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We propose and analyse a mixed formulation for the Brinkman–Forchheimer equations for unsteady
flows. Our approach is based on the introduction of a pseudostress tensor related to the velocity gradient
and pressure, leading to a mixed formulation where the pseudostress tensor and the velocity are the main
unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation in
a Banach space setting, employing classical results on nonlinear monotone operators and a regularization
technique. We then present well posedness and error analysis for semidiscrete continuous-in-time and
fully discrete finite element approximations on simplicial grids with spatial discretization based on the
Raviart–Thomas spaces of degree k for the pseudostress tensor and discontinuous piecewise polynomial
elements of degree k for the velocity and backward Euler time discretization. We provide several
numerical results to confirm the theoretical rates of convergence and illustrate the performance and
flexibility of the method for a range of model parameters.

Keywords: unsteady Brinkman–Forchheimer equations; pseudostress-velocity formulation; mixed finite
element methods.

1. Introduction

The flow of fluids through porous media at higher Reynolds numbers has a wide range of applications,
including processes arising in chemical, petroleum and environmental engineering. Subsurface applica-
tions include groundwater remediation and oil and gas extraction, where fast flow may occur in fractured
or vuggy aquifers or reservoirs, as well as near injection and production wells. Darcy’s law, which is
widely used to model flow in porous media, becomes unreliable for Reynolds numbers greater than one.
The Forchheimer model from Forchheimer (1901) accounts for faster flows by including a nonlinear
inertial term. It can be obtained mathematically by averaging the Navier–Stokes equations (Ruth & Ma,
1992). There have been a number of numerical studies for the Forchheimer model, see, e.g., Kim &
Park (1999), Park (2005), Girault & Wheeler (2008), Pan & Rui (2012) and Rui & Pan (2012). Another
extension to Darcy’s law is the Brinkman model from Brinkman (1949), which describes Stokes flow
through array of obstacles and can be applied for flows through highly porous media. An advantage
of the Brinkman model is that it has two parameters related to the fluid viscosity and the medium
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2 S. CAUCAO AND I. YOTOV

permeability, respectively, and varying them allows for modelling flows ranging from the Stokes to the
Darcy regime. Because of this the Brinkman equations have been often used to model coupled Stokes
and Darcy flows, see, e.g., Xie et al. (2008), Angot (2010), Lesinigo et al. (2011) and Morales &
Showalter (2017).

The Brinkman–Forchheimer model, see, e.g., Payne & Straughan (1999), Celebi et al. (2006), Djoko
& Razafimandimby (2014), Louaked et al. (2015) and Louaked et al. (2017), combines the advantages
of the two models and it has been used for fast flows in highly porous media. In Payne & Straughan
(1999) the authors prove continuous dependence of solutions of the Brinkman–Forchheimer equations
on the Brinkman and Forchheimer coefficients in the L2-norm, which is later extended to the H1-norm
in Celebi et al. (2006). Later on, existence and uniqueness of weak solutions for a velocity-pressure
formulation of the Brinkman–Forchheimer model by means of a suitable regularization combined
with the Faedo–Galerkin approach were proposed and analysed in Djoko & Razafimandimby (2014).
Moreover, the stability of the weak solution of the corresponding stationary problem is proved. More
recently, a perturbed compressible system that approximates the Brinkman–Forchheimer equations
is proposed and analysed in Louaked et al. (2015). The corresponding time discretization of the
perturbed system is obtained by a semi-implicit Euler scheme and lowest-order Raviart–Thomas element
applied for spatial discretization. In turn, continuous dependence of the solution on the Brinkman’s and
Forchheimer’s coefficients as well as the initial data and external forces is obtained. Meanwhile, in
Louaked et al. (2017), a pressure stabilization method for the Brinkman–Forchheimer model is proposed
and analysed. The authors propose a time discretization scheme that can be used with any consistent
finite element space approximation. A second-order error estimate is also derived.

The goal of the present paper is to develop and analyse a new mixed formulation of the Brinkman–
Forchheimer problem and study its numerical approximation by a mixed finite element method. Unlike
previous works we introduce the pseudostress tensor as a new unknown, which allows us to eliminate
the pressure from the system, resulting in a pseudostress-velocity mixed formulation. There are several
advantages of this new approach, including the direct and accurate approximation of another unknown of
physical interest, the pseudostress tensor, in the H(div) space, thus enforcing conservation of momentum
in a physically compatible way. In addition, our formulation alleviates the difficulty of having to
use velocity-pressure finite element spaces that can handle both the Stokes and Darcy limits in the
Brinkman equation. In particular, we can use stable Darcy-type mixed finite element spaces for the
pseudostress-velocity pair, such as the Raviart–Thomas spaces. The numerical experiments indicate
robustness with respect to the Darcy parameter in both the Stokes and the Darcy regimes. Furthermore,
the pressure and the velocity gradient can be recovered by a simple post-processing in terms of the
pseudostress, preserving the rates of convergence. As a result, these variables are accurately approxi-
mated. In addition, two of the numerical examples illustrate the ability of the method to resolve sharp
velocity gradients in the presence of a boundary layer and discontinuous spatially varying parameters,
respectively.

Employing techniques from Showalter (2010), Camaño et al. (2018b), and Ambartsumyan et al.
(2019b) we combine the classical monotone operator theory and a suitable regularization technique in
Banach spaces to establish existence and uniqueness of a solution of the continuous weak formulation.
Stability for the weak solution is obtained by an energy estimate. We then consider semidiscrete
continuous-in-time and fully discrete finite element approximations. The pseudostress tensor and the
velocity are approximated using the Raviart–Thomas spaces of order k ≥ 0 and discontinuous piecewise
polynomials of degree ≤ k, respectively, and time is discretized employing the backward Euler method.
The well-posedness analysis of the discretization schemes follows the framework for the continuous
weak formulation, combined with discrete inf-sup stability in the appropriate Banach spaces. We
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A BANACH SPACE MIXED FORMULATION FOR THE BRINKMAN-FORCHHEIMER EQUATIONS 3

further perform an error analysis for the semidiscrete and fully discrete schemes, establishing rates
of convergence in space and time of the numerical solution to the weak solution.

The rest of this work is organized as follows. The remainder of this section describes standard
notation and functional spaces to be employed throughout the paper. In Section 2, we introduce
the model problem and derive its mixed variational formulation. In Section 3, we establish the well
posedness of the weak formulation. The semidiscrete continuous-in-time scheme is introduced and
analysed in Section 4. Error estimates and rates of convergence are also derived. In Section 5, the fully
discrete approximation is developed and analysed employing similar arguments to the semidiscrete
formulation. Finally, in Section 6, we report numerical studies of the accuracy of our mixed finite
element method, confirming the theoretical sub-optimal rates of convergence and suggesting optimal
rates of convergence. In addition, we present computational experiments illustrating the behaviour of the
method for a range of parameter values, as well as its flexibility to handle spatially varying parameters.

Preliminaries

Let Ω ⊂ Rn, n ∈ {2, 3}, denote a domain with Lipschitz boundary Γ . For s ≥ 0 and p ∈ [1, +∞] we
denote by Lp(Ω) and Ws,p(Ω) the usual Lebesgue and Sobolev spaces endowed with the norms ‖·‖Lp(Ω)

and ‖ · ‖s,p;Ω , respectively. Note that W0,p(Ω) = Lp(Ω). If p = 2 we write Hs(Ω) in place of Ws,2(Ω)

and denote the corresponding Lebesgue and Sobolev norms by ‖ · ‖0,Ω and ‖ · ‖s,Ω , respectively, and the
seminorm by | · |s,Ω . By M and M we will denote the corresponding vectorial and tensorial counterparts
of a generic scalar functional space M. Moreover, given a separable Banach space V endowed with the
norm ‖ · ‖V, we let Lp(0, T; V) be the space of classes of functions f : (0, T) → V that are Bochner
measurable and such that ‖f ‖Lp(0,T;V) < ∞, with

‖f ‖p
Lp(0,T;V)

:=
∫ T

0
‖f (t)‖p

V dt, ‖f ‖L∞(0,T;V) := ess sup
t∈[0,T]

‖f (t)‖V.

In turn, for any vector field v := (vi)i=1,n, we set the gradient and divergence operators, as

∇v :=
(

∂ vi

∂ xj

)
and div v :=

n∑
j=1

∂ vj

∂ xj
.

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ and define the transpose, the trace, the tensor inner product and
the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=
n∑

i=1

τii, τ : ζ :=
n∑

i,j=1

τij ζij and τ d := τ − 1

n
tr (τ ) I,

where I is the identity tensor in Rn×n. For simplicity, in what follows, we denote

(v, w)Ω :=
∫

Ω

v w, (v, w)Ω :=
∫

Ω

v · w, (τ , ζ )Ω :=
∫

Ω

τ : ζ .
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4 S. CAUCAO AND I. YOTOV

When no confusion arises | · | will denote the Euclidean norm in Rn or Rn×n. Additionally, we introduce
the Hilbert space

H(div ; Ω) :=
{
τ ∈ L

2(Ω) : div τ ∈ L2(Ω)
}

,

equipped with the usual norm ‖τ‖2
div ;Ω := ‖τ‖2

0,Ω + ‖div τ‖2
0,Ω . In addition, in the sequel, we will

make use of the well-known Young’s inequality, for a, b ≥ 0, 1/p + 1/q = 1, and δ > 0,

a b ≤ δp/2

p
ap + 1

q δq/2 bq. (1.1)

Finally, we end this section by mentioning that, throughout the rest of the paper, we employ 0 to denote
a generic null vector (or tensor) and use C and c, with or without subscripts, bars, tildes or hats, to
denote generic constants independent of the discretization parameters, which may take different values
at different places.

2. The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation.

2.1 The model problem

In this work we are interested in approximating the solution of the unsteady Brinkman–Forchheimer
equations (see for instance, Celebi et al., 2006; Djoko & Razafimandimby, 2014; Louaked et al., 2015,
2017). More precisely, given the body force term f and a suitable initial data u0, the aforementioned
system of equations is given by

∂ u
∂ t

− ν Δu + α u + F |u|p−2u + ∇p = f, div u = 0 in Ω × (0, T],

u = 0 on Γ × (0, T], u(0) = u0 in Ω , (p, 1)Ω = 0 in (0, T],
(2.1)

where the unknowns are the velocity field u and the scalar pressure p. In addition, the constant ν > 0
is the Brinkman coefficient, α > 0 is the Darcy coefficient, F > 0 is the Forchheimer coefficient and
p ∈ [3, 4] is a given number. Next, in order to derive our weak formulation, we first rewrite (2.1) as an
equivalent first-order set of equations. To that end, we introduce the pseudostress tensor

σ := ν ∇u − p I

as a new unknown. Applying the trace operator to the above equation and utilizing the incompressibility
condition div u = 0 in Ω ×(0, T] we find that (2.1) can be rewritten, equivalently, as the set of equations
with unknowns σ and u, given by

1

ν
σ d = ∇u,

∂ u
∂ t

− div σ + α u + F |u|p−2u = f, p = −1

n
tr (σ ) in Ω × (0, T],

u = 0 on Γ × (0, T], u(0) = u0 in Ω , (tr (σ ), 1)Ω = 0 in (0, T].
(2.2)
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A BANACH SPACE MIXED FORMULATION FOR THE BRINKMAN-FORCHHEIMER EQUATIONS 5

Notice that the third equation in (2.2) has allowed us to eliminate the pressure p from the system and
provides a formula for its approximation through a post-processing procedure, whereas the last equation
takes care of the requirement that (p, 1)Ω = 0 in (0, T].

