauge boson operator. To that end, we use the Ward

identity implied by the supersymmetry transformation [η̄Q̄]:

[η̄q̄]

〈(
∆,+

1

2

)
(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
(5.7)

= −
k∑

i=1

(−1)σi [η̄q̄i]

〈(
∆− 1

2
,+1

)
(∆1, !1) · · ·

(
∆i +

1

2
, !ci

)
· · · (∆k, !k) · · · (∆N , !cN )

〉
,
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where !ci = !i − 1
2 . The limit of ∆ → 1

2 corresponds to ∆− 1
2 = 0, in which we can use the

“subleading” gauge boson limit

〈(∆,+1)(∆1, !1) · · · (∆k, !k) · · · (∆N , !cN )〉 =
1

∆

{
1

z − z1

[
(z̄ − z̄1)∂z̄1 − 2h̄1 + 1

]
〈(∆1 − 1, !1) · · · (∆k, !k) · · · (∆N , !cN )〉 (5.8)

− 1

z − zn

[
(z̄ − z̄N )∂z̄N − 2h̄N + 1

]
〈(∆1, !1) · · · (∆k, !k) · · · (∆N − 1, !cN )〉

}
.

Once we insert this into eq. (5.7) and choose η̄ such that [η̄q̄] = [η̄q̄i] = η̄0, where η̄0
is a constant Grassmann number, all terms on the r.h.s. will cancel as a consequence of

supersymmetric Ward identity, except for the single term proportional to h̄1 which is raised

by 1/2 inside the i = 1 contribution. As a result, we obtain eq. (5.3).

To summarize, supersymmetry implies the following sequence of soft limits:

(∆ = 0) subleading gauge boson
Q̄−→
(
∆ =

1

2

)
gaugino

Q−→ (∆ = 1) gauge boson.

Since ∆ = 0 follows from ∆ = 1 by gauge invariance, supersymmetry and gauge invari-

ance create a closed symmetry loop of soft limits. Although the soft gaugino operator

Oa
∆=1/2,$=1/2(z) is a (1/2, 0) holomorphic form, there is no global symmetry associated to

the soft limit (5.1) because its correlators are not sufficiently suppressed at infinity; it is

easy to see that they fall off only as 1/z. In the next section we will show how super-

symmetric Ward identities follow from the soft limit of the gravitino operator which has a

faster suppression at infinity.

6 Soft gravitino, supercurrent and SUSY Ward identities

At low energies, spin 3/2 gravitinos behave in a similar way to gauginos. In the soft

limit, their amplitudes diverge as ω−1/2. These divergences are extracted from Feynman

diagrams in appendix A. As the four-momentum ps = ωsqs → 0, the gravitino amplitudes

behave as

M
(
ps !s = +

3

2
, p1 !1, · · · , pN !N

)

=
N∑

i=1

(−1)σi
z̄si
zsi

zri
zrs

(
ωi

ωs

) 1
2

M(p1 !1, · · · , pi !ci , · · · , pN , !N ) + O
(
ω

1
2
s

)
, (6.1)

where the sum on the r.h.s. is restricted to particles with !i ∈
{
−3

2 ,−
1
2 ,+1,+2

}
, i.e. to the

helicities labeled as ! in the first column of eq. (3.38), while !ci = !i− 1
2 are in the complement

set. The expression on the r.h.s. involves an arbitrary reference point zr however it does

not depend on its choice. This can be shown by using supersymmetric Ward identities.

After performing Mellin transformations, the leading soft singularity appears in celestial
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amplitudes as the pole at dimension ∆ = 1/2 of the gravitino operator. Near ∆ = 1/2,
〈(

∆,+
3

2

)
(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
(6.2)

=
1

∆− 1
2

k∑

i=1

(−1)σi
zri
zrs

z̄si
zsi

〈
(∆1, !1) · · ·

(
∆i +

1

2
, !ci

)
· · · (∆k, !k) · · · (∆N , !cN )

〉
.

As in eq. (6.1), soft gravitino is inserted at point zs while the remaining particles at

zi, i = 1, . . . , N . For opposite helicity,
〈(

∆,−3

2

)
(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
(6.3)

=
1

∆− 1
2

N∑

i=k+1

(−1)σi
z̄ri
z̄rs

zsi
z̄si

〈
(∆1, !1) · · · (∆k, !k) · · ·

(
∆i +

1

2
, !i

)
· · · · · · (∆N , !cN )

〉
.

The subleading term of order O
(
ω

1
2
s

)
in eq. (6.1) is also universal to all gravitino

amplitudes. It is similar to subleading terms present in the graviton amplitudes and, as

we will show below, related to them by supersymmetry. It can be extracted from the

amplitudes by using local supersymmetry invariance, along the lines of [33]. In celestial

amplitudes, this subleading soft term is encoded in the residue of the pole at ∆ = −1
2 .

After performing Mellin transformations, one finds that near ∆ = −1
2 ,

〈(
∆,+

3

2

)
(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
(6.4)

=
1

∆+ 1
2

k∑

i=1

(−1)σi
z̄si
zsi

(
z̄si∂z̄i − 2h̄i

)〈
(∆1, !1) · · ·

(
∆i −

1

2
, !ci

)
· · · (∆N , !cN )

〉
.

The relations between soft gravitino and graviton limits are very similar to the relations

between gauginos and gauge bosons, as explained in the previous section. The following

sequence emerges as a consequence of supersymmetric Ward identities:

∆ = −1 sub-subleading graviton
Q̄−→
(
∆ = −1

2

)
subleading gravitino

Q−→ (∆ = 0) subleading graviton
Q̄−→
(
∆ =

1

2

)
leading gravitino

Q−→ (∆ = 1) leading graviton.

All these links can be demonstrated in a similar way, therefore we will limit ourselves to

the proof of the first one which is implied by Q̄ supersymmetry. To that end, we use the

following Ward identity:

[η̄q̄]

〈(
∆,+

3

2

)
(∆1, !1) · · · (∆k, !k)(∆k+1, !

c
k+1) · · · (∆N , !cN )

〉
(6.5)

= −
k∑

i=1

(−1)σi [η̄q̄i]

〈(
∆− 1

2
,+2

)
(∆1, !1) · · ·

(
∆i +

1

2
, !ci

)
· · · (∆k, !k) · · · (∆N , !cN )

〉
,
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where !ci = !i − 1
2 . The limit of ∆ → −1

2 corresponds to ∆− 1
2 = −1, in which we can use

the sub-subleading graviton limit [17, 39]:

〈(∆,+2)(∆1, !1) · · · (∆k, !k) · · · (∆N , !cN )〉 = 1

2(∆+ 1)

N∑

j=1

z̄sj
zsj

[
2h̄j(2h̄j − 1)

− 4h̄j z̄sj∂z̄j + z̄2sj∂
2
z̄j

]
〈(∆1, !1) · · · (∆j − 1, !j) · · · (∆N , !cN )〉 . (6.6)

Once we insert this into eq. (6.5) and choose η̄ such that [η̄q̄] = [η̄q̄i] = η̄0, where η̄0 is a

constant Grassmann number, most of terms on the r.h.s. will cancel as a consequence of

supersymmetric Ward identities, except for the terms involving h̄j which are raised by 1/2

inside the i = j = 1, 2, . . . , k contributions. As a result, we obtain eq. (6.4).

The formulas describing soft limits of operator insertions are exact statements about

the properties of CCFT and are expected to reflect the underlying symmetries. In [18]

the energy-momentum tensor was constructed by performing the shadow transformations

on ∆ = 0 graviton operator. Here, we are interested in the supercurrent that generates

supersymmetry transformations and supersymmetric Ward identities. The holomorphic

and anti-holomorphic supercurrents can be constructed from the gravitino operator by

taking the limits of following shadow transforms:

S(z) = lim
∆→ 1

2

∆− 1
2

π

∫
d2z′

1

(z − z′)3
O∆,− 3

2
(z′, z̄′) , (6.7)

S̄(z̄) = lim
∆→ 1

2

∆− 1
2

π

∫
d2z′

1

(z̄ − z̄′)3
O∆,+ 3

2
(z′, z̄′) . (6.8)

Note that S(z) has conformal weights (h, h̄) = (3/2, 0). The correlation functions of su-

percurrents with other operators can be evaluated by using the soft limits (6.2), (6.3). To

that end, it is convenient to set the reference point zr → ∞. This leads to

〈
S(z)O∆1,$1(z1, z̄1) · · · O∆k,$k(zk, z̄k)O∆k+1,$ck+1

(zk+1, z̄k+1) · · · O∆N ,$cN
(zN , z̄N )

〉

=
1

π

∫
d2zs

1

(z − zs)3

N∑

i=k+1

zsi
z̄si

(−1)σi × (6.9)

×
〈
O∆1,$1(z1, z̄1) · · · O∆k,$k(zk, z̄k) · · · O∆i+

1
2 ,$i

(zk+1, z̄k+1) · · · O∆N ,$cN
(zN , z̄N )

〉
.

