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Abstract

We view ridge regression through the lens of eigenvalue shrinkage, and consider
its influence on two modern problems in high-dimensional statistical inference: co-
variance estimation and community detection in networks.



1 Introduction

The enormous influence of the ridge penalty is well described in Trevor Hastie’s excellent
summary. Here we focus on one particular interpretation of ridge with deep connections
to modern high-dimensional statistical inference: eigenvalue shrinkage. One interpretation
of the ridge penalty is that it prevents singularity or ill-conditioning of the matrix X7 X
in linear regression: while X7X may or may not be invertible, the matrix X7X + M,
for A > 0, always is, and it is always positive definite. One can thus view X7X + A\
and (XTX + M )~! as regularized estimates of the corresponding population matrices. In
its most general form, regularization moves an estimate towards a region in which the
estimand is believed to be. This need not correspond to using a penalty, or equivalently
a Bayesian prior, but can also be achieved by directly operating on a basic estimator; one
such example is Steinian shrinkage, which moves the MLE of the mean towards 0.

The need for regularized estimation of matrices in high dimensions arises in multiple
areas, including covariance estimation and network analysis. Two popular approaches are
to regularize large matrices with a positive diagonal toward low-rankness and towards
element-wise sparsity. These two approaches work somewhat against one another: the
sparsest possible invertible estimator is diagonal, but it has full rank. On the other hand,
a low rank matrix is unlikely to be sparse, as most entries are a function of the same few
eigenvectors.

It is instructive to consider the effect of regularization on the estimated eigenvalues and
eigenvectors. Ridge regression replaces each eigenvalue \; of X7 X with \; + )\, making

the matrix better-conditioned, since (A; + A)/(A\, + A) < A1/A,. We can think of this as



regularizing towards sparsity, since we are shrinking towards the sparse identity matrix,
and making the matrix full rank as a result. Ridge regularization does not change the
eigenvectors of X7 X, which is necessary in some applications. Alternatively, regularization
towards sparsity can be achieved by sparsifying the eigenvectors themselves, as in sparse
principal components or sparse canonical correlation analysis [Jolliffe et al., 2003, Zou et al.,
2006, Johnstone and Lu, 2009]. This is often done by imposing a LASSO or elastic net
penalty on the eigenvector entries [Witten et al., 2009]. The choice of the algorithm may

raise numerical issues, guiding the effectiveness of regularization [Journée et al., 2010].

2 Regularization in covariance estimation

A classical task in covariance estimation is to estimate X € RP*P based on n i.i.d. obser-
vations X; ~ N(0,X), collected in the columns of X € R™P. A natural choice is the
MLE, the sample covariance matrix S = X7 X/n € RP*P. However, unless p < n, S is
not a consistent estimator and the eigenvalues of S are over-dispersed. For example, when
p/n— v € (0,1) and ¥ = I, the largest eigenvalue of S converges to 14,/ rather than 1
[Marcenko and Pastur, 1967, Bai and Silverstein, 2010).

One natural approach, in the spirit of Steinian shrinkage, is to adjust the spectrum
of S while keeping its eigenspace unchanged, yielding orthogonally invariant estimators
of the form Qdiag(j\l, . .,jxp)QT, where () is the matrix of eigenvectors of S and the
\; are modified eigenvalues of S. The matrix X7 X,I used by ridge is an orthogonally

invariant estimator, with a constant added to each eigenvalue of S. Ledoit and Wolf [2004]

proposed another, (1 —p)S + pvI, where p € [0, 1] and v > 0 are optimized with respect to



Frobenius error and estimated from data. Subsequent work has extended these ideas via
Rao-Blackwellization [Chen et al., 2010], better estimation of the optimal p and v [Fisher
and Sun, 2011] and relaxing the normality assumptions [Touloumis, 2015].

Unfortunately, linear shrinkage fails to capture the nonlinear over-dispersion of the
sample eigenvalues predicted by random matrix theory. Early on, Stein [1986] proposed
nonlinear shrinkage of the eigenvalues as an improvement over the MLE S under the entropy
loss L(2, %) = trE8-! — logdet X!, Won et al. [2013] minimize this loss subject to a
condition number constraint to ensure numerical stability. Since many loss functions (e.g.,
operator and Frobenius norms) are rotationally invariant, Donoho et al. [2018] derived
eigenvalue shrinkage procedures for a variety of loss functions, and established asymptotic
optimality among a family of rotationally invariant estimators under the spiked covariance
model Bai and Silverstein [2010], Yao et al. [2015]. El Karoui [2008], Ledoit and Wolf [2012]
proposed adjusting the sample eigenvalues based on the functional equation relating the
limiting spectral distribution to its Stieltjes transform.

Orthogonally invariant shrinkage of the covariance matrix is illustrated in Figure 1. The
data are n = 1000 samples from N (0, ) with covariance X = diag(4,2,1,...,1) € RFP*?,
and p = 250. The first plot shows the over-dispersed eigenvalues of the sample covariance,
and the next two plots results of two different orthogonally invariant shrinkage estimators.

