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Abstract
Very recently, the Muon g� 2 experiment at Fermilab has confirmed the E821 Brookhaven result,
which hinted at a deviation of the muon anomalous magnetic moment from the Standard Model
(SM) expectation. The combined results from Brookhaven and Fermilab show a di↵erence with the
SM prediction �aµ = (251±59)⇥10�11 at a significance of 4.2�, strongly indicating the presence of
new physics. Motivated by this new result we reexamine the contributions to �aµ from both: (i) the
ubiquitous U(1) gauge bosons of D-brane string theory constructions and (ii) the Regge excitations
of the string. We show that, for a string scale O(PeV), the contribution from anomalous U(1) gauge
bosons which couple to hadrons could help to reduce (though not fully eliminate) the discrepancy
reported by the Muon g � 2 Collaboration. Consistency with null results from LHC searches of
new heavy vector bosons imparts the dominant constraint. We demonstrate that the contribution
from Regge excitations is strongly suppressed as it was previously conjectured. We also comment
on contributions from Kaluza-Klein (KK) modes, which could help resolve the �aµ discrepancy. In
particular, we argue that for 4-stack intersecting D-brane models, the KK excitations of the U(1)
boson living on the lepton brane would not couple to hadrons and therefore can evade the LHC
bounds while fully bridging the �aµ gap observed at Brookhaven and Fermilab.
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I. INTRODUCTION

The gyromagnetic factor g is defined by the relation between the particle’s spin ~s and its
magnetic moment ~µ = g e~s/(2m), where e and m are the charge and mass of the particle.
In Dirac’s theory of charged point-like spin-1/2 particles, g = 2. Quantum electrodynamics
(QED) predicts deviations from Dirac’s value, as the charged particle can emit and reabsorb
virtual photons. These QED e↵ects slightly increase the value of g. It is conventional to
express the di↵erence of g from 2 in terms of the value of the so-called anomalous magnetic
moment, a dimensionless quantity defined as al = (g � 2)/2, with l = e, µ. Over the
last decade, the muon magnetic dipole moment has maintained a long-standing discrepancy
of about 3.7� between the Standard Model (SM) prediction and the Brookhaven E821
experimental measurement [1–3]. Very recently, the Muon g � 2 Experiment at Fermilab
released its first results, which in combination with the previous E821 measurement lead
to a new experimental average of the muon anomalous magnetic dipole moment of aexpµ =
116592061(41) ⇥ 10�11 [4]. The di↵erence �aµ ⌘ a

exp
µ � a

SM
µ = (251 ± 59) ⇥ 10�11 has a

significance of 4.2�. In this paper we investigate whether this discrepancy can be explained in
the context of low-mass-scale strings [5]. Before proceeding, it is important to stress that the
absence of anomalous magnetic moment in a supersymmetric abelian gauge theory [6] does
not connect to the models discuss herein since the brane configuration is not supersymmetric.

Our calculations are framed in the context of intersecting D-brane models; namely, we
consider extensions of the SM based on open strings ending on D-branes, with gauge bosons
due to strings attached to stacks of D-branes and chiral matter due to strings stretching
between intersecting D-branes [7–15]. Intersecting D-brane models encase a set of building
block ground rules, which can be used to assemble UV completions of the SM with the
e↵ective low energy theory inherited from properties of the overarching string theory. For
these models, the elemental unit of gauge invariance is a U(1) field, and therefore a stack
of N identical D-branes sequentially gives rise to a U(N) theory with the associated U(N)
gauge group. If many types of D-brane are present in the model, the gauge group grows
into product form

Q
U(Ni), where Ni specifies the number of D-branes in each stack. For

N = 2, the gauge group can be Sp(1) ⇠= SU(2) rather than U(2).1 For further details, see
e.g. [16, 17].

The minimal embedding of the SM particle spectrum requires at least three brane
stacks [18] leading to three distinct models of the type U(3)⇥U(2)⇥U(1) that were classified
in [18, 19]. Only one of them (model C of [19]) has baryon number as a gauge symmetry
that guarantees proton stability (in perturbation theory), and can be used in the frame-
work of low mass scale string compactifications. Besides, since the charge associated to the
U(1) of U(2) does not participate in the hypercharge combination, U(2) can be replaced by
the symplectic Sp(1) representation of Weinberg-Salam SU(2)L, leading to a model with
one extra U(1) added to the hypercharge [20]. The SM embedding in four D-brane stacks
leads to many more models that have been classified in [21, 22]. Whether low-mass-scale
strings are realized in nature is yet to be answered, and the search for new physics signals
of intersecting D-brane models is still one of the goals of current day research [23–44].

In D-brane models there are three types of contribution to the anomalous magnetic mo-
ment of the muon: the one from anomalous massive U(1) gauge bosons, the one from excited

1 In the presence of orientifolds, one also obtains orthogonal and symplectic gauge groups.
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string states (excitations of l⇤ are expected to appear in the s-channel, the poles occur at
p
s =

p
nMs, with n = 1, 2, . . . and Ms the string scale [45]), and that of Kaluza-Klein

(KK) modes. While the anomalous U(1) Lagrangian permits a direct one loop calcula-
tion of the anomalous magnetic moment [46], a direct calculation of the contribution from
Regge recurrences is not possible due to the nonrenormalizability of the theory. However,
it was conjectured in [46] that the contributions from string oscillators and KK states must
be largely suppressed. In this paper we check thoroughly the various contributions to the
anomalous magnetic moment of the muon in three and four D-brane stacks realizations of
the SM. The layout of the paper is as follows. In Sec. II we reconsider the contribution from
anomalous U(1) gauge bosons and derive new constraints on the parameter space imposed
by recent LHC data. In Sec. III we use sum rules methods to calculate the contribution
from Regge excitations, and we verify the strong suppression of this contribution conjec-
tured in [46]. The paper wraps up with some conclusions presented in Sec. IV. Before
proceeding we note that the latest Fermilab data already lead to several new physics inter-
pretations with connections to other fundamental problems in particle physics, astrophysics,
and cosmology [47–55].