The shadow integral can be performed by using the identities

1

(z − zs)3
=

1

2
∂z2s

(
1

z − zs

)
, ∂zs

(
1

z̄s − z̄i

)
= 2πδ(2)(zs − zi) ,

so that
1

π

∫
d2zs

1

(z − zs)3
zsi
z̄si

=
1

z − zi
. (6.10)
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As a result,
〈
S(z)O∆1,$1(z1, z̄1) · · · O∆k,$k(zk, z̄k)O∆k+1,$ck+1

(zk+1, z̄k+1) · · · O∆N ,$cN
(zN , z̄N )

〉

=
N∑

i=k+1

(−1)σi

z − zi
(6.11)

×
〈

k∏

j=1

O∆j ,$j (zj , z̄j)O∆k+1,$ck+1
(zk+1, z̄k+1) · · · O∆i+

1
2 ,$i

(zi, z̄i) · · · O∆N ,$cN
(zN , z̄N )

〉
.

We recognize the above equation as a Ward identity of local supersymmetry generated by

Q. Since the gravitino correlators fall off at infinity as 1/z3,3 we can obtain global Ward

identities by integrating S(z) multiplied by any first order polynomial in z (which we can

choose as 〈ηq〉) over a contour surrounding all points zi:
∮ 〈ηq〉dz

2πi

〈
S(z)O∆1,$1(z1, z̄1) · · · O∆k,$k(zk, z̄k)O∆k+1,$ck+1

(zk+1, z̄k+1) · · · O∆N ,$cN
(zN , z̄N )

〉

= 0 =
N∑

i=k+1

(−1)σi〈ηqi〉 (6.12)

×
〈

k∏

j=1

O∆j ,$j (zj , z̄j)O∆k+1,$ck+1
(zk+1, z̄k+1) · · · O∆i+

1
2 ,$i

(zi, z̄i) · · · O∆N ,$cN
(zN , z̄N )

〉
.

We can also use eq. (6.11) to read out the OPEs

S(z)O∆,$c(w, w̄) =
1

z − w
O∆+ 1

2 ,$
(w, w̄) + regular, (6.13)

which confirm that S(z) is the supercurrent generating local supersymmetry transforma-

tions associated to the Q generator. Similarly, S̄(z̄) generates Q̄ transformations:

S̄(z̄)O∆,$(w, w̄) =
1

z̄ − w̄
O∆+ 1

2 ,$
c(w, w̄) + regular. (6.14)

7 OPEs of super BMS generators

7.1 TS

The calculation is similar to the calculation of TT OPE in [19] because it involves two

shadow transforms. Here, we use the same notation and define

A
∼∼
(z, w, z2, . . . ) =

∫
d2z0

1

(z0 − z)4

∫
d2z1

1

(w − z1)3
A$0=−2,$1=− 3

2 ,$2...$k,$
c
k+1...$

c
N
. (7.1)

Then we have
〈
T (z)S(w)

k∏

m=2

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉

= − 3!

4π2
lim

∆1→ 1
2

lim
∆0→0

∆0

(
∆1 −

1

2

)
A
∼∼
(z, w, z2, . . . ) . (7.2)

3Notice that at z → ∞, S(z), which has conformal weight h = 3
2 , decays as

1
z3
.
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We first take the ∆0 → 0 limit:

A$0=−2,$1=− 3
2 ,$2...$

c
N
→ 1

∆0

N∑

i=1

z0i
z̄0i

z̄ri
z̄r0

(z0i∂zi − 2hi)A$1=− 3
2 ,$2...$

c
N
. (7.3)

The integral over z0 can be evaluated in the same way as in [19]:

− lim
∆0→0

3!

4π
∆0A

∼∼
(z, w, z2, . . . ) =

∫
d2z1

1

(w − z1)3

[
h1

(z − z1)2
+

1

z − z1
∂z1

]
A$1=− 3

2 ,$2...$
c
N

+
N∑

i=2

[
hi

(z − zi)2
+

1

z − zi
∂zi

]
Ã$1=− 3

2 ,$2...$
c
N
, (7.4)

where

Ã$1=− 3
2 ,$2...$

c
N
=

∫
d2z1

1

(w − z1)3
A$1=− 3

2 ,$2...$
c
N
. (7.5)

It is clear from eq. (7.4) that the second term (involving the sum over i ≥ 2) is non-

singular in the limit of w → z, therefore only the first term needs to be included in the

derivation of OPE:
〈
T (z)S(w)

k∏

m=2

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
(7.6)

= lim
∆1→ 1

2

(
∆1 − 1

2

π

)∫
d2z1

1

(w − z1)3

[
h1

(z − z1)2
+

1

z − z1
∂z1

]
A$1=− 3

2 ,$2...$
c
N
,

where h1 = −1
2 in the ∆1 → 1

2 limit. To simplify the notation, we define

G(z1, . . . ) ≡
(
∆1 − 1

2

π

)
A$1=− 3

2 ,$2...$N
(7.7)

and introduce the variables Z = z − z1, W = w − z1. We rewrite eq. (7.6) as

lim
∆1→ 1

2

∫
d2z1

[
−1

2

W 3Z2
+

1

W 3Z
∂z1

]
G(z1, . . . )

= lim
∆1→ 1

2

∫
d2z1

[
−1

2

W 3Z2
+

(
1

W 3
− 1

W 2Z

)
1

z − w
∂z1

]
G(z1, . . . )

= − lim
∆1→ 1

2

∫
d2z1

(
1

2W 3Z2
+

1

z − w

1

W 2Z
∂z1

)
G(z1, . . . ) +

1

z − w
〈∂S(w) · · · 〉, (7.8)

where in the last term, we used

lim
∆1→ 1

2

1

z − w

∫
d2z1
W 3

∂z1G(z1, . . . ) = lim
∆1→ 1

2

1

z − w
∂w

∫
d2z1
W 3

G(z1, . . . ) (7.9)

=
1

z − w

〈
∂S(w)

N∏

n=2

O∆n,$n(zn, z̄n)

〉
.
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After performing integration by parts over z1, the first term in the last line of eq. (7.8) can

be rewritten as

lim
∆1→ 1

2

[
3
2

(z − w)2

∫
d2z1
W 4

G(z1, · · · )−
3

2

1

(z − w)2

∫
d2z1
WZ2

G(z1, · · · )
]

=
3
2

(z − w)2
〈S(w) · · · 〉 − 3

2
lim

∆1→ 1
2

1

(z − w)2

∫
d2z1
WZ2

G(z1, · · · ) . (7.10)

In this way, we obtain

〈T (z)S(w) · · · 〉 =
3

2

1

(z − w)2
〈S(w) · · · 〉+ 1

z − w
〈∂S(w) · · · 〉 (7.11)

−
3
2

(z − w)2
lim

∆1→ 1
2

(
∆1 − 1

2

π

)∫
d2z1

1

WZ2

〈
O∆1,$1=− 3

2
(z1, z̄1) · · ·

〉
.

The first two terms are those expected for the OPE of the energy-momentum tensor

with a dimension ∆ = 3
2 primary with h = 3

2 . The last term will be shown to vanish as

a consequence of supersymmetric Ward identities. To that end, we use the soft gravitino

limit ∆1 → 1
2 of eq. (6.3):

lim
∆→

1
2

(
∆1 −

1

2

)〈
O∆1,$1=− 3

2
(z1, z̄1)

k∏

m=2

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
(7.12)

=
N∑

i=k+1

z1i
z̄1i

z̄ri
z̄r1

(−1)σi

〈
k∏

m=2

O∆m,$m(zm, z̄m)O∆k+1,$ck+1
(zk+1, z̄k+1) · · · O∆i+

1
2 ,$i

(zi) · · ·
〉
.

