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Abstract

Answering a question of Sakai [7], we show that the existence of an
w1-Erdés cardinal suffices to obtain the consistency of Chang’s Conjecture
with O, 2. By a result of Donder [3] this is best possible.

We also give an answer to another question of Sakai relating to the
incompatibility of Oy 2 and (AT, \) - (x7, x) for uncountable &.

1 Introduction

Chang’s Conjecture is a model-theoretic principle asserting a strengthening of
the Lowenheim-Skolem Theorem [1]. Chang’s Conjecture was originally shown
to be consistent assuming the existence of a Ramsey cardinal by Silver (see
[6]) and this assumption was later weakened to the existence of an wi-Erdés
cardinal [4]. This result is best possible, since Chang’s Conjecture implies that
wa is wi-Erd6s in the core model [3].

Chang’s Conjecture is known to be incompatible with Jensen’s square prin-
ciple O, (see [9]) but was recently shown to be consistent with Schimmerling’s
square principle O,, o by Sakai [7], assuming the existence of a measurable
cardinal. In light of this consistency upper bound, Sakai posed the following:

Question 1. What is the consistency strength of the conjunction of Chang’s
Conjecture with U, 2%

In Corollary 12 we show that the consistency of the given statement follows
from the existence of an w;-Erdods cardinal, answering Sakai’s question. Section
2.1 of the paper will cover some basic preliminaries, such as the definition of
the relevant square principle and large cardinal. In Section 2.2 we describe
our forcing poset. In Silver’s consistency proof, he used what is now called a
Silver forcing poset—a modification of the Levy Collapse forcing which allows
larger supports [6]. Cummings and Schimmerling [2] have introduced another

*This material is based upon work supported by the National Science Foundation under
Grants No. DMS-1363364 and DMS-1764029.



variant of the Levy Collapse forcing which collapses inaccessible k to we while
simultaneously adjoining a square sequence. Our forcing will be a hybrid of these
two posets—in other words it will be a “Silverized” Cummings-Schimmerling
poset.

Finally, in Section 2.3 we give the proof of our result, which is based on the
methods of [7] and [4].

In Section 3 we investigate the relation between weak square principles and
model theoretic transfer properties (i.e., generalizations of Chang’s Conjecture)
of the form (A*,;\) — (k*, k) for kK > N;. Sakai proved the following:

Theorem 2 (Sakai, [7]). Suppose that (A\*,\) — (k*, k), where K is an un-
countable cardinal and X is a cardinal > k. Moreover, suppose that either of the
following holds:

(I) XA =\

(II) k < N, and there are strictly more regular cardinals in the interval
[Ro, k] than in the interval (k, A].

Then Oy . fails.

Although Theorem 2 imposes substantial constraints on the interaction of
weak square principles and model theoretic transfer properties, there are many
instances where it does not apply. For example, it does not answer the question
of whether (Ry,N3) — (Rg, 1) is incompatible with O, o when 22 > X3.

In light of these limitations, Sakai posed the following question:

Question 3 (Sakai, [7]). Let k be an uncountable cardinal and \ a cardinal
> k. Does (AT, \) = (kT k) imply the failure of Oy 2%

We answer this question in the affirmative in Corollary 20 (in fact we obtain
the failure of [y, under these hypotheses and more under slightly stronger
hypotheses—see Corollaries 21 and 22). Taking x = 8y, A = N3 in this theorem
shows that indeed (N4, N3) — (N2, ;) is incompatible with O, o, regardless of
the value of 2%2.

2 The Consistency of Chang’s Conjecture and
Lo, 2 from an w;-Erdés Cardinal

2.1 Preliminaries

In the following, for any cardinal 8 we denote by H(6) the collection of all sets
whose transitive closure has size < . We frequently confuse a structure and its
underlying set. Le., if M = (M,...) is a structure and « is an ordinal, we write
a € M to mean o« C M. All structures we consider have at most countably
many symbols in their signature.

Definition 4. Chang’s Conjecture is the assertion that for any structure N
with wo C N, there exists M X N such that |M| =Ry and |IM Nwi| = Ng.



