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Abstract—Cyber-physical-social systems (CPSS) are physical
devices with highly integrated functions of sensing, computing,
communication and control, and are seamlessly embedded in
human society. The levels of intelligence and functions that CPSS
can perform rely on their extensive collaboration and information
sharing through networks. In this paper, information diffusion
within CPSS networks is studied. Information dynamics models
are proposed to characterize the evolution of information process-
ing and decision making capabilities of individual CPSS nodes.
The data-driven statistical models are based on a mesoscale
probabilistic graph model, where the individual nodes’ sensing
and computing functions are represented as the probabilities of
correct predictions, whereas the communication functions are
represented as the probabilities of mutual influences between
nodes. A copula dynamics model is proposed to explicitly capture
the information dependency among individuals with joint pre-
diction probabilities and estimated from extremal probabilities.
A topology-informed vector autoregression model is proposed
to represent the mutual influence of prediction capabilities. A
spatial-temporal hybrid Gaussian process regression model is also
proposed to simultaneously capture correlations between nodes
and temporal correlation in the time series.

Index Terms—Cyber-Physical Systems, Information Diffusion,
Graph Theory, Copula, Vector Autoregression, Gaussian Process
Regression.

I. INTRODUCTION

YBER-physical systems (CPS) are physical devices with

highly integrated functions of sensing, computing, com-
munication, and actuation. They share information, work
collaboratively, and form networks, also known as Internet
of Things (IoT). Such devices can have different sizes and
physical forms at micro- or macro-scales. They are the es-
sential elements in smart home and smart office, intelligent
manufacturing, personalized medicine, autonomous and safe
transportation, omnipresent energy supplies, and many other
applications. Given the intensive interactions between CPS and
human society as well as human’s heavy reliance on CPS, the
terms cyber-physical-social systems (CPSS) and social Internet
of things are also used by researchers to describe the highly
integrated systems with the additional social dimension. In
CPSS, information collection, processing, and decision making
are done in a decentralized fashion. The intelligence level of
CPSS is enhanced by intensive information sharing. The level
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of dependencies among CPSS devices for their computation
and decision making is unprecedented.

There are unique engineering challenges in designing CPSS.
First, given the evolution nature of cyber and physical tech-
nologies, adaptability that enables the capabilities of self-
learning, self-organization, and context awareness is important
to design open systems that can evolve along technology
advancement [1], [2]. Adaptability goes beyond traditional
closed-loop control. Intelligent agents need to consider local
behaviors, soft constraints, and uncertainty for their reasoning
[3]. Second, the complexity of the CPSS has significantly
increased from traditional products and devices. The CPSS
products are connected through IoT and heavily rely on data
exchange from each other to realize their functions. Commu-
nication between devices plays a major role. Therefore, how
to design systems of CPSS which have dependable communi-
cation is important. Traditional security measurements along
do not guarantee dependability of large IoT systems with
heterogeneous hardware and software protocols [4]. Reliable
large-scale networked systems that do not fail are impossible
to achieve. Resilient systems that can recover automatically
from partial failures are more likely to be realizable [5], [6]. In
addition, the coordination for the complex distributed systems
with aggregated information is challenging [7]. Third, the
high-dimensional design space of CPSS includes not only the
cyber and physical subspaces, but also the social subspace.
Examples of the emerging research issues are how to design
the modalities for human-system interaction [8], how to enable
context awareness and personalized communication between
CPSS and humans [9], how to provide incentives to improve
reputations [10], how to protect user privacy by sharing partial
data in physical domain without affecting social status [11],
and how to quantify trustworthy strategic relationships for
information sharing [12], [13].

Compared to traditional products, the design of CPSS
requires engineers to have better understanding of the sys-
tems level behaviors. One such behavior is the dynamics of
information flow in the CPSS networks. In a dynamically
evolving CPSS network, the effects of information generation
and sharing need to be quantified and analyzed so that the
long-term behaviors of such networks can be predicted. The
understanding of the deep dependency and mutual influences
between CPSS nodes in decision making is essential to design
such systems. Examples of the design questions are how
and where sensors or information source nodes need to be
placed to ensure certain information about the surrounding
environment is fully aware of in the network, how soon the
network reaches the consensus or the equilibrium state of
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information propagation, and what if a disruption occurs. Thus
modeling the information dynamics is useful to test systems
engineering strategies towards the system design of networks
for adaptability and scalability.

The information flow in computer networks and social
networks has been studied extensively. The propagation of
information can be modeled in different ways such as the epi-
demic model [14], influence model [15], and the event-driven
approaches [16], [17]. However, there is still a lack of studies
on information diffusion in CPSS networks. CPSS networks
have different behaviors from traditional computer networks
and social networks, because CPSS nodes possess additional
functionalities of sensing and actuation. Not just simply for-
warding the received information, CPSS nodes continuously
generate a large amount of new data or information based on
both what they receive and what they collect themselves. De-
cisions of collecting and sharing information are done locally
by individual agents in the distributed systems. Furthermore,
the actuation or control function of a CPSS node is intended to
change its external environment thus affecting the neighboring
nodes at a much larger scale. The CPSS and the external
environment become tightly coupled. The behavior of a CPSS
node can be affected by and simultaneously affect many other
nodes in the network. Therefore the behaviors of CPSS nodes,
and thus the information being shared, are highly correlated.

In this paper, the evolution of CPSS behaviors in a network
as a result of information dynamics is studied. A data-driven
statistical modeling approach is taken to model how CPSS
nodes have influences on each other when information is
exchanged and how the behaviors of nodes evolve dynami-
cally, given that uncertainties are associated with sensing and
communication. The proposed information dynamics models
are based on a generic probabilistic graph model of CPSS
networks [6], [18], where information exchange and process-
ing at nodes are modeled at the mesoscale. The mesoscale
model quantifies the overall functionalities of sensing, comput-
ing, and communication of each node with probabilities and
simulates directly with those probability values, instead of at
the fine-grained scale of packets or individual messages as in
most network simulators. In the probabilistic graph model, the
sensing and computing capability of each node is character-
ized by a prediction probability, whereas the communication
capabilities between nodes are captured by pairwise reliance
probabilities. The prediction probability associated with a
node measures how well the node can utilize the available
information, make sound decision, and accurately predict the
true state of the world. The reliance probability associated
with a pair of nodes measures the extent of influence that the
information source node can make to the receiving node.