2.2 The variational formulation

In this section we derive our mixed variational formulation for the system (2.2). To that end, we begin
by multiplying the first equation of (2.2) by a tensor τ , living in a suitable space, say X, which will be
described next, integrating by parts, using the identity σ d : τ = σ d : τ d and the Dirichlet boundary
condition u = 0 on Γ × (0, T], to obtain

1

ν
(σ d, τ d)Ω + (u, div τ )Ω = 0 ∀ τ ∈ X. (2.3)

In turn, the second equation of (2.2) is imposed weakly as follows

(∂t u, v)Ω − (div σ , v)Ω + α (u, v)Ω + F (|u|p−2u, v)Ω = (f, v)Ω ∀ v ∈ M, (2.4)

where M is a suitable space, which together with X is described below. We first note that the first term
in the left-hand side in (2.3) is well defined if σ , τ ∈ L

2(Ω). In turn, if u, v ∈ Lp(Ω), with p ∈ [3, 4],
then the first, third and fourth terms in the left-hand side in (2.4) are clearly well defined, which forces
both div σ and div τ to live in Lq(Ω), with q ∈ [4/3, 3/2] satisfying 1/p + 1/q = 1. According to this
we introduce the Banach space

H(divq; Ω) :=
{
τ ∈ L

2(Ω) : div τ ∈ Lq(Ω)
}

,

equipped with the norm

‖τ‖2
divq;Ω := ‖τ‖2

0,Ω + ‖div τ‖2
Lq(Ω).

Notice that H(div ; Ω) ⊂ H(divq; Ω). In this way we deduce that the equations (2.3) and (2.4) are well
defined if we choose the spaces

X := H(divq; Ω) and M := Lp(Ω),

with their respective norms: ‖ · ‖
X

:= ‖ · ‖divq;Ω and ‖ · ‖M := ‖ · ‖Lp(Ω).
Now, for convenience of the subsequent analysis and similarly as in Camaño et al. (2018a) (see also

Gatica, 2014; Colmenares et al., 2020) we consider the decomposition:

X = X0 ⊕ R I,

where

X0 :=
{
τ ∈ H(divq; Ω) : (tr (τ ), 1)Ω = 0

}
;

that is, R I is a topological supplement for X0. More precisely, each τ ∈ X can be decomposed uniquely
as follows:

τ = τ 0 + c I with τ 0 ∈ X0 and c := 1

n |Ω| (tr (τ ), 1)Ω ∈ R.
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6 S. CAUCAO AND I. YOTOV

Then, noticing that τ d = τ d
0 and div τ = div τ 0 and employing the last equation of (2.2), we deduce that

both σ and τ can be considered hereafter in X0. Hence, the weak form associated with the Brinkman–
Forchheimer equation (2.2) reads: given f : (0, T) → L2(Ω) and u0 ∈ M, find (σ , u) : [0, T] → X0×M,
such that u(0) = u0 and, for a.e. t ∈ (0, T),

A σ (t) + B′u(t) = 0 inX′
0,

∂

∂ t
E u(t) − B σ (t) + C u(t) = G(t) in M′,

(2.5)

where the operators A : X0 → X
′
0, B : X0 → M′, C : M → M′, and the functional G ∈ M′ are defined

as follows:

[A(σ ), τ ] := 1

ν
(σ d, τ d)Ω , [B(τ ), v] := (div τ , v)Ω ,

[C(u), v] := α (u, v)Ω + F (|u|p−2u, v)Ω ,

(2.6)

and

[G, v] := (f, v)Ω . (2.7)

In addition, the operator E : M → M′ is given by

[E(u), v] := (u, v)Ω . (2.8)

In all the terms above [·, ·] denotes the duality pairing induced by the corresponding operators. In
addition we let B′ : M → X

′
0 be the adjoint of B, which satisfy [B′(v), τ ] = [B(τ ), v] for all τ ∈ X0

and v ∈ M.

3. Well posedness of the model

In this section we establish the solvability of (2.5). To that end, we first collect some previous results
that will be used in the forthcoming analysis.

3.1 Preliminaries

Let us now discuss the stability properties of the operators involved. We begin by observing that the
operators A,B, E and the functional G are linear. In turn, from (2.6), (2.7) and (2.8), employing Hölder’s
and Cauchy–Schwarz inequalities, there hold∣∣[B(τ ), v]

∣∣ ≤ ‖τ‖
X

‖v‖M ∀ (τ , v) ∈ X0 × M,

∣∣[G, v]
∣∣ ≤ ‖f‖0,Ω‖v‖0,Ω ≤ |Ω|(p−2)/(2p)‖f‖0,Ω‖v‖M ∀ v ∈ M,

and ∣∣[E(u), v]
∣∣ ≤ |Ω|(p−2)/p ‖u‖M ‖v‖M, [E(v), v] ≥ ‖v‖2

0,Ω ∀ u, v ∈ M,

which implies that B, G are bounded and continuous, and E is bounded, continuous and monotone.
Next, we summarize some properties of the operators A and C.
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A BANACH SPACE MIXED FORMULATION FOR THE BRINKMAN-FORCHHEIMER EQUATIONS 7

Lemma 3.1 The operators A and C are bounded, continuous and monotone. Moreover, C is coercive.

Proof. From the definition of A and C (cf. (2.6)), and employing Cauchy–Schwarz and Hölder’s
inequalities, for all σ , τ ∈ X0 and for all u, v ∈ M, we deduce the following bounds:

∣∣[A(σ ), τ ]
∣∣ ≤ 1

ν
‖σ d‖

X
‖τ d‖

X
≤ 1

ν
‖σ‖

X
‖τ‖

X
, [A(τ ), τ ] ≥ 1

ν
‖τ d‖2

0,Ω , (3.1)

∣∣[C(u), v]
∣∣ ≤

(
α |Ω|(p−2)/(2p) ‖u‖0,Ω + F ‖u‖p−1

M

)
‖v‖M, [C(v), v] ≥ α ‖v‖2

0,Ω + F ‖v‖p
M, (3.2)

which imply that the operators are bounded and non-negative and C is coercive. In addition, since A is
linear, its continuity and monotonicity follows from (3.1). In turn, from the definition of C (cf. (2.6)), it
follows that

[C(u) − C(v), w] = α (u − v, w)Ω + F (|u|p−2u − |v|p−2v, w)Ω

≤ α ‖u − v‖0,Ω ‖w‖0,Ω + F ‖|u|p−2u − |v|p−2v‖M′ ‖w‖M ∀ u, v, w ∈ M. (3.3)

Proceeding analogously to Barrett & Liu (1993, Lemma 2.1, equation (2.1a)), see also Glowinski &
Marroco (1975, Proposition 5.3), we deduce from (3.3) that there exists cp > 0, depending only on |Ω|
and p, such that

‖C(u) − C(v)‖M′ ≤ α |Ω|(p−2)/(2p) ‖u − v‖0,Ω + F cp (‖u‖M + ‖v‖M)p−2 ‖u − v‖M

≤
(
α |Ω|(p−2)/p + F cp (‖u‖M + ‖v‖M)p−2

)
‖u − v‖M, (3.4)

concluding the continuity of C. Finally, thanks to Barrett & Liu (1993, Lemma 2.1, equation (2.1b)),
there exist Cp > 0, depending only on |Ω| and p, such that

(|u|p−2u − |v|p−2v, u − v)Ω ≥ Cp ‖u − v‖p
M ∀ u, v ∈ M,

which, together with the definition (2.6) of C, yields

[C(u) − C(v), u − v] ≥ α ‖u − v‖2
0,Ω + FCp ‖u − v‖p

M ∀ u, v ∈ M. (3.5)

Therefore, C is monotone, which completes the proof. �
Now, we state the inf-sup condition associated with the operator B. Since the operator C is coercive

this result is not necessary to prove the well posedness of the problem, but it will be useful to obtain the
stability bound.

Lemma 3.2 There exists a constant β > 0 such that

sup
0 �=τ∈X0

[B(τ ), v]

‖τ‖
X

≥ β ‖v‖M ∀ v ∈ M. (3.6)
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8 S. CAUCAO AND I. YOTOV

Proof. For the case p = 4 and q = 4/3 we refer the reader to Camaño et al. (2018a, Lemma 3.4),
which proof can be easily extended to the case p ∈ [3, 4] and q ∈ [4/3, 3/2] satisfying 1/p + 1/q = 1.
We omit further details. �

We will also use that there exists a positive constant Cd, such that

Cd ‖τ‖2
0,Ω ≤ ‖τ d‖2

0,Ω + ‖div τ‖2
Lq(Ω) ∀ τ ∈ X0. (3.7)

In the case q = 4/3, (3.7) is shown in Camaño et al. (2018a, Lemma 3.2). The proof can be easily
extended to the general case q ∈ [4/3, 3/2].

A key result that we will use to establish the existence of a solution to (2.5) is the following theorem
(Showalter, 1997, Theorem IV.6.1(b)).

Theorem 3.3 Let the linear, symmetric and monotone operator N be given for the real vector space E
to its algebraic dual E∗, and let E′

b be the Hilbert space, which is the dual of E with the seminorm

|x|b = (
N x(x)

)1/2
x ∈ E.

Let M ⊂ E × E′
b be a relation with domain D =

{
x ∈ E : M(x) �= ∅

}
.

Assume M is monotone and Rg(N + M) = E′
b. Then, for each f ∈ W1,1(0, T; E′

b) and for each
u0 ∈ D, there is a solution u of

d

dt

(
N u(t)

) + M
(
u(t)

) � f (t) a.e. 0 < t < T , (3.8)

with

N u ∈ W1,∞(0, T; E′
b), u(t) ∈ D, for all 0 ≤ t ≤ T , and N u(0) = N u0.

Recalling the definition of the operators A,B, C and E (cf. (2.6) and (2.8)) problem (2.5) can be
written in the form of (3.8) with

E := X0 × M, u :=
(

σ

u

)
, N :=

(
0 0
0 E

)
, M :=

(
A B′

−B C

)
. (3.9)

Let M′
2 be the Hilbert space that is the dual of M with the norm induced by the operator E (cf. (2.8)),

which is ‖v‖0,Ω = (v, v)
1/2
Ω ∀ v ∈ M. Note that M′

2 = L2(Ω). Then we define the spaces

E′
b := {0} × M′

2, D :=
{
(σ , u) ∈ X0 × M : M (σ , u) ∈ E′

b

}
. (3.10)

In the next section we prove the hypotheses of Theorem 3.3 to establish the well posedness of (2.5).
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3.2 The resolvent system

We begin with the verification of the range condition in Theorem 3.3. Let us consider the resolvent
system associated with (2.5): find (σ , u) ∈ X0 × M such that

A σ + B′u = 0 in X
′
0,

−B σ + (E + C) u = Ĝ in M′,
(3.11)

where Ĝ ∈ M′
2 ⊂ M′ is a functional given by Ĝ(v) := (̂f, v)Ω for some f̂ ∈ L2(Ω). Next, in order to

prove the well posedness of (3.11), we introduce an operator that will be used to regularize the problem.
Let Rσ : X0 → X

′
0 be defined by

[Rσ (σ ), τ ] :=
(
|div σ |q−2div σ , div τ

)
Ω

∀ σ , τ ∈ X0. (3.12)

Lemma 3.4 The operator Rσ is bounded, continuous and monotone.

Proof. From the definition of Rσ (cf. (3.12)), and employing Hölder’s inequality, we deduce the
following bounds:

∣∣[Rσ (σ ), τ ]
∣∣ ≤ ‖div σ‖q/p

Lq(Ω)
‖div τ‖Lq(Ω), [Rσ (τ ), τ ] ≥ ‖div τ‖q

Lq(Ω)
∀ σ , τ ∈ X0, (3.13)

which imply that Rσ is bounded and non-negative. In turn, using again the definition of Rσ , we get

[Rσ (σ ) − Rσ (τ ), ζ ] =
(
|div σ |q−2div σ − |div τ |q−2div τ , div ζ

)
Ω

∀ σ , τ , ζ ∈ X0.