We observe that to verify Chang’s Conjecture it suffices to verify it for models
with underlying set H(ws):

Claim 5 (Folklore). Suppose that for all structures H = (H(wz),...) there
exists M < H of cardinality Ny such that |[MNwi| = Rg. Then Chang’s Con-
jecture holds.

Proof. This is a standard model-theoretic argument. Suppose that N' = (N, Ry, Ra,...)
is any structure with wy € N. We may assume without loss of generality that
IN]=Ry. Let m: N — H(ws) be any injection which is the identity on ws. Let
H = (H(w2), N.Ry,Ro,... ), where N is a predicate representing membership
in 7 [N] and R; is a predicate representing R; in the natural way. By our as-
sumption there is M < H of cardinality X; such that |[M Nw;| = Ng. Pulling
back via 7, we get the desired submodel of V. O

Square properties are a family of “incompactness principles” regarding se-
quences of clubs.

Definition 6 ([8]). Suppose that k is an infinite cardinal and X is a nonzero (but

potentially finite) cardinal. A Oy x-sequence is a sequence ¢ = (Co: v < KT
such that:

1. Foralla < k™, 1<|Col < A
2. For alla < kT and C € C,, C is a club subset of a and otp C < k.

3. (Coherence) For all o < kT, every C' € C, threads (Cs: B < a) in the
sense that C'N B € Cg for all B which are limit points of C'.

We say that O, » holds if such a sequence ezxists.

In this section we will be concerned only with O, 2. In order to obtain our
result, we will need to make use of a large cardinal hypothesis:

Definition 7. A cardinal k is said to be wi-Erd0Os if it is least such that for
any partition f: [k]~Y — 2, there is H € [k]“* which is homogeneous for f.

Lemma 8 (Silver). If k is wi-Erdds, then for any structure M with Kk C M,
there is a set of indiscernibles I € [k]“" for M. Morever, if M has underlying
set H(k) and includes among its predicates some < which is a well-ordering
of its universe, we may assume I consists of inaccessible cardinals which are
remarkable in the sense that for any v € I, I\ v is a set of indiscernibles for

<M7 (5)6<7>'
Proof. See [5], [3]. O

2.2 The Poset

Our poset P is a “Silverized” version of the one appearing in [2] in the sense
that we modify their poset to allow conditions with wi-sized support. We define
P = P,, as follows: set p € P iff p is a function so that



(1) The domain of p is a closed < wy-sized set of limit ordinals less than k.

(2) f cfa = w and o € domp then 1 < |p ()| < 2 and each set in p(«) is a
club subset of a with countable order type.

(3) If cf @ = wy and « € domp then p(a) = {C} where C is a club subset of «
with order type w;.

(4) If cf & > wo then p(a) = {C'} where C is a closed bounded subset of o with
countable order type such that max C = sup (domp N «).

(5) If « € domp, C € p(a) and B € lim (C), then S € domp and C' N G € p(p).

(6) The supremum of otp C' taken over all C' € p(«), cf a > wo, is strictly below
wi.

For two elements p,q € P, we set p < q iff:
1. domg C domp
2. For all « € domg:

(a) If cf @ € {w, w1 }, then p(a) = ¢(a).

(b) If cf @ > wa, p(a) = {C} and g(a) = {D}, then C is an end-extension
of D in the sense that D = C' N (max (D) + 1).

Lemma 9. Suppose that K is inaccessible. Then P =P, is k-c.c. and countably
closed, and collapses k to No while adding a O, 2-sequence.

Proof. The proof is very similar to that of the corresponding result in [2]. The
fact that P is k-c.c. follows from a standard A-system argument. If we can show
that P is countably closed, then the second conclusion follows immediately. So
suppose that (p,: n < w) is a decreasing sequence of conditions.

Let X be the set of a € |J dom p,, such that the value of p,(«) does not
eventually stabilize and let

n<w

Y = {sup maxp,(a): o € X}

n<w

Observe that YN (U, ..,
sup (dom p,, N &) for every n gives

domp,) = 0, since if & € X the fact that max (p, (a)) >

sup max p,, (a) ¢ U dom p,,

nw n<w

Let

Z = (U dompn> uy

n<w



where the overline indicates closure in the ordinal topology. We claim that
Z is closed. To show this it suffices to show that any limit point of Y lies
in J,,, domp,. Moreover, this will itself follow from the assertion that any
element of Y lies in (J
the definition of P.

