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ABSTRACT: In celestial conformal field theory, gluons are represented by primary fields with
dimensions A =1+ i\, A € R and spin J = +1, in the adjoint representation of the gauge
group. All two- and three-point correlation functions of these fields are zero as a conse-
quence of four-dimensional kinematic constraints. Four-point correlation functions contain
delta-function singularities enforcing planarity of four-particle scattering events. We relax
these constraints by taking a shadow transform of one field and perform conformal block de-
composition of the corresponding correlators. We compute the conformal block coefficients.
When decomposed in channels that are “compatible” in two and four dimensions, such four-
point correlators contain conformal blocks of primary fields with dimensions A = 2+ M +i),
where M > 0 is an integer, with integer spin J = —M,—-M+2,..., M —2, M. They appear
in all gauge group representations obtained from a tensor product of two adjoint represen-
tations. When decomposed in incompatible channels, they also contain primary fields with
continuous complex spin, but with positive integer dimensions.
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1 Introduction

Celestial conformal field theory (CCFT) links the amplitude program with flat holography.
It grew from the observation that the symmetries of asymptotically flat spacetime [1-3],
which act on incoming and outgoing particles, are also present at the level of the scattering
S-matrix [4]. The ultimate goal of CCFT is to describe the four-dimensional world as a
hologram on a celestial sphere [5], in the framework of two-dimensional conformal field
theory (CFT). To that end, the scattering amplitudes are recast into the form of CFT
correlation functions [6] by changing the basis of asymptotic states from the standard
momentum basis to the basis of conformal wave packets, a.k.a. the boost basis [7].

After the amplitudes are converted to the boost basis, they transform under SL(2,C')
Lorentz transformations as two-dimensional CFT correlators of primary fields. Four-dimen-
sional soft theorems [8, 9] acquire a form of Ward identities of holomorphic and antiholo-
morphic currents [10-17]. The subleading soft graviton theorem is of particular importance
because it allows identifying two-dimensional energy-momentum tensor and Virasoro oper-
ators, which generate conformal transformations, a.k.a. superrotations of primary fields on
celestial sphere [18]. The leading graviton theorem is related to supertranslations which to-
gether with superrotations generate the algebra of BMS symmetry [19]. Another important
component are collinear theorems [20] which allow studying the limits of operator inser-
tions at coinciding points, hence deriving the operator product expansions of the operators
associated to gluons and gravitons [13, 19, 21-23].

Further progress in CCFT depends on understanding the spectrum of primary fields
and their interactions. In standard CFT [24] this is handled by using conformal block



decomposition of the correlation functions. The importance of CCFT block decomposition
has been recognized in Refs.[25-27] and approached there from various angles. All this work
had to face the same obstacle: since CCFT correlators originate from scattering amplitudes,
they are highly constrained by four-dimensional kinematics. For example, all three-gluon
amplitudes vanish on-shell while four-gluon amplitudes contain a singular term enforcing
planarity of four-particle scattering events.

We will approach this problem from a different angle. In our recent studies, the shadow
transform [28] has played a prominent role in establishing the connection between soft
theorems and the Ward identities of symmetries in CCFT [19, 29]. We will use it here to
relax the kinematic constraints on four-gluon amplitudes. After one gluon is replaced by
the shadow field, the singularities disappear and the amplitude acquires a simple form that
can be analyzed by using standard CFT techniques.

The paper is organized as follows. In Section 2, we discuss CCFT in the context of
standard radial quantization and point out some peculiar features that make it so different
from a “garden variety” of CFTs. In Section 3, we apply shadow transform to one of the
gluon fields and set the groundwork for conformal block decomposition. We extract the
blocks in Section 4. In general case, this is quite a tedious process, however it becomes
a simple task in the limit of soft shadow field. In this limit, the antiholomorphic part
degenerates to a single antichiral weight. We conclude in Section 5.