Employing Barrett & Liu (1993, Lemma 2.1, equation (2.1a)), we obtain

‖Rσ (σ ) − Rσ (τ )‖
X′ ≤ C ‖div σ − div τ‖q/p

Lq(Ω) ≤ C ‖σ − τ‖q/p
X

,

which implies the continuity of Rσ . Finally, proceeding similarly to Barrett & Liu (1993, Lemma 2.1,
equation (2.1b)), there exist a positive constant C > 0 such that

[Rσ (σ ) − Rσ (τ ), σ − τ ] = (|div σ |q−2div σ − |div τ |q−2div τ , div (σ − τ )
)
Ω

≥ C
‖div (σ − τ )‖2

Lq(Ω)

(‖div σ‖Lq(Ω) + ‖div τ‖Lq(Ω))
2−q ∀ σ , τ ∈ X0.

Therefore, Rσ is monotone, which concludes the proof. �
Now, a solution to (3.11) is established by taking a limit of the regularized solutions as the

regularization parameter goes to zero.

Lemma 3.5 Given Ĝ ∈ M′
2 there exists a solution (σ , u) ∈ X0 × M of the resolvent system (3.11).
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10 S. CAUCAO AND I. YOTOV

Proof. We proceed similarly to Ambartsumyan et al. (2019b, Lemma 4.6) (see also Showalter, 2010).
For ε > 0 consider a regularization of (3.11) defined by the following: given Ĝ ∈ M′

2 ⊂ M′ determine
(σ ε , uε) ∈ X0 × M, satisfying

(ε Rσ + A) σ ε + B′uε = 0 in X
′
0,

−B σ ε + (E + C) uε = Ĝ in M′.
(3.14)

Introduce the operator J : X0 × M → (X0 × M)′ defined as

J
(

τ

v

)
:=

(
ε Rσ + A B′

−B E + C

) (
τ

v

)
.

Note that

[
J

(
σ

u

)
,

(
τ

v

)]
= [(ε Rσ + A)(σ ), τ ] + [B(τ ), u] − [B(σ ), v] + [(E + C)(u), v],

and

[
J

(
σ

u

)
− J

(
τ

v

)
,

(
σ

u

)
−

(
τ

v

)]
= [(ε Rσ + A)(σ ) − (ε Rσ + A)(τ ), σ − τ ] + [(E + C)(u) − (E + C)(v), u − v].

From Lemmas 3.1 and 3.4 we have that J is a bounded, continuous and monotone operator. Moreover,
using the second bounds in (3.1), (3.2) and (3.13), we also have

[
J

(
τ

v

)
,

(
τ

v

)]
= [(ε Rσ + A)(τ ), τ ] + [(E + C)(v), v]

≥ 1

ν
‖τ d‖2

0,Ω + ε ‖div τ‖q
Lq(Ω)

+ F ‖v‖p
M + (1 + α) ‖v‖2

0,Ω

≥ min
{1

ν
, ε

} (
‖τ d‖2

0,Ω + ‖div τ‖q
Lq(Ω)

)
+ F ‖v‖p

M. (3.15)

Notice that for the terms ‖τ d‖0,Ω and ‖div τ‖Lq(Ω) there are only two possibilities, namely ‖τ d‖0,Ω ≤
‖div τ‖Lq(Ω) or ‖div τ‖Lq(Ω) ≤ ‖τ d‖0,Ω . Using this fact in conjunction with some algebraic
computations and the inequality (3.7) we can deduce that

‖τ d‖2
0,Ω + ‖div τ‖q

Lq(Ω)
≥ C1 min

{
‖τ‖2−q

X
, 1

}
‖τ‖q

X
,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draa035/5893595 by  yotov@
m

ath.pitt.edu on 20 August 2020



A BANACH SPACE MIXED FORMULATION FOR THE BRINKMAN-FORCHHEIMER EQUATIONS 11

where C1 := min
{

1, Cd, Cq/2
d

}
/4, which together with (3.15) yields

[
J

(
τ

v

)
,

(
τ

v

)]
‖(τ , v)‖ ≥ C2 min

{
‖τ‖2−q

X
, ‖v‖p−q

M , 1
}

‖(τ , v)‖q−1 → ∞ as ‖(τ , v)‖ → ∞, (3.16)

with C2 depending on ν,F, Cd and ε. We stress that when ‖v‖M = 0, the right-hand side of (3.16) is

replaced by C ‖τ‖q−1
X

→ ∞. In turn, if ‖τ‖
X

= 0, it is replaced by F ‖v‖p−1
M → ∞. It follows from

(3.16) that J is coercive in X0 × M. Then an application of the Browder–Minty theorem (Renardy &
Rogers, 2004, Theorem 10.49) establishes the existence of a solution (σ ε , uε) ∈ X0 × M of (3.14).

On the other hand, from the first inequality in (3.15) and (3.14), we have

‖σ d
ε‖2

0,Ω + ε ‖div σ ε‖q
Lq(Ω)

+ ‖uε‖p
M + ‖uε‖2

0,Ω ≤ C ‖̂f‖0,Ω ‖uε‖0,Ω .

Then, employing Young’s inequality with p = q = 2 and δ = 1 (cf. (1.1)), we deduce that

‖σ d
ε‖2

0,Ω + ε ‖div σ ε‖q
Lq(Ω)

+ ‖uε‖p
M + ‖uε‖2

0,Ω ≤ C ‖̂f‖2
0,Ω , (3.17)

which implies that both ‖σ d
ε‖0,Ω and ‖uε‖M are bounded independently of ε. In turn, recalling that

div (X0) = M′, and employing the second equation in (3.14) and (3.17), we get

‖div σ ε‖Lq(Ω) ≤ C
(
‖̂f‖0,Ω + ‖uε‖p−1

M + ‖uε‖0,Ω

)
≤ C

(
‖̂f‖0,Ω + ‖̂f‖2/q

0,Ω

)
,

which combined with (3.17) and (3.7) implies that ‖σ ε‖X is also bounded independently of ε.
Now, similarly to Showalter (2010, Theorem 3.2), and since X0 and M are reflexive Banach spaces,

we deduce from (Brezis, 2011, Theorem 3.18) that as ε → 0 we can extract weakly convergent
subsequences

{
σ ε,n

}∞
n=1,

{
uε,n

}∞
n=1 and

{
C(uε,n)

}∞
n=1, such that σ ε,n ⇀ σ in X0, uε,n ⇀ u in M, and

C(uε,n) ⇀ ζ in M′, respectively, which together with (3.14) and the fact that the operators A,B and E
are continuous, yields

A σ + B′u = 0 in X
′
0,

−B σ + E u + ζ = Ĝ in M′.
(3.18)

Moreover, from (3.14) and (3.18), we find that

lim sup
ε→0

[C(uε), uε] = lim sup
ε→0

(
− [(ε Rσ + A)(σ ε), σ ε] + [(Ĝ − E(uε)), uε]

)
≤ −[A(σ ), σ ] + [Ĝ, u] − [E(u), u] = [ζ , u]. (3.19)

Finally, since the nonlinear operator C is monotone and continuous, we deduce from Showalter (1997,
Lemma II.2.1) and (3.19) that C(u) = ζ . Hence, σ and u solve (3.11), concluding the proof. �

We end this section by establishing a suitable initial condition result, which is necessary to apply
Theorem 3.3 to our context.
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12 S. CAUCAO AND I. YOTOV

Lemma 3.6 Assume the initial condition u0 ∈ M ∩ H, where

H :=
{

v ∈ H1
0(Ω) : Δv ∈ L2(Ω) and div v = 0 in Ω

}
. (3.20)

Then, there exists σ 0 ∈ X0 such that(
A B′

−B C

)(
σ 0
u0

)
∈ {0} × M′

2. (3.21)

Proof. Given u0 ∈ M ∩ H and define σ 0 := ν ∇u0 it follows that

1

ν
σ d

0 = ∇u0, div σ 0 = ν Δu0, and tr (σ 0) = 0 in Ω . (3.22)

Notice that σ 0 ∈ H0(div ; Ω) ⊂ X0, with H0(div ; Ω) := H(div ; Ω) ∩ X0. Next, integrating by parts
the first equation in (3.22) and proceeding similarly to (2.3), we obtain

[A(σ 0), τ ] + [B(τ ), u0] = 0 ∀ τ ∈ X0.

Hence, given u0 ∈ M ∩ H (cf. (3.20)), taking σ 0 ∈ X0 satisfying (3.22), and after minor algebraic
manipulation, we deduce that (

A B′
−B C

) (
σ 0
u0

)
=

(
0

G0

)
, (3.23)

where

[G0, v] := −ν (Δu0, v)Ω + [C(u0), v],

which together with the additional regularity of u0, and the continuous injection of H1(Ω) into
L2(p−1)(�), with p ∈ [3, 4], implies that

∣∣[G0, v]
∣∣ ≤

(
ν ‖Δu0‖0,Ω + α ‖u0‖0,Ω + F ‖u0‖p−1

L2(p−1)(Ω)

)
‖v‖0,Ω

≤ C
(
‖Δu0‖0,Ω + ‖u0‖0,Ω + ‖u0‖p−1

1,Ω

)
‖v‖0,Ω .

Thus, G0 ∈ M′
2 so then (3.21) holds, completing the proof. �

Remark 3.1 The assumption on the initial condition u0 in (3.20) is not necessary for all the results that
follow, but we shall assume it from now on for simplicity. A similar assumption to u0 is also made in
Djoko & Razafimandimby (2014, equation (2.2)). Note also that (σ 0, u0) satisfying (3.21) is not unique.

3.3 The main result

We now establish the well posedness of problem (2.5).

Theorem 3.7 For each f ∈ W1,1(0, T; L2(Ω)) and u0 ∈ M ∩ H (cf. (3.20)), there exists a unique
solution to (2.5) with (σ , u) ∈ L∞(0, T;X0) × W1,∞(0, T; L2(Ω)) ∩ L∞(0, T; M) and u(0) = u0.
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Proof. We recall that (2.5) fits the problem in Theorem 3.3 with the definitions (3.9) and (3.10). Note
that N is linear, symmetric and monotone. In addition, since both A and C are monotone, then M
is monotone. On the other hand, from Lemma 3.5, we know that for some (0, Ĝ) ∈ E′

b there is a
(σ , u) ∈ X0 × M such that (0, Ĝ) = (N + M)(σ , u), which implies Rg(N + M) = E′

b. Finally,
considering u0 ∈ M ∩ H (cf. (3.20)), from a straightforward application of Lemma 3.6, we are able to
find σ 0 ∈ X0 such that (σ 0, u0) ∈ D. Therefore, applying Theorem 3.3 to our context, we conclude the
existence of a solution (σ , u) to (2.5), with u ∈ W1,∞(0, T; L2(Ω)) and u(0) = u0. In turn, employing
(2.5) with (τ , v) = (σ , u), we deduce that σ ∈ L∞(0, T;X0) and u ∈ L∞(0, T; M).

Now, assume that the solution of (2.5) is not unique. Let (σ i, ui), with i ∈ {1, 2}, be two solutions
corresponding to the same data. Then, taking (2.5) with (τ , v) = (σ 1 − σ 2, u1 − u2) ∈ X0 × M, we
deduce that

1

2
∂t ‖u1 − u2‖2

0,Ω + [A(σ 1 − σ 2), σ 1 − σ 2] + [C(u1) − C(u2), u1 − u2] = 0,

which together with the monotonicity bounds (3.1) and (3.5), implies

1

2
∂t ‖u1 − u2‖2

0,Ω + 1

ν
‖(σ 1 − σ 2)d‖2

0,Ω + FCp ‖u1 − u2‖p
M ≤ 0.