Here, it is convenient to choose the reference point z̄r = w̄. Then the last term of eq. (7.11)

becomes

− 3

2π(z − w)2

N∑

i=k+1

∫
d2z1

z1 − zi
(w − z1)(z − z1)2

(w̄ − z̄i)(−1)σi

(z̄1 − z̄i)(w̄ − z̄1)

〈
· · ·O∆i+

1
2 ,$i

(zi) · · ·
〉
.

(7.13)

We can evaluate the integrals by using

− 1

2π

∫
d2z1

z1 − zi
(w − z1)(z − z1)2

1

(z̄1 − z̄i)(w̄ − z̄1)
= Γ(0)

w − zi
(z − w)2(w̄ − z̄i)

. (7.14)

In this way, the last term of eq. (7.11) becomes

3Γ(0)

(z−w)4

N∑

i=k+1

(w−zi)(−1)σi

〈
k∏

m=2

O∆m,!m(zm, z̄m)O∆k+1,!ck+1
(zk+1, z̄k+1) · · · O∆i+ 1

2 ,!i
(zi) · · ·

〉
.

This sum is zero due to the supersymmetric Ward identity (6.12) with 〈ηqi〉 = w− zi. The

final result is the expected OPE

T (z)S(w) =
3

2

S(w)

(z − w)2
+
∂S(w)

z − w
+ regular, (7.15)
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and similarly,

T (z̄)S̄(w̄) =
3

2

S̄(z̄)

(z̄ − w̄)2
+
∂̄S̄(w̄)

z̄ − w̄
+ regular. (7.16)

By using the same methods as in [19], one can show that the products T (z)S̄(w̄) and

T (z̄)S(w) lead to derivatives of δ functions and can be ignored in OPEs. Thus the OPEs

with T and T confirm that S(w) is a primary with conformal weights h = 3
2 , h̄ = 0 and

that S̄(w̄) is a primary with h = 0, h̄ = 3
2 .

7.2 SP and S̄P

The supertranslation current P (w) is defined as a descendant of the ∆ = 1 graviton

operator:

P (w) = lim
∆→1

(
∆− 1

4

)
∂z̄O∆,$=+2(z, z̄) . (7.17)

We consider the following correlator:
〈
S(z)P (w)

k∏

m=2

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
(7.18)

= lim
∆0→ 1

2

lim
∆1→1

(
∆0 − 1

2

π

)(
∆1 − 1

4

)∫
d2z0

(z − z0)3
∂w̄A$0=− 3

2 ,$1=+2,$2...$cN
.

We first take the ∆0 → 1
2 limit. Since !0 = −3

2 and !1 = +2, there is no singularity as

z0 = w, cf. eq. (6.11). After integrating over z0, the remaining terms become
〈
S(z)P (w)

k∏

m=2

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
(7.19)

= lim
∆1→1

(
∆1 − 1

4

) N∑

i=k+1

(−1)σi
1

z − zi
∂w̄〈O∆1,$1=+2(w, w̄) · · · O∆i+

1
2 ,$i

(zi, z̄i) · · · 〉 .

Here again, there is no singularity at z = w. Thus we have

S(z)P (w) ∼ regular . (7.20)

Next, we consider S̄(z̄)P (w), starting from the correlator:
〈
S̄(z̄)P (w)

k∏

m=2

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
(7.21)

= lim
∆0→ 1

2

lim
∆1→1

(
∆0 − 1

2

π

)(
∆1 − 1

4

)∫
d2z0

(z̄ − z̄0)3
∂w̄A$0=+ 3

2 ,$1=+2,$2...$cN
.

After taking the ∆0 → 1
2 gravitino limit, we obtain

lim
∆1→1

(
∆1 − 1

4

)
∂w̄

1

z̄ − w̄

〈
O∆1+

1
2 ,$

c
1=

3
2
(w, w̄) · · ·

〉
(7.22)

+ lim
∆1→1

(
∆1 − 1

4

) k∑

i=2

(−1)σi
1

z̄ − z̄i
∂w̄
〈
O∆1,$1=+2(w, w̄) · · · O∆i+

1
2 ,$

c
i
(zi, z̄i) · · ·

〉
.
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The first term disappears in the ∆1 = 1 limit while the second term is finite at z = w.

Hence

S̄(z̄)P (w) ∼ regular . (7.23)

7.3 SS̄ and relation to the supertranslation operator P

We consider the correlator

〈
S(z)S̄(w̄)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
=

= lim
∆1→ 1

2

lim
∆2→ 1

2

(
∆1 − 1

2

) (
∆2 − 1

2

)

π2

∫
d2z1

(z − z1)3

∫
d2z2

(w̄ − z̄2)3
(7.24)

×
〈
O∆1,$1=− 3

2
(z1, z̄1)O∆2,$c2=

3
2
(z2, z̄2)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
.

This is a double soft limit with opposite helicities, therefore we expect that the result

depends on the order in which the limits are taken. We take ∆1 → 1
2 first and perform the

first shadow integral, to obtain

〈
S(z)S̄(w̄)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
= lim

∆2→ 1
2

(
∆2 − 1

2

)

π

∫
d2z2

(w̄ − z̄2)3

×
[

1

z − z2

〈
O∆2+

1
2 ,$2=2(z2, z̄2)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉

+
N∑

i=k+1

1

z − zi
(−1)σi

〈
O∆2,$c2=

3
2
(z2, z̄2) · · · O∆i+

1
2 ,$i

(zi, z̄i) · · ·
〉]

. (7.25)

In the limit∆2 → 1
2 , the dimension of graviton operator present in the first correlator inside

the square bracket becomes ∆2 +
1
2 → 1, therefore we can use the leading soft graviton

limit (∆ → 1) and perform the second shadow integral. This yields:

lim
∆2→ 1

2

∆2− 1
2

π

∫
d2z2

(w̄−z̄2)3
1

z−z2

〈
O∆2+ 1

2 ,!2=2(z2, z̄2)
k∏

m=3

O∆m,!m(zm, z̄m)
N∏

n=k+1

O∆n,!cn(zn, z̄n)

〉

=
1

π

∫
d2z2

(w̄−z̄2)3(z−z2)

N∑

i=3

z̄2−z̄i
z2−zi

〈
O∆3,!3 · · · O∆i+1,!i · · · O∆N ,!cN

〉
(7.26)

=
N∑

i=3

[
1

(w̄−z̄)2
z̄−z̄i
z−zi

+
1

z̄−w̄

1

z−zi
+

1

w̄−z̄i

1

z−zi

] 〈
O∆3,!3 · · · O∆i+1,!i · · · O∆N ,!cN

〉
.
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The ∆2 → 1
2 limit of the second correlator inside the square bracket in eq. (7.25) is the

leading soft gravitino limit, which yields

lim
∆2→ 1

2

∆2 − 1
2

π

∫
d2z2

(w̄ − z̄2)3

N∑

i=k+1

1

z − zi
(−1)σi

〈
O∆2,$c2=

3
2
(z2, z̄2) · · · O∆i+

1
2 ,$i

(zi, z̄i) · · ·
〉

= − 1

π

∫
d2z2

(w̄ − z̄2)3




N∑

i=k+1

1

z − zi

z̄2i
z2i

〈
O∆3,$3(z3, z̄3) · · · O∆i+1,$ci

(zi, z̄i) · · ·
〉

(7.27)

+
N∑

i=k+1

k∑

j=3

1

z − zi
(−1)σi+σj

z̄2j
z2j

〈
O∆3,$3 · · · O∆j+

1
2 ,$

c
j
· · · O∆i+

1
2 ,$i

· · · O∆N $cN

〉


 .

After performing the shadow integral, the r.h.s. becomes

−
N∑

i=k+1

1

z − zi

1

w̄ − z̄i

〈
O∆3,$3(z3, z̄3) · · · O∆i+1,$ci

(zi, z̄i) · · ·
〉

(7.28)

+
N∑

i=k+1

k∑

j=3

(−1)σi+σj
1

z − zi

1

w̄ − z̄j

〈
O∆3,$3 · · · O∆j+

1
2 ,$

c
j
· · · O∆i+

1
2 ,$i

· · · O∆N $cN

〉
.