II. CONTRIBUTIONS FROM ANOMALOUS MASSIVE U(1) GAUGE BOSONS

To develop our program in the simplest way, we work within the construct of minimal
models with 3 and 4 stacks of D-branes.

A. 3 stack models

For 3 stack models, the canonical gauge group is U(3)⇥U(2)⇥U(1), with stacks labeled
a, b, and c, respectively [18]. In the bosonic sector, the open strings terminating on the
QCD stack a contain the standard SU(3)C octet of gluons g

a
µ and an additional U(1)a

gauge boson Cµ, most simply the manifestation of a gauged baryon number symmetry:
U(3) ⇠ SU(3)C ⇥U(1)a. On the U(2) stack the open strings correspond to the electroweak
gauge bosons A

a
µ, and again an additional U(1)b gauge field Xµ. So the associated gauge

groups for these stacks are SU(3)C ⇥ U(1)a, SU(2)L ⇥ U(1)b, and U(1)c, respectively. The
quantum numbers of quarks and leptons in each family are given by

Q (3,2; 1, 1 + 2z, 0)1/6
u
c (3̄,1;�1, 0, 0)�2/3

d
c (3̄,1;�1, 0, 1)1/3 (1)

L (1,2; 0, 1, z)�1/2

l
c (1,1; 0, 0, 1)1

where z = 0,�1. The charge assignments for the two Higgs doublets read

H (1,2; 0, 1 + 2z, 1)1/2 H
0 (1,2; 0,�(1 + 2z), 0)1/2 (2)

The relations for U(N) unification, g0a = ga/
p
6 and g

0
b = gb/2, hold only at Ms because

the U(1) couplings (g0a, g
0
b, g

0
c) run di↵erently from the non-Abelian SU(3) (ga) and SU(2)

(gb) [33].
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We can perform a unitary transformation on the gauge fields Ai = Uij
eAj (with AY =

eA1, A↵ = eA2, A� = eA3) to diagonalize their mass matrix. The U(1) brane can be inde-
pendent of the other branes and has in general a di↵erent gauge coupling gc. In the model
of [18], however, the U(1) brane was located on top of either the color or the weak D-branes,
and consequently gc being equal to either ga or gb. Here we relax the additional constraint
imposed in [18] and instead set ga = ygc at the string scale Ms. As a result there are two free
parameters y, ✓ in Uij. A↵, A� are the anomalous U(1) gauge fields, whose charges depend
on z. For z = 0, the anomaly free hypercharge is given by

QY = Qc �
Qb

2
+

2Qa

3
, (3)

yielding

Q↵ = �Qc
1

p
2y

�
16 + 9x2

�
sin ✓ +

p
2

p
3x

Qb

⇣
2 cos ✓

p
16 + 9x2 + 12y2 � 3

p
3x y sin ✓

⌘

+
1
p
6
Qa

⇣
3x cos ✓

p
16 + 9x2 + 12y2 + 8

p
3y sin ✓

⌘
, (4)

and

Q� =
1

p
2y

Qc

�
16 + 9x2

�
cos ✓ +

p
2

p
3x

Qb

⇣
2 sin ✓

p
16 + 9x2 + 12y2 + 3

p
3x y cos ✓

⌘

+
1
p
6
Qa

⇣
3x sin ✓

p
16 + 9x2 + 12y2 � 8

p
3y cos ✓

⌘
, (5)

while for z = �1, the hypercharge is found to be

QY = Qc +
Qb

2
+

2Qa

3
, (6)

yielding

Q↵ = �
1

p
2y

Qc

�
16 + 9x2

�
sin ✓ +

p
2

p
3x

Qb

⇣
2 cos ✓

p
16 + 9x2 + 12y2 + 3

p
3x y sin ✓

⌘

+
1
p
6
Qa

⇣
�3x cos ✓

p
16 + 9x2 + 12y2 + 8

p
3y sin ✓

⌘
(7)

and

Q� =
1

p
2y

Qc

�
16 + 9x2

�
cos ✓ +

p
2

p
3x

Qb

⇣
2 sin ✓

p
16 + 9x2 + 12y2 � 3

p
3x y cos ✓

⌘

�
1
p
6
Qa

⇣
3x sin ✓

p
16 + 9x2 + 12y2 + 8

p
3y cos ✓

⌘
, (8)

with

x =
ga/

p
3

gb/
p
2
. (9)
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Throughout we adopt the convention for which the U(1) coupling is g0c = gc/
p
2. The three

coupling constants are related to gY at the string scale Ms by [33]

2

g2c

+
4
�
1
2

�2

g
2
b

+
6
�
2
3

�2

g2a

=
1

g
2
Y

. (10)