Integrating in time from 0 to t ∈ (0, T], and using u1(0) = u2(0), we obtain

‖u1(t) − u2(t)‖2
0,Ω + C

∫ t

0

(
‖(σ 1 − σ 2)d‖2

0,Ω + ‖u1 − u2‖p
M

)
ds ≤ 0. (3.24)

Therefore, it follows from (3.24) that (σ 1(t))d = (σ 2(t))d and u1(t) = u2(t) for all t ∈ (0, T]. Next,
from the second row of (2.5), we get

[B(σ 1 − σ 2), v] = (∂t (u
1 − u2), v)Ω + [C(u1) − C(u2), v] = 0 ∀ v ∈ M,

which together with the property div (X0) = M′ allow us to deduce that div σ 1(t) = div σ 2(t) for all
t ∈ (0, T]. Employing the inequality (3.7) we conclude that σ 1(t) = σ 2(t) for all t ∈ (0, T] and therefore
(2.5) has a unique solution. �

We conclude this section with stability bounds for the solution of (2.5).

Theorem 3.8 For the solution of (2.5), assuming sufficient regularity of the data, there exists a positive
constant CF only depending on |Ω|, ν, α,F, β, such that

‖σ‖L2(0,T;X) + ‖u‖L2(0,T;M) + ‖u‖L∞(0,T;L2(Ω)) ≤ CF F(f, σ (0), u(0)) (3.25)

with

F(f, σ (0), u(0)) := ‖f‖p−1
L2(p−1)(0,T;L2(Ω))

+ ‖f‖L2(0,T;L2(Ω))

+ ‖σ d(0)‖0,Ω + ‖u(0)‖p/2
M + ‖u(0)‖p−1

0,Ω + ‖u(0)‖0,Ω . (3.26)
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14 S. CAUCAO AND I. YOTOV

Moreover, there exists a positive constant CG defined below in (3.34), such that

‖u‖L∞(0,T;M) ≤ CG G(f, σ (0), u(0)) (3.27)

with

G(f, σ (0), u(0)) := ‖f‖2/p
L2(0,T;L2(Ω))

+ ‖σ d(0)‖2/p
0,Ω + ‖u(0)‖M + ‖u(0)‖2/p

0,Ω , (3.28)

where σ (0) is such that (3.21) holds.

Proof. We begin with choosing (τ , v) = (σ , u) in (2.5) to get

1

2
∂t (u, u)Ω + [A(σ ), σ ] + [C(u), u] = (f, u)Ω .

Next, we use the coercivity bounds in (3.1) and (3.2), and Cauchy–Schwarz and Young’s inequalities
with p = q = 2 (cf. (1.1)), to obtain

1

2
∂t ‖u‖2

0,Ω + 1

ν
‖σ d‖2

0,Ω + F ‖u‖p
M + α ‖u‖2

0,Ω ≤ ‖f‖0,Ω ‖u‖0,Ω ≤ δ

2
‖f‖2

0,Ω + 1

2 δ
‖u‖2

0,Ω . (3.29)

In turn, from the inf-sup condition of B (cf. (3.6)), the first equation of (2.5), and the continuity bound
of A (cf. (3.1)), we deduce that

β ‖u‖M ≤ sup
τ∈X0

[B(τ ), u]

‖τ‖
X

= − sup
τ∈X0

[A(σ ), τ ]

‖τ‖
X

≤ 1

ν
‖σ d‖0,Ω ,

and then

β2 ν

2
‖u‖2

M ≤ 1

2 ν
‖σ d‖2

0,Ω ,

which combined with (3.29) and choosing δ = 1/α, yields

1

2
∂t ‖u‖2

0,Ω + 1

2 ν
‖σ d‖2

0,Ω + β2 ν

2
‖u‖2

M + α

2
‖u‖2

0,Ω ≤ 1

2 α
‖f‖2

0,Ω . (3.30)

Notice that, in order to simplify the stability bound, we have neglected the term ‖u‖p
M in the left-hand

side of (3.29). Integrating (3.30) from 0 to t ∈ (0, T], we obtain

‖u(t)‖2
0,Ω +

∫ t

0

(
‖σ d‖2

0,Ω + ‖u‖2
M + ‖u‖2

0,Ω

)
ds ≤ C1

( ∫ t

0
‖f‖2

0,Ω ds + ‖u(0)‖2
0,Ω

)
, (3.31)

with C1 > 0 depending only on ν, α and β.
On the other hand, from the second equation of (2.5), we have the identity

[B(σ ), v] = − (f, v)Ω + [C(u), v] + (∂t u, v)Ω ∀ v ∈ M.
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Then, employing the property div (X0) = M′ in combination with (3.2) and using similar arguments to
(3.31), we deduce

∫ t

0
‖div σ‖2

Lq(Ω) ds ≤ C̃2

∫ t

0

(
‖f‖2

0,Ω + ‖u‖2(p−1)

M + ‖u‖2
0,Ω + ‖∂t u‖2

0,Ω

)
ds

≤ C2

( ∫ t

0

(
‖f‖2(p−1)

0,Ω + ‖f‖2
0,Ω

)
ds + ‖u(0)‖2(p−1)

0,Ω + ‖u(0)‖2
0,Ω +

∫ t

0
‖∂t u‖2

0,Ω ds

)
, (3.32)

with C2 > 0 depending on |Ω|, ν,F, α and β. Next, in order to bound the last term in (3.32), we
differentiate in time the first equation of (2.5), choose (τ , v) = (σ , ∂t u) and employ Cauchy–Schwarz
and Young’s inequalities with p = q = 2 and δ = 1 (cf. (1.1)), to obtain

1

2
∂t

(1

ν
‖σ d‖2

0,Ω + 2F

p
‖u‖p

M + α ‖u‖2
0,Ω

)
+ ‖∂t u‖2

0,Ω ≤ 1

2
‖f‖2

0,Ω + 1

2
‖∂t u‖2

0,Ω .

Integrating from 0 to t ∈ (0, T] we get

2F

p
‖u(t)‖p

M +
∫ t

0
‖∂t u‖2

0,Ω ds ≤ C3

(∫ t

0
‖f‖2

0,Ω ds + ‖σ d(0)‖2
0,Ω + ‖u(0)‖p

M + ‖u(0)‖2
0,Ω

)
, (3.33)

with C3 := max
{
1, 1/ν, 2F/p, α

}
. Then, combining (3.33) with (3.32), yields

∫ t

0
‖div σ‖2

Lq(Ω) ds

≤ C4

( ∫ t

0

(
‖f‖2(p−1)

0,Ω + ‖f‖2
0,Ω

)
ds + ‖σ d(0)‖2

0,Ω + ‖u(0)‖p
M + ‖u(0)‖2(p−1)

0,Ω + ‖u(0)‖2
0,Ω

)
,

which, combined with (3.31) and (3.7), implies (3.25). In addition, (3.33) implies (3.27) with

CG :=
( p

2F
max

{
1,

1

ν
,

2F

p
, α

})1/p
, (3.34)

concluding the proof. �
Remark 3.2 The stability bound (3.25) can be derived alternatively without the use of the inf-sup
condition of B, but in that case the expression of (3.26) will be more complicated. We also note that
(3.27) will be employed in the next section to deal with the nonlinear term associated to the operator C
(cf. (2.6)), which is necessary to obtain the corresponding error estimate.

Remark 3.3 The analysis developed in this section can be easily extended to the problem (2.2) with
non-homogeneous Dirichlet boundary condition, u = uD on Γ × (0, T]. To that end, (2.5) has to be
rewritten as follows: given f : (0, T) → L2(Ω), uD : (0, T) → H1/2(Γ ) and u0 ∈ M ∩ H (cf. (3.20)),
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16 S. CAUCAO AND I. YOTOV

find (σ , u) : [0, T] → X0 × M, such that u(0) = u0 and, for a.e. t ∈ (0, T),

A σ (t) + B′u(t) = F(t) in X
′
0,

∂

∂ t
E u(t) − B σ (t) + C u(t) = G(t) in M′,

where the functional F ∈ X
′
0 is given by [F, τ ] = 〈

τn, uD

〉
Γ

, with 〈·, ·〉Γ denoting the duality between
H−1/2(Γ ) and H1/2(Γ ). We refer the reader to Camaño et al. (2018a, Lemma 3.4) for the proof that
τn ∈ H−1/2(Γ ) for all τ ∈ X0 in the case p = 4 and q = 4/3. The proof can be extended to the case
p ∈ [3, 4] and q ∈ [4/3, 3/2] satisfying 1/p+1/q = 1. Then, we reformulate the problem as a parabolic
problem for u and proceed as in Ambartsumyan et al. (2019b, equation (4.14), Section 4.1).

4. Semidiscrete continuous-in-time approximation

In this section we introduce and analyse the semidiscrete continuous-in-time approximation of (2.5).
We analyse its solvability by employing the strategy developed in Section 3. Finally, we perform error
analysis and obtain rates of convergence of our discrete scheme.

4.1 Existence and uniqueness of a solution

Let Th be a shape-regular triangulation of Ω consisting of triangles (when n = 2) or tetrahedra K (when
n = 3) of diameter hK , and define the mesh-size h := max

{
hK : K ∈ Th

}
. Then, for each K ∈ Th, we

let RTk(K) be the local Raviart–Thomas element of order k ≥ 0, i.e.,

RTk(K) := [Pk(K)]n ⊕ Pk(K) x,

where x := (x1, . . . , xn)
t is a generic vector of Rn and Pk(K) is the space of polynomials defined on K

of degree ≤ k. The finite element subspaces on Ω are defined as

Xh :=
{
τ h ∈ X : ctτ h|K ∈ RTk(K) ∀ c ∈ Rn ∀ K ∈ Th

}
, X0,h := Xh ∩ X0,

Mh :=
{

vh ∈ M : vh|K ∈ [Pk(K)]n ∀ K ∈ Th

}
.

The semidiscrete continuous-in-time problem associated with (2.5) reads: find (σ h, uh) : [0, T] →
X0,h × Mh such that, for a.e. t ∈ (0, T),

[A(σ h), τ h] + [B(τ h), uh] = 0 ∀ τ h ∈ X0,h,

(∂t uh, vh)Ω − [B(σ h), vh] + [C(uh), vh] = (f, vh)Ω ∀ vh ∈ Mh.
(4.1)
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A BANACH SPACE MIXED FORMULATION FOR THE BRINKMAN-FORCHHEIMER EQUATIONS 17

As initial condition we take (σ h(0), uh(0)) to be a suitable approximations of (σ (0), u(0)) the solution
of (3.23), that is, we chose (σ h(0), uh(0)) solving

[A(σ h(0)), τ h] + [B(τ h), uh(0)] = 0 ∀ τ h ∈ X0,h

− [B(σ h(0)), vh] + [C(uh(0)), vh] = [G0, vh] ∀ vh ∈ Mh,
(4.2)

with G0 ∈ M′
2 being the right-hand side of (3.23). This choice is necessary to guarantee that the

discrete initial data is compatible in the sense of Lemma 3.6, which is needed for the application of
Theorem 3.3. Notice that the well posedness of problem (4.2) follows from similar arguments to the
proof of Lemma 3.5.

Next, we recall for later use the discrete inf-sup condition associated to the operator B.