Instead of explicitly modeling the propagation of informa-
tion elements in existing information dynamics models, the
proposed information dynamics models predict the evolution
of node behaviors as a result of information exchange. The
behavior of each node is characterized by its capability of
sensing and computing and quantified with the prediction
probability. Here it is also referred to as prediction capability.
The prediction accuracy of nodes is influenced by each other,
given that the decision of each node is made based on infor-

mation gathered from itself as well as its neighboring nodes.
In addition, information dependency is explicitly captured here
with the proposed models, given that the information sent by
a node is based on its prediction capability and the capability
is highly influenced by the information it receives from others.

Two types of models are proposed. The first one is called
copula dynamics modeling, where correlations of prediction
capabilities between nodes are represented by joint probabil-
ities or copulas and approximated by extremal probabilities.
The dynamics is modeled with the time series of copulas. The
second type is called functional interdependency modeling,
where the correlations are captured by linear or nonlinear
functional relationships. We demonstrate a new topology-
informed vector autoregression model where the topology
of networks is applied to improve the efficiency and inter-
pretability of regression. We also present a new Gaussian
process regression model for time series where the spatial-
temporal correlations are simultaneously captured as a result
of information sharing between nodes. The novelties of the
proposed models include the new concepts of copula dy-
namics modeling, topology-constrained vector autoregression,
and hybrid discrete-continuous kernels in Gaussian process
regression for time series.

In the remainder of the paper, Section II provides the
background of this work, including an overview of information
dynamics modeling in traditional computer networks and
social networks in Section II-A and the probabilistic graph
model in Section II-B. In Section III, the copula dynamics
modeling approach is introduced where extremal probabilities
are used to estimate the joint probabilities and their dynamics
are modeled as time series. In Section IV, the proposed
functional interdependency modeling approach is introduced
where new topology-constrained vector autoregression and
Gaussian process regression models are described. In Section
V, the three models are demonstrated with CPSS network
simulation data.

II. BACKGROUND

Here, the relevant work of modeling information diffusion
in networks is reviewed. The probabilistic graph model that
the proposed models are based on is also introduced.

A. Information Dynamics Modeling for Networks

Several approaches have been taken to model the informa-
tion diffusion in computer networks. In the epidemic modeling
approach, information propagation is treated in the same way
as disease spread. The transmission probability, which is the
probability that a piece of information is shared to a neighbor-
ing node, is the main parameter to study the diffusion process.
Probabilistic models of edge and node percolation have been
developed to study the speed of propagation within networks
[14]. Alternatively, the susceptible-infected-recovered (SIR)
epidemic model was also used to model information diffusion
in populations without explicitly considering network topology
[19], [20] The SIR model has also been extended with the
considerations of additional factors such as contacted state
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[21], exposed state [22], immunization [23], and uncertain
state [24].

In the event-driven modeling approaches, the adoptions of
new information by nodes are characterized by discrete Pois-
son processes [16], [25], non-Poisson [17], non-homogeneous
Poisson process with memory effect [26], branching process
[27], and continuous hazard function [28].

The dynamics of influence and popularity have been studied
particularly for social networks [29], [30]. A node’s influ-
ence is characterized by the frequencies of its generated
information being forwarded. Influence has been modeled
as time-dependent accumulative functions [15]. The spatial-
temporal influence propagation can be modeled with partial
differential equations such as diffusive logistic model [31]
and hydrodynamic model [32]. In the reinforced Poisson
process model [33], the transmission rate is dependent on other
factors such as popularity and aging effect of information.
To incorporate social behaviors in information forwarding in
social networks, game theory [34], [35], incentive mechanisms
for ego networks [36], as well as government intervention [37]
were studied for their effects on information propagation.

These models have been widely applied to study the propa-
gation of keywords and phrases among blogs [38] and within
social networks [39]. From the collected data and observations,
the parameters of models [40] or the network structure [41]
can also be inferred and recovered. Other design problems
such as finding a subset of nodes to maximize the speed of
diffusion [42] and searching for the influential spreaders [43]
have also been studied.

The above modeling approaches are from the perspective of
how specific pieces of information such as keywords and ideas
being propagated within the network after they are created.
One unique aspect of CPSS is that new information is continu-
ously being generated with each node’s sensing and reasoning
capability. Furthermore, the information that a CPSS device
receives can directly affect how additional new information is
generated locally for the next moment. The actuation function
of CPSS also results in strong coupling between the systems
and the surrounding environment. Therefore, the information
dynamics modeling for CPSS networks needs to incorporate
the deep interdependency between nodes.

There is only limited work in information propagation in
CPS or CPSS. Yagan et al. [44] investigated the information
transmission within a conjoint social and physical network
in the context of epidemic models. Lu et al. [45] developed
an algorithm to maximize the information diffusion between
nodes which are connected probabilistically. Wang et al. [46]
studied the diffusion with the epidemic model when nodes
make local decisions of whether forwarding information to
others based on the game theory. Yi et al. [47] extended
the dimension of states for each node into both physical and
social spaces for the epidemic model so that the influence of
social behavior on information propagation is modeled. Here a
different approach is taken to model the information dynamics
in CPSS networks. The effect of information diffusion is
modeled instead, based on a mesoscale probabilistic graph
model of CPSS networks.