The anomalous magnetic moment of the muon in the D-brane realization of the SM,
a
U(3)⇥U(2)⇥U(1)
µ , can be computed from one-loop correction to the muon vertex. Generalizing

the procedure described in [46] for y 6= 1, we calculate the contribution to a
U(3)⇥U(2)⇥U(1)
µ

from the anomalous U(1) exchanged diagrams as well as the axion diagrams. When these
contributions are added to the SM prediction we obtain

a
U(3)⇥U(2)⇥U(1)
µ = a

SM
µ + g

2
X

i=↵,�

Q
2
iL � 3QiLQiR +Q

2
iR

12⇡2

⇣
ml

µi

⌘2
+

h
2

16⇡2
, (11)

where QiL and QiR are the U(1) charges for the left and right-handed muons respectively, g
is the e↵ective coupling for the anomalous U(1) gauge fields and its value is

g =
gc

p
16 + 9x2

p
16 + 9x2 + 12y2

, (12)

h is the Planck constant, and µ↵, µ� are the masses of the anomalous U(1) fields. Substituting
in Q↵ and Q�, we get the following equation relating µ↵ and µ� to the di↵erence �aµ of
anomalous magnetic moment of the muon for z = 0,

g
2
3m

2
n
t
2
h
16µ2

↵y
2
�
9x2 + 12y2 + 16

�
+ 3µ2

�x
2
⇣
�18

�
9x2 + 16

�
y
2 +

�
9x2 + 16

�2
+ 36y4

⌘i

+3µ2
↵x

2
⇣
�18

�
9x2 + 16

�
y
2 +

�
9x2 + 16

�2
+ 36y4

⌘
+ 16µ2

�y
2
�
9x2 + 12y2 + 16

�

�12txy(µ2
↵ � µ

2
�)
�
9x2

� 4y2 + 16
�p

27x2 + 36y2 + 48
o

�72⇡2
µ
2
↵µ

2
�(�aµ � aµ�0)

�
t
2 + 1

�
x
2
�
9x2 + 16

�
y
2
�
9x2 + 12y2 + 16

�
= 0, (13)

where t = tan ✓ (✓ is the angle that appears in Uij) and aµ�0 is the contribution from the
axion (which is proportional to h [46]). Likewise, for the z = �1 model we obtain

g
2
3m

2
n
t
2
⇣
16µ2

↵y
2
�
9x2 + 12y2 + 16

�
+ 3µ2

�x
2
⇣
30
�
9x2 + 16

�
y
2 + 5

�
9x2 + 16

�2
+ 36y4

⌘⌘

+3µ2
↵x

2
⇣
30
�
9x2 + 16

�
y
2 + 5

�
9x2 + 16

�2
+ 36y4

⌘
+ 16µ2

�y
2
�
9x2 + 12y2 + 16

�

�4txy(µ2
↵ � µ

2
�)
�
45x2 + 12y2 + 80

�p
27x2 + 36y2 + 48

o

�72⇡2
µ
2
↵µ

2
�(�aµ � aµ�0)

�
t
2 + 1

�
x
2
�
9x2 + 16

�
y
2
�
9x2 + 12y2 + 16

�
= 0. (14)

We note that tan ✓ has to be real and therefore the discriminant of (13) (or (14)) has to be
positive definite. The values of x, y are determined by gb, gc, gY at the string scale Ms and
we have three free parameters µ↵, µ�, Ms. For simplicity, to analyze the (µ�,Ms) parameter
space we set µ↵ = 1 TeV. The corresponding allowed regions are given in Fig. 1.
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FIG. 1: Allowed regions for 3-stack models. The left panel is for z = 0 while the right panel is for
z = �1. By setting µ↵ = 1 TeV, we are left with two parameters Ms and µ� (x-axis). The contours
are for the values of the discriminant of equations (13) and (14) (more precisely we multiply the
discriminant by µ

4
�). The allowed regions are where the discriminant is positive and we can have

some combination of µ↵, µ� , Ms so that the deviation of anomalous magnetic moment is from the
contribution of the anomalous U(1) bosons.

TABLE I: Chiral spectrum.

Fields Sector Representation QB QL QIR QY

UR 3 ↵ 1⇤ (3, 1) �1 0 �1 2
3

DR 3 ↵ 1 (3, 1) �1 0 1 �
1
3

LL 4 ↵ 2 (1, 2) 0 �1 0 �
1
2

ER 4 ↵ 1 (1, 1) 0 �1 1 �1

QL 3 ↵ 2 (3, 2) �1 0 0 1
6

NR 4 ↵ 1⇤ (1, 1) 0 �1 �1 0

H 2 ↵ 1 (1, 2) 0 0 �1 1
2

H
00 4 ↵ 1 (1, 1) 0 1 1 0

B. 4 stack models

Now, let us consider models with 4 stacks of D-branes. If we consider next-to-minimal
constructs where in the b stack we choose projections leading to the symplectic Sp(1) repre-
sentation of Weinberg-Salam, the gauge extended sector, U(3)B ⇥SU(2)L⇥U(1)L⇥U(1)IR ,
has two additional U(1) symmetries. A schematic representation of the D-brane construct is
shown in Fig. 2 and the quantum numbers of the chiral spectrum are summarized in Table I.

The resulting U(1) content gauges the baryon number B [with U(1)B ⇢ U(3)B], the
lepton number L, and a third additional abelian charge IR which acts as the third isospin
component of an SU(2)R. Contact with gauge structures at TeV energies is achieved by a
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FIG. 2: Pictorial representation of the U(3)B⇥SU(2)L⇥U(1)L⇥U(1)IR D-brane model, for stacks
a, b, c, d, respectively.

field rotation to couple diagonally to hypercharge Yµ. Two of the Euler angles are determined
by this rotation, and the hypercharge is given by

QY =
Qc

2
�

Qa

6
�

Qd

2
, (15)

The charges Q↵ and Q� of the two anomalous U(1) are given by

Q↵ =
1
p
2
gcQc cos ✓ sin�+

1
p
2
gdQd(sin ✓ sin sin�+ cos cos�)

+
1
p
6
gaQa(sin ✓ cos sin�� sin cos�), (16)

Q� =
1
p
2
gcQc cos ✓ cos�+

1
p
2
gdQd(sin ✓ sin cos�� cos sin�)

+
1
p
6
gaQa(sin ✓ cos cos�+ sin sin�), (17)

where gc, gd are the coupling constants of the two U(1) branes and we again include the
1/
p
2 in the coupling. The gauge couplings are related to gY by [33]

2
�
1
2

�2

g2c

+
2
�
1
2

�2

g
2
d

+
6
�
1
6

�2

g2a

=
1

g
2
Y

. (18)
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FIG. 3: Allowed regions for 4-stack model. By setting µ↵ = 1TeV andMs = 2⇥103, we are left with
two parameters µ� (x-axis) and ✓ (y-axis). The contours are again for the values of the discriminant
of a quadratic equation set up by requiring measured anomalous magnetic moment given by (11).
As we can see there are regions with positive discriminant where we can find appropriate � so that
the U(1) anomalous bosons can account for the deviation of anomalous magnetic moment.