Combining eqs. (7.25)–(7.28), we obtain
〈
S(z)S̄(w̄)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
=

N∑

i=3

[
1

(w̄ − z̄)2
z̄ − z̄i
z − zi

+
1

z̄ − w̄

1

z − zi

]〈
O∆3,$3 · · · O∆i+1,$i · · · O∆N ,$cN

〉
(7.29)

+
k∑

i=3

1

w̄ − z̄i

1

z − zi

〈
O∆3,$3 · · · O∆i+1,$i · · · O∆N ,$cN

〉

+
N∑

i=k+1

k∑

j=3

(−1)σi+σj
1

z − zi

1

w̄ − z̄j

〈
O∆3,$3 · · · O∆j+

1
2 ,$

c
j
· · · O∆i+

1
2 ,$i

· · · O∆N $cN

〉
.

Notice that the above expression involves anti-holomorphic poles at z̄ = w̄, but it does not

contain the holomorphic ones. This reflects the order of soft limits: ∆1 → 1
2 first, followed

by ∆2 → 1
2 . In order to construct an order-independent quantity, we consider

〈
S̄(z̄)S(w)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
=

lim
∆1→ 1

2

lim
∆2→ 1

2

(
∆1 − 1

2

) (
∆2 − 1

2

)

π2

∫
d2z1

(z − z1)3

∫
d2z2

(w̄ − z̄2)3
(7.30)

×
〈
O∆1,$c1=

3
2
(z1, z̄1)O∆2,$2=− 3

2
(z2, z̄2)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
.
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After repeating the same steps as before, we find

〈
S̄(z̄)S(w)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
=

N∑

i=3

[
1

(w − z)2
z − zi
z̄ − z̄i

+
1

z − w

1

z̄ − z̄i

]〈
O∆3,$3 · · · O∆i+1,$i · · · O∆N ,$cN

〉
(7.31)

+
N∑

i=k+1

1

w − zi

1

z̄ − z̄i

〈
O∆3,$3 · · · O∆i+1,$i · · · O∆N ,$cN

〉

−
N∑

i=k+1

k∑

j=3

(−1)σi+σj
1

z̄ − z̄j

1

w − zi

〈
O∆3,$3 · · · O∆j+

1
2 ,$

c
j
· · · O∆i+

1
2 ,$i

· · · O∆N $cN

〉
.

Note opposite signs of the last terms in eqs. (7.29) and (7.31) which are due to the ordering

of operators. S acts on the right cluster of {!c}’s while S̄ on the left cluster of {!}’s. Once

we add eqs. (7.29) and (7.31), we find a combination that does not depends on the order

of limits:
〈
[S(z)S̄(w̄) + S̄(z̄)S(w)]

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
=

{
N∑

i=3

[
1

(w̄ − z̄)2
z̄ − z̄i
z − zi

+
1

(w − z)2
z − zi
z̄ − z̄i

+
1

z̄ − w̄

1

z − zi
+

1

z − w

1

z̄ − z̄i

]
(7.32)

+
k∑

i=3

1

w̄ − z̄i

1

z − zi
+

N∑

i=k+1

1

w − zi

1

z̄ − z̄i

}〈
O∆3,$3 · · · O∆i+1,$i · · · O∆N ,$cN

〉

+
N∑

i=k+1

k∑

j=3

(−1)σi+σj

[
1

z − zi

1

w̄ − z̄j
− 1

z̄ − z̄j

1

w − zi

]〈
· · · O∆j+

1
2 ,$

c
j
· · · O∆i+

1
2 ,$i

· · ·
〉
.

The singular terms involve insertions of the graviton operators. We can compare them

with the known graviton correlation functions. As a result, we obtain the following OPE:

S(z)S̄(w̄) + S̄(z̄)S(w) = lim
∆→1

(∆− 1)

[
1

(z̄ − w̄)2
O∆,$=+2(z, z̄) +

1

(z − w)2
O∆,$c=−2(z, z̄)

]

+
1

z̄ − w̄
4P (z) +

1

z − w
4P̄ (z̄) + regular. (7.33)

From eq. (7.32) we can also extract the finite piece remaining at z = w:

〈
: [S(z)S̄(z̄) + S̄(z̄)S(z)] :

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
=

N∑

i=3

1

z − zi

1

z̄ − z̄i

〈
O∆3,$3 · · · O∆i+1,$i · · · O∆N ,$cN

〉
. (7.34)
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We recognize this as the correlator of the BMS supertranslation operator P(z, z̄) [36], a

primary field (h = 3
2 , h̄ = 3

2) defined by the Laurent expansion:

P(z, z̄) ≡
∑

n,m∈Z
Pn− 1

2 ,m− 1
2
z−n−1z̄−m−1 , (7.35)

where Pn− 1
2 ,m− 1

2
generate supertranslations. Its OPEs with other primaries read

P(w, w̄)Oh,h̄(z, z̄) =
1

w − z

1

w̄ − z̄
Oh+ 1

2 ,h̄+
1
2
(z, z̄) + regular . (7.36)

We conclude that

: S(z)S̄(z̄) + S̄(z̄)S(z) : = P(z, z̄) . (7.37)

7.4 SS and S̄S̄

We consider the correlator
〈
S(z)S(w)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
=

lim
∆1→ 1

2

lim
∆2→ 1

2

(
∆1 − 1

2

) (
∆2 − 1

2

)

π2

∫
d2z1

(z − z1)3

∫
d2z2

(w − z2)3
(7.38)

×
〈
O∆1,$1=− 3

2
(z1, z̄1)O∆2,$2=− 3

2
(z2, z̄2)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
.

This is a double soft limit with identical helicities, therefore the result does not depend on

the order in which the limits are taken. We take ∆1 → 1
2 first and perform the first shadow

integral, to obtain
〈
S(z)S(w)

k∏

m=3

O∆m,$m(zm, z̄m)
N∏

n=k+1

O∆n,$cn(zn, z̄n)

〉
= lim

∆2→ 1
2

(
∆2 − 1

2

)

π

∫
d2z2

(w − z2)3

N∑

i=k+1

1

z − zi
(−1)σi

〈
O∆2,$2=− 3

2
(z2, z̄2) · · · O∆i+

1
2 ,$i

(zi, z̄i) · · ·
〉
. (7.39)

Next, we take ∆2 → 1
2 and perform the second shadow integral. This yields

lim
∆2→ 1

2

(
∆2 − 1

2

)

π

∫
d2z2

(w − z2)3

N∑

i=k+1

1

z − zi
(−1)σi

〈
O∆2,$2=− 3

2
(z2, z̄2) · · · O∆i+

1
2 ,$i

(zi, z̄i) · · ·
〉

=
N∑

i=k+1

N∑

j '=i,j=k+1

1

z − zi

1

w − zj
(−1)σi+σj

〈
O∆3,$3 · · · O∆i+

1
2 ,$i

· · · O∆j+
1
2 ,$j

· · ·
〉
.

(7.40)

We see that there are no singularities when z → w, therefore

S(z)S(w) ∼ regular . (7.41)

Similarly,

S̄(z̄)S̄(w̄) ∼ regular . (7.42)
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8 The algebra sbms4 of super BMS4 generators

As shown in the previous section, the supercurrent S(z) is a primary field with chiral

weights h = 3
2 , h̄ = 0. We can write it in the form of a Laurent expansion:

S(z) =
∑

n∈Z+ 1
2

Gn

zn+
3
2

, with Gn =

∮
dz zn+1/2 S(z) . (8.1)

Similarly,

S̄(z̄) =
∑

n∈Z+ 1
2

Ḡn

zn+
3
2

, with Ḡn =

∮
dz̄ z̄n+1/2 S̄(z̄) . (8.2)

The OPEs of eqs. (6.13) and (6.14) imply

[Gn,O∆,$c(w, w̄)] = wn+1/2O∆+ 1
2 , $

(w, w̄), (8.3)

[Ḡn,O∆,$(w, w̄)] = w̄n+1/2O∆+ 1
2 , $

c(w, w̄). (8.4)

By comparing with eqs. (3.36)–(3.37), we can make the following identification between

SUSY generators and supercurrent modes:

Q1 → G+1/2 , Q2 → G−1/2 ,

Q̄1̇ → Ḡ+1/2 , Q̄2̇ → Ḡ−1/2 .

These are the four-dimensional SUSY generators realization in CCFT. In addition to su-

perrotations and superstranslations, sbms4 contains “super” supersymmetries generated

by the infinite set of generators Gn and Ḡm.