Lemma 4.1 There exists a constant β̃ > 0 such that

sup
0 �=τ h∈X0,h

[B(τ h), vh]

‖τ h‖X
≥ β̃ ‖vh‖M ∀ vh ∈ Mh. (4.3)

Proof. For the case p = 4 and q = 4/3, we refer the reader to Camaño et al. (2018a, Lemma 4.4),
which proof can be easily extended to the case p ∈ [3, 4] and q ∈ [4/3, 3/2] satisfying 1/p + 1/q = 1.
We omit further details. �

We can establish the following well-posedness result.

Theorem 4.2 For each f ∈ W1,1(0, T; L2(Ω)) and (σ h(0), uh(0)) satisfying (4.2) there exists a unique
solution to (4.1) with (σ h, uh) ∈ L∞(0, T;X0,h) × W1,∞(0, T; Mh). Moreover, assuming sufficient
regularity of the data, there exists a positive constant C̃F , depending only on |Ω|, ν, α,F, β̃, such that

‖σ h‖L2(0,T;X) + ‖uh‖L2(0,T;M) + ‖uh‖L∞(0,T;L2(Ω)) ≤ C̃F F(f, σ h(0), uh(0)), (4.4)

and with CG defined in (3.34), there holds

‖uh‖L∞(0,T;M) ≤ CG G(f, σ h(0), uh(0)), (4.5)

where F and G are defined in (3.26) and (3.28), respectively.

Proof. From the fact that X0,h ⊂ X0, Mh ⊂ M, considering (σ h(0), uh(0)) that satisfies (4.2), and
employing the discrete inf-sup condition of B (cf. (4.3)), the proof is identical to the proofs of Theorems
3.7 and 3.8. �

4.2 Error analysis

We proceed with establishing rates of convergence. Let eσ = σ − σ h and eu = u − uh. As usual, we
shall then decompose these errors into

eσ = δσ + ησ , eu = δu + ηu, (4.6)
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18 S. CAUCAO AND I. YOTOV

with

δσ = σ − Πk
h(σ ), ησ = Πk

h(σ ) − σ h, δu = u − Pk
h(u), ηu = Pk

h(u) − uh,

where Pk
h : M → Mh is the vector version of the usual orthogonal projector with respect to L2-inner

product, satisfying

(u − Pk
h(u), vh)Ω = 0 ∀ vh ∈ Mh, (4.7)

and, given s ≥ 2 n/(n + 2), Πk
h : Hs → Xh is the Raviart–Thomas interpolation operator, where

Hs :=
{
τ ∈ X : τ |K ∈ W

1,s(K) ∀ K ∈ Th

}
, (4.8)

satisfying (Ern & Guermond, 2004, Lemma 1.41)

div (Πk
h(τ )) = Pk

h(div (τ )) ∀ τ ∈ Hs. (4.9)

Subtracting the discrete problem (4.1) from the continuous one (2.5), we obtain the following error
system:

[A(σ − σ h), τ h] + [B(τ h), u − uh] = 0 ∀ τ h ∈ X0,h,

(∂t (u − uh), vh)Ω − [B(σ − σ h), vh] + [C(u) − C(uh), vh] = 0 ∀ vh ∈ Mh.
(4.10)

We now establish the main result of this section.

Theorem 4.3 Let (σ , u) ∈ L∞(0, T;X0) × W1,∞(0, T; L2(Ω)) ∩ L∞(0, T; M) and (σ h, uh) ∈
L∞(0, T;X0,h) × W1,∞(0, T; Mh) be the unique solutions of the continuous and semidiscrete problems
(2.5) and (4.1), respectively. Assume that σ ∈ X0 ∩ Hs. Then there exist C̃, Ĉ > 0, depending only on
|Ω|, ν, α,F, β̃, p, and data, such that

‖ed
σ ‖L2(0,T;L2(Ω)) + ‖eu‖L2(0,T;M) + ‖eu‖L∞(0,T;L2(Ω)) ≤ C̃ Ψ (δσ , δu) (4.11)

and

‖eσ ‖L2(0,T;X) ≤ Ĉ h−n(p−2)/(2p)
(
‖∂t δσ ‖L2(0,T;X) + Ψ (δσ , δu)

)
, (4.12)

with

Ψ (δσ , δu) := ‖δσ ‖L2(0,T;X) + ‖δu‖p/2
L2(0,T;M)

+ ‖δu‖q/2
L2(0,T;M)

+ ‖δu‖L2(0,T;M) + ‖δu‖L∞(0,T;M)

+ ‖δσ (0)‖
X

+ ‖δu(0)‖p/2
M + ‖δu(0)‖q/2

M + ‖δu(0)‖M.

Proof. We first note that σ ∈ X0∩Hs (cf. (4.8)), so Πk
h(σ ) is well defined. Then, adding and subtracting

suitable terms in (4.10) with (τ h, vh) = (ησ , ηu) ∈ X0,h × Mh, and employing the lower bounds of A
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A BANACH SPACE MIXED FORMULATION FOR THE BRINKMAN-FORCHHEIMER EQUATIONS 19

and C (cf. (3.1), (3.5)), we deduce

1

2
∂t (ηu, ηu)Ω + 1

ν
‖ηd

σ ‖2
0,Ω + FCp ‖ηu‖p

M + α ‖ηu‖2
0,Ω

= − [A(δσ ), ησ ] − [C(u) − C(Pk
h(u)), ηu] − (∂t δu, ηu)Ω + [B(δσ ), ηu] − [B(ησ ), δu]. (4.13)

Notice that div ησ ∈ Mh. Then, from the projection properties (4.7)–(4.9), the last three terms in (4.13)
are zero. In addition, using the continuity bounds of A and C (cf. (3.1), (3.3) and (3.4)), Hölder and
Young’s inequalities with δ = (pFCp/2)2/p (cf. (1.1)), and inequality (Adams & Fournier, 2003,
Lemma 2.2):

(a + b)m ≤ 2m−1(am + bm) ∀ a, b ≥ 0, ∀ m ≥ 1, (4.14)

with m = p − 2 ∈ [1, 2], we deduce that the right-hand side of (4.13) is bounded as follows:

[A(δσ ), ησ ] + [C(u) − C(Pk
h(u)), ηu]

≤ 1

ν
‖δσ ‖0,Ω ‖ηd

σ ‖0,Ω + α ‖δu‖0,Ω ‖ηu‖0,Ω + F cp

(‖δu‖M + 2 ‖u‖M
)p−2 ‖δu‖M ‖ηu‖M

≤ 1

2 ν
‖δσ ‖2

0,Ω + α

2
‖δu‖2

0,Ω + C(p, q)
(‖δu‖p

M + ‖u‖q(p−2)

M ‖δu‖q
M

)
+ 1

2

(1

ν
‖ηd

σ ‖2
0,Ω + FCp ‖ηu‖p

M + α ‖ηu‖2
0,Ω

)
, (4.15)

where C(p, q) := 22q(p−2)+q/p−1 F cq
p/(q (p Cp)

q/p). Thus, combining (4.13) with (4.15), we obtain

∂t ‖ηu‖2
0,Ω + 1

ν
‖ηd

σ ‖2
0,Ω + FCp ‖ηu‖p

M + α ‖ηu‖2
0,Ω

≤ 1

ν
‖δσ ‖2

0,Ω + α ‖δu‖2
0,Ω + 2C(p, q)

(‖δu‖p
M + ‖u‖q(p−2)

M ‖δu‖q
M

)
. (4.16)

Then, integrating (4.16) from 0 to t ∈ (0, T] and recalling that ‖u‖L∞(0,T;M) is bounded by data (cf.
(3.27)), we find that

‖ηu(t)‖2
0,Ω +

∫ t

0

(1

ν
‖ηd

σ ‖2
0,Ω + FCp ‖ηu‖p

M + α ‖ηu‖2
0,Ω

)
ds

≤ C1

( ∫ t

0

(
‖δσ ‖2

0,Ω + ‖δu‖p
M + ‖δu‖q

M + ‖δu‖2
0,Ω

)
ds + ‖ηu(0)‖2

0,Ω

)
, (4.17)

with C1 > 0 depending only on |Ω|, ν, α,F, p and data. Next, from the discrete inf-sup condition of B
(cf. (4.3)) and the first equation of (4.10), we get

β̃ ‖ηu‖M ≤ 1

ν
‖ηd

σ ‖0,Ω +
(

1

ν
‖δd

σ ‖0,Ω + ‖δu‖M

)
,
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20 S. CAUCAO AND I. YOTOV

and then

β̃2 ν

4
‖ηu‖2

M ≤ 1

2 ν
‖ηd

σ ‖2
0,Ω + 1

ν
‖δσ ‖2

0,Ω + ν ‖δu‖2
M. (4.18)

Hence, integrating (4.18) from 0 to t ∈ (0, T], adding with (4.17) and neglecting ‖ηu‖p
M to obtain a

simplified error estimate yields

‖ηu(t)‖2
0,Ω +

∫ t

0

(
‖ηd

σ ‖2
0,Ω + ‖ηu‖2

M + ‖ηu‖2
0,Ω

)
ds

≤ C2

(∫ t

0

(
‖δσ ‖2

0,Ω + ‖δu‖p
M + ‖δu‖q

M + ‖δu‖2
M

)
ds + ‖ηu(0)‖2

0,Ω

)
, (4.19)

with C2 > 0 depending only on |Ω|, ν, α,F, β̃ and data.
Next, in order to bound the last term in (4.19), we subtract the continuous and discrete initial

condition problems (3.23) and (4.2), to obtain the error system:

[A(σ (0) − σ h(0)), τ h] + [B(τ h), u(0) − uh(0)] = 0 ∀ τ h ∈ X0,h,

− [B(σ (0) − σ h(0)), vh] + [C(u(0)) − C(uh(0)), vh] = 0 ∀ vh ∈ Mh.

Then, using similar arguments above (cf. (4.16)), allow us to get

‖ηd
σ (0)‖2

0,Ω + ‖ηu(0)‖p
M + ‖ηu(0)‖2

0,Ω ≤ C0

(
‖δσ (0)‖2

0,Ω + ‖δu(0)‖p
M + ‖δu(0)‖q

M + ‖δu(0)‖2
M

)
,

(4.20)

with C0 > 0 depending only on |Ω|, ν,F, α. Thus, combining (4.20) with (4.19), and using the error
decompositions (4.6), yields

‖eu(t)‖2
0,Ω +

∫ t

0

(
‖ed

σ ‖2
0,Ω + ‖eu‖2

M

)
ds ≤ C

(
‖δu(t)‖2

0,Ω +
∫ t

0

(
‖δσ ‖2

0,Ω + ‖δu‖p
M

)
ds

+
∫ t

0

(
‖δu‖q

M + ‖δu‖2
M

)
ds + ‖δσ (0)‖2

0,Ω + ‖δu(0)‖p
M + ‖δu(0)‖q

M + ‖δu(0)‖2
M

)
, (4.21)

which implies (4.11).
On the other hand, in order to obtain (4.12), we need to bound the norm ‖div (ησ )‖Lq(Ω). To that

end, from the second equation of (4.10) we have the identity

[B(ησ ), vh] = (∂t ηu, vh)Ω + [C(u) − C(uh), vh] + (∂t δu, vh)Ω − [B(δσ ), vh] ∀ vh ∈ Mh,

where the last two terms are zero thanks to the projection properties (4.7)–(4.9), which together with the
continuity bound of C (cf. (3.4)) and the fact that div (X0) = M′, implies

‖div ησ ‖Lq(Ω) ≤ |Ω|(p−2)/(2p) ‖∂t ηu‖0,Ω +
(
α |Ω|(p−2)/p + F cp

(‖u‖M + ‖uh‖M
)p−2

)
‖eu‖M.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draa035/5893595 by  yotov@
m

ath.pitt.edu on 20 August 2020



A BANACH SPACE MIXED FORMULATION FOR THE BRINKMAN-FORCHHEIMER EQUATIONS 21

Then, taking square in the above inequality, integrating from 0 to t ∈ (0, T], recalling that ‖u‖L∞(0,T;M)

and ‖uh‖L∞(0,T;M) are bounded by data (cf. (3.27) and (4.5)), and employing (4.21), we deduce that∫ t