Fig. 1: The probabilistic graph model

B. Probabilistic Graph Model

The information dynamics models presented here are based
on a mesoscale description of CPSS networks. The proba-
bilistic graph model was proposed to provide an abstraction
of information collection, processing, and exchange between
CPSS in an IoT environment [5], [6], [18]. The model is
introduced as follows.

A probabilistic graph G = (V,&,P,R), where V = {v;}
is a set of nodes, & = {(v;,v;)} is a set of directed edges, as
shown in Fig. 1. Each node vy, is associated with a prediction
probability p,, € P, whereas each edge (v;,v;) is associated
with some reliance probabilities p;; € R. The prediction
probability py is the probability that node %k detects the true
state of world # and is defined as

P(zy = 0) = py, (D

where z is the state variable of node k. With loss of gen-
erality, here only binary-valued state variables are considered.
The information dependency between node j and node ¢ is
described by P-reliance probability

P(zj = 0lz; = 0) = pij, (2)
and Q-reliance probability
P(xj = 9|x1 7é (9) = qij. (3)

P-reliance probability indicates the positive effect of infor-
mation exchange between nodes, whereas Q-reliance probabil-
ity captures the negative influence. It is also possible to have
P(zy, = Olz, = 0) and P(z = O|xy # 0) indicating how
much a node’s prediction relies on its own observation.

Each CPSS node collects information by its own sensor
and from its neighbors. With the new information, the pre-
diction probabilities are updated. Different information fusion
rules can be adopted by nodes to update their prediction
probabilities. Example rules include best-case, worst-case, and
Bayesian rules. They are listed as follows. To simplify the
notation, we use P(xy) to denote P(x = ), P(xf) to denote
P(xy #0), and P(z;|z;) to denote P(x; = f|x; = 0).

The best-case or optimistic fusion rule is

Pl(zp) =1—T1%, (1 = P(x|zs)), 4)

where node k£ has a positive prediction with updated proba-
bility P’ if any of the M nodes as its information sources
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provides a positive cue. Some variations of this rule can also
be used, such as

P'(zy) = 1= IG2 (1= P(aglz) T2 (1= P(agla5)), (5)

where both positive cues from M; nodes and negative cues
from Ms nodes (My + My = M) are considered. Another
version could be

P'(wg) = 1= IGL 0, (1 = Plagl)), (©6)
where the node’s own prior observation is not included in the
update.

The worst-case or pessimistic fusion rule is

P'(xp) = ML Pag|x), (7)

where the prediction of a node is positive only if all cues
it receives from other nodes are positive. Similarly, some
variations of the rule exist, such as

P'(wy) = I P(ag|2) 112 Paaf), (8)

and
Pl(xk) = Hi]\i1,i;ékp($k|$i)~ )]

The Bayesian fusion rule is

P'(z3,) < P(xi) |(P(xx)” (1= P)M ", (10)

where the prediction of node k is updated from prior prediction
probability P(xj) given that r out of a total of M cues
provided by others are positive.

Further generalization of the above binary-valued state
variables to multi-valued discrete state variables is straight-
forward. Suppose there are a finite set of discrete values
{6;,...,0n} that the state variable xj can take. The multi-
valued prediction probability P(xy = 6,) (n € {1,...,N}
) can be obtained similar to binary values. Similarly, reliance
probabilities P(x; = O,|z; = 6,,) (m,n € {1,...,N} ) can
be obtained enumeratively. Continuous state variables can be
discretized in digital implementation.

The above information fusion rules can be similarly ex-
tended to multi-valued state variables. For instance, the opti-
mistic fusion rule in Eq.(5) becomes

P'(xg) = 1-T1MY (1 — P(aglzi = 01)) - -
TN (1 — Paglz; = On)),

(1)

whereas the pessimistic fusion rule in Eq.(8) becomes

P'(xy,) = T P2 = 61) - - H?Qgp(mzj =0y),
(12)

where M; + --- + My = M. Obviously, if only one of the
N values is true or of concerned, the problem setting can be
simplified and converted back to the binary case.

Based on the probabilistic graph model, we propose two
types of information dynamics models to capture the evolution
of CPSS networks where nodes produce information about
the state of the world. New information is produced by
sensing and computing units of nodes. When a node receives
some information from others, the received information is
combined and digested, which is then used to update the

prediction of the node. The prediction probabilities of nodes
are dynamically updated with the mutual influences among
each other. Thus the influences and interdependency between
information producers and consumers need to be modeled.
The strong correlation between nodes is explicitly modeled
in the proposed information dynamics models. In the copula
dynamics modeling, the dynamic changes of joint prediction
probabilities among nodes along time are used to capture
the correlation. In the functional interdependency modeling,
the correlation is represented as either linear or nonlinear
functional relationships between prediction probabilities, and
the dynamics of prediction probabilities is modeled directly. In
the proposed two-dimensional time-series models, while struc-
tural dependency in the graph is modeled as the correlations
between the state variables, which are prediction probabilities
indexed with nodes, time dependency between the variables is
captured with the discrete time series. Because these models
capture the correlations directly, the global effect of local
changes can be predicted as a result of strong structural and
temporal dependencies between variables.

III. CoPULA DYNAMICS MODELING

The copula C : [0,1]* — [0,1] of a random vector
(X1,...,X,,) is a function that maps the marginal cumulative
distribution functions F'(X1),..., F(X,) to the joint camula-
tive distribution F(X1,...,X,) = C(F(X1),..., F(X,)).In
the copula dynamics modeling approach, the joint probabilities
of predictions among nodes are used to model the information
dynamics. The joint probabilities with a large number of
variables however are not easy to be calculated directly,
especially given that the number of nodes in a network can be
very large. Therefore copulas are proposed here to estimate the
joint probabilities of prediction. The precise joint probabilities
or copulas are however unknown. They can be estimated
from the ones in some extreme scenarios, such as perfectly
positive or negative correlation, or completely independence.
The corresponding joint probabilities are known as extremal
probabilities. The extremal probabilities of perfect correlations
or independence form the bounds of the actual but unknown
copulas and can be regarded as the vertices that form a convex
hull of unknown joint probabilities in the space of distribu-
tions. If the copulas for extremal probabilities can be obtained,
then the actual joint probabilities can be estimated. From the
joint probabilities, the marginal probabilities of predictions can
be easily calculated. In the information dynamics modeling,
the evolutions of extremal probabilities are explicitly modeled.
Time series models of the copulas for extremal probabilities
can be trained from experimental or simulation data. Then the
future behavior of the system can be predicted. Because the
number of copulas grows exponentially as the number of nodes
increases, this approach however is prohibitively expensive for
large-scale networks.