If we apply (8.3) and (8.4) consecutively to a primary operator, we find

[{Gn, Ḡm}, O∆(z, z̄)] = zn+
1
2 z̄m+ 1

2O∆+1(z, z̄) = [Pn,m, O∆(z, z̄)] , (8.5)

where Pn,m are modes of the supertranslation operator [19] P(z, z̄), cf. eq. (7.35). We

conclude that

{Gn, Ḡm} = Pn,m . (8.6)

Furthermore, from eqs. (7.41) and (7.42) it follows that

{Gn, Gm} = {Ḡn, Ḡm} = 0 . (8.7)

The holomorphic and anti-holomorphic supertranslation currents were previously ex-

panded in [19] as

P (z) =
∑

n∈Z
P̂n− 1

2
z−n−1 , P̄ (z̄) =

∑

n∈Z

ˆ̄Pn− 1
2
z̄−n−1 . (8.8)

These modes form a subset of the mode expansion (7.35) of P(z, z̄): P̂n− 1
2
= 1

4Pn− 1
2 ,−

1
2

and ˆ̄Pn− 1
2
= 1

4P− 1
2 ,n−

1
2
. Then from eqs. (7.20) and (7.23) it follows that

[
Gm, Pn− 1

2 ,−
1
2

]
=
[
Ḡm, Pn− 1

2 ,−
1
2

]
=
[
Gm, P− 1

2 ,n−
1
2

]
=
[
Ḡm, P− 1

2 ,n−
1
2

]
= 0 . (8.9)
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The commutators of G’s with the remaining supertranslation generators can be obtained by

successive applications of the operators to generic primary operators. In this way, we find

[Gn, Pk,l] =
[
Ḡm, Pk,l

]
= 0 . (8.10)

The well-known mode expansions of the energy momentum tensor are

T (z) =
∑

m

Lm

zm+2
, T (z̄) =

∑

m

L̄m

z̄m+2
, (8.11)

where Lm and L̄n are the Virasoro operators. Then from eqs. (7.15) and (7.16), we find

the following algebra:

[Lm, Gn] =

(
1

2
m− n

)
Gm+n , (8.12)

[
L̄m, Ḡn

]
=

(
1

2
m− n

)
Ḡm+n .

On the other hand, the OPEs of T S̄ and TS are regular, therefore

[Lm, Ḡn] = [L̄m, Gn] = 0 . (8.13)

After collecting all of the above we obtain the following sbms4 algebra:

{Gm, Ḡn} = Pm,n

{Gm, Gn} = {Ḡm, Ḡn} = 0

[Pk,l, Gn] =
[
Pk,l, Ḡm

]
= 0 (8.14)

[Lm, Gk] =

(
1

2
m− k

)
Gm+k

[
L̄m, Ḡl

]
=

(
1

2
m− l

)
Ḡm+l

[Lm, Ḡn] = [L̄m, Gn] = 0 ,

together with the remaining commutators of bms4 [19]. This is an infinite-dimensional

symmetry algebra of N = 1 supersymmetric theory on CS2. It can be compared with the

supersymmetric BMS algebra in three dimensions [24–26] and in four dimensions [20]. In

this context, infinite-dimensional extension of supersymmetry appears as a “square root” of

supertranslations. Unlike in superstring theory, there is no “world-sheet” two-dimensional

supersymmetry on CS2; it is possible though that it can appear in some limits of celestial

amplitudes [40].

9 Conclusions

In the present paper, we extended our earlier work [19] to include supersymmetry. We used

on-shell supersymmetry transformations to construct chiral and gauge supermultiplets of
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conformal primary wave functions. The oscillator mode expansion of the fields reveals that

in order to have a consistent description of the theory one needs to extend the theory

to include states with conformal dimensions beyond the normalizable Re(∆) = 1. In the

bosonic case this was the case due to the action of supertranslations on the primary states

of the theory. Here we see that supersymmetry leads to the same conclusion. This is even

more evident when one considers supersymmetric Ward identities. Their Mellin transforms

lead to relations between fermionic and bosonic correlators on CS2 with Re(∆) = 1
2 . The

nature of these states is not yet clear [41] and requires further investigation.

We also discussed in detail fermionic conformal soft theorems, both leading and sub-

leading and the associated CCFT Ward identities. We exhibited an intricate pattern of

supersymmetric Ward identities that relates fermionic and bosonic soft theorems, at both

leading and subleading levels. It would be very interesting to understand if this chain

of relations is sufficient to prove that all soft theorems, leading and subleading are not

renormalized in supersymmetric theories [33, 42, 43].

By using soft theorems, we constructed sbms4 −N=1 supersymmetric version of the

extended BMS algebra. Most of the previous studies of CCFT have concentrated on the

bosonic sector of the theory. One of the main questions regarding the bosonic CCFT is

the status of the symmetries under quantum corrections and in particular the value of the

central charge. Given the usual non-renormalization theorems for supersymmetric theories

in 4d, we hope that our work will be a useful step towards addressing the fate of extended

BMS symmetry beyond the tree level.

Another interesting aspect of our work is the relation between the supertranslation field

P(z, z̄) and two-dimensional supercurrents S(z) and S̄(z̄). This field appears in the product

of holomorphic and anti-holomorphic supercurrents. Previously, in [19], we were able to

identify the supertranslation currents P (z) and P̄ (z̄) as the descendants of conformally soft

graviton modes. No such state was found for P(z, z̄). Now we learn that in supersymmetric

theory, P(z, z̄), which generates all superstranslations, can be identified as a composite

operator.

There were several puzzles encountered in the course of this work. One, already men-

tioned before, is the role of states with Re(∆) /= 1. Are they physical, independent states?

If yes, what do they represent? Another striking point is that the subleading gravitino

and sub-subleading graviton limits do not seem to play any role in the construction of

sbms4. Do they generate further extension of the symmetry algebra? These are just two

examples of many questions that need to be addressed in order to develop CCFT into a

viable candidate for a holographic description of four-dimensional physics.
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a b

c

c
p1 + p2

p1 p2

Figure 1. Feynman diagrams leading to soft gaugino singularities.

a b

c

c
p1 + p2

p1 p2

Figure 2. Feynman diagrams leading to soft gaugino singularities.
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A Soft and collinear limits of gauginos and gravitinos

A.1 Soft gaugino limit

We start from the soft limit of gaugino in N=1 supersymmetric Einstein-Yang-Mills the-

ory (SEYM). The singular contributions to a soft gaugino emission arise from Feynman

diagrams in which internal gluon goes on-shell, shown in figure 1 or an internal gaugino

goes on-shell, shown in figure 2. To be specific, we assume that the soft gaugino, which

carries momentum p1 → 0, has positive helicity.

The interactions of gauginos and gauge boson is given by the vertex:

V µ
g̃g̃g = ifabcσµ , (A.1)

where σµ = (1,$σ). To evaluate the contribution from figure 1, we define the splitting

vector:

Sµ = λ̃1λ2D
µα(p1 + p2)Vg̃g̃g(p1, p2)α , (A.2)

where

λ̃1 = |1], λ2 = 〈2| . (A.3)
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p1 + p2

p1 p2

Figure 3. Double wavy line represents the graviton.

Dµα is the gauge boson propagator

Dµα(p1 + p2) =
−i

(p1 + p2)2
gµα . (A.4)

When p1 becomes soft, the gauge boson propagator goes on-shell. In the soft limit, the

splitting vector becomes

lim
ω1→0

Sµ

(
+
1

2
,−1

2

)
= fabc 1

z12
√
ω1ω2

ε−µ
2 , (A.5)

where ε−µ
2 denotes εµ2,$2=−1. Notice that the leading order of the soft limit is O

(
1√
ω1

)
.

Next to evaluate the contribution from figure 2, we define the splitting spinor:

S = λ̃1ε
+µ
2 Vg̃gg̃(p1, p2)µD(p1 + p2) , (A.6)

where ε+µ
2 denotes εµ2,$2=+1. D(p1 + p2) is the gaugino propagator

D(p1 + p2) = i
λP λ̃P

(p1 + p2)2
, (A.7)

with the numerator factorized assuming that P = p1 + p2 is also on-shell, P 2 = 0. In the

soft limit,

lim
ω1→0

S

(
+
1

2
,+1

)
= fabc 1

z12
√
ω1ω2

λ̃2 . (A.8)

Other possible gaugino production channels involve gravitational interactions. They

are shown in figures 3–6. It is easy to check that these channels do not contribute at the

O
(

1√
ω1

)
order.