We will define a condition p, with domain Z which is a lower bound for
(Pn: n <w). First, if a € |, ., domp, \ X, let p,(a) be the eventual value of
the sequence (pn(a) : n < w). If & € X, then set

newdompy,. But this is immediate by condition (4) in

pu(@) = | pal@) U {sup maxpn (@)}

Next, if « € Y then o = sup,, ., max p, (/) for a unique g € X, and we set

po(@) = | pu(B) U {sup maxp,(5)}

n<w n<w

for this 8. Finally, suppose a € (Un<w dompn) \ (Un<w dompn) and py(a) is
yet to be defined. Set

Pu(a) = {max (dom (p,) Na): n < w}

Clearly this set is unbounded in «. Moreover, this set has order-type w, and
therefore has no limit points below « (and is club in «). Therefore we are in no
danger of violating coherence (condition (5) in the definition of P) by defining
pu () as such.

We refer to the condition p,, defined above as the canonical lower bound of
(Pn: n < w). O

We also define a threading poset for a given U, o-sequence. Supposing
that C = (Co: o < wy) is such a sequence, we let T = Tz be the poset of
closed bounded subsets C' of wy of countable order type such that C' threads
(Cq: o <max(C) in the sense that C N« € C, for all @ which are limit points
of C.

If C;D € T, then we set C' < D if and only if C is an end-extension of D.

Finally, suppose that ;1 < k are two inaccessible cardinals. If GG is the generic
added by P, then Q = Q, . ¢ is the poset in V[G] defined by setting ¢ € Q iff
q €V and:

(a) domg is a closed < wi-sized set of limit ordinals in the interval (u, x).

(b) If ef « = w and a € dom g, then 1 < |g(a)| < 2 and each element of ¢(«) is
a club with countable order type.

(¢) If cf @ = wy and a € dom g then g(a) = {C} where C is a club subset of «
with order type wi.

(d) If cf @ > wo, then g(a) = {C} where C is a closed bounded subset of a with
countable order type such that max C = sup (dom ¢ N «).



(e) If &« € domg, C € ¢(a), and 8 € lim C, then:

(A) If B> p, then 8 € domg and C'N S € ¢(B).
(B) If 8 < p, then C'N B € Cg, where (Cz: B < u) is |JG.

(f) The supremum of otp C taken over all C' € g(a), cf o > wa, is strictly below
wi.

For two elements p,q € Q, ., we set p < ¢ iff:
(1) domg C domp
(2) For all a € domg:

(a) If cf @ € {w, w1}, then p(a) = ¢(a).

(b) If cf « > wa, p(a) = {C}, q(o) = {D}, then C is an end-extension of
D.

Claim 10. Suppose that pi, k are inaccessible cardinals with p < kK, and G is
the canonical name for the P, -generic. Then if we let T = TU o Q= Qu,n,G"
there is an isomorphism between a dense subset of P,; and a dense subset of
P, +*T*Q. In particular these two forcings are equivalent, so informally we may
view them as being equal.

Proof. As in [2]. O

2.3 The Proof

Theorem 11. Suppose that k is an wi-Erdds cardinal. Let P = P,. Then for
any P-generic G, V[G] satisfies Chang’s Conjecture.

Corollary 12. The existence of an wy-Erdds cardinal is equiconsistent with
“Chang’s Conjecture plus O, 2.”

Proof of Corollary 12. By Theorem 11 and Lemma 9 an w;-Erdés cardinal suf-
fices for the consistency of Chang’s Conjecture plus O, 2. By [3], the consis-
tency of Chang’s Conjecture implies that of the existence of of an w;-Erdos
cardinal. O

Proof of Theorem 11. Suppose that G is a P-generic over V. Then w;/[G] =K

and (H(m))V[G] = H(k)[G]. Let H = (H(k), €, R), which we view as a name for
a structure H[G] with underlying set H (x)[G] and predicate R = RS C H(r)[G].

We seek a condition p* € P and a name A for an elementary substructure
A of H[G] such that p* forces |A| = Ry, |[ANw;| = Ry. With this in mind, let
I = {tq: @ < w1} be a collection of remarkable indiscernibles for H. For each
a < wi, let I, = {15: 6 < wa} be the set of the first wa indiscernibles and let
Yo = lwa- Let M be the Skolem Hull of I, in H.