Given the joint probability P[zy = 6,--- ,x, = 6] for the
case that all predictions are positive and simply denoted as
P(z1,--- ,2n), the corresponding copula is defined as

C(p1>"' 7pn) :P[P(‘Tl) Splf" 7P(xn) Spn]

= P(z1, ) (13)



INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, APRIL 2021

This is due to the simplicity of P(x; < 6) = P(x; = 0)
in the case of binary values x; = 6 or x; # 6. The copulas
are typically difficult to calculate. But their bounds, known as
extremal probabilities, are much easier to obtain.

A. Extremal Joint Probabilities

The well-known Fréchet bounds of the copula
C(P(x1),...,P(xy,)) are given as
max{0, P(z1)+ -+ P(x,)+1—-n} < (14)

C(P(x1),...,P(xy)) <min{P(z1),...,P(z,)}

where the lower bound corresponds to the perfectly negative
correlation, whereas the upper bound corresponds to the
perfectly positive correlation. For two random variables, the
bounds are

max{0, P(x1) + P(z3) — 1} <

O(P(er), Ple2)) < min{P(z)), P(z2)} )

The bounds for perfectly positive and negative correla-
tions are regarded as the extremal probabilities. The per-
fectly positive correlation case is also called comonotonic,
whereas the perfectly negative correlation case is called
countercomonotonic. There are different ways to quantify
correlation. In the sense of linear correlation, defined as
plx,y) = Cov(z,y)//o?(x)o?(y), the linear correlation
coefficient takes the maximum value p = +1 for the perfectly
positive linear dependency and the minimum value p = —1
for the perfectly negative linear dependency. Other correlation
definitions include Spearman’s rank correlation ps(z,y) =
p(Fy(x), Fy(y)) defined by the linear correlation of random
variables’ distribution functions, Kendall’s rank correlation
pr(z,y) = Pl(z1—22)(y1—y2) > 0]= P(z1—22)(y1—12) <
0] defined by the probability of monotonicity trend in the
random values.

The extremal probabilities can be extended to multiple
variables or nodes. The nodes in V = {V;, )V, } are categorized
into two subsets. Within the first subset V; = {x1,...,2mn},
all nodes are perfectly positively correlated. Within the second
subset Vo = {@m41,-.-,2n}, all nodes are also perfectly
positively correlated. However, between any node in V; and
another one in Vs, they are negatively correlated. That is, the
opposite opinions are formed between the two homogenized
groups. The predictions between the two groups are contra-
dictory. Given the partition V = V; U V,, when the correlation
within either group is perfectly positive but perfectly negative
between the two groups, the extremal joint probability is

C{V1,V2}(P(x1)7 ceey P((ﬁn)) = P(mla sy xn‘{vlvv2})
= max{0, min{P(x;)} + min {P(z;)} — 1}
(16)

When all nodes have perfectly positive correlation without
partition, the extremal joint probability is

Cpyey(P(21),. .., P(xn))

= P(z1,...,7,]{VT}) = r,%l\r;l{P(xZ)} a7

(123}

{1,23} 13,2

{123} C(.L)

Fig. 2: The unknown copula is bounded by the convex hull
formed by five extremal joint probabilities in three-node
networks

Another extremal joint probability is

C{vL}(P($1), IRER] P(.’L‘n))
= Plor,..m| (V) = [[{P@)y (9
=%
when all nodes are independent from each other.
Although  the precise form of the copula

C(P(x1),...,P(xy,)) is unknown, it can be approximated
by the combination of extremal distributions, based on the
decomposition principle as

C(P(x1),...,P(zy,))

N N
=aCy+y + Zﬂjc{vl,vz} +(1—a- Zﬁj)c{w}
Jj=1 j=1

19)

where N = 2"~ — 1 indicates all possible partitions of n
nodes into two subsets, weight coefficients o and 3;’s can be
regarded as the chances that the copula takes the respective
forms of extremal distributions. All coefficients sum up to one.
For instance, the case that « =1 and §; =0 (Vj =1,...,N)
corresponds to the perfect positive correlation among all
nodes, whereas « = 3; = 0 (Vj = 1,...,N) corresponds
to the complete independence among all nodes. The copula
C(P(x1),...,P(xy,)) thus is located in the convex set formed
by the extremal joint probabilities, if all extremal probabilities
can be calculated. This is illustrated in Fig. 2, where the
copula of a three-node network is bounded by the convex hull
formed by five possible partitions of nodes. The dynamics of
the copula is estimated from the linear combinations of the
dynamics of those five extremal probabilities. The challenge
of estimating copulas however is to find out the weight
coefficients o and ;’s.

The decomposition principle in Eq. (19) can be further
generalized. If the nodes are self-organized into M different
independent groups and nodes between groups are uncorre-
lated, then

M
C(P(z1),...,P(xn)) = [] Cm (20)
m=1
where copulas C,,’s are estimated according to Eq. (19)
from the extremal distributions for partitions and independence
within each group. Furthermore, if nodes are conditionally
independent within each partition, the extremal probabilities
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can also be estimated more accurately. In other words, addi-
tional dependency information among nodes helps identify the
extremal probabilities more precisely. With these independent
assumptions, copulas of large networks can be decomposed
into smaller groups, and the complexity of information dy-
namics based on copulas can still be managed.