As previously noted, the Euler angles ✓,  , � parameterize the unitary transformation Ai =
Uij
eAj. We can parametrize  in terms of the gd coupling constant and ✓,

 ! �arcsin

 
�

p
2gY

2gd cos ✓

!
. (19)

For later convenience, we can also parameterize the coupling gc using the angle ✓

gc ! �

p
2gY

2 sin ✓
. (20)

The anomalous magnetic moment is again given by (11), which leads to a quadratic equation
of t = tan�. To analyze the (µ�,Ms) parameter space we set µ↵ = 1 TeV. Now we have
one more parameter (✓) than before and following the same philosophy the string scale Ms

is picked to be 2⇥ 103 TeV. The allowed regions of the parameter space, parameterized by
✓, µ�, are encapsulated in Fig. 3.
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C. LHC constraints

We now turn to confront our findings with null results from LHC searches of new heavy
vector bosons [66, 67]. To this end we duplicate the procedure outlined above but scanning
on µ↵. The possible highest mass scale for µ↵ is in general around 1 TeV. For 3 stack models,
it is 0.6 TeV for z = 0, and 1.4 TeV for z = �1. The 4-stack model does not help much as the
upper bound of the mass scale is also around 1.5 TeV. The dominant constraint comes from
the requirement that neither U(1) coupling is above 2⇡: gc becomes O(1) at the string scale;
its running is between the anomalous U(1) mass and the string scale. The 4-stack model
has some extra freedom in that the string scale can vary (in the 3-stack case the string scale
is fixed by the coupling). Since the couplings of the anomalous U(1) bosons are in general
much larger than the SM coupling (especially when their masses are large), we can compare
the constraints on µ↵ with LHC limits on the generalized sequential model [68], containing
the sequential SM boson gauge boson that has SM-like couplings to SM fermions [69]. We
can see that the discrepancy �aµ reported by Fermilab cannot be accommodated within the
1� contours without being in tension with LHC data [66, 67], unless the massive U(1) gauge
boson Z

0 is leptophilic [55].

We consider the resonant production cross section of �(pp ! Z
0
! ``). Under the narrow

width approximation, the cross section can be written in the form of cuwu + cdwd, where
wu, wd are given by model-independent parton distribution functions [68]. The coupling of
Z

0 with up and down quarks (assuming same coupling to three families) are encoded in
cu, cd. More precisely, for a generic coupling between Z

0 and fermion f

Z
0
µ�

µ(f̄L✏
f
LfL + f̄R✏

f
RfR) , (21)

the coe�cients cu and cd take the following form

cf = (✏fL
2
+ ✏

f
R

2
)Br(`+`�) . (22)

We compute the branching faction Br(`+`�) by including only the decay channels to leptons
and quarks. The total decay rate is given by

�Z0 =
1

24⇡
MZ0

"
9
X

q=u,d

(✏qL
2 + ✏

q
R
2) + 3

X

`=e,⌫

(✏`L
2
+ ✏

`
R
2
)

#
. (23)

Because of the constraint (10), there are two free parameters (for a given string scale Ms):
� and gd(Ms). Setting the mass of Z 0 to 2 TeV, we then search over the parameter space
to get the smallest possible values of cu, cd. For simplicity, the combination of

p
c2u + c

2
d

is considered. We find that the optimal value of � generally suppresses the couplings to
left-handed quarks and the remaining couplings to the right-handed quarks are controlled
by gd. In the best case scenario, gc(Ms) is set to 2⇡ at Ms = 10 TeV, the corresponding cross
section (or rather

p
c2u + c

2
d ⇠ 8.4⇥10�5) is roughly 2 percent of that given by the sequential

standard model boson, saturating the LHC limit [67]. We note that the branching fraction
to leptons is close to 1 due to the small coupling to quarks. The signal can be further
reduced by including other decay channels. Moreover, the largest possible gc(Ms) also gives
the most contribution to aµ.

9



From (11) we see that each anomalous U(1) in the 4-stack model provides the following
contribution to aµ

a
(i)
µ = �

Q
2
iL � 3QiLQiR +Q

2
iR

12⇡2

✓
ml

µi

◆2

, i = ↵, � . (24)

We can choose A↵ to be the leptophilic Z 0 and plug into (16) the charges from Table I. The
L and R charges then read

Q↵L = �
gc cos ✓ sin�

p
2

(25)

and

Q↵R =
gd(sin ✓ sin� sin + cos� cos )� gc cos ✓ sin�

p
2

. (26)

Such a Z
0 boson gives a(↵)µ = 9.9⇥ 10�11, which is still not enough to explain the observed

discrepancy. A� shall be much heavier to avoid the LHC bound and its contribution is
negligible. If we require µ↵ & 5 TeV and µ� & 5 TeV, then �aµ . 3⇥ 10�11, with gc ⇠ 1.