2 Radial quantization of CCFT

In radial quantization of two-dimensional conformal field theory (CFT) [24], the asymptotic
states characterized by dimensions A and spin J are created by acting on the vacuum state
with primary quantum field operators:

|A, J;in) = z}?ﬁo oa,(z,2)|0) , (A, J;out| = Z}:izr30<0|¢27j(z,2) . (2.1)

In terms of the chiral weights h and h, A = h+h and J = h — h. When A and J are real,
the hermitian conjugate field is defined by

[bas(z2)]T = 2722 2Pga 5(1/2,1/2) . (2.2)
Following this definition, the inner product is

(A, J5in|A, J; out) = EMMM016,1(£,€)8a,4(0,0)[0) - (2.3)

lim
§,§—00
With the standard form of conformally covariant two-point function given by

C

(0[@a,s (2, 2)da, s (w, w)[0) = (= w)P(z o)

(2.4)
this inner product becomes
(A, J;in|A, J;out)y = C . (2.5)

In celestial CFT (CCFT) with A =1+ iR, one can consider an alternative definition
of hermitean conjugation — by relating fields with complex conjugate dimensions belonging



to the principal continuous series. It can be done by using shadow transforms. The shadow
of a primary field with chiral weights h, h, hence with the dimension A = h + h and spin
J = h — h, is defined [28] as

3:02) = b [ otz = 02— 0P 20(0.0) s b = (—1y2ny L@ Z2h)

al'(2h — 1) (2.6)

The shadow field ¢(z, Z) is also a primary, but with weights 1 — h,1 — h, hence with the
dimension A = 2 — A and spin J = —J. The constant kh,h is chosen in such a way that,
for integer or half-integer spin, ¢(z,2) = ¢(z, ). Note that for ReA =1, A = A*. In this
case, we can define

[bas(z )t = 2722 2hG0_5(1/2,1)2) = 2 22"2ga ;(1/2,1/2) (A =1+iR). (2.7)

The two-point function describing a primary field propagation into the shadow is con-
strained by conformal covariance to

006,102, s 0 0)0) = i 23)

leading to

(A, J;in|A, J;out) = C . (2.9)

Note that Eq.(2.8) is equivalent to

(Oloar —s(z,2)da,s(w,m)[0) = Cki) | 6P (z —w)  (A=14iR). (2.10)

CCFT correlators originate from four-dimensional scattering amplitudes with the asymp-
totic states transformed to the basis of conformal wave packets [7]. Massless gluons are asso-
ciated to primary fields ¢ labeled by indices a transforming in the adjoint representation of
the gauge group. Three-gluon amplitudes vanish as a consequence of kinematic constraints
[20] therefore the respective three-point CCFT correlators are zero. On the other hand,
as shown in Refs.[13, 21], the operator product expansions (OPE) of ¢%(2)¢°(0) contain
gluons: ¢%(2)¢?(0) ~ 271 fa%4c(0) + ... These two results are compatible if and only if
C = 0,! which means that the primary fields associated to gluons do not propagate into
each other.? This is not necessarily a disaster, provided that we can identify “missing” fields.
A good place to start are the four-point correlators related to four-gluon celestial ampli-
tudes. Unfortunately here again, we are to a rough start because such amplitudes have their
support restricted by momentum conservation. They contain delta-function contact terms
enforcing planarity of four-gluon scattering events [6]. We will relax kinematic constraints
by choosing one of the fours fields to be a shadow field. Such a shadow transformation
leads to standard CFT correlators, well-defined over the whole domain of points on CSs.

!This can be shown directly at the level of celestial correlators by using constraints of Poincaré invariance
[30].

2This argument does not exclude though c # 0 because a contact term like (2.10) may be not reachable
as a limit of OPE.



These can be analyzed by using standard CFT tools including the conformal block decom-
position. Another reason for studying “shadowed” celestial amplitudes is the connection
between adjoint operators and shadow fields, Eq.(2.7), which could relate four-dimensional
(asymptotic) shadow wave functions to in and out states (2.1) of two-dimensional CFT.3

3 Four points with one shadow

3.1 CCFT correlators from celestial amplitudes

Celestial amplitudes are obtained from conventional scattering amplitudes by perform-
ing Mellin transforms with respect to light-cone energies. The connection between light-
like four-momenta p* of massless particles and points z € CS? relies on the following
parametrization:

= wgt, q“:%(1+\z|2,z+2,—i(z—2),1—|z\2) , (3.1)
where w is the light-cone energy (w = E + p., py +ipy = wz), and ¢* are null vectors —
the directions along which the massless state propagates. In Lorentzian spacetime endowed
with (1,3) metric, complex variables z (with z = 2*) parameterize Euclidean CS>.