B. Copula Dynamics

The evolution of extremal probabilities can be generally
modeled as

dcC t
Lo O _ ey, 1) +

where {V1,V,} corresponds to any partition of nodes as in
Eq. (16), nonlinear function f captures the dependencies in
time evolution, and ¢ is the random noise term. Each copula
of extremes in Eq. (19) has a respective dynamics model. A
simple numerical approximation of Eq. (21) as time series
autoregressive (AR) model is

21

L
Covr oy (k) =0 + ch{vl,vz}(k —)+e
=1

(22)

where the k-th time step value depends on the values of
previous L steps. L is the order or lag of AR models. 7y is the
intercept, 7y;’s are the model coefficients, and ¢ ~ N(0,c?)
follows a normal distribution. The AR model in Eq. (22)
captures the time correlation of the expected values of copulas.

The data-driven approaches are necessary to calibrate the
dynamics models. Based on the probabilistic graph model in
Section II-B, Monte Carlo sampling can be used to simulate
the evolutions of the prediction probabilities. The information
dynamics model can be trained through regular data fitting or
Bayesian approaches. For the copula dynamics modeling, two
training procedures are needed. First, the weight coefficients
a and B;’s in Eq. (19) need to be trained and calibrated so
that the actual joint probabilities of state variables can be
estimated from the extremal probabilities. The constraint that
the weight coefficients sum up to one needs to be enforced
during the training. Therefore, constrained optimization needs
to be applied instead of regular least-square fitting. Second, the
parameters 7o and ;’s of the dynamics models of copulas in
Eq. (22) also need to be calibrated. After parameter calibration,
the models can be applied to predict the future values.

IV. FUNCTIONAL INTERDEPENDENCY MODELING

In the second approach, the marginal prediction probabilities
are used in the dynamics model, where the interdependency
and coupling between them are captured implicitly as func-
tional relationships. The prediction probability of one node is
a function of the probabilities from its neighbors.

The second approach to model the interdependency between
predictions is to use analytical functions. The dynamics of
prediction probability for node ¢ can be modeled by

% — g:i(P(x1,1),..
where g;(-)’s can be linear or nonlinear functions to capture
the interdependency between the trajectories of prediction

Pz, t) + € (23)

probabilities P(zy)’s, and n = |V| is the total number of nodes
in the network. If the prediction probabilities of all nodes are

considered as a vector P(t) = [P(x1,t),..., P(z,,t)]T , the
model is written as

dP(t

% =G(P(t)) + € (24)

In the proposed approach for time series analyses, the model
is simplified to

P(s)=F(P(s—1),...,P(s— L))+ € (25)

where F'(-) is a linear or nonlinear function, s is the discretized
time step, and the prediction probabilities are the functions
of previous L time steps. That is, the prediction probability
of one node at a time step is a function of the prediction
probabilities for all other nodes at the previous several time
steps, given that nodes share information and have influence
on each other. The memory of nodes is limited to L time
steps. The function can be linear as the vector autoregression
model proposed here, where variables are linearly dependent.
More complex nonlinear functions can also be applied. Here, a
Gaussian process regression model, which is a highly flexible
nonlinear regression model, is proposed.

A. Topology-Constrained Vector Autoregression

A linearized vector autoregression (VAR) model is

L
P(s) = AO+ZA1P(3—Z) +e (26)
1=1

where the vector value at the s-th time step is related to
the values at the previous L steps, Ao is the vector of
intercepts, € ~ N (0, X,) is the multi-variant normal random
variables, and the n x n coefficient matrices A;’s capture the
interdependency between prediction probabilities. The VAR
model in Eq. (26) captures the time and location dependencies
of nodes simultaneously as the linear relationships.

The linear VAR model in Eq. (26) is a generic regression
model that can be applied to different dynamics models. To
model the network information dynamics, additional physical
information of the networks can be applied as the additional
constraints. Since the network topology is given, the paths of
information flow along edges are known. That is, each node
updates its prediction probabilities based on its current predic-
tion and the ones from its source nodes. Thus, this dependency
information can help reduce the number of parameters to train
in Eq. (26).

Specifically, the topology-constrained VAR model is

L
P(s)=Ag+ Y (DToA)P(s—1)+e
=1

27

where D is the adjacency matrix of the graph, T is the
matrix transpose operator, and o is the element-wise Hadamard
product between two matrices. In the adjacency matrix D =
(dij)nxny its element is defined as d;; = 1 if there is a directed
edge from node ¢ to node j; otherwise, d;; = 0. Particularly,
d;; = 1 for all ¢’s. That is, only the coefficients in A;’s that
correspond to direct connections between nodes contribute to
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the model. For those without direct connections, there is no
immediate information dependency and the coefficients in A;’s
are set to be zeros. With the adjacency information included,
the non-zero coefficients in A;’s now can be interpreted. They
can be interpreted as the reliance probabilities. The coefficients
in Ay are associated with the nodes’ own prediction capability.

In original VAR model, the parameters to be calibrated are
vector Ay and matrices A;’s. The total number of parameters
is n+n X n x L. In the constrained VAR model, the number
of parameters to be trained is reduced to n + e x L where
e = |€| is the number of edges in the directed graph. The
training of Eq.(27) can be generalized to minimizing the loss
function subject to constraint

L

Y ll=D") oA =0

=1

(28)

where Il is a matrix with the same size of D and all elements as
1’s, and || - || indicates the matrix norm. In addition, to ensure
the interpretability of coefficients, all non-zero coefficients in
Ay and A;’s should be between 0 and 1 so that they can be
interpreted as probabilities.