III. CONTRIBUTIONS FROM EXCITED STRING STATES

The low energy limit of the spin-flip forward Compton amplitude in the laboratory frame
of the target lepton l is related to the square of its anomalous magnetic moment. The
assumption of analyticity and su�cient convergence permits an unsubtracted dispersion
relation for this amplitude and, together with the optical theorem, a sum rule for a2l [56, 57],
where

(aQED
l + a

non�QED
l )2 =

m
2
l

2⇡2↵

Z 1

sth

ds

s
�� , (27)

↵ is the QED fine-structure constant, s is the square ceneter-of-mass energy, and where in
obvious notation [58]

�� =
1

2

⇥�
�1,1/2 � ��1,1/2

�
+
�
�1,�1/2 � ��1,�1/2

�⇤
. (28)

The first of the 3 terms on the LHS of the equation is canceled on the RHS by the integral
containing only ��QED, so that the truncated sum rule is [59–61]

2 (aQED) (anon�QED) + (anon�QED)
2 =

m
2
l

2⇡2↵

Z 1

sth

ds

s
��non�QED . (29)

With the use of collinear string amplitudes [25], a straightforward calculation shows that
the contribution of a single spin 1/2 or 3/2 resonance of mass Ms to the right-hand side
of (29) is given by

��non�QED = 2⇡e2 �(s�M
2
s ) , (30)

which gives a contribution 4(ml/Ms)2. However, in the string spectrum, there is the possi-
bility of cancelation between the di↵erent spin contributions to the RHS of (27).

10



Further insights into the problem are as follows: the tree level contribution to ��non�QED

from right handed muons is proportional to

��LµR � ��RµR ⌘

X

n

�
�
n
�LµR

� �
n
�RµR

�
, (31)

where �n
�LµR

is the total cross section for outgoing µ
⇤
R Regge excited states at level n. Note

that the muon has its momentum along +z direction. For n = 1, the right hand side can be
simplified to

�
1
BLµR

� �
1
BRµR

/

✓���F 1,J=3/2
BLµR

���
2

�

���F 1,J=1/2
BRµR

���
2
◆

, (32)

where F n,J
BL,RµL,R

are the collinear amplitudes of the µ⇤
R Regge excitation of spin J (to simplify

notation, gauge group indices have been omitted) and level n. If �� = 0, then the relation

F
1,J=1/2
BRµR

= F
1,J=3/2
BLµR

(33)

should hold. Using [25]

F
↵J=1/2

+ 1
2+1↵3a4

= F
↵J=1/2

� 1
2�1↵3a4

= F
↵J=3/2

+ 1
2�1↵3a4

= F
↵J=3/2

� 1
2+1↵3a4

=
p
2 gM T

a4
↵3 ↵ (34)

it is straightforward to see that (33) is satisfied. The amplitude for µL� ! µ
⇤
L is proportional

to a linear combination of F n,J
XLµL

and F
n,J
A3

LµL
. More explicitly, we have

�
1
�LµL

/

���⌘ CW F
n,J=1/2
XLµL

+ SW F
n,J=1/2
A3

LµL

���
2

, (35)

where CW ⌘ cos ✓W , SW = sin ✓W , and ✓W is the Weinberg angle. The cross section �1
�RµL

can
be expressed in a similar form (with J = 1/2 replaced by J = 3/2). Then �1

�RµL
��

1
�LµL

= 0
follows from Eq. (34).

For n > 1, it is actually more convenient to show the cancelations in terms of the helicity
amplitudes, i.e., A�1,�1/2 = A+1,�1/2. These amplitudes are given by [25],

A+1,�1/2 ⇠ MµL(1)XR(2)!µL(3)XR(4) = g
0
b
2 h14i2

h12ih23i

⇣
s

t
Vs +

u

t
Vu

⌘
(36)

and

A�1,�1/2 ⇠ MµL(1)XL(2)!µL(3)XL(4) = g
0
b
2 h12i2

h14ih34i

⇣
s

t
Vs +

u

t
Vu

⌘
. (37)

The amplitude MµLA3!µLA3 can be obtained by replacing g
0
b
2 by g

2
b . Note that we restore

the form factors Vu, Vs, which gives all the pole terms. They are defined as Vt = V (s, t, u),
Vu = V (t, u, s), Vs = V (u, s, t), with

V (s, t, u) =
�(1� s/M

2
s ) �(1� u/M

2
s )

�(1 + t/M2
s )

. (38)

For forward scattering, we have the photon momenta k4 = �k2 and it is not di�cult to see
that the tree level contribution to ��non�QED gets canceled, i.e., A�1,�1/2 = A+1,�1/2.
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The cancelation may be violated at order ↵ by di↵ering mass shifts for di↵erent spins.
Support for this is manifest by the di↵erent widths (imaginary parts of the bubble) for
J = 1/2, J = 3/2 [38], which will imply that the mass shifts will di↵er. In passing we note
that resonance production accompanied by single photon emission from the electron line,
�l ! �l

⇤, does not contribute to ��non�QED [62].

We now turn to the explicit mass shift calculation. The Breit-Wigner form for unstable
particles �J=1/2,3/2 is given by

�(E) =
2J + 1

(2S1 + 1)(2S2 + 1)

4⇡

k2


�2

/4

(E � E0)2 + �2/4

�
BinBout, (39)

where Bin = �in/� and Bout = �in/�. The out states need to be integrated and therefore

Bout = 1. Since �J=1/2
in = 2�J=3/2

in we have (2J + 1)�J=3/2
in = (2J + 1)�J=1/2

in . We denote
the energy of the photon in the rest frame of the electron by ⌫, and it is related to s by
(⌫ +ml)2 � ⌫

2 = s ⌘ E
2. The integration over d⌫ then gives

m
2
l

2⇡2↵

Z
d⌫

⌫
�(E) =

m
2
l

2⇡2↵

16⇡(2J + 1)�in

3

Z
2EdE

E2 �m
2
l

1

�E2


�2

/4

(E �Ms)2 + �2/4

�

=
64m2

l (2J + 1)�in

3↵�3

Z
dx

⇡ (x2 � x
2
1) x


1

(x� x0)2 + 1

�
, (40)

where x = 2E/�. To avoid the infrared divergence at x = x1 we set a cuto↵ and integrate
over the energy range (Ms�2�,Ms+2�), that is (x0�4, x0+4). The integral in the second
line of (40) is found to be
Z +4