Note that in all singular contributions, the helicity of the non-soft particle is decreased

by 1
2 . After summing all contributions of partial amplitudes with color factors, we find the

leading soft gaugino limit:

lim
ωs→0

M
(
sa,+

1
2 ,1a1,$2 , · · · ,NaN ,$N

)
=

1
√
ωs

N∑

i=1

faaic 1

(zs−zi)
√
ωi

(−1)σiM
(
· · · ic,$i−

1
2 , · · ·

)
,

(A.9)
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p1 + p2

p1 p2

Figure 4. Virtual graviton decaying into a gaugino pair.

p1 + p2

p1 p2

Figure 5. The double wavy-solid line represents the gravitino decaying into a gauge boson and
gaugino.

p1 + p2

p1 p2

Figure 6. Virtual gauge boson decaying into gaugino and gravitino.

where the non-zero terms on the right hand side require !i − 1
2 = +1

2 or !i − 1
2 = −1.

Here, σi is the number of fermions preceding particle i, i.e. the number of fermion cre-

ation/annihilation operators inserted to the left of the operator creating or annihilating

soft gaugino. After performing Mellin transforms, we find the ∆s → 1
2 limit of the celestial

amplitude:

A$s=+ 1
2 ,$1,...,$N

(∆s,∆1 . . .∆N )

→ 1

∆s − 1
2

N∑

i=1

faaic

zs − zi
(−1)σiA$1,...$i− 1

2 ,...$N

(
∆1, . . . ,∆i −

1

2
, . . . ,∆N

)
. (A.10)
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Figure 7. Feynman diagrams leading to soft gravitino singularities.

A.2 Soft gravitino limits

Feynman diagrams contributing to soft singularities are shown in figures 7 and 8. We

assume that the soft gravitino, which carries momentum p1 → 0, has helicity + 3
2 .

To evaluate figure 7, we use the gauge boson-gaugino-gravitino vertex and the following

polarization vectors for gravitino and gauge boson:

Gravitino: εµ
$=+ 3

2

(p1, r) = εµ$=+1(p1, r)|1] = ε+µ
1 |1] , (A.11)

with the polarization vectors

εµ$=+1(p, r) =
〈r|σµ|p]√
2〈rp〉

. (A.12)

where 〈r| is a reference spinor.

The expression for the vertex is given by

Vµν(p1, p2) = κ

[
i

2
(−(p2)µσν + ηµνp2 · σ) +

1

2
pρ2εµνρκσ

κ

]
, (A.13)

where σµ = (1,$σ). In our conventions, κ = 2. The splitting spinor of this diagram is

defined as

S

(
+
3

2
,+1

)
= εµ

1,$1=+ 3
2

ε+ν
2 Vµν(p1, p2)D(p1 + p2) , (A.14)

with the fermion propagator given in eq. (A.7). After contracting with the polarization

vectors, we obtain

S

(
+
3

2
,+1

)
=

[21]

〈12〉
〈Pr〉
〈1r〉 |P ]

=
z̄12
z12

zPr

z1r

(
ωP

ω1

) 1
2

|P ] . (A.15)

When ω1 → 0, the leading term is of order O
(

1√
ω1

)
:

lim
ω1→0

S

(
+
3

2
,+1

)
=

z̄12
z12

z2r
z1r

(
ω2

ω1

) 1
2

|2] . (A.16)

It is also easy to see that if the helicity of the gauge boson is −1, there is no O
(

1√
ω1

)
term.
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Figure 8. Feynman diagrams leading to soft gravitino singularities.

Next to evaluate the contribution from figure 8, consider the case when the gravitino

has positive helicity and the gaugino has negative helicity. The corresponding splitting

vector is

Sγ

(
+
3

2
,−1

2

)
= εµ

1,$1=+ 3
2

λ2 V (p1, p2)µνD
νγ(p1 + p2) . (A.17)

We find

Sγ

(
+
3

2
,−1

2

)
=

[21]

〈12〉
〈2r〉
〈1r〉ε

−γ
2 , (A.18)

hence

lim
ω1→0

Sγ

(
+
3

2
,−1

2

)
=

z̄12
z12

z2r
z1r

(
ω2

ω1

) 1
2

ε−γ
2 . (A.19)

If the helicity of the gaugino is + 1
2 , then there is no O

(
1√
ω1

)
term. Now we can write

down the full expression of soft gravitino limit of amplitudes containing one soft gravitino

with other particles being gauginos and gauge bosons:

lim
ωs→0

M
(
ps !s = +

3

2
, p1 !1, · · · , pN !N

)

=
N∑

i=1

z̄si
zsi

zri
zrs

(
ωi

ωs

) 1
2

(−1)σiM
(
p1 !1, · · · pi !i −

1

2
, · · · , pN , !N

)
+O

(
ω

1
2
s

)
,

(A.20)

where zr is the reference point. Note that on the right hand side !i − 1
2 can be equal to

either 1
2 or −1. As shown in [29], the soft gravitino limit expression above is also valid for

amplitudes that contain multiple gravitini and gravitons. Here we rederive this result by

using Feynman diagrams. The additional Feynman diagrams are shown in figures 9 and 10.

The contribution of figure 9 involves the splitting tensor Sγδ:

Sγδ = ε1α,$1=± 3
2
ε2β,$2=∓ 3

2
V αβ,µν(p1, p2)D

γδ
µν(p1 + p2) , (A.21)

where the three point vertex V αβ,µν(p1, p2) is given by [44]:

V αβ,µν(p1, p2) = i
κ

2
σµ((p1 − p2)

νgαβ + (2p2 + p1)
αgβν + (−2p1 − p2)

βgνα) . (A.22)
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Figure 9. Feynman diagrams leading to soft gravitino singularities interacting with non-soft grav-
itino.

p1 + p2
β

γ

p1

α

p2

µν

Figure 10. Feynman diagrams leading to soft gravitino singularities interacting with non-soft
graviton.

The graviton propagator is

Dγδ
µν(p1 + p2) =

i

2
(δµγ δ

ν
δ + δµδ δ

ν
γ − gµνgγδ)

1

(p1 + p2)2
. (A.23)

The second (hard) gravitino must carry helicity −3
2 , therefore

εα
1,$1=+ 3

2
= ε+α

1 |1], εβ
2,$2=− 3

2

= ε−β
2 |2〉 . (A.24)

We find that when ω1 → 0, the splitting tensor

lim
ω1→0

Sγδ

(
+
3

2
,−3

2

)
=

z̄12
z12

zr2
zr1

(
ω2

ω1

) 1
2

ε−γ
2 ε−δ

2

=
z̄12
z12

zr2
zr1

(
ω2

ω1

) 1
2

εγδ2,$2=−2 . (A.25)

Next, to evaluate the contribution from figure 10, we define the splitting spinors

Sγ = ε1αε2µνV
α,µν,β(p1, p2)D

γ
β(p1 + p2) , (A.26)

where the vertex is related to eq. (A.22) by crossing and the gravitino propagator is

Dγ
β(p1 + p2) = D(p1 + p2)δ

γ
β . (A.27)
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Let us assume that the external graviton carries helicity +2. Then

εα
1,$1=+ 3

2
= ε+α

1 |1], εµν2,$2=+2 = ε+µ
2 ε+ν

2 . (A.28)

We find that when ω1 → 0, the splitting spinor

lim
ω1→0

Sγ

(
+
3

2
,+2

)
=

z̄12
z12

zr2
zr1

(
ω2

ω1

) 1
2

ε+γ
2 |2]

=
z̄12
z12

zr2
zr1

(
ω2

ω1

) 1
2

εγ2

(
! = +

3

2

)
. (A.29)

In the case of Sγ
(
+3

2 ,−2
)
, it is easy to check there is no O

(
1√
ω1

)
term in the soft gravitino

limit.

Now we are ready to generalize eq. (A.20) to the amplitudes involving also gravitinos

and gravitons:

lim
ωs→0

M
(
ps !s = +

3

2
, p1 !1, · · · , pN !N

)

=
N∑

i=1

z̄si
zsi

zri
zrs

(
ωi

ωs

) 1
2

(−1)σiM
(
p1 !1, · · · pi !i −

1

2
, · · · , pN , !N

)
+O

(
ω

1
2
s

)
,

(A.30)

where on the right hand side, !i − 1
2 must be equal to 1

2 for gaugino, −1 for gauge boson,

−2 for graviton or +3
2 for gravitino, therefore belong to the set of {!c} defined in (3.38).