B. Spatial-Temporal Gaussian Process Regression

Gaussian process regression (GPR) is a widely used non-
linear model. The unique advantage of GPR is its support
of sequential sampling. A GPR model is specified by a
mean function p(x) = E[Y(x)] and a covariance function
Cov(Y (x),Y (z')) = k(x,x’). Based on a finite set of basis
functions {¢;(x),j = 1,...,m}, the GPR model is

m

Y(z)=> wig;(@)+e=(x) w+e (29)
j=1

where w = [wy,...,wy,]T is the weight vector, ¢(x) =
[#1(2), ..., dm(x)]T is the vector of m basis functions, and
Gaussian noise € ~ N(0,03) is assumed to be associated with
observations. Let the prior distribution of the weight vector
w be Gaussian N (0, 3,,). The posterior mean of weights w
is estimated by minimizing the negative logarithmic of the
posterior probability, as

w=o0,?A" 1@y (30)

where y = [y1,...,yn|" is the vector of n observations, A =
2;1 + 062<I>T'1>, and ® is the n x m design matrix with
elements ¢;(x;)’s.

For a new input x*, the predicted mean value is

E[Y (z")] = ¢(z") w = 05 *p(a") A Ty (1)
and the predicted variance is
VY (27)] = 0§ + ¢(x”) A7 (") (32)

Here, the GPR model is used as a time series model to
predict the future prediction probabilities of CPSS nodes. To
simplify, we choose m = 1 in this paper. Different from
traditional time-series problems, the prediction probabilities as
the responses are strongly correlated because of information
sharing between nodes. Therefore, the GPR model proposed
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Fig. 3: An example of binary node labels for a 5-node network

here has two-dimensional inputs and multi-dimensional output
predictions. The inputs are time and node label. Time is con-
tinuous, whereas node label has discrete values. The two inputs
allow us to capture both spatial and temporal correlations that
exist in the variables. The number of outputs is the same as
the number of nodes.

To construct the spatial-temporal GPR model, choosing the
kernel function is critical. The proposed kernel function

k((s,b), (s, V') = ki(s, s )ka(b, 1) (33)
is a product of temporal kernel
ki(s,s') = exp(—2sin®(n|s — | /p) /1?) 34)
and spatial kernel
ko(b,b') = exp(—0.5dg (b,b')/2%) (35)

where s and s’ are two different time as continuous variables,
whereas b and b’ are the labels of two different nodes. The
hyperparameters of temporal kernel includes period p and
length scale [. The hyperparameter of spatial kernel is scale z.
Hamming distance dg (b, V) between node labels is applied to
quantify the differences between nodes. The sinusoidal kernel
for temporal correlation is selected because of the fluctuation
nature of prediction probabilities ranging between 0 and 1.

The proposed node labels are based on the adjacency of
nodes. When two nodes are directly connected, they have
stronger interdependency because of information sharing. For
a network with n nodes, an n-bit binary string is used to
label each node, each bit corresponding to a node. When a
node is directly connected to another node, in the label of
the first node, the bit corresponding to the second node is “1”.
Otherwise, the bit is “0”. The Hamming distance between two
labels indicates how strong the correlation between two nodes.
The rationale is that strong correlation exists between two
nodes when they have similar information sources, as a result
of similar neighborhood connections. When the neighborhoods
are similar, the Hamming distance between the two nodes is
small. Fig. 3 shows an example of node labels for a network,
where a binary string that indicates the pairwise connectivity
is assigned to each node. Node 1 has the smallest Hamming
distance to Node 2 and they share the same information source.
In contrast, Node 1 has the largest distance to Node 5 and they
are independent from each other.

V. DEMONSTRATIONS

In this section, several examples are used to demonstrate the
proposed information dynamics models. The copula dynamics
model will be demonstrated with a simple three-node network.
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Fig. 4: Three examples of 3-node-6-edge, 3-node-3-edge, and
3-node-2-edge networks to demonstrate copula dynamics

The VAR and GPR models will be demonstrated with larger
networks. The implementation can be found at github [48].

A. Demonstrations of The Copula Dynamics Model

For demonstrations, three three-node random networks are
created where the nodes are connected at different probabil-
ities. Three example networks in Fig. 4 are tested, which
contain six, three, and two edges respectively. The values of
the initial prediction probabilities as well as the P- and Q-
reliance probabilities are randomly generated. Monte Carlo
sampling is applied to simulate the process of prediction
probability updates and generate the training data.

1) Data generation: The simulation algorithm is listed in
Algorithm 1. In each time step, random samples of obser-
vations are generated for each node based on its current
prediction probability. Then the observations are shared to
the neighboring nodes, and the shared information is sampled
based on the reliance probabilities. When a node receives the
information from its source nodes, a fusion rule (e.g. worst-
case, best-case, Bayesian) is applied to update its prediction.
The predictions are compared with the randomly generated
ground truth state value and the correct instances are recorded.
The above sampling procedure repeats many times, and the
probability of correct prediction for each node is obtained
and updated for this time step. The joint probabilities for all
nodes for all possible combinations of correct and incorrect
predictions are also obtained. The simulation clock advances
and the next iteration of update is done in the same way.

2) Training: After the simulation data are obtained, the
extremal probabilities also need to be calculated based on
Eqgs. (16)-(18). To calibrate the weight coefficients a and j3;’s
in Eq. (19), these copulas of extremal probabilities will be
used as the inputs for model training, whereas the outputs
will be the joint probabilities. For a network of three nodes,
the number of extremal probabilities according to the number
of node partitions is 5. The number of joint probabilities
as the number of binary-valued combinations is 23 = 8.
Therefore, for the three-node network, a total of 5 x 8 = 40
different extremal probabilities are used as the inputs during
the training of the copula model in Eq. (16). The outputs
are the 8 joint probabilities. The training can be done by
solving the least-squared error optimization problem under
the constraints that the weight coefficients are nonnegative
and sum up to one. After the training, the relation between
the extremal probabilities and joint probabilities is obtained to
predict future joint probabilities.