We construct a sequence (p}: 1 < a < wy) by induction on « so that:



(a) If 1 <a < B <wp then pj < pj.
(b) p% is a master condition for P over M,,.

(c) pk is an element of P, .

We begin with the base case a = 1. Consider the set PN M; = (Pox)™",
which is a proper class in Mj. Observe that since Mj is elementary in H,
M satisfies “P has the <-ON chain condition.” In other words, M; be-
lieves that every antichain in P is a set. For each antichain A in Mj, let
At ={peP: (3¢ € A)p < q} be the downwards closure of A. Let {4;:i < w}
enumerate the collection of all maximal antichains which are elements of M.
By induction we may construct a descending sequence {r;: ¢ < w} of elements
of P such that r; € A% N M;. Let p; € P be the canonical lower bound for the
sequence {r;: i < w}. Then p} is a master condition for P over M; and is an
element of P, as desired.

Next suppose that « is limit. Choose a sequence (o, : n < w) cofinal in «,
and let p}, be the canonical lower bound for <pj;n: n < w>. It should be clear
that properties (a)-(c) are satisfied, since PN My = U, ., (PN M,,), and
PNM, = (]P’ON)M“ has the <-ON chain condition in M.

Finally we consider the case where a = @ + 1 is a successor ordinal. We
distinguish between the case where & is a nonzero limit ordinal and where & is
itself a successor ordinal, considering first the latter. Since p% was chosen to be
a master condition for P over Mg, we have

pi Ik M5[G] =< H[G] A ON N M4[G] = ON N Mg

Consider M,. By remarkability of the indiscernibles which generate M,
we have H(y5) "My = Mg and P, "M, = PNM45. Moreover, p% is a master
condition for the forcing P, over the model M., since P, has the yg-c.c. and
therefore every antichain of P,_ in M, is an element of H(yz) N My = M;.

So if we let G, be the canonical name for the P, -generic, then
PiIF Mo[Gy] < H[G,. ] AONNM,[G,.] = ONN M,

Working in V, let T = TU o be the canonical name for the threading forcing

associated to G.,. Let {Bi: i < w} enumerate all names in M, which are
forced by pf to be maximal antichains of T. By induction we may construct a
descending sequence {fi: 1 < w} of “check-names” (by which we mean canonical
names for elements of V') for elements of T = TCva such that

pi i € BY N MG, ]

where B} is a name for the downwards closure of B; = BZG "®in T. Observe that
we may take canonical names for elements of V' #; rather than merely arbitrary
names t; since p% is a master condition for P, over M.



Still working in V', we let

t:Uti

ps" = pa U{(sup (Ma N k), {t})}

Then pf ¢ is a master condition for P._ x T over M,. Now observe that Q =
QVa,ON,G‘w is definable over (M,[G,,], €, M) (i.e. the structure M, [G,,]
with signature expanded to include a predicate for membership in M,). So we
may proceed as above to find ¢ € Q such that p% xTx¢ is a master condition for
P, «T+Q over M,. Thus if we set Pl = pi* xL*{, we may view p?, as a master
condition for P over M, which extends p%. We note that p} (sup (Mg Nk)) =
{t}.

For nonzero limit &, the construction is exactly as above, except we mod-
ify pf (sup (Mg N k)) to be {t, F'}, where t is a master condition for the threading
poset associated to the generic for P, (as above) and F' = {sup (Ms Nk): § < a},
rather than merely taking p} (sup (Mg N k)) to be {t}.

Observe that this is the only place in the proof where we use the allowed
“two-ness” of the square sequence. Moreover, in adding F we preserve the
coherence property since its initial segments of limit length were put on the
square sequence at earlier successor of limit stages.

Finally, at the end of the construction we set

p' = {J phu{Guw (( |J Ma)Nrk), F)}

a<wi a<wi

where F* = {sup (M, Nk): a@ < k}. The construction ensures that this is a
condition in P = P,. In particular, successor of limit stages ensure that the
initial segments of limit length of F* appear on the square sequence, and so
when adding F* there is no danger of violating coherence. Moreover, p* is a
master condition for P over M = J,_, M. Thus p* forces that MIG] is the
desired elementary submodel of H[G]. O

3 Higher Chang’s Conjectures vs. Weak Squares

In this section we concern ourselves with generalizations of Chang’s Conjecture
to higher cardinals.