Other helicities of these particles do not appear in the soft limit of gravitino with helicity

+3
2 . The complement set of {!} appears in the soft limit of helicity −3

2 .

A.3 Collinear limit: kinematics

In this section the kinematics of collinear limits will be reviewed. As in ref. [19], we use the

conventions of [38]. We will parametrize two light-like momenta p1 and p2 and introduce

two light-like vectors P and r in the following way [45]:

λ1 = λP cos θ − ελr sin θ , λ̃1 = λ̃P cos θ − ε̃λ̃r sin θ , (A.31)

λ2 = λP sin θ + ελr cos θ , λ̃2 = λ̃P sin θ + ε̃λ̃r cos θ , (A.32)

thus we have

p1 = c2P − sc(ελrλ̃P + ε̃λP λ̃r) + εε̃s2r , (A.33)

p2 = s2P + sc(ελrλ̃P + ε̃λP λ̃r) + εε̃c2r , (A.34)

where

c ≡ cos θ =
√
x , s ≡ sin θ =

√
1− x . (A.35)

Then

〈12〉 = ε 〈Pr〉 , [12] = ε̃ [Pr] . (A.36)
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Figure 11. Feynman diagrams leading to collinear gaugino singularities.

The collinear limit of p1 and p2 occurs when ε = ε̃ = 0. In this limit,

ωP = ω1 + ω2 (A.37)

c2 =
ω1

ωP
, s2 =

ω2

ωP
. (A.38)

A.4 Collinear limits involving gaugino

We first we consider the collinear limit of two gauginos. The Feymann diagram contributing

to the collinear singularities is shown in figure 11. Assume that particle 1 is a gaugino with

negative helicity and particle 2 is a gaugino with positive helicity. We define the splitting

vector:

Sµ = λ1λ̃2D
µα(p1 + p2)Vg̃g̃g(p1, p2)α , (A.39)

where Dµ,α is the gauge boson propagator

Dµα(p1 + p2) =
−i

(p1 + p2)2
gµα (A.40)

and the vertex is

V µ
g̃g̃g = ifabcσµ . (A.41)

After inserting λ1 and λ̃2 of eqs. (A.31) and (A.32) we find that at the leading order,

Sµ

(
−1

2
,+

1

2

)
= fabc

(
1

z̄12
√
ω1ω2

s2ε+µ
P +

1

z12
√
ω1ω2

c2ε−µ
P

)

= fabc



 1

z̄12

ω
1
2
2

ω
1
2
1 ωP

ε+µ
P +

1

z12

ω
1
2
1

ω
1
2
2 ωP

ε−µ
P



 . (A.42)

Next, we include the gravitational production channel shown in figure 12. Here, the split-

ting tensor is

Sµν = λ1λ̃2D
µν
γδ (p1 + p2)V

γδ
g̃g̃h(p1, p2) , (A.43)

where the graviton propagator is given by eq. (A.23) and the gaugino-graviton vertex

V γδ
g̃g̃h(p1, p2) = iδabσγ(p2 − p1)

δ . (A.44)
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Figure 12. Feynman diagrams leads to collinear gaugino singularities.

We obtain

Sµν

(
−1

2
,+

1

2

)
= δab

(
−z12
z̄12

s3cε+µ
P ε+ν

P − z̄12
z12

sc3ε−µ
P ε−ν

P

)

= δab



−z12
z̄12

ω
3
2
2 ω

1
2
1

ω2
P

ε+µ
P ε+ν

P − z̄12
z12

ω
1
2
2 ω

3
2
1

ω2
P

ε−µ
P ε−ν

P



 . (A.45)

Thus the collinear limit of the amplitude is given by

M
(
1a,−

1
2 , 2b,+

1
2 , · · ·

)
= fabc



 1

z̄12

ω
1
2
2

ω
1
2
1 ωP

M(P c,+1, · · · ) + 1

z12

ω
1
2
1

ω
1
2
2 ωP

M(P c,−1, · · · )





+ δab



−z12
z̄12

ω
3
2
2 ω

1
2
1

ω2
P

M(P+2, · · · )− z̄12
z12

ω
1
2
2 ω

3
2
1

ω2
P

M(P−2, · · · )



 .

(A.46)

In terms of partial amplitudes, this corresponds to

M
(
1−

1
2 , 2+

1
2 , · · ·

)
=

1

z̄12

ω
1
2
2

ω
1
2
1 ωP

M(P+1, · · · ) + 1

z12

ω
1
2
1

ω
1
2
2 ωP

M(P−1, · · · )

−z12
z̄12

ω
3
2
2 ω

1
2
1

ω2
P

M(P+2, · · · )− z̄12
z12

ω
1
2
2 ω

3
2
1

ω2
P

M(P−2, · · · ) . (A.47)

In a similar way, we obtain the collinear limit of 1+
1
2 and 2−

1
2 :

M
(
1+

1
2 , 2−

1
2 , · · ·

)
=

1

z12

ω
1
2
2

ω
1
2
1 ωP

M(P−1, · · · ) + 1

z̄12

ω
1
2
1

ω
1
2
2 ωP

M(P+1, · · · )

− z̄12
z12

ω
3
2
2 ω

1
2
1

ω2
P

M(P−2, · · · )− z12
z̄12

ω
1
2
2 ω

3
2
1

ω2
P

M(P+2, · · · ) . (A.48)
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Figure 13. Feynman diagrams leading to collinear gaugino and gauge boson singularities.

Next we consider the case of collinear gaugino and gauge boson. The Feynman diagram

is shown in figure 13. The corresponding splitting spinor is

S = λ̃1ε
µ
2Vg̃gg̃(p1, p2)µD(p1 + p2) . (A.49)

Let us assume that the external gauge boson has positive helicity. After inserting λ̃1 and

ε+µ
2 , we find

S

(
+
1

2
,+1

)
= fabc 1

z12
√
ω1ω2

1

s
λ̃P = fabc 1

z12

ω1/2
P

ω1/2
1 ω2

λ̃P . (A.50)

For a gauge boson with negative helicity, we find

S

(
+
1

2
,−1

)
= fabc 1

z̄12
√
ω1ω2

c2

s
λ̃P = fabc 1

z̄12

ω1/2
1

ω2ω
1/2
P

λ̃P . (A.51)

The diagram describing gaugino-gauge boson gravitational production channel is shown in

figure 14. It yields

Sµ = λ̃1ε2νV
νγ

g̃gh̃
(p1, p2)D

µ
γ (p1 + p2) , (A.52)

which leads to

Sµ

(
+
1

2
,+1

)
= δabc ε+µ

P λ̃P + · · ·

= δab
ω1/2
1

ω1/2
P

ε+µ
P λ̃P + · · · (A.53)

Sµ

(
+
1

2
,−1

)
= δab

z12
z̄12

c3ε+µ
P λ̃P + · · ·

= δab
z12
z̄12

ω3/2
1

ω3/2
P

ε+µ
P λ̃P + · · · (A.54)

We conclude that in the collinear limit of 1
1
2 and 2+1, the amplitude becomes

M
(
1a,+

1
2 , 2b,+1, · · ·

)
= fabc 1

z12
√
ω1ω2

(
ωP

ω2

) 1
2

M
(
P c,+ 1

2 , · · ·
)
+ δab

ω1/2
1

ω1/2
P

M
(
P+ 3

2 , · · ·
)
.

(A.55)
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Figure 14. Feynman diagrams leading to collinear gaugino and gauge boson singularities.

In terms of partial amplitudes this corresponds to

M
(
1+

1
2 , 2+1, · · ·

)
=

1

z12
√
ω1ω2

(
ωP

ω2

) 1
2

M
(
P+ 1

2 , · · ·
)
+
ω1/2
1

ω1/2
P

M
(
P+ 3

2 , · · ·
)
. (A.56)

In the collinear limit of 1
1
2 and 2−1,

M
(
1a,+

1
2 , 2b,−1, · · ·

)
= fabc 1

z̄12

ω1/2
1

ω2ω
1/2
P

M
(
P c,+ 1

2 , · · ·
)
+ δab

z12
z̄12

ω3/2
1

ω3/2
P

M
(
P+ 3

2 , · · ·
)
.