In CCFT, celestial amplitudes are identified with the correlators of primary fields.
Here, we use the following identification:

N
< H qﬁaA"mJn(szn)> = (3.2)
n=1

N N
— Z (H/ dwnwﬁn—l)d(@ (w1q1 +Z eiwiqi)./\/l(wn,zn,imJn,an),
€2ymnen==1 n=1"0 i=2

where M(...,J,,ay,) are Feynman’s matrix elements for particles with helicities .J,, iden-
tified with the spin of operators and indices a, in the adjoint representation of the gauge
group. The r.h.s. of Eq.(3.2) involves the sum over parameters ¢ which take values +1 and
—1 for outgoing and incoming particles, respectively. In other words, we are summing over
all scattering channels and in order to avoid double counting, we assume that particle num-
ber 1 is outgoing. The helicities J,, (and colors ay,) are counted however as if all particles
were outgoing — they take the same values in all channels. It should be stressed that there
is no information lost when summing over channels because each of them covers a differ-
ent patch of celestial coordinates. The mapping (3.2) covers the entire range of celestial
coordinates allowed by momentum conservation and encodes all channels in a single CCFT
correlator. If one wants to consider each channel separately, one needs to make a distinc-
tion between two-dimensional primary fields representing incoming and outgoing particles
in four dimensions. This would obviously complicate crossing symmetries and conformal
bootstrap, therefore we prefer remaining uncommitted to making such a distinction until
we obtain the correlators and proceed with the conformal block decomposition.

3Similar ideas have been considered in [31].



3.2 Shadow transform of the four-gluon correlator

The four-point CCFT correlator corresponding to four-gluon celestial amplitude in “mostly
plus” MHV helicity configuration is given (up to a numerical factor) by [6]*

4
~ B B _ AN
<¢“Al])7(zl,zl)¢222ﬁ(z2,22)¢Z33,+(23,23)¢%47+(Z4,z4)> = 53" M) [ (ziyz) 17
i=1 i<j
_ 212 Z?2,4 aiasb razasdb arasb pazasb
xd(z = 2)( Yoottt — st gy - (33)
213224234/ \ 213224214723
with the cross-ratios o
2192: Z107:
_ F12%34 z= _12_34 . (3.4)
213224 213224

The delta function §(z — z) enforces planarity of four-particle scattering while the other one,
1) (Z?Zl Ai), appears as a consequence four-dimensional conformal invariance which holds in
Yang-Mills theory at the tree level only [33]. The latter one gives rise to an infinite factor
0(0) when the correlator is evaluated at Z?Zl A; = 0 and will be ignored in the following
discussion. Recall that the chiral weights of gluon fields are:
(hl,ﬁl):(%al—’_%) ) (hQaEQ):(MTQ71+MTZ) ) (3 5)
(h3,}_7,3):(1+i>\73,i>\73) s (h4,f_14)=(1+i/\74,%) .

All these fields have integer spin, therefore that correlator (3.3) is a single-valued function
of four complex variables z;. This implies, in particular, that there are no monodromy
factors appearing when crossing scattering channels.

We are interested in the shadow correlator

<q§aA11,+(Zl”21’)¢A2,7(22’52)¢A3,+(Z3753)¢>A4,+(Z4754)> = (3.6)
&’z ay 5.\ 442 5. 443 5. 404 >
/ (L= )™z — 7)™ <¢A1,—(zlv 21)0R,,- (22, 22)¢A3,+(Z3vz3)¢)A4,+(Z47Z4)>'

We will express it in terms of the cross ratios

2119234, 212234
7 = , 7= (3.7)
21/3%224 21/3%24

Note that the shadow field has chiral weights (hy/, hy/) = (1— i’\Tl, — ”‘Tl) In order to perform

the shadow integral (3.6), we change the integration variables from z; to

z Z12%1'3
Yy=—=_——- (3.8)
< 2112213

The corresponding Jacobian is |dz; /dy|? with

dz; 9 213
—— = K 22321/221/3 K=
dy 2113223

= (y 2o + 213) ' (3.9)

4We are using the color basis of Ref.[32].