�4

dx

⇡ (x2 � x
2
1) x


1

(x� x0)2 + 1

�
=

2 tan�1(4)

⇡
✏
3
�

12 (tan�1(4)� 4)

⇡
✏
5 +O(✏7) , (41)

where ✏ = 1/x0 = �/(2Ms). The di↵erence between cross sections into J = 1/2 and J = 3/2
reads,

m
2
l

2⇡2↵

Z
d⌫

⌫
�� ⇠

2m2
l ⇥ 2�J=1/2

in

3↵M3
s

12 (4� tan�1 4)

⇡

✓
��2

M2
s

◆
. (42)

For 3-stack models, the J = 1/2 decay width of the left-handed leptons is

�J=1/2
L =

1

8⇥ 1

g
0
c
2

4⇡
Ms +

22 � 1

8⇥ 2

gb
2

4⇡
Ms +

1

8⇥ 2

g
0
b
2

4⇡
Ms , (43)

while for right-handed leptons we have

�J=1/2
R =

22

8⇥ 1

g
0
c
2

4⇡
Ms . (44)

For 4-stack models, we obtain

�J=1/2
L =

1

8⇥ 1

g
0
c
2

4⇡
Ms +

22 � 1

8⇥ 2

gb
2

4⇡
Ms , (45)

and

�J=1/2
R =

1

8⇥ 1

g
0
d
2

4⇡
Ms +

1

8⇥ 1

g
0
c
2

4⇡
Ms . (46)
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Before proceeding we note again that �J=3/2
L,R = 1

2�
J=1/2
L,R .

The sum rule applies for either the left or right handed leptons. The correction to a
2
l

(from mass shift) are proportional to the di↵erence in the square of widths of left- and
right-handed excited leptons respectively. This implies that the magnetic moment is not
proportional to the spin.

It is convenient to parametrize the RHS of (42) as follows

m
2
l

M2
s

4�in(J = 1
2)

3↵Ms

12 (4� tan�1 4)

⇡

✓
��2

M2
s

◆
= 4

⇣
↵

⇡

⌘ ✓
m

2
l

M2
s

◆
L,R . (47)

Using the expressions for the total decay widths given above and �J=1/2
in = ↵Ms/8 [25] we

evaluate (42) to obtain L,R. For 3-stack models, L = 0.0064 and R = 0.00022. For 4-stack
models, the ratio g

0
c/g

0
d is driven by gY [38]. By requiring both g

0
c and g

0
d to be less than 1,

we constrain the couplings to be within (0.183, 1). Note that L,R and the constraint are
invariant under a swap of g0c and g

0
d. In this coupling range, the interval for kappa becomes

0.0063 < L < 0.037 while 0.00023 < R < 0.015.

Now we would like to estimate the contribution from higher resonance states, n > 1. For
simplicity, we consider the case in which the photon and the muon have parallel spins. The
amplitude of two gauge bosons and two fermions is given by

M(g�1 , f
�
2 , g

+
3 , f̄

+
4 ) = 2 g2 ��4

�2

h12i2

h23ih34i

h
(T a1T

a3)↵2
↵4

s

t
Vs + (T a3T

a1)↵2
↵4

u

t
Vu

i
, (48)

where g is the U(N) coupling constant, hiji are the standard spinor products written in
the notation of [63–65], and the U(N) generators are normalized according to Tr (T a

T
b) =

�
ab
/2 [26]. The function Vu has poles at s = nM

2
s ,

Vu(n) = V (s, u, t) ⇡
1

s� nM2
s

⇥
M

2�2n
s

(n� 1)!

n�1Y

J=0

(t+M
2
s J) , (49)

and near the poles the amplitude takes the following form

M(g�1 , f
�
2 , g

+
3 , f̄

+
4 ) ! 2 g2 (T a3T

a1)↵2
↵4
�
�4
�2

M
2
s

s� nM2
s

n�1X

j=0

c
(n)
j d

j+ 1
2

� 1
2 ,�

1
2

(✓) . (50)

The partial width of the nth resonance with angular momentum J decaying into g+ f with
parallel spins reads

�(Rn,J ! g
±
f
±) = g

2
�

c
(n)
j M

2
s

16(2J + 1)⇡
p
nMs

. (51)

To compute the coe�cients c(n)k , we first write the resonance amplitude as

M(g�1 , f
�
2 , g

+
3 , f̄

+
4 ) ! 2 g2 (T a3T

a1)↵2
↵4
�
�4
�2

r
�
s

u

u

t
V̂u

⌘
M

2
s

s� nM2
s

r
�
u

s
f(�x, n) , (52)
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where

f(x, n) =
h

n

(n� 1)!

i
[
nx

2
� (

n

2
� 1)][

nx

2
� (

n

2
� 2)] · · · [

nx

2
+ (

n

2
� 2)][

nx

2
+ (

n

2
� 1)]

| {z }
n�1 factors

=
h

n

(n� 1)!

i ⇣
nx

2
�

n

2
+ 1
⌘

(n�1)
. (53)

The Pochhammer Symbol is defined as follows,

(x)n =
�(x+ n)

�(x)
= x(x+ 1)...(x+ n� 1) =

nX

k=0

(�1)n�k
s(n, k)xk

, (54)

where s(n, k) is the Stirling number of the first kind. For odd n, we obtain2

f(x, n) =
h

n

(n� 1)!

i ⇣
nx

2
�

n

2
+ 1
⌘

(n�1)

=
n

(n� 1)!
(a(n)n�1x

n�1 + a
(n)
n�3x

n�3 + · · ·+ a
(n)
2 x

2 + a
(n)
0 ) , (55)

with

ak =
n�1�kX

i=0

(�1)n�1�k

2k+i
s(n� 1, k + i)

✓
k + i

i

◆
(n)k(n� 2)i. (56)

It is convenient to rewrite
p

�
u
sf(�x, n) as

r
�
u

s
f(�x, n)

=
n

(n� 1)!