Orthogonally invariant estimators do not address the fact that eigenvectors of S are
not consistent in high dimensions, either [Johnstone and Lu, 2009]. Regularization of the
whole matrix rather than only its spectrum has largely focused on imposing sparsity or other

structural assumptions. Tapering or banding the covariance matrix [Wu and Pourahmadi,
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Figure 1: Eigenvalue shrinkage. Each plot shows true population eigenvalues (vertical
dashed lines), the two largest sample eigenvalues (vertical red lines), and the histogram of
the remaining p — 2 sample eigenvalues. Left: sample covariance matrix. Middle: linear
shrinkage toward the identity by Fisher and Sun [2011]. Right: optimal nonlinear shrinkage

by Donoho et al. [2018].

2003, Bickel and Levina, 2008a] is especially suitable when the variables have a spatial
or temporal ordering; order-invariant analogues can be obtained by thresholding [Bickel
and Levina, 2008b, Rothman et al., 2009, Cai and Liu, 2011]; see Cai et al. [2016] for
review. There is also a large literature on imposing sparsity on the precision matrix, with
connections to Gaussian graphical model estimation.

An alternative family of approaches uses the geometry of the space of positive definite
matrices to impose regularization through curvature, rather than explicit shrinkage [Smith,
2005]. These ideas have primarily been applied to computing matrix averages. Schwartz-
man [2016] showed how different choices of matrix geometry give rise to different choices of
matrix means. Lodhia et al. [2019] showed how the “geometrical” regularization imposed by
the matrix harmonic mean can outperform the arithmetic mean in some high-dimensional

settings. In summary, a range of covariance regularization ideas directly descend from the



ridge penalty, and all rely on the broad idea of regularization to improve the estimator

given by X7 X in high dimensions.

3 Regularization in network analysis

Network analysis studies interactions between entities, represented as a graph and typically
encoded by an adjacency matrix A, a binary n x n matrix with A;; = 1 if there is an
edge from node ¢ to node j. A is typically modeled as random with expectation given
by the probability matrix P = E A. In many applications, a single adjacency matrix is
observed, and structural assumptions must be imposed on P to facilitate inference. These
assumptions typically posit that P has low-dimensional latent structure. Under a popular
model called the inhomogeneous Erdds-Rényi graph [Bollobas et al., 2007], all edges are
independent, and thus all information about the latent structure is contained in P.
Regularization of eigenvalues and eigenvectors in network analysis has several moti-
vations. A low-rank assumption on P leads naturally to thresholding small eigenvalues
to zero. Another common assumption is community structure in the network (which im-
plies low rank). Community structure is often observed in real-world social networks, with
nodes partitioned into groups according to similarity of their connectivity patterns. A
popular, tractable, and by now well-understood model for networks with communities is
the stochastic block model [SBM; Holland et al., 1983, Abbe, 2018]. Under the SBM, P is
block-constant, and the probability of connection between two nodes is fully determined by
their community memberships. In a model with K communities, the leading K eigenvec-

tors of P contain all the information about community structure. Spectral clustering [von



Luxburg, 2007] is popular and successful in practice, but it requires that the K leading
eigenvectors of A being close to those of P. This can be established by first showing that
A concentrates well around P, and then using the Weyl’s inequality and the Davis-Kahan
theorem to conclude that the eigenvalues and eigenvectors of A and P are close.

Concentration has been extensively studied in random matrix theory. For the inhomo-
geneous Erdds-Rényi random networks, the matrix Bernstein inequality gives ||[A —E A|| =
O(y/dlogn) with high probability if the maximum expected degree d = max; EY"7 | Ay
grows at least as logn [Oliveira, 2010]. The optimal bound if d grows at least as fast as
logn is ||[A — EA|| = (2 4 o(1))vd [Benaych-Georges et al., 2017]. For the normalized
Laplacian (defined by L = D~Y/2AD'~/2 where D is the diagonal matrix of node degrees
d; = Z?:1 A;; on the diagonal), which often performs better in practice by reducing de-
gree heterogeneity, concentration follows directly from the concentration of the adjacency
matrix and node degrees.

In the sparse case, meaning the average degree grows slower than logn, spectral clus-
tering is known to perform poorly due to high degree variance. Several regularization ap-
proaches have been proposed, including reducing the influence of high-degree nodes [Chin
et al., 2015, Le et al., 2017] and adding a small quantity to either the diagonal of A or
to every element of A prior to clustering [Chaudhuri et al., 2012, Amini et al., 2013]. As
with ridge, these methods shrink eigenvalues, helping those corresponding to informative
eigenvectors stay at the top of the spectrum, and therefore allowing spectral clustering to
recover communities. The goal of regularization here is to restore concentration of the adja-

cency matrix or its Laplacian around their expectation, even in the setting where d = O(1)



[Chin et al., 2015, Le et al., 2017].

The effect of regularization is illustrated in Figure 2 with networks generated from a
SBM with n = 100 nodes and K = 2 communities, with the first 50 nodes assigned to
the first community and the rest to the second. The probability of an edge within the
same community is 0.05, and between different communities 0.01. Figure 2 shows the
first two eigenvectors of the Laplacian before regularization (left) and after adding 0.1d/n
to every entry of the adjacency matrix (right). Spectral clustering clearly fails without
regularization (mislabeling 49% of the nodes), but after regularization, communities are
evident in the signs of entries of the second eigenvector (clustering error is reduced to 9%).
As with covariance estimation, the core ridge idea of shrinking eigenvalues has found uses

in modern applications far beyond its original design.
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Figure 2: Two leading eigenvectors of the Laplacian (left, A\; = Ao = 1) and regularized

Laplacian (right, A\; = 1, Ao = 0.92), for an SBM with two communities.
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