In terms of the new variable:
212 = KY 2237172, 213 = K 223%1'2,
2z =k (y — é) 2342172, z11r = Kk (y — 1) zy02113. (3.10)
In this way, we obtain

(62 (1, 20)0%, (22, 22)0%, , (38, 2) 6%, 4 (20 21))

iA] idg i iy

= (21122172) 2

X ( 223 ) ( Z119 5%4 ) [falaQbfa3a4b[(zl) + fa1a3bfa2a4bj(z/)} 7

Ay idg

2 (213213234734) " 2 2 (203%23)" (224%24) 2 2 (3.11)

Z%3224234 21’3523534
where
i i .
16) = [ @ysy =293 F - 0 - D - D> (3.12
iN] Mg
x(Zy-1D)NEg-DEy -1 2 =
- AL iAg _ B N
I(7) =- Z’/ Pys(Zy— 29y () T 2 (y—1) 2y — (g -1 (3.13)

i\ [2Y
X (g - D7 E - DEy -l E

We parametrize y as y = re’® and integrate over the complex plane in radial coordinates.

We also parametrize 2/ = Re', so that R = v/2/Z and ¢ = /2//%. From the angular

integration, §(z'y — 2'y) picks two values: ¢ = —f and ¢ = —0 + 7 (¢'® = ¢~ %), In this

way, the integrals split as I = I, + I_ and I= I, + I_, with

¥

—_ 1 . 1 .
o [T G ) ) e,
Z' Jo z z
" o | L (3.14)
b TG ) ] e
Z' Jo z Z
(3.15)

and similar expressions for I.. Tt is convenient to change the integration variables to rv/z'z’.
Then

iXg

— 4 + _ . .
A CEARE / Oodrrl—”l‘”z(i -1) ﬁl(; - 1)W (r=D7IMTR L (3.16)
0 zZ

2122/ Zl

iXy

151N\~ [too ) . —2+4iX1 i1 ) )

I = (#'2 )_ / dr plmiM i <L + 1) (; + ]_) (r+ ]_)717”‘171)‘4 . (3.17)
ZIQZ/ 0 Zl Zl

By comparing this integration variable with (3.8) we see that r is the original cross-ratio

z, ¢f. Eq.(3.4). In I, the integration region splits into two four-dimensional scattering

channels: s-channel (12 = 34), for r > 1 and t-channel (13 = 24), with r € (0,1).> As

5Note that s, t and u channels refer here to the channels of celestial amplitudes with s >, ¢ > 0 and
u > 0, respectively, which are related by crossing symmetry. The term “channel” is sometimes used in a
different way, to distinguish between the contributions of virtual particles propagating in these channels to
one particular amplitude.



mentioned before, there is no monodromy when crossing the boundary at » = 1. On the
other hand, I_ comes from the u-channel (14 = 23),. Hence

I(Z)=I,+IL+1,, =L+ +1,, (3.18)

where subscripts indicate the contributions of respective scattering channels.

4 Conformal blocks

We first proceed with the conformal decomposition of the four-point correlator (3.11) in
the two-dimensional (12 = 34), channel. To that end, we set 2’ = x, 2 = Z and define [24]

— N 2hqr ZFL/ it _ —/ —
(o) = tm = E (0L (. Aok, _(LD6R, (=2 = 50K, (0.0)).
(4.1)
‘We obtain
G(a,7) = (1— )i 1m50 =5 (1 gy t+ih g 2= - (4.2)

% fala?bfa:‘a“bf(:v)—l—fal%bfaza‘lbi(x)} .

As we will see later, the integrals I and I can be expressed in terms of the Appell function
Fy. To avoid getting lost in details, we prefer to postpone this step and first consider the
soft limit of \; = 0.