✓
x+ 1

2

◆ 1
2

(a(n)n�1(�x)n�1 + a
(n)
n�3(�x)n�3 + · · ·+ a

(n)
2 (�x)2 + a

(n)
0 )

=

✓
x+ 1

2

◆� 1
2 ⇣

c
(n)
n P

(0,�1)
n + c

(n)
n�1P

(0,�1)
n�1 + · · ·+ c

(n)
1 P

(0,�1)
1

⌘
. (57)

where in the last line we have used d
j+ 1

2

� 1
2 ,�

1
2

(✓) =
�
cos ✓

2

��1
P

(0,�1)
j (cos ✓), with P

(↵,�)
j (x)

the Jacobi Polynomials. Note that (x + 1)xm
/2 can be expanded in terms of the Jacobi

Polynomials, ✓
x+ 1

2

◆
x
m =

X

i=m+1,m,···

di
m
P

(0,�1)
i (x), (58)

where

di
m = 2i

Z +1

�1

x
m
P

(0,�1)
i (x)dx

= i

 
2

i�m
2 ((�1)i + (�1)m)m!�
m�i
2

�
! (m+ i+ 1)!!

+
2

i�m�1
2 ((�1)i � (�1)m)m!�

m�i+1
2

�
! (m+ i)!!

!
. (59)

2 The computation for even n is similar.

14



We can then obtain c
(n)
j as

c
(n)
j =

n

(n� 1)!

n�j
2X

k=0

aj�1+2kd
j�1+2k
j . (60)

Using (53), (54), and (57) the sum of c(n)j can be obtained

X

j

c
(n)
j =

f(1, n)

P
(0,�1)
j (1)

= n, (61)

where we also used the fact that P
(↵,�)
j (1) = C

n+↵
n . As a result, the partial width (51)

satisfies the following relation

X

J

(2J + 1)�in
p
nMs

= g
2
�

1

16⇡
. (62)

We note that this n-independent quantity appears in the Breit-Wigner form(39). In the
narrow width approximation, it is the factor multiplying the delta function �(s� nM

2
s ). In

this case, we can see that the contribution to a
2
l from level n is proportional to n

�1. In other
words, particles of masses M together contribute ⇠ (ml/M)2 to a

2
l . Assuming that the ratio

of the total decay width and mass
�tot

M
=

g
2

4⇡

C

4
, (63)

remains a constant, it is straightforward to see that the same behavior applies for a Breit-
Wigner form.

TABLE II: Lower limits on Ms/TeV.

chirality 3-stack 4-stack

L 0.66 0.66 to 1.6

R 0.12 0.13 to 1.0

With a
QED
l ' ↵/(2⇡), we find on solving Eq. (29)

a
non�QED
l ' 4

⇣
ml

M

⌘2
 b(n0) , (64)

where b(n0) denotes the total contribution from levels n < n0. As we discussed elsewhere [38],
for n0 & 40, the total decay width grows bigger than the spacing of mass levels and the
resonance picture breaks down. Specializing now to the muon, we see that aµ = 1.16⇥ 10�3

and a
non�QED
µ < 3⇥ 10�9 [4] translates to a lower limit on the string scale, that is:

Ms > 4 TeV
p
 b(n0) . (65)

The bounds for 3- and 4-stack models summarized in Table II show that the contribu-
tions from string excitations to the anomalous magnetic moment of the muon are largely
suppressed, as conjectured in [46].
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IV. CONCLUSIONS

Very recently, the Fermilab Muon g � 2 experiment released its first measurement of the
anomalous magnetic moment, which is in full agreement with the previous measurement
at Brookhaven and pushes the world average deviation from the SM expectation �aµ to
a significance of 4.2� [4]. Galvanized by this brand new result we have reexamined the
contributions to �aµ from anomalous U(1) gauge bosons and excitations of the string. We
have shown that while the contribution from Regge recurrences is strongly suppressed, the
contribution from the heavy vector bosons can help ameliorate (though not fully eliminate)
the �aµ discrepancy.

In closing, we note that KK winding modes could provide a non-negligible contribution
to �aµ. It was conjectured in [46] that the KK contribution would be also suppressed.
However, we argue herein that this speculation is model dependent, because it is based
on the statement that the compactification scale is of order the string scale. An order of
magnitude estimate can be obtained by using the truncated sum rule: setting aQED = ↵/(2⇡)
in (29) we obtain

(anon�QED) +
⇡

↵
(anon�QED)

2 =
m

2
l

2⇡↵2

Z 1

sth

ds

s
��non�QED . (66)

If anon�QED ⌧ ↵/⇡, then the left-hand-side of (66) is dominated by its first term,

(anon�QED) ⇠
m

2
l

2⇡↵2

Z 1

sth

ds

s
��non�QED . (67)

Assuming that both the left- and right-hand-side of (67) can be written as power laws in ↵
(or loop number), on the left-hand-side we expect aKK

non�QED to be O(↵), as seen from triangle
diagrams containing heavy stu↵. Then, on the right-hand-side ��KK

non�QED (for excitation
Mj) needs to be of O(↵3

/M
2
j ), which yields

a
KK
non�QED ⇠

X

j

✓
ml

Mj

◆2

↵ . (68)