Definition 13. Suppose that 7 < k < X are cardinals. We write (AT, \) —
(61, k) if for every structure N' with A\t C N, there exists M < N such that
IM| = kT and IM N\ = k.

Similarly, we write (AT, \) =, (k% &) if for every structure N with AT C N,
there exists M <N such that IM| =T, IMNA =k, and T C M.

Observe that Chang’s Conjecture is equivalent to (Ng,N;) — (R1,Rg) and
that (AT,\) — (kT,k) is equivalent to (AT,\) —», (kT,k) for any infinite
cardinals Kk < A. Moreover, we also have:



Lemma 14. Suppose that T < k < X\ are infinite cardinals and there are at
most T many cardinals between k and X\. Then (AT, ) —, (kT,k) implies
(AT, A) = (KT, k).

Proof. The lemma is implicit in [7]. Specifically, the conclusion of the lemma
holds by following the argument of Case (2) of Lemma 4.15 in [7]. O

Lemma 15. Suppose that 7 < k < X\ are infinite cardinals such that \™ = .
Then (AT, A) = (k+, k) implies (AT, \) =, (K7, K).

Proof. Take B =7 in Case (1) of Lemma 4.15 in [7]. O
In the argument below we make use of the following claim without comment:

Claim 16. Suppose that for all sufficiently large 0 and all structures H =
(H(0),€,...) there exists M < H such that M NAT|=kxT, IMNA =k, and
T C M. Then (AT, ) =, (KT, k).

The proof is entirely analogous to that of Claim 5.

Lemma 17 (Folklore). Suppose that k < A are infinite cardinals and 0 is
a sufficiently large regular cardinal. Let M be an elementary substructure of
(H(0),€) such that M NAT| = k™ and |[M N\ = k. Then the order type of
MnAT s kT,

Proof. Suppose otherwise for a contradiction. Since |[M N AT| = x¥, the order
type of M N A1 must be strictly greater than . Let a be the 1 element of
M NAT. Observe that o > X (since there are only x many elements of M below
A) and hence by elementarity A = |a] is an element of M. Applying elementarity
again, there is f € M which is a bijection from « to A. In particular,

f“iMnNa)yCMnA

which is a contradiction since the left hand side has cardinality x™ (since f is a
bijection) whereas the right hand side has cardinality . O

Lemma 18 (Folklore). Suppose that M is an elementary substructure of (H(6) , €)
for some sufficiently large 0 and o € M. Letting p = cf«, if f € M is an in-
creasing function from u into o whose range is cofinal in «, then

sup (f*(M N p)) = sup (M Na)

Proof. Clearly sup (f“(M Nup)) < sup(M Na), since f € M and f: p — «.
For equality, suppose for a contradiction that

sup (f“(M N p)) < sup (M Na)
and choose 8 € M Na such that § > sup (f“ (M N«)). By elementarity

M= (3&ep)(f(6)>h)



and so choosing £y € M N u to witness the existential statement above we have:

sup (f“(M Np)) < B < f(&)
an obvious contradiction. ]

Theorem 19. Suppose that k < X\ are uncountable cardinals and T < K is
infinite. Suppose moreover that Oy » holds. Then (AT, \) =, (T, k) fails.

Corollary 20. Suppose that < X are uncountable cardinals and (A\*,\) —
(k*, k) holds. Then Oy, fails.

Proof. Tmmediate from the theorem and the fact that (AT,\) — (kT k) is
equivalent to (AT, \) —,, (kT k). O

Corollary 21. Suppose that k < X\ are uncountable cardinals and there are
at most countably many cardinals between k and X. Then (AT, \) — (kT k)
implies the failure of Oy .

Proof. This follows immediately from Theorem 19 and Lemma 14 by taking
T =uw. O

Observe that the same argument shows that if there are at most 7 many
cardinals between x and A then (AT, \) —, (s, k) implies the failure of Oy .