4.1 The shadow current

For Ay =0 (A = A = 1), we expect some simplifications to occur because one of the
primary fields becomes the holomorphic shadow of the current j%(Z) generating global gauge
group transformations:
¢211=1,+ (217, 211) = —271'5@1 (211), (4.3)
where
1) =5 [ o) (1.4)
2 ) ( )2 ' '

The antiholomorphic current satisfies the following Ward identity [13]:

<;(“ ()¢, J2(22752) N JN(ZN”EN)>

= Z Z f‘“‘“ <¢A27J2 (Z2a 22) co (ﬁbAiyJi(Zi’ EZ) to ¢ZJ\1]\7,JN(ZN’ EN)> (4'5)

=2 b

The shadow transform can be performed by using

d*w ot
/ -wl@-z) 22—z (4.6)




and yields
(3 (262, gy (22, 22) -+ 6K, (200 20))

—sz “<¢AZ sz 22) - Bh g (i 2) - ORY, y (av2n)) - (AT)

=2 b

At this level, it seems that the shadow current ]a(z) can be identified with the holomorphic
current j* (z). For N = 4, however the r.h.s. of Eq.(4.5) and Eq.(4.7) are zero. Nevertheless,
as shown below, the limit of A\; = 0 yields an “almost holomorphic” correlator with a simple
antiholomorphic part.%

4.2 )\ = 0 soft limit

In the limit of A; = 0, the integrals (3.12)-(3.18) can be expressed in terms of hypergeometric
functions o F7. Note that in this limit, A + X3+ Ag4 = 0. The integral I(x) = Is(z) + I;(z) +
I,,(z), split into the contributions of three channels, is given by

iXg )
B (l’.’i)T “+oo ,,,172)\2 r —92
L) = =z | o o—pom (-1

iAo
27) 2 o 2.1 — i\
= ( i)‘ B(l —Z)\g,—l)\4) 2F1 ( 1 +i)\23;1’) , (48)
iXg .
B (zz) 2 [! pl=id2 r -2
fw) = - 2z Jy dr(l —r)ltid (E B 1)
- (m)%z B(2 — i), —ids) 2 F AT (4.9)
= 227 1A2, Z42 1 2+’L)\5,$ ) .
iXg
B (J).i’)T (o) 1 A2 —92
1) = S |, e (1)
(m)“% 2,2 1
= ;1;21' (2 - ’L)\Q, 1-— ’L>\3 2F1 34 Z>\4 ; - 5 5 (410)
(m)“—Q 2,1
= p (2—7)\2, 7)\3 2F1 +2/\4 ; — T .
Similarly, I(z) = L(z) + I;(x) + L, (x), with
iAo
- 7 2, —i:
I(z) = _(:cm_) L B(—idg, —idy) o Fy ( ;2 5 :p) (4.11)
(23)F 2,3 iy 1
- xT) 2 _ ) ,3—1
Ii(w) = = B(S—z)\z,—z)\4)2F1( 3+M32; 5) (4.12)
[ (23)F o —ids
u(l’) = —T B(3 - Z)\Q, —Z/\3) 2F1 3+ )\4 1l—=x (4.13)

5This means that the soft limit and shadow transformations do not commute in the case of N = 4, which
is probably caused by the kinematic constraints on the operator insertion points.



In the first step, we want to decompose into conformal blocks the s-channel contribution
to the correlator (4.2). After taking the A; = 0 limit in (4.2) and using Eqs.(4.8) and (4.11),
we obtain

GR(, @m0 = (1= @) FgIide | pmoad pusosb g () 4. porash poeest G ()| (4.14)

with the holomorphic functions

: . 2,1 — i\
S3(@) = (1—a)l g e,y (77 700 ) B(1—idg, —iMg) (4.15)
1+ Z)\Q
, , 2. i)
gi(gj) = — (l *$)1+7)\4.’1}_1+1/\22Fl < 7.)\2 5; l‘) B(*Z)\3,71>\4) . (416)
A2

A conformal block of a primary field with chiral weights (h, k) has the form [28]