0
‖div ησ ‖2

Lq(Ω) ds ≤ 2 |Ω|(p−2)/p
∫ t

0
‖∂t ηu‖2

0,Ω ds + C3

(
‖δu(t)‖2

0,Ω +
∫ t

0
‖δσ ‖2

0,Ω ds

+
∫ t

0

(
‖δu‖p

M + ‖δu‖q
M + ‖δu‖2

M

)
ds + ‖δσ (0)‖2

0,Ω + ‖δu(0)‖p
M + ‖δu(0)‖q

M + ‖δu(0)‖2
M

)
,

(4.22)

with C3 > 0 depending only on |Ω|, ν, α,F, β̃ and data. Then, combining (4.19) and (4.22), and
employing (3.7), we get

∫ t

0
‖ησ ‖2

X
ds ≤ 2 |Ω|(p−2)/p

C̃d

∫ t

0
‖∂t ηu‖2

0,Ω ds + (C2 + C3)

C̃d

(
‖δu(t)‖2

0,Ω +
∫ t

0
‖δσ ‖2

0,Ω ds

+
∫ t

0

(
‖δu‖p

M + ‖δu‖q
M + ‖δu‖2

M

)
ds + ‖δσ (0)‖2

0,Ω + ‖δu(0)‖p
M + ‖δu(0)‖q

M + ‖δu(0)‖2
M

)
,

(4.23)

where C̃d := min
{
1, Cd

}
/2. Next, in order to bound the first term in the right-hand side of (4.23), we

differentiate in time the first equation of (4.10) and choose (τ h, vh) = (ησ , ∂t ηu) in (4.10), to find that

1

2
∂t

(1

ν
‖ηd

σ ‖2
0,Ω + α ‖ηu‖2

0,Ω

)
+ ‖∂t ηu‖2

0,Ω

= −[A(∂t δσ ), ησ ] − [C(u) − C(uh), ∂tηu] − (∂tδu, ∂tηu)Ω + [B(δσ ), ∂tηu] − [B(ησ ), ∂tδu],

where the last three terms are zero thanks to the projection properties (4.7)–(4.9). Thus, employing
Cauchy–Schwarz, Hölder and Young’s inequalities, the continuity bound of C (cf. (3.4)), (4.14) and the
fact that ‖∂t ηu‖M ≤ ch−n(p−2)/(2p) ‖∂t ηu‖0,Ω , with ηu ∈ Mh, which follows from the global inverse
inequality (Ern & Guermond, 2004, Corollary 1.141), we obtain

1

2
∂t

(1

ν
‖ηd

σ ‖2
0,Ω + α ‖ηu‖2

0,Ω

)
+ ‖∂t ηu‖2

0,Ω

≤ 1

ν
‖∂t δσ ‖0,Ω ‖ησ ‖0,Ω + ‖C(u) − C(uh)‖M′ ‖∂t ηu‖M

≤ 1

ν
‖∂t δσ ‖0,Ω ‖ησ ‖0,Ω + C̃4h−n(p−2)/(2p)

(
1 + ‖u‖p−2

M + ‖uh‖p−2
M

)
‖eu‖M ‖∂tηu‖0,Ω

≤ C4h−n(p−2)/p
(

1 + ‖u‖2(p−2)

M + ‖uh‖2(p−2)

M

)(
‖∂t δσ ‖2

0,Ω + ‖eu‖2
M

)
+ 1

2
‖∂t ηu‖2

0,Ω + δ

2
‖ησ ‖2

X
,
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with C4 > 0 depending on |Ω|, ν, α,F. Thus, integrating from 0 to t ∈ (0, T], we find in particular that∫ t

0
‖∂t ηu‖2

0,Ω ds ≤ 2C4h−n(p−2)/p
(

1 + ‖u‖2(p−2)

L∞(0,T;M)
+ ‖uh‖2(p−2)

L∞(0,T;M)

)
×

(
‖δu(t)‖2

0,Ω +
∫ t

0

(
‖∂t δσ ‖2

0,Ω + ‖δσ ‖2
0,Ω + ‖δu‖p

M + ‖δu‖q
M + ‖δu‖2

M

)
ds

+ ‖δσ (0)‖2
0,Ω + ‖δu(0)‖p

M + ‖δu(0)‖q
M + ‖δu(0)‖2

M

)
+ δ

∫ t

0
‖ησ ‖2

X
ds,

which combined with (4.23), the fact that both ‖u‖L∞(0,T;M) and ‖uh‖L∞(0,T;M) are bounded by data (cf.
(3.27) and (4.5)), and taking δ = C̃d/(4 |Ω|(p−2)/p), allow us to deduce∫ t

0
‖ησ ‖2

X
≤ C5h−n(p−2)/p

(
‖δu(t)‖2

0,Ω +
∫ t

0

(
‖∂t δσ ‖2

0,Ω + ‖δσ ‖2
0,Ω + ‖δu‖p

M

)
ds

+
∫ t

0

(
‖δu‖q

M + ‖δu‖2
M

)
ds + ‖δσ (0)‖2

0,Ω + ‖δu(0)‖p
M + ‖δu(0)‖q

M + ‖δu(0)‖2
M

)
, (4.24)

with C5 > 0, depending only on |Ω|, ν, α,F, β̃ and data. Thus, using the error decomposition (4.6) in
combination with (4.24), we obtain (4.12) and complete the proof. �
Remark 4.1 The error bounds provided in Theorem 4.3 can be derived alternatively without the use
of the discrete inf-sup condition of B (cf. (4.3)), but in that case the expression in the right-hand side
of (4.11) and (4.12) will be more complicated. We also note that in the steady state case of (2.2) the
error estimate (4.12) does not include the term h−n(p−2)/(2p) because the global inverse inequality is not
necessary to bound ‖div ησ ‖Lq(Ω).

Now, in order to obtain theoretical rates of convergence for the discrete scheme (4.1), we recall
the approximation properties of the subspaces involved (see Colmenares et al., 2020, Section 5.5 and
Camaño et al., 2018a, Section 4.2.1). Note that each one of them is named after the unknown to which
it is applied later on.

(APσ
h ) For each l ∈ (0, k + 1] and for each τ ∈ H

l(Ω) ∩ X0 with div τ ∈ Wl,q(Ω), there holds

‖τ − Πk
h(τ )‖

X
≤ C hl

{
‖τ‖l,Ω + ‖div τ‖l,q;Ω

}
.

(APu
h) For each l ∈ [0, k + 1] and for each v ∈ Wl,p(Ω), there holds

‖v − Pk
h(v)‖M ≤ C hl ‖v‖l,p;Ω .

It follows that there exist positive constants C(∂t σ ), C(σ ) and C(u), depending on the extra
regularity assumptions for σ and u, respectively, and whose explicit expressions are obtained from
the right-hand side of the foregoing approximation properties, such that

‖∂t δσ ‖
X

≤ C(∂t σ ) hl, ‖δσ ‖
X

≤ C(σ ) hl and ‖δu‖M ≤ C(u) hl.
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Then, we establish the theoretical rate of convergence of the discrete scheme (4.1). Notice that, at least
sub-optimal rates of convergences of order O(hl q/2) and O(hl q/2−n(p−2)/(2p)) are confirmed.

Theorem 4.4 Let (σ , u) ∈ L∞(0, T;X0) × W1,∞(0, T; L2(Ω)) ∩ L∞(0, T; M) and (σ h, uh) ∈
L∞(0, T;X0,h) × W1,∞(0, T; Mh) be the unique solutions of the continuous and semidiscrete problems
(2.5) and (4.1), respectively. Assume further that there exists l ∈ (0, k+1], such that σ ∈ H

l(Ω), div σ ∈
Wl,q(Ω) and u ∈ Wl,p(Ω), with p ∈ [3, 4] and q ∈ [4/3, 3/2] satisfying 1/p + 1/q = 1. Then, there
exist C1(σ , u), C2(σ , u) > 0, depending only on C(∂t σ ), C(σ ), C(u), |Ω|, ν, α,F, β̃, p and data, such
that

‖ed
σ ‖L2(0,T;L2(Ω)) + ‖eu‖L2(0,T;M) + ‖eu‖L∞(0,T;L2(Ω)) ≤ C1(σ , u)

(
hl q/2 + hl + hl p/2

)
and

‖eσ ‖L2(0,T;X) ≤ C2(σ , u) h−n(p−2)/(2p)
(

hl q/2 + hl + hl p/2
)

.

Proof. It suffices to apply Theorem 4.3 and the approximation properties of the discrete subspaces. We
omit further details. �

4.3 Computing other variables of interest

In this section we introduce suitable approximations for other variables of interest, such that the pressure
p and the velocity gradient Gu := ∇u, both written in terms of the solution of the semidiscrete
continuous-in-time problem (4.1). In fact, observing that at the continuous level, there hold

p = −1

n
tr (σ ) and Gu = 1

ν
σ d,

provided the discrete solution (σ h, uh) ∈ X0,h × Mh of problem (4.1), we propose the following
approximations for the aforementioned variables:

ph = −1

n
tr (σ h) and Guh = 1

ν
σ d

h. (4.25)

Then, we define the corresponding errors ep = p − ph and eGu = Gu − Guh. The following result,
whose proof follows directly from Theorem 4.4, establishes the corresponding approximation result for
this post-processing procedure.

Corollary 4.5 Let the assumptions of Theorem 4.4 hold. Let ph and Guh given by (4.25). Then, there
exist C̃1(σ , u), C̃2(σ , u) > 0, depending only on C(∂t σ ), C(σ ), C(u), |Ω|, ν, α,F, β̃, p and data, such
that

‖eGu‖L2(0,T;L2(Ω)) ≤ C̃1(σ , u)
(

hl q/2 + hl + hl p/2
)

and

‖ep‖L2(0,T;L2(Ω)) ≤ C̃2(σ , u) h−n(p−2)/(2p)
(

hl q/2 + hl + hl p/2
)

.
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5. Fully discrete approximation

In this section we introduce and analyse a fully discrete approximation of (2.5) (cf. (4.1)). To that end, for
the time discretization we employ the backward Euler method. Let Δ t be the time step, T = N Δ t, and
let tn = n Δ t, n = 0, . . . , N. Let dt un := (Δ t)−1(un − un−1) be the first-order (backward) discrete time
derivative, where un := u(tn). Then the fully discrete method reads: given fn ∈ L2(Ω) and (σ 0

h, u0
h) =

(σ h(0), uh(0)) satisfying (4.2), find (σ n
h, un

h) ∈ X0,h × Mh, n = 1, . . . , N, such that

[A(σ n
h), τ h] + [B(τ h), un

h] = 0 ∀ τ h ∈ X0,h,

(dt un
h, vh)Ω − [B(σ n

h), vh] + [C(un
h), vh] = (fn, vh)Ω ∀ vh ∈ Mh.

(5.1)

Moreover, given a separable Banach space V endowed with the norm ‖ · ‖V, we introduce the discrete-
in-time norms

‖u‖p
�p(0,T;V) := Δ t

N∑
n=1

‖un‖p
V, ‖u‖�∞(0,T;V) := max

0≤n≤N
‖un‖V.

Next, we state the main results for method (5.1).