The AR model in Eq. (22) is also built for each of the
40 extremal probabilities. The purpose is to predict the future
copulas with extremal probabilities from the existing data. The

Algorithm 1 The Monte Carlo sampling algorithm to generate
sequences of prediction and joint probabilities for nodes along
time

1: while ( maximum time step is not reached ) do > main
iterations for time

2: while ( number of samples is not enough ) do

3: Randomly generate a ground truth;

4: for each node ¢ in the graph do

5: Randomly generate a sample based on P(z;);
6: for each destination node k£ w.r.t. node ¢ do
7: if node 7 predicts correctly then

8: Generate a sample based on P(z|z;);
9: else

10: Obtain a sample based on P(zy|z{);
11: end if

12: end for

13: Update prediction based on fusion rule;

14: Record in the tally;

15: end for

16: end while

17: Update P(xy) from the tally;
18: end while

calibration of coefficients 7y and ~;’s can be similarly done
with regressions.

After the two training procedures, the 40 AR models are
used to predict the future values of the 40 respective extremal
probabilities from existing simulation data. From the forecast
of extremal probabilities as the inputs of Eq. (19), the 8 joint
probabilities for a future time step can be estimated. From the
8 joint probabilities, 3 marginal prediction probabilities can be
obtained.

3) Results: For the first example, all three nodes are fully
connected with 6 directional edges. The probability update
is simulated for 50 time steps. The worst-case fusion rule
is applied. The simulated data are then used to train the
copula model and the AR models. After training, the calibrated
weight coefficients in Eq. (19) are 0.04989131, 0.04896505,
0.05062734, 0.050125, and 0.80039129. Some examples of
coefficients for the 40 AR models as well as the estimated
variances after training are shown in Table 1. Here the lag
order is L = 2.

After the training, the 40 AR models are applied to predict
the probability update for additional 30 time steps. In Fig.
Sa, the original prediction probabilities and the forecasts are
compared, where the solid lines are the original probabilities
whereas the dashed lines are the mean values of forecasts. The
shaded band indicates the bounds of one standard deviation
(£0) in the forecasts. The standard deviations of the marginal
prediction probabilities are estimated from the standard de-
viations of the extremal probabilities such as the ones listed
in Table I. It is assumed that the variances associated with
the extremal probability values are the same for the joint
probabilities. Thus the variances for the marginal probabilities
are the sums of those ones for the joint probability values.

It is seen in Fig. 5a that the forecasts of the copula dynamics
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TABLE I: Some examples of coefficients and variances out of
the 40 AR models in the 3-node-6-edge network

Yo T Y2 o?

€
example 1 0.43470733  0.15745345 -0.08249448  0.01222724
example 2 0.11957611  0.06856919 -0.18018992  0.01517523
example 3 0.11618891  0.06384009 -0.20648693  0.01410113
example 4  0.46474062  -0.19265025 -0.0755481 0.00337921
example 5 0.00392942  -0.0383012 -0.0383012 0.00011325
example 6  0.12958748  -0.02501151  -0.07006834  0.00051422

model match the general trend. When the lag order increases,
the fluctuation in the forecasts will also increase. The forecasts
of a higher-order AR model with L = 12 are shown in Fig.
5b, where local fluctuations appear in the forecasts.

The 3-node-3-edge network and 3-node-2-edge network
in Fig. 4 are used for further tests. Simulation and model
training are similarly done. The results of simulation and
model forecast are shown in Fig. 6. Compared to the previous
3-node-6-edge case in Fig. 5, the variabilities of predictions
by some nodes increase. The general trend is that when a node
receives more information, its prediction capability increases
with smaller fluctuation and variability. For instance, in the
3-node-3-edge and 3-node-2-edge networks, the probability of
Node 0 fluctuates more than those of Nodes 1 and 2 since
Node 0 does not receive information from others. Nevertheless,
extensive information sharing such as in the fully connected
3-node-6-edge network also causes the synchronization of
fluctuations for all nodes.

The copula dynamics model provides good estimations
of the general trends of the prediction capabilities with the
underlying linear AR models. Linear AR models can predict
stable systems well. Here the variances are estimated as
combinations of the ones from extremal probabilities. As a
result, they are likely to be overestimated. Although the copula
dynamics model explicitly captures the correlations between
nodes, the major disadvantage is its computational complexity
and lack of scalability for larger systems. As the number of
nodes increases, the number of joint probabilities and copulas
of extremal distributions will increase exponentially.

B. Demonstrations of The Functional Interdependency Models

The functional interdependency model captures the corre-
lations of prediction capabilities between nodes by functional
relationships. This approach has the lower computational com-
plexity than the copula dynamics model, since the marginal
prediction probabilities are directly modeled. The 15-node-23-
edge and 15-node-66-edge networks shown in Fig. 7 are used
in the demonstration in addition to the previous ones in Fig.
4.

1) VAR models: The VAR model in Eq. (26) and the
topology constrained VAR model in Eq. (27) are first demon-
strated and compared with the 3-node-2-edge example. The
simulation data are collected to train the VAR models with lag
order L = 2. The training data and forecast results are shown
in Fig. 8, where three VAR models are compared. For the first
test, the worst-case fusion rule is applied. Fig. 8a shows the

TABLE II: The coefficients of the VAR models in Fig. 8

VAR model

Ap = |—1.32985007 0.5634467 0.39025738]
0.16732259  0.54656891 —0.05017579

A; = 1094741755 —0.05021139  0.14863032
3.96408185 —0.88023708  0.12792812
—0.78595986  0.04871532 0.12865764

A, = | —1.36827169 0.28772943 —0.09098509
0.76135351 —0.0757617 —0.04557109

Value-constrained VAR model

Ag =[0.0 0.202493134 0.303131421]
0.0 0.559047466 0.0
A = 0.0 0.0 0.388614469
0.425431619 0.0 0.0
0.0 0.0392161135 0.0
Ag = 0.0 0.0 0.0
0.612816961 0.0 0.0