As we have shown in Fig. 1, if µ↵ ⇠ 1 TeV, for particular choice of gauge couplings, we can
bridge the �aµ gap reported by the Muon g � 2 Collaboration. However, LHC experiments
have set a 95% CL bound µ↵ < 5 TeV [66, 67]. We can infer from (68) that if the U(1) retains
the same gauge couplings but µa ⇠ 5 TeV, then the contribution of each KK excitation will
be suppressed by about two orders of magnitude. Summation over all the KK modes may
allow recovering the suppression factor [70]. Note that the KK of other gauge bosons with
di↵erent couplings (e.g. hypercharge) would also contribute. In addition, it is important
to stress that for the 4 stack model exhibited in Fig. 2, the KK excitations of the U(1)
which lives in the lepton brane do not have tree level couplings to hadrons and therefore

their production at the LHC would be suppressed, but these excitations could still yield the

dominant contribution to �aµ. The future muon smasher will provide the final verdict on
such leptophilic KK excitations [71]. A direct string calculation of the KK contribution is
under way and will be presented elsewhere.
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physics explanations of aµ in light of the FNAL muon g � 2 measurement, [arXiv:2104.03691
[hep-ph]].

[51] A. Aboubrahim, M. Klasen and P. Nath, What Fermilab (g � 2)µ experiment tells us about
discovering SUSY at HL-LHC and HE-LHC, [arXiv:2104.03839 [hep-ph]].

[52] B. Bhattacharya, A. Datta, D. Marfatia, S. Nandi and J. Waite, Axion-like particles resolve
the B ! ⇡K and g � 2 anomalies, [arXiv:2104.03947 [hep-ph]].

[53] J. Kawamura and S. Raby, � 4µ signal from a vector-like lepton decaying to a muon-philic Z 0

boson at the LHC, [arXiv:2104.04461 [hep-ph]].
[54] H. Baer, V. Barger and H. Serce, Anomalous muon magnetic moment, supersymmetry, natu-

ralness, LHC search limits and the landscape, [arXiv:2104.07597 [hep-ph]].
[55] A. J. Buras, A. Crivellin, F. Kirk, C. A. Manzari and M. Montull, Global Analysis of Lep-

tophilic Z’ Bosons, [arXiv:2104.07680 [hep-ph]].
[56] S. B. Gerasimov, A sum rule for magnetic moments and the damping of the nucleon magnetic

moment in nuclei, Sov. J. Nucl. Phys. 2, 430 (1966) [Yad. Fiz. 2, 598 (1966)].
[57] S. D. Drell and A. C. Hearn, Exact sum rule for nucleon magnetic moments, Phys. Rev. Lett.

16, 908 (1966).
[58] R. L. Ja↵e and Z. Ryzak, Constraints from the Drell-Hearn-Gerasimov sum rule in chiral

models of composite fermions, Phys. Rev. D 37, 2015 (1988).
[59] S. J. Brodsky and S. D. Drell, The anomalous magnetic moment and limits on fermion sub-

structure, Phys. Rev. D 22, 2236 (1980).
[60] H. Goldberg, Bounds on e

+
e
�

! l
⇤
l̄ and lp ! l

⇤
X (l⇤ = excited lepton) and prospects for

visible l
⇤ tracks in cosmic ray emulsion events, Phys. Rev. D 24, 1991 (1981).

[61] H. Goldberg, Gravitons and the Drell-Hearn-Gerasimov sum rule: Support for large extra
dimensions?, Phys. Lett. B 472, 280 (2000) [hep-ph/9904318].

[62] S. J. Brodsky and I. Schmidt, Classical photoabsorption sum rules, Phys. Lett. B 351, 344
(1995) [hep-ph/9502416].

[63] M. L. Mangano and S. J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200
(1991), 301-367 doi:10.1016/0370-1573(91)90091-Y [arXiv:hep-th/0509223 [hep-th]].

[64] L. J. Dixon, Calculating scattering amplitudes e�ciently, [arXiv:hep-ph/9601359 [hep-ph]].
[65] T. R. Taylor, A Course in Amplitudes, Phys. Rept. 691 (2017), 1-37

doi:10.1016/j.physrep.2017.05.002 [arXiv:1703.05670 [hep-th]].
[66] A. M. Sirunyan et al. [CMS Collaboration], Search for high mass dijet resonances with a new

background prediction method in proton-proton collisions at
p
s = 13 TeV, JHEP 05 (2020),

033 doi:10.1007/JHEP05(2020)033 [arXiv:1911.03947 [hep-ex]].
[67] A. M. Sirunyan et al. [CMS Collaboration], Search for resonant and nonresonant new phe-

nomena in high-mass dilepton final states at
p
s = 13 TeV, [arXiv:2103.02708 [hep-ex]].

[68] E. Accomando, A. Belyaev, L. Fedeli, S. F. King and C. Shepherd-Themistocleous, Z 0 physics
with early LHC data, Phys. Rev. D 83 (2011), 075012 doi:10.1103/PhysRevD.83.075012
[arXiv:1010.6058 [hep-ph]].

[69] G. Altarelli, B. Mele and M. Ruiz-Altaba, Searching for new heavy vector bosons in pp̄ collid-

20



ers, Z. Phys. C 45 (1989), 109 [erratum: Z. Phys. C 47 (1990), 676] doi:10.1007/BF01556677
[70] I. Antoniadis and K. Benakli, Limits on extra dimensions in orbifold compactifications of

superstrings, Phys. Lett. B 326 (1994), 69-78 doi:10.1016/0370-2693(94)91194-0 [arXiv:hep-
th/9310151 [hep-th]].

[71] H. Al Ali, N. Arkani-Hamed, I. Banta, S. Benevedes, D. Buttazzo, T. Cai, J. Cheng, T. Cohen,
N. Craig and M. Ekhterachian, et al. The Muon Smasher’s Guide, [arXiv:2103.14043 [hep-ph]].

21