Corollary 22. Suppose that k < A are uncountable cardinals and T < Kk is
some infinite cardinal with \™ = X. Then (AT, \) — (k*, k) implies the failure
Of D)\ﬂ—.

Proof. Immediate from Theorem 19 and Lemma 15. O

Proof of Theorem 19. Suppose for a contradiction that O,  held in conjunction
with (AT, \) =, (&1, %), and let € = (Ce: € < AT) be a [y, sequence. Choose
M an elementary substructure of (H(6), €,C) (for sufficiently large ) such that
IMNAY| =T, IMNA =k, and 7 C M.

Fix a club C* € Cyyp (mna+)- By Lemma 17, we may choose a club D in
sup (M N AT) of ordertype . We assume moreover that D consists only of

limits of ordinals in M.

Claim 23. For all sufficiently large o € C*, the ordertype of C* N« is not an
element of M.

Proof. These ordertypes are distinct elements of A, and since |M N A| = k&, at
most » of them can belong to M. Since the cofinality of sup C* = sup (M N AT)
is kT, the result follows immediately. O

Claim 24. For all sufficiently large « € Lim C*, o ¢ M.

Proof. Choose o € Lim C* and note that C* N« € C,. If @« € M, then C, C
M (since |Co| < 7 and 7 C M) and so in particular C* N« € M, giving
otp (C*Na) € M. By Claim 23, this may happen for only boundedly many
aeC*. O
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For each a below sup (M N AT), let ol denote the least element of M which
is > a.

Claim 25. For all sufficiently large o € Lim (C* N D), ol is strictly greater
than «.

Proof. Immediate from Claim 24. O
Now define:

Z ={p < X: p=cf(a’) for unboundedly many « in Lim (C* N D)}
Claim 26. |Z| < k.

Proof. For each a € Lim (C* N D), o' is an element of M below AT, and there-
fore its cofinality is an element of M N (A 4 1), which has cardinality k. O

Claim 27. There is pp € Z with 1 > k7.

Proof. By Claim 26, it is enough to find unboundedly many « € Lim (C* N D)
such that cf () > k*.

Fix any a € Lim (C* N D) large enough for Claim 25, with cf (o) = k.
Observe that there are unboundedly many such « since the ordertype of C*N D
is k. By choice of a, sup(M Na') = a < a'. Then:

k=cfa<cfal
by Lemma 18. O
Claim 28. |Z| > 2.

Proof. By Claim 26, it suffices to find disjoint A, As C Lim (C* N D) such that
Ay, Ay are unbounded and for any a; € Ay, as € As, we have cf (aI) # cf (ag).

To do so, choose distinct regular 71,72 < k. Observe that this is possible
since k is uncountable. Now let

Ay ={a€eLim(C*ND): cfa=m}
As ={a e Lim(C*ND): cfa=rmn2}

Clearly A;, A, are disjoint and unbounded. Moreover, for any a; € A1, as € Ao,
we have cf (a]) # cf (o)) by Lemma 18. O

Now to prove the theorem:

Fix distinct py, o € Z with g > po and py > 7. Fix o, as € Lim (C* N D),
large enough for Claims 23 and 24 and with a1 < asg, so that cf (aI) = 1 and
cf () = pa. Fix E € M cofinal in o of ordertype .

Let

U:{sup(CﬁaI)—Fl:Ce UCg with sup (C' N al) <aI}
{eke

11



Claim 29. sup (C*Nal)+1eU.

Proof. Note first that C* N ozI is bounded in ozI, since otherwise we would have
aI € Lim C*, and as aI > o is an element of M this would contradict choice of
ay. Now since F is club in ag and belongs to M, we have ag = sup (M N ag) €
E, where the equality follows from Lemma 18. Since C* N s € C,,, and
since C* Nay Nal = C*N aI is bounded in aI, it follows by definition that

sup (C*Nal)+1isin U. O

We have U € M by elementarity and since the parameters used are in
M. U has cardinality < p; by definition and since pp > max (g, ). Since
cf (al) = 1, it follows that U is bounded in .

Moreover, since U € M we have supU € M, and since supU < aI it follows
that supU < «a7. But this contradicts Claim 29, since a; € C* and therefore

sup (C* Nal)+1>a;+1>
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