Topology-constrained VAR model

Ap = [0.429084615 0.319280699 0.498936303}
0.0325279063 0.0 0.0
A = 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
Ao = |0.0140168669 0.0 0.0
0.0 0.391937688 0.0

result of the original VAR model. Fig. 8b shows the value-
constrained VAR model where the values of all coefficients
are restricted between 0 and 1 and interpreted as probabilities.
Fig. 8c shows the result of the topology-constrained VAR
model where only the coefficients corresponding to the ad-
jacent nodes are non-zero. For comparison, the same dataset
is applied for all three VAR models. The calibrated model
parameters or coefficients of the three VAR models are listed
in Table II. The error bounds are defined as one standard
deviation, which are directly obtained from the covariance
matrix after the training procedure. For the second test, the
best-case fusion rule is applied. The results of the VAR and
constrained VAR models are shown in Figs. 8d-8f respectively.
It is seen that all three models predict the trend well. When
the value constraint for interpretability is imposed to the
VAR model, the coefficients become physically meaningful as
probabilities. When the topology constraint is further imposed,
the number of functioning coefficients is significantly reduced.
This sparse representation of VAR models makes training
process easier. Less training data is required because of the
reduced number of parameters to calibrate. The scalability of
the VAR models is better than the copula dynamics model.

Additional examples of constrained VAR models are shown
in Fig. 9 with 15 nodes and 23 directed edges. It is seen that
the forecast accuracy of the topology-constrained VAR model
is similar to that of the traditional VAR model when L = 2.
When the lag order is increased to L = 4, the traditional
VAR model cannot provide meaningful predictions any more
with only 50 steps of training data. This is because the
increased number of coefficients with a larger L requires more
training data for the fitting process. In contrast, the topology-
constrained VAR model still provides reasonable forecasts
for the larger L, since it has a much smaller set of non-
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Fig. 5: Evolution of prediction probabilities in the 3-node-6-edge network and forecasts from the copula dynamics model
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Fig. 6: Evolution of prediction probabilities and copula dynamics models

zero coefficients to train and therefore more efficient than the
traditional VAR model.

2) GPR model: The proposed spatial-temporal GPR model
is further demonstrated, where the correlation between nodes
as well as temporal correlation in time series are simultane-

ously captured by the hybrid kernel function.

Some example results are shown in Figure 10, where the
dynamics of prediction probabilities in the 3-node-6-edge, 3-
node-3-edge, and 15-node-66-edge networks are modeled and
predicted. Similar to the previous examples, 50 time steps of
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Fig. 7: Two additional examples of 15-node-23-edge and 15-
node-66-edge networks to demonstrate functional interdepen-
dency models

simulation data are used to train the GPR model. Then the
model is used to predict the next 30 time steps. Different
from the linear VAR models, the local fluctuations of both
means and variances are predicted by the GPR model. This is
because predictions in GPR modeling are based on the local
differences between samples, which is characterized by the
distance functions in the kernels. In addition, the sinusoidal
kernel is designed to capture the fluctuations.

One disadvantage of the GPR model however is the com-
putational cost associated with the training and Bayesian
update procedures, where the inverse of sample covariance
matrix needs to be computed. This becomes very expensive as
the number of training samples increases. The computational
complexity prohibits GPR models from being applied if there
are thousands of samples, as opposed to 80 samples in this
example here.

VI. CONCLUDING REMARKS

In this paper, a statistical modeling approach is taken to
model the information dynamics in CPSS networks, where
the effect of information diffusion in a probabilistic graph
model of network is captured. The effect is reflected as the
changes of individual nodes’ capabilities of prediction and
decision making. The dynamics of capabilities for individual
nodes becomes the unique characteristic in CPSS networks,
which is different from traditional computer networks or social
networks. Therefore, the fluctuations of these capabilities as
a result of information diffusion in the network are modeled
here, instead of tracking specific information elements as in
other information dynamics models.

Three new statistical models are proposed to capture the
strong dependencies or correlations between nodes’ capabil-
ities. Given the prior knowledge about the correlations, a
gray-box approach is taken by incorporating them in model
construction. The topology of the network can provide the
insight into the correlations and simplify the models. The
interpretability of the model parameters as probability values
also provides constraints during the training, which results in
better statistical models.

The proposed information dynamics models can be applied
as the tool to design adaptable and scalable CPSS networks.
For instance, it allows us to assess the impact of network
topology changes upon disruption more efficiently than Monte

Carlo simulations. The model predictions can help identify
the ways to assign or allocate the most influential nodes to
ensure resilience. The tool also allows us to perform sensitivity
analyses to identify unreliable information sources, especially
when the size of network grows, which helps design strategies
for improving system reliability with necessary redundancy or
control the extent of negative outcomes.

The limitations of the proposed approach are mainly from
computational aspects. Explicit modeling of correlations with
copulas makes the calculation cumbersome for large networks.
With joint probabilities directly modeled, copula dynamics is
conceptually appealing but practically difficult to apply. Linear
vector autoregression has good track records in modeling
time series. The predictions show the general trend whereas
local information is missing. When significant fluctuations
are present as in this information dynamics modeling prob-
lem, Gaussian process regression shows better performance.
However, computational cost of constructing Gaussian process
regression models with large sample sizes is a well-known
issue.

Future studies of the data-driven approach for information
dynamics modeling will need to tackle the computational
cost issue. For instance, sparse Gaussian process methods
can be applied to reduce the number of samples that are
used in model construction and update. Some dimensionality
reduction approaches such as latent variables can also be
applied to improve the efficiency of modeling. In addition,
the probabilistic graph model only captures the functions of
sensing, computing, and communication for CPSS. The control
capability and its effects on information propagation require
further investigation.
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