Theorem 5.1 For each (σ 0
h, u0

h) = (σ h(0), uh(0)) satisfying (4.2) and fn ∈ L2(Ω), n = 1, . . . , N, there
exists a unique solution (σ n

h, un
h) ∈ X0,h × Mh to (5.1). Moreover, assuming sufficient regularity of the

data, there exists a constant CF̂ > 0, depending only on |Ω|, ν, α,F, β̃, such that

‖σ h‖�2(0,T;X) + ‖uh‖�2(0,T;M) + ‖uh‖�∞(0,T;L2(Ω)) + Δ t ‖dt uh‖�2(0,T;L2(Ω)) ≤ CF̂ F̂(f, σ 0
h, u0

h) (5.2)

with

F̂(f, σ 0
h, u0

h) := ‖f‖p−1
�2(p−1)(0,T;L2(Ω))

+ ‖f‖�2(0,T;L2(Ω))

+ ‖(σ 0
h)

d‖0,Ω + ‖u0
h‖p/2

M + ‖u0
h‖p−1

0,Ω + ‖u0
h‖0,Ω .

Moreover, with the constant CG from (3.34), there holds

‖uh‖�∞(0,T;M) ≤ CG Ĝ(f, σ 0
h, u0

h) (5.3)

with

Ĝ(f, σ 0
h, u0

h) := ‖f‖2/p
�2(0,T;L2(Ω))

+ ‖(σ 0
h)

d‖2/p
0,Ω + ‖u0

h‖M + ‖u0
h‖2/p

0,Ω .

Proof. First, we note that at each time step the well posedness of the fully discrete problem (5.1), with
n = 1, . . . , N, follows from similar arguments to the proof of Lemma 3.5.

The proof of (5.2) and (5.3) follows the structure of the proof of Theorem 3.8. We choose (τ h, vh) =
(σ n

h, un
h) in (5.1) and use the identity

(dt un
h, un

h)Ω = 1

2
dt ‖un

h‖2
0,Ω + 1

2
Δ t ‖dt un

h‖2
0,Ω , (5.4)
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in combination with the coercivity bounds in (3.1) and (3.2), and Cauchy–Schwarz and Young’s
inequalities, to obtain the analogous estimate of (3.29), that is

1

2
dt ‖un

h‖2
0,Ω + 1

2
Δ t ‖dt un

h‖2
0,Ω + 1

ν
‖(σ n

h)
d‖2

0,Ω + F ‖un
h‖p

M + α ‖un
h‖2

0,Ω ≤ δ

2
‖fn‖2

0,Ω + 1

2 δ
‖un

h‖2
0,Ω .

(5.5)

In turn, from the discrete inf-sup condition of B (cf. (4.3)), the first equation of (5.1), and the continuity
bound of A (cf. (3.1)), we deduce that

β̃2 ν

2
‖un

h‖2
M ≤ 1

2 ν
‖(σ n

h)
d‖2

0,Ω ,

which combined with (5.5) and choosing δ = 1/α, yields

1

2
dt ‖un

h‖2
0,Ω + 1

2
Δ t ‖dt un

h‖2
0,Ω + 1

2 ν
‖(σ n

h)
d‖2

0,Ω + β̃2ν

2
‖un

h‖2
M + α

2
‖un

h‖2
0,Ω ≤ 1

2 α
‖fn‖2

0,Ω . (5.6)

Notice that, in order to simplify the stability bound, we have neglected the term ‖un
h‖p

M in the left-hand
side of (5.5). Thus, summing up over the time index n = 1, . . . , N in (5.6) and multiplying by Δ t, we
get

‖uN
h ‖2

0,Ω + (Δ t)2
N∑

n=1

‖dt un
h‖2

0,Ω + Δ t
N∑

n=1

(
‖(σ n

h)
d‖2

0,Ω + ‖un
h‖2

M + ‖un
h‖2

0,Ω

)

≤ C1

(
Δ t

N∑
n=1

‖fn‖2
0,Ω + ‖u0

h‖2
0,Ω

)
, (5.7)

with C1 > 0 depending only on ν, α and β̃.
On the other hand, from the second equation of (5.1), we have the identity

[B(σ n
h), vh] = − (fn, vh)Ω + [C(un

h), vh] + (dt un
h, vh)Ω ∀ vh ∈ Mh.

Then, employing the property div (X0) = M′ in combination with (3.2) and using similar arguments to
(5.7), we deduce the analogous estimate of (3.32), that is,

Δ t
N∑

n=1

‖div σ n
h‖2

Lq(Ω)

≤ C2

(
Δ t

N∑
n=1

(
‖fn‖2(p−1)

0,Ω + ‖fn‖2
0,Ω

)
+ ‖u0

h‖2(p−1)

0,Ω + ‖u0
h‖2

0,Ω + Δ t
N∑

n=1

‖dt un
h‖2

0,Ω

)
, (5.8)

with C2 > 0, depending on |Ω|, ν,F, α and β̃. Next, in order to bound the last term in (5.8), we apply
some algebraic manipulation in (5.1), choose (τ h, vh) = (σ n

h, dt un
h), and employ (5.4), Cauchy–Schwarz
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and Young’s inequalities, to obtain

1

2 ν
dt ‖(σ n

h)
d‖2

0,Ω + F (Δ t)−1 (|un
h|p−2un

h, un
h − un−1

h )Ω + α

2
dt ‖un

h‖2
0,Ω

+ Δ t

2

(
1

ν
‖dt (σ

n
h)

d‖2
0,Ω + α ‖dt un

h‖2
0,Ω

)
+ ‖dt un

h‖2
0,Ω ≤ 1

2
‖fn‖2

0,Ω + 1

2
‖dt un

h‖2
0,Ω . (5.9)

In turn, employing Hölder and Young’s inequalities, we have∣∣(|un
h|p−2un

h, un−1
h )Ω

∣∣ ≤ p − 1

p
‖un

h‖p
M + 1

p
‖un−1

h ‖p
M,

which implies

(Δ t)−1 (|un
h|p−2un

h, un
h − un−1

h )Ω ≥ (Δ t)−1

p

(
‖un

h‖p
M − ‖un−1

h ‖p
M

)
= 1

p
dt ‖un

h‖p
M. (5.10)

Thus, combining (5.9) with (5.10), summing up over the time index n = 1, . . . , N and multiplying by
Δ t, we get

‖uN
h ‖p

M + Δ t
N∑

n=1

‖dt un
h‖2

0,Ω ≤ C3

(
Δ t

N∑
n=1

‖fn‖2
0,Ω + ‖(σ 0

h)
d‖2

0,Ω + ‖u0
h‖p

M + ‖u0
h‖2

0,Ω

)
, (5.11)

with C3 := max
{
1, 1/ν, 2F/p, α

}
as in (3.33). Then, combining (5.11) with (5.8) yields

Δ t
N∑

n=1

‖div σ n
h‖2

Lq(Ω)

≤ C4

(
Δ t

N∑
n=1

(
‖fn‖2(p−1)

0,Ω + ‖fn‖2
0,Ω

)
+ ‖(σ 0

h)
d‖2

0,Ω + ‖u0
h‖p

M + ‖u0
h‖2(p−1)

0,Ω + ‖u0
h‖2

0,Ω

)
,

which, combined with (5.7) and (3.7), implies (5.2). In addition, (5.11) implies (5.3) with the same
constant CG as in (3.34), concluding the proof. �

Now, we proceed with establishing rates of convergence for the fully discrete scheme (5.1). To that
end, we subtract the fully discrete problem (5.1) from the continuous counterparts (2.5) at each time
step n = 1, . . . , N, to obtain the following error system:

[A(σ n − σ n
h), τ h] + [B(τ h), un − un

h] = 0,

(dt (u
n − un

h), vh)Ω − [B(σ n − σ n
h), vh] + [C(un) − C(un

h), vh] = (rn(u), vh)Ω ,
(5.12)

for all (τ h, vh) ∈ X0,h ×Mh, where rn denotes the difference between the time derivative and its discrete
analog, that is,

rn(u) = dt un − ∂t u(tn).
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In addition, we recall from Bukač et al. (2015, Lemma 4) that for sufficiently smooth u, there holds

Δ t
N∑

n=1

‖rn(u)‖2
0,Ω ≤ C(∂tt u) (Δ t)2, with C(∂tt u) := C ‖∂tt u‖2

L2(0,T;L2(Ω))
. (5.13)

Then, the proof of the theoretical rate of convergence of the fully discrete scheme (5.1) follows the
structure of the proof of Theorems 4.3 and 4.4, using discrete-in-time arguments as in the proof of
Theorem 5.1 and the estimate (5.13).

Theorem 5.2 Let the assumptions of Theorem 4.4 hold. Then for the solution of the fully discrete
problem (5.1) there exist Ĉ1(σ , u), Ĉ2(σ , u) > 0, depending only on C(∂tt u), C(σ ), C(u), |Ω|, ν, α,F,
β̃, p and data, such that

‖ed
σ ‖�2(0,T;L2(Ω)) + ‖eu‖�2(0,T;M) + ‖eu‖�∞(0,T;L2(Ω)) + Δ t ‖dt eu‖�2(0,T;L2(Ω))

≤ Ĉ1(σ , u)
(

hl q/2 + hl + hl p/2 + Δ t
)

and

‖eσ ‖�2(0,T;X) ≤ Ĉ2(σ , u) h−n(p−2)/(2p)
(

hl q/2 + hl + hl p/2 + Δ t
)

.

Consequently, and similarly to Corollary 4.5, we establish the corresponding approximation result
for the post-processed variables.

Corollary 5.3 Let the assumptions of Theorem 4.4 hold. Let ph and Guh be given by (4.25) at each
time step n = 1, . . . , N. Then, there exist C1(σ , u), C2(σ , u) > 0, depending only on C(∂tt u), C(σ ),
C(u), |Ω|, ν, α,F, β̃, p and data, such that

‖eGu‖�2(0,T;L2(Ω)) ≤ C1(σ , u)
(

hl q/2 + hl + hl p/2 + Δ t
)

and

‖ep‖�2(0,T;L2(Ω)) ≤ C2(σ , u) h−n(p−2)/(2p)
(

hl q/2 + hl + hl p/2 + Δ t
)

.

6. Numerical results

In this section we present numerical results that illustrate the behaviour of the fully discrete method
(5.1). Our implementation is based on a FreeFem++ code (see Hecht, 2012), in conjunction with the
direct linear solver UMFPACK from Davis (2004). One can alternatively utilize iterative solvers suitable
for saddle point problems, see e.g., Elman et al. (2014). For spatial discretization, we use the Raviart–
Thomas spaces RTk − Pk with k = 0, 1. We handle the nonlinearity using Newton’s method. The
iterations are terminated once the relative difference between the coefficient vectors for two consecutive
iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖�2

‖coeffm+1‖�2

≤ tol,
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28 S. CAUCAO AND I. YOTOV

Fig. 1. Example 1, computed magnitude of a component of the pseudostress tensor, and the velocity and a velocity component
(top plots); pressure field and magnitude of the velocity gradient components (bottom plots).

where ‖·‖�2 is the standard �2-norm in R
DOF, with DOF denoting the total number of degrees of freedom

defining the finite element subspaces Xh and Mh, and tol is a fixed tolerance chosen as tol = 1E − 06.
The examples considered in this section are described next. In all of them, and for the sake of

simplicity, we choose ν = 1, p = 3 and q = 3/2. In addition, the condition (tr (σ n
h), 1)Ω = 0 is

implemented using a scalar Lagrange multiplier (adding one row and one column to the matrix system
that solves (5.1) for σ n

h and un
h). We note that all numerical examples have non-homogeneous Dirichlet

boundary conditions, which, as mentioned in Remark 3.3, is also covered by the theory.
Examples 1 and 2 are used to corroborate the rate of convergence in two- and three-dimensional

domains, respectively. The total simulation time for these examples is T = 0.01 s and the time step is
Δ t = 10−3 s. The time step is sufficiently small, so that the time discretization error does not affect
the convergence rates. On the other hand, Examples 3 and 4 are used to analyse the behaviour of the
method when different Darcy and Forchheimer coefficients are considered in different scenarios. For
these cases, the total simulation time and the time step are considered as T = 1 s and Δ t = 10−2 s,
respectively.