K2 [h,F] = g, By <7l—7112,_7_1+7l34;f) h—ha=ha (h hia, h+ hay $> 7

2h 2h
(4.17)
where hio = hy — he and hzy = hy — hy. In our case
hiy = hy —hy =1 -1, hiy =hy —hy = —1—12
h34:h3—h4:M—3—M747 }_134:}_13_%4:“\73_%’ (4.18)
hy+hy =2+ 50 4+ 5t =212, hg+hy =52 4 580 = 152

where we used Ao + A3+ Ay = 0. It is easy to see that all conformal blocks of the correlator
(4.14) must share common antiholomorphic weight h = 1+ % Indeed, its antiholomorphic
part can be written as

(1 _ 1,) 1+iMg = 1+Z>\2 _ 1’1+Z>\2 F (2 + i)‘27 1 - Z)‘4 7)

2+ X
_ ghha—ha,p h—hiz,h+has (4.19)
2h ’ h 1+1)‘2

The holomorphic parts (4.15) and (4.16) cannot be associated to a single weight, but they
are so “close” to single blocks that they can be decomposed by using recursion relations and
basic properties of hypergeometric functions. First,

b - —-b
o Fy <a7 ;33) = (1 — l‘)c_a_bgFl (C ¢ ;JJ) . (4420)
c c
Then, from Gauft recursion relations, it follows that
a,b (@)m(b)m a+m,b+m
F; ; = " O F ; 4.21
o (i) = S e () e

where (a), =I'(a +n)/T'(a) are the Pochhammer symbols, and

a,b — (=1)"™(@)m(c = b)m a+m,b+m+1
F; EDY "o : 4.22
2 1( c ,96) (C)2m e c+o2m+1 (4.22)

m=0



Eqgs.(4.20)-(4.22) are completely sufficient to show that

o0
B, — 12, Bum +
Sii(w) = > almhath aszl( 122h m 34;:10) , (4.23)
m=1 m
- Bun — hig, hyn + .
21(%) — Z th—hg—fu &m 2F1 ( m 122}; m 34;(17) 7 (4.24)
m=1 m
where \
B = m + 172 : (4.25)

and the coefficients

mIT(—iXs + m)D(—ids)
_ 42
tm T(id +2m—1) (4.26)

mIT(—ids + m)T(—ids)

Ay = — 1™ 4.27
G = —am + (=) e = D) (4:27)
In this way, we obtain
S ) i\
ngll (7,%)s =0 = Z (am fa1a2bfa3a4b + G fa1a3bfa2a4b)K§i [m + 72, 1+ 72} . (4.28)
m=1

The contributions of ¢ and w channels can be analyzed in a similar way. In Eqs.(4.9),
(4.10), (4.12) and (4.13), t- and wu-channel integrals are written as functions of 1/ and
1 — «, respectively. In order to decompose them into (12 = 34), blocks (4.17), we need to
express them as functions of  and write as power series in x. This is easy to accomplish

by using well-known hypergeometric identities. For example

o
(z2)2 . . 2,2 —iXy 1
I(z) = — B(2 — i)y, —i\g) o F -
t(x) g (2 —iAg, —iNg) 2 F1 91N T

iXo

G L 2,1—iX;

= Z B( Z/\Q, l)\4) 2F1 1 —i—i)\g r (429)

o \—ide (1 —i)\g)ﬂ' P 2—iA2,1+i)\4.
+ ( {L') Sin(ﬂ'i)\z) 2 1-— Z’AQ i '

Other integrals can be transformed in a similar way. All of them contain a new class of
terms with the prefactor "2, Such terms shift the spins of conformal blocks, which are
always integer in the s channel, by an imaginary amount —iAy. These new states have
chiral weights (h,h) = (m — i’\Tz, 1+ %), therefore positive integer dimensions A = 2+ M
with M > 0 and continuous complex spin J = A —2—i)y. Are these states a part of CCFT
spectrum or just a dual description of integer spins? The answer depends whether s, t and
u channels of celestial amplitudes are assembled into one CCFT correlator or they are con-
sidered as distinct correlators. In the latter case, four-dimensional incoming and outgoing
wave packets should be associated to different two-dimensional primary fields [21]. Then

G2%i(z,7)s encompass a full CCFT correlator and its decomposition in the “compatible”

~10 -



(12 = 34), channel yields integer spin only. When celestial amplitudes are decomposed
in “incompatible” channels, e.g. four-dimensional ¢ channel decomposed into (12 = 34),
blocks, imaginary spin states appear as a dual description of compatible channels.