(A.57)

In terms of partial amplitudes, this corresponds to

M
(
1+

1
2 , 2−1, · · ·

)
=

1

z̄12

ω1/2
1

ω2ω
1/2
P

M
(
P+ 1

2 , · · ·
)
+

z12
z̄12

ω3/2
1

ω3/2
P

M
(
P+ 3

2 , · · ·
)
. (A.58)

Finally, we consider collinear gaugino and graviton, shown in figure 15. We find the

splitting spinors:

S

(
−2,+

1

2

)
=

z12
z̄12

ω3/2
2

ω1ω
1/2
P

|P ] (A.59)

S

(
+2,+

1

2

)
=

z̄12
z12

ω1/2
2 ω1/2

P

ω1
|P 〉 . (A.60)

Thus the collinear gaugino-graviton limits are

M
(
1−2, 2+

1
2 , · · ·

)
=

z12
z̄12

ω3/2
2

ω1ω
1/2
P

M
(
P+ 1

2 , · · ·
)
, (A.61)

M
(
1+2, 2+

1
2 , · · ·

)
=

z̄12
z12

ω1/2
2 ω1/2

P

ω1
M
(
P+ 1

2 , · · ·
)
. (A.62)
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Figure 15. Feynman diagrams leading to collinear gaugino and graviton singularities.

p1 + p2

p1 p2

Figure 16. Feynman diagrams leading to collinear gravitino and gauge boson singularities.

A.5 Collinear limits involving gravitino

The Feynman diagrams contributing to the limit of a gravitino collinear with a gauge boson

and with a gaugino are shown in figures 16 and 17, respectively.

We can use the same definition for splitting vector or spinor as in the soft limit. In

the collinear limit, figure 16 leads to the splitting spinor

S

(
+
3

2
,+1

)
=

z̄12
z12

(
ωP

ω1

) 1
2

|P ] , (A.63)

which leads to

M
(
1+

3
2 , 2+1 · · ·

)
=

z̄12
z12

(
ωP

ω1

) 1
2

M
(
P+ 1

2 , · · ·
)
. (A.64)

Figure 17 leads to the splitting vector

Sγ

(
+
3

2
,−1

2

)
=

z̄12
z12

ω3/2
2√
ω1ωP

ε−γ
P . (A.65)

In this case,

M
(
1+

3
2 , 2−

1
2 · · ·

)
=

z̄12
z12

ω3/2
2√
ω1ωP

M(P−1, · · · ) . (A.66)
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Figure 17. Feynman diagrams leading to collinear gravitino and gaugino singularities.

The Feynman diagram is contributing to the collinear limit of two gravitini is shown

in figure 18. It yields

M
(
1−

3
2 , 2+

3
2 , · · ·

)
=

s5

c

〈21〉
[12]

M(P+2, · · · ) + c5

s

[21]

〈12〉M(P−2, · · · )

=
z12
z̄12

ω5/2
2

ω1/2
1 ω2

P

M(P+2, · · · ) + z̄12
z12

ω5/2
1

ω1/2
2 ω2

P

M(P−2, · · · ) . (A.67)

The Feynman diagram contributing to the gravitino-graviton colliner limit is shown in

figure 19. It leads to

M
(
1−

3
2 , 2−2, · · ·

)
=

z̄12
z12

ω5/2
1

ω2ω
3/2
P

M(P−3/2, · · · ) , (A.68)

M
(
1−

3
2 , 2+2, · · ·

)
=

z12
z̄12

ω3/2
P

ω2ω
1/2
1

M(P−3/2, · · · ) . (A.69)

B Gluon soft theorems in Mellin space

We start with the BCFW representation for the n+ 1-point gluon amplitude An+1

An+1

(
{λ1, λ̃1} , . . . , {λn, λ̃n} , {λs, λ̃s}+

)
=

〈n1〉
〈ns〉〈s1〉

×An

({
λ1, λ̃1 +

〈s n〉
〈1n〉 λ̃s

}
, . . . ,

{
λn, λ̃n +

〈s 1〉
〈n 1〉 λ̃s

})
+ . . . , (B.1)

with the shifts: λs(z) = λs+zλn and λ̃n(z) = λ̃n−zλ̃s [46]. The dots denote regular terms

in z = − 〈s1〉
〈n1〉 .

A specific Lorentz generator which only acts on antichiral spinors can be introduced

as in ref. [17]:

J =
1

4
(pµs ε

ν − pµs ε
µ) σ̃µσν =

1

2
|s][s| (B.2)
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Figure 18. Feynman diagrams leading to collinear gravitini singularities.

p1 + p2

p1 p2

Figure 19. Feynman diagrams leading to collinear gravitino and graviton singularities.

in terms of spinors λs, λ̃s referring to particle s. With this Lorentz generator (B.2) in (B.1)

the shifts in the antichiral spinors λ̃1 and λ̃n can be furnished by acting with J1 and Jn on

gluon 1 and n, respectively. Since

exp

{
J1

(εsp1)

}
λ̃1 = λ̃1 +

〈ns〉
〈n1〉 λ̃s ,

exp

{
− psp1
pspn

Jn
(εsp1)

}
λ̃n = λ̃n +

〈1s〉
〈1n〉 λ̃s , (B.3)

we have:

An+1

(
{λ1, λ̃1} , . . . , {λn, λ̃n} , {λs, λ̃s}+

)
=

〈n1〉
〈ns〉〈s1〉

× exp

{
1

(εsp1)

(
J1 −

psp1
pspn

Jn

)}
An

(
{λ1, λ̃1} , . . . , {λn, λ̃n}

)
+ . . . . (B.4)

To translate this formula into Mellin space we introduce celestial coordinates. In this basis

the operators (B.3) act as conformal transformations on the gluon operators number 1 and

n. Concretely, with εsp1 =
1
2
〈n1〉[s1]
〈ns〉 we have [17]

J

(εsp1)
=
α1

z̄s1
(z̄2s l−1 − 2z̄sl0 + l1) , α1 =

εsωszns
ε1ω1zn1

. (B.5)
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In terms of the SL(2,C) generators l−1 = ∂z̄, l0 = z̄∂z̄ + h̄ and l1 = z̄2∂z̄ + 2z̄h̄ [47] acting

on some function f(z̄) depending on the celestial coordinate z̄ we get:

exp

{
J1

(εsp1)

}
f(z̄) = exp

{
α1

z̄s1
[(z̄s − z̄)2∂z̄ − 2h̄1(z̄s − z̄)]

}
f(z̄)

∣∣∣∣
z̄=z̄1

. (B.6)

Furthermore, we obtain

exp

{
− psp1
pspn

Jn
(εsp1)

}
f(z̄) = exp

{
αn

z̄sn
[(z̄s − z̄)2∂z̄ − 2h̄n(z̄s − z̄)]

}
f(z̄)

∣∣∣∣
z̄=z̄n

, (B.7)

with αn = εsωsz1s
ε1ωnz1n

. Eventually, with this information for (B.4) we obtain the following

expression in celestial coordinates:

Ãn+1 =
zn1

znszs1

1

ωs

× exp

{
α1

z̄s1
[(z̄s − z̄)2∂z̄ − 2h̄1(z̄s − z̄)] +

αn

z̄sn
[(z̄s − z̄′)2∂z̄′ − 2h̄n(z̄s − z̄′)]

}

× Ãn({z1, z̄,∆1, J1}, . . . , {zn, z̄′,∆n, Jn})
∣∣∣ z̄=z̄1
z̄′=z̄n

. (B.8)

The lowest order ω−1
s in ωs is related to the limit ∆s → 1

∆s = 1:
zn1

znszs1
Ãn({z1, z̄1,∆1, J1}, . . . , {zn, z̄n,∆n, Jn}) , (B.9)

which corresponds to the soft-limit of the amplitude An+1. On the other hand, the next

order ω0
s corresponds to the limit ∆s → 0

∆s = 0:

{
1

ω1

1

zs1
(z̄s1∂z̄1 − 2h̄1) +

1

ωn

1

zns
(z̄sn∂z̄n − 2h̄n)

}

Ãn({z1, z̄1,∆1, J1}, . . . , {zn, z̄n,∆n, Jn}) , (B.10)

which gives rise to the subleading soft-limit of the amplitude An+1. The result (B.10) agrees

with the expression given in [15] after translating the latter into celestial coordinates.
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