Example 1: two-dimensional smooth exact solution

In this test we study the convergence for the space discretization using an analytical solution. The
domain is the square Ω = (0, 1)2. We consider α = 1,F = 10, and the data f is adjusted so that
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Table 1 Example 1, number of degrees of freedom, mesh sizes, errors, rates of
convergences and average number of Newton iterations for the mixed RT0 − P0
approximation of the Brinkman–Forchheimer model

‖eσ ‖�2(0,T;X) ‖eu‖�2(0,T;M)

DOF h error rate error rate

196 0.3727 4.3E−01 — 2.3E−02
792 0.1964 1.8E−01 1.3822 9.9E−03 1.3081
3084 0.0970 8.7E−02 1.0326 5.0E−03
12208 0.0478 4.1E−02 1.0721 2.4E−03 1.0245
48626 0.0245 2.0E−02 1.0419 1.2E−03 1.0150
196242 0.0128 1.0E−02 1.0826 6.1E−04 1.0761

‖eu‖�∞(0,T;L2(Ω)) ‖ep‖�2(0,T;L2(Ω)) ‖eGu‖�2(0,T;L2(Ω))

error rate error rate error rate iter

2.0E−01 — 4.5E−02 — 7.2E−02 — 3
8.7E−02 1.3077 1.8E−02 1.3903 3.4E−02 1.1696 3
4.4E−02 0.9773 8.6E−03 1.0837 1.7E−02 0.9690 3
2.1E−02 1.0184 3.5E−03 1.2611 8.6E−03 0.9710 3
1.1E−02 1.0188 1.8E−03 1.0284 4.3E−03 1.0421 3
5.3E−03 1.0755 8.5E−04 1.1326 2.1E−03 1.0753 3

the exact solution is given by the smooth functions

u = exp(t)

(
sin(π x) cos(π y)

− cos(π x) sin(π y)

)
, p = exp(t) cos(π x) sin

(π y

2

)
.

The model problem is then complemented with the appropriate Dirichlet boundary condition and initial
data.

In Fig. 1 we display the solution obtained with the mixed finite element method using a second-
order approximation and 627, 360DOF at time T = 0.01. Note that we are able to compute, not
only the original unknowns, but also the pressure field and velocity gradient through the formulas in
(4.25). Tables 1 and 2 show the convergence history for a sequence of quasi-uniform mesh refinements,
including the average number of Newton iterations. The results illustrate that the sub-optimal spatial
rates of convergence O(h3 (k+1)/4) and O(h3 (k+1)/4−1/3) provided by Theorem 5.2 and Corollary 5.3
(see also Theorem 4.4 and Corollary 4.5) are attained for k = 0, 1. Moreover, the numerical results
suggest optimal rate of convergence O(hk+1). The Newton’s method exhibits behaviour independent of
the mesh size, converging in three or four iterations in all cases.

Example 2: three-dimensional smooth exact solution

In our second example we consider the cube domain Ω = (0, 1)3. The solution is given by

u = exp(t)

⎛⎝ sin(π x) cos(π y) cos(π z)
−2 cos(π x) sin(π y) cos(π z)

cos(π x) cos(π y) sin(π z)

⎞⎠ , p = exp(t) (x − 0.5)3 sin(y + z).
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Table 2 Example 1, number of degrees of freedom, mesh sizes, errors, rates of
convergences and average number of Newton iterations for the mixed RT1 − Pdc

1
approximation of the Brinkman–Forchheimer model

‖eσ ‖�2(0,T;X) ‖eu‖�2(0,T;M)

DOF h error rate error rate

608 0.3727 6.2E−01 — 5.1E−03
2496 0.1964 1.8E−01 1.8958 1.2E−03 2.2442
9792 0.0970 5.1E−02 1.8033 3.0E−04 1.9672
38912 0.0478 1.4E−02 1.8696 7.6E−05 1.9515
155296 0.0245 3.5E−03 2.0277 1.9E−05 2.0669
627360 0.0128 8.4E−04 2.1899 4.5E−06 2.1837

‖eu‖�∞(0,T;L2(Ω)) ‖ep‖�2(0,T;L2(Ω)) ‖eGu‖�2(0,T;L2(Ω))

error rate error rate error rate iter

5.7E−02 — 6.3E−02 — 3.4E−02 — 3
1.4E−02 2.2166 1.1E−02 2.6684 8.3E−03 2.2220 3
3.5E−03 1.9686 1.8E−03 2.5820 2.0E−03 1.9999 3
8.8E−04 1.9396 3.9E−04 2.1791 5.1E−04 1.9384 3
2.2E−04 2.0693 6.4E−05 2.7237 1.3E−04 2.1013 3
5.4E−05 2.1671 1.2E−05 2.5604 3.0E−05 2.2057 3

Similarly to the first example, we consider the parameters α = 1,F = 10 and the right-hand side
function f is computed from (2.1) using the above solution.

The numerical solution at time T = 0.01 is shown in Fig. 2. The convergence history for a set
of quasi-uniform mesh refinements using k = 0 is shown in Table 3. Again, the mixed finite element
method converges optimally with order O(h), which is better than the theoretical sub-optimal rates of
convergence O(h3/4) and O(h1/4) provided by Theorem 5.2 and Corollary 5.3 (see also Theorem 4.4
and Corollary 4.5).

Example 3: lid-driven cavity flow with different Darcy and Forchheimer coefficients

In our third example, inspired by Louaked et al. (2017, Section V), we study the behaviour of the model
for lid-driven cavity flow in the square domain Ω = (0, 1)2 with different values of the parameters α

and F. The body force term is chosen as f = 0, the initial condition is zero and the boundaries conditions
are

u = (1, 0) on Γtop, u = 0 on ∂Ω \ Γtop.

In Fig. 3 we display the approximated magnitude of the velocity under two scenarios. In the first
one we consider fixed α = 1 and different values of F, i.e., F ∈ {

1, 10, 100, 1000
}
, whereas in the

second case we take fixed F = 1 and different α ∈ {
10, 100, 1000

}
. The curves corresponding to the

values of the first velocity component along the vertical line through the cavity center for the different
values of α and F are shown in Fig. 4. The results illustrate the ability of the method to handle a wide
range of parameters. In addition, we observe a reasonable behaviour of the Brinkman–Forchheimer
model when varying the parameters. In particular, keeping α fixed and increasing F results in slower
flow, since the nonlinear inertial term starts dominating the viscous term in the Stokes flow. Keeping
F fixed and increasing α has an even stronger effect of slowing down the flow, since in this case the
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Fig. 2. Example 2, computed magnitude of a component of the pseudostress tensor, and the velocity and a velocity component
(top plots); pressure field and magnitude of the velocity gradient components (bottom plots).

model approaches Darcy flow with smaller and smaller permeability. We note that the case F = 1,
α = 1000 is especially challenging numerically, due to the sharp boundary layer near the top boundary.
The numerical method obtains a stable solution and resolves the high velocity gradient, which is in
accordance with Corollary 5.3.

Example 4: flow through porous media with channel network

In our last example, inspired by Ambartsumyan et al. (2019a, Section 5.2.4), we focus on flow through
porous media with channel network. We consider the square domain Ω = (−1, 1)2 with an internal
channel network denoted as Ωc, which is described in the first plot of Fig. 5. We consider the Brinkman–
Forchheimer model (2.2) in the whole domain Ω , but with different values of the parameters α and F
for the interior and the exterior of the channel, that is,

α =
{

1 in Ωc
1000 in Ω \ Ωc

and F =
{

10 in Ωc
1 in Ω \ Ωc

.

The parameter choice corresponds to a high permeability (α = 1) in the channel and increased inertial
effect (F = 10), compared to low permeability (α = 1000) in the porous media and reduced inertial
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Table 3 Example 2, number of degrees of freedom, mesh sizes, errors, rates of
convergences and average number of Newton iterations for the mixed RT0 − P0
approximation of the Brinkman–Forchheimer model

‖eσ ‖�2(0,T;X) ‖eu‖�2(0,T;M)

DOF h error rate error rate

504 0.7071 1.8E−00 — 5.1E−02 —
3744 0.3536 8.1E−01 1.1148 2.7E−02 0.9181
28800 0.1768 3.7E−01 1.1120 1.4E−02 0.9726
225792 0.0884 1.8E−01 1.0863 7.0E−03 0.9927
1787904 0.0442 8.5E−02 1.0486 3.5E−03 0.9981

‖eu‖�∞(0,T;L2(Ω)) ‖ep‖�2(0,T;L2(Ω)) ‖eGu‖�2(0,T;L2(Ω))

error rate error rate error rate iter

4.5E−01 — 1.4E−01 — 2.3E−01 — 4
2.4E−01 0.9353 7.2E−02 0.9785 1.2E−01 0.9868 4
1.2E−01 0.9758 3.3E−02 1.1336 5.9E−02 0.9897 3
6.1E−02 0.9940 1.3E−02 1.3651 2.9E−02 0.9957 3
3.0E−02 0.9985 4.7E−03 1.4490 1.5E−02 0.9985 3

Fig. 3. Example 3, approximated magnitude of the velocity at time T = 1, considering α = 1 and F ∈ {
1, 10, 100, 1000

}
(top

plots), and F = 1 and α ∈ {
10, 100, 1000

}
(bottom plots).
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Fig. 4. Example 3, curves associated to the first velocity component along the vertical line through the cavity center considering
different values of α and F.

Fig. 5. Example 4, domain configuration, computed magnitude of the velocity, pseudostress tensor component and velocity
gradient component at time T = 0.01 (top plots), and at time T = 1 (bottom plots).

effect (F = 1). In addition, the body force term is f = 0, the initial condition is zero and the boundaries
conditions are

u · n = 0.2, u · t = 0 on Γleft, σ n = 0 on ∂Ω \ Γleft,

which corresponds to inflow on the left boundary and zero stress outflow on the rest of the boundary.
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In Fig. 5 we display the computed magnitude of the velocity, pseudostress tensor component and
velocity gradient component at times T = 0.01 and T = 1. As expected, we observe faster flow through
the channel network, with a significant velocity gradient across the interface between the channel
and the porous media. The pseudostress is more diffused, since it includes the pressure field. This
example illustrates the ability of the Brinkman–Forchheimer model to handle heterogeneous media
using spatially varying parameters, as well as the ability of our new mixed finite element method to
resolve sharp velocity gradients in the presence of strong jump discontinuity of the parameters.

7. Concluding remarks

We have derived and analysed a new mixed finite element method for the unsteady Brinkman–
Forchheimer problem based on a pseudostress-velocity mixed formulation in Banach spaces. We have
shown that the method is well posed and have analysed its convergence. The main advantages of our
mixed formulation compared with previous works based on the classical velocity-pressure formulation
(Celebi et al., 2006; Djoko & Razafimandimby, 2014; Louaked et al., 2015, 2017) are the direct
approximation of a new variable of physical interest, the pseudostress tensor and a simple post-
processing to recover the pressure and velocity gradient, preserving the rate of convergence. These
advantages are illustrated by the numerical experiments. Our new mixed formulation also offers a
potential advantage for the efficient solution of the resulting algebraic saddle point system, using the
multipoint stress mixed finite element method developed in Ambartsumyan et al. (2020). The approach
is based on employing suitable mixed finite element spaces and quadrature rules that allow for local
stress elimination, resulting in a positive definite system for the velocity only. This is a topic of current
research.
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