The group-dependence of the correlator (4.28) is contained in the factors

Cm — am fa1a2bfa3a4b + dm falagbfa2a4b (430)

which determine the gauge group representations of states propagating through (12 =
34), conformal blocks. While the first factor propagates the adjoint representation only,
the second factor includes other representations contained in the product of two adjoint
representations. For example, in the case of SU(2) with I = 1 isospin gluons,

falagbfa2a4b garaz sasas _ gaias sazas (431)

therefore the blocks also include I = 0 (trace part) and I = 2 (symmetric traceless).
Note that the factors ¢, (4.30) are symmetric under 3 <+ 4 for odd m (even spin) and
antisymmetric for even m (odd spin), which can be seen by using Jacobi identity and
Eqs.(4.26) and (4.27).

To summarize, the soft limit of Ay = 0 leads to remarkable simplifications. In this case,
conformal blocks are associated to primary fields with chiral weights (h, h) = (m—}—% , 1+ MTQ),
with m > 1. They have dimensions A = 2 + J 4 i\y, where J > 0 is an integer spin. They
come in all gauge group representations contained in the product of two adjoint represen-
tations.

4.3 General case

For general complex dimensions A = 1 4 i\ (always subject to the constraint A\; + A2 +
A3 + Ay = 0), the integrals (3.16) and (3.17) can be expressed in terms of the Appell
hypergeometric function

a; bl,bg n+m bl b2)m n, m
F1< (x ) ZZ " (4.32)

n=0m=0

Here, we focus on the s channel integrals I, and I originating from the integration region
(1,00) in I, and I, respectively. By comparing with the integral representation of F:

a; by, by L'(c) /1 . it o o

F, ; =7 [l A=) (I —ta) (1 —ty) 2 de, (4.33
1( c ’”) Tal(e—a) ), | Q=07 Q) (L —ty)dt, (433)

we find

IL(z,7) = WB(HM Fidide +idg) By (LT e T AGZ AL AL
s ) - 7 2 4, 2 3 1 172A1+Z>\2 )T, s
(4.34)

(az) 75" Xy +idg; 2 — idg, —i)

(@) = =" LB+ ihida + i) F1( pri xj> .

(4.35)
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Appell functions can be expanded into the products of hypergeometric functions by using
Burchnall-Chaundy expansion [34], which is exactly what we need for conformal block
decomposition:

a; by, b Ooanb n(b2)n(c —a)n n, n
F( ‘ 2;”’y>:z(g!<(cfn(—2)1>( <c>2n) e

n=0
a+mn,by+n a+n,by+n
F F ; . 4.36
><21< ctomn )21( c+on Y ( )
In our case,
g iAp
2 2
IS(ZC,:E) = (.T:C) — B(l 4+ 1Xg + iAy4, iAo +’L)\3) X
T
y i 1+ i)\2'+ i/\4‘)n(2 - z')\l)n(—z")\l)n(—.i)\l —iX)n (4.37)
= nl(n — iA1 +ix2)n (1 — Xy +iX2)2p
o g 1+idg +iN+ 1,2 —iA1 +n o 1+idg+iNg+n,—iM +1n _
T v | T ;
201 1—ZA1+7)\2+2TL 241 l—i)\1+i)\2+2n ’ ’

and a similar expression for fs(ar,f) From this point, conformal block decomposition
proceeds as in the case of A\; = 0, by applying Eqs.(4.20)-(4.22) to both holomorphic and
antiholomorphic sides. After a lengthy computation, we find

[e.e]
Gg}l(xv j)s = Z (a’mn falaQb.f%Mb + a/mn falaSbfa2a4b)
m,n=0
21 e SV e _ &]
x K2 [m+1+ =S+ 22 (4.38)
with
P (2 = iA)m(—=iA )T (1 +m 4+ iAo + X))T(1 +n +i(A2 + \g))
m T(1+2m+i(Ag — A))T(1+2n + iAo — A1)

min(m,n)

(2r +i(A2 = A))T(r — i\ + A)P(r +i(A2 — A1)
X Z AT+ 7+ (A2 + A1)

. (4.39)

a _ (2 — i)\l)m(—i)\l)nl“(l +m — i(/\l + )\4))F(1 +n— i()\l + )\4))
me T(1+2m+i(A2 — A\))T(L 4+ 2n +i(A2 — A1)
& ymtn—s- (25 4+ i(Xa — A1))(2t +i(Aa — M) (s + i( A2 + Xg))T(E 4 (A2 + Ag))
x> (= ! (1 +s— i + ML+t —i(h + M)

s=0 t=0
min(s,t) . .
27’ — 14+ Z )\2 — )\1)) (T‘ — ’L()\l + )\4))F(T -1+ ’L()\Q — )\1))
X . (4.40
;0 T‘!F(T’+i()\2+)\4)) ( )
The above expressions can be simplified to
u 2= iA)m(=iA)R T+ m A (A + M) T(L +n+i( A2 + My))
mee D(14+2m+i(Ag — A))D(L+2n +i(Xa — Ay))
F(l + N +idg — i)\l)l“(l + N — i\ — i)\4) (4 41)

N!(—i/\l —i)\4)1_‘(1 + N +iXe +i)\4) ’
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where N = min(m,n), and
Amn = — Qo + (1) 7" ap, (3 ¢ 4) (4.42)

where a,,,(3 > 4) is obtained by exchanging 3 and 4 in the expression for a,,,. Note that
in the limit of A\; = 0, @y, = 0 for n > 0 because then (—iA; = 0), = 0. Then also N =0
and the result agrees with Eqgs.(4.26) and (4.27).

To summarize, we find that the conformal blocks of celestial gluon amplitudes describe
primary fields with chiral weights (h, h) = (m+i/\72fi)‘71 ,n+i)‘727i>‘71), with integers m,n >
1. They have dimensions A = 2+ M + i(Ag — A1) where M > 0 is integer, and spin
J=—-M,—M+2,..., M—2, M. They come in all gauge group representations contained
in the product of two adjoint representations.

Conformal block decomposition of G3}(x, ), in incompatible channels is more compli-
cated. The correlator does not factorize into holomorphic and antiholomorphic parts in any
simple way. Unlike in the A; = 0 limit, there is unbounded spectrum of complex spin for

each conformal dimension.

5 Conclusions

In this work, we exhibited conformal blocks of four-gluon amplitudes with one gluon re-
placed by a shadow field. Since a shadow transform of a shadow field gives back the same
field, the celestial amplitude with four gluon fields can be recovered by applying subsequent
shadow transformation to the blocks.

Four-dimensional crossing symmetry connects the amplitudes describing scattering pro-
cesses in distinct physical channels. In four-gluon celestial amplitudes, the intervals of the
cross ratio z > 1, 0 < z < 1 and z < 0 describe processes with s > 0, ¢ > 0 and
u > 0, respectively. When one such amplitude is decomposed into conformal blocks in
a compatible channel, for instance (12 = 34), decomposed into (12 = 34), blocks, only
integer spin states appear in the spectrum. We discovered primary fields with dimensions
A =2+ M + i\, where M > 0 is an integer, and spin J = —M,—-M +2,...,.M — 2, M.
The states with complex spin, but with positive integer dimensions, appear in incompatible
channels only, in a dual channel description of integer spin states.

What is the origin of an infinite tower of primary fields in CCFT? What is their four-
dimensional interpretation? Some of them are certainly the “supertranslation modes” of
gluon fields. While supertranslations shift conformal field dimensions [33], they do not
change spin or gauge group representations. The presence of higher spin fields in various
group representations indicates that CCFT symmetries go far beyond the BMS symmetry.
A related question is what is the role of four-dimensional conformal symmetry enjoyed by
Yang-Mills theory at the tree level? How is it realized at the level of these higher spin
states? A detailed analysis of conformal blocks should help answering all these questions.
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