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Abstract—We study the problem of estimating a random
process from the observations collected by a network of
sensors that operate under resource constraints. When
the dynamics of the process and sensor observations are
described by a state-space model and the resource are
unlimited, the conventional Kalman filter provides the mini-
mum mean square error (MMSE) estimates. However, at any
given time, restrictions on the available communications
bandwidth and computational capabilities and/or power im-
pose a limitation on the number of network nodes, whose
observations can be used to compute the estimates. We
formulate the problem of selecting the most informative
subset of the sensors as a combinatorial problem of max-
imizing a monotone set function under a uniform matroid
constraint. For the MMSE estimation criterion, we show
that the maximum elementwise curvature of the objective
function satisfies a certain upper-bound constraint and is,
therefore, weak submodular. Building upon the work of
Mirzasoleiman et al. on submodular maximization, we de-
velop an efficient randomized greedy algorithm for sen-
sor selection and establish guarantees on the estimator’s
performance in this setting. Extensive simulation results
demonstrate the efficacy of the randomized greedy algo-
rithm compared to state-of-the-art greedy and semidefinite
programming relaxation methods.
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I. INTRODUCTION

M
ODERN sensor networks deploy a large number of nodes

that either exchange their noisy and possibly processed

observations of a random process or forward those observations

to a data fusion center. Due to constraints on computation,

power, and communication resources, instead of estimating the

process using information collected by the entire network, the

fusion center typically queries a relatively small subset of the

available sensors. The problem of selecting the sensors that

would acquire the most informative observations arises in a

number of applications in control and signal processing systems,

including sensor selection for Kalman filtering [3]–[5], batch

state and stochastic process estimation [6], [7], minimal actuator

placement [8], [9], voltage control and meter placement in

power networks [10]–[12], sensor scheduling in wireless sensor

networks [3], [13], and subset selection in machine learning [2].

For a variety of performance criteria, finding an optimal subset

of sensors requires solving a computationally challenging com-

binatorial optimization problem, possibly using branch-and-

bound search [14]. By reducing it to the set cover problem, sensor

selection was, in fact, shown to be NP-hard [15]. This hardness

result has motivated development of numerous heuristics and

approximate algorithms. For instance, Joshi and Boyd [16]

formulated the sensor selection problem as the maximization

(minimization) of the log det of the Fisher information matrix

(error covariance matrix) and found a solution by relaxing the

problem to a semidefinite program (SDP). The computational

complexity of finding the solution to the SDP relaxation of the

sensor selection problem is cubic in the total number of available

sensors, which limits its practical feasibility in large-scale net-

works consisting of many sensing nodes. Moreover, the solution

to the SDP relaxation comes with no performance guarantees.

To overcome these drawbacks, Shamaiah et al. [4] proposed a

greedy algorithm guaranteed to achieve at least (1− 1/e) of

the optimal objective at a complexity lower than that of the SDP

relaxation. The theoretical underpinnings of the greedy approach

to the sensor selection problem in [4] are drawn from the area

of submodular function optimization. In particular, these results

stem from the fact that the logarithm of the determinant (log det)
of the Fisher information matrix is a monotone submodular func-

tion. Nemhauser et al. [17] studied maximization of such a func-

tion subject to a uniform matroid constraint and showed that the

greedy algorithm, which iteratively selects items providing max-

imum marginal gain, achieves (1− 1/e) approximation factor.
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More recently, the authors of [5]–[7] and [9] have employed and

analyzed greedy algorithms for finding approximate solutions

to the log det maximization problem in a number of practical

settings.

Most of the existing work on greedy sensor selection has

been focused on optimizing the log det of the Fisher information

matrix, an objective indicative of the volume of the confidence

ellipsoid. However, this criterion does not explicitly relate to the

mean square error (MSE), which is often a natural performance

metric of interest in estimation problems. The MSE, i.e., the

trace of the covariance matrix of the estimation error, is not

supermodular [18]–[23]. Therefore, its negative value, which

we would like to maximize, is not submodular. Consequently,

the setting and results of [17] do not apply to the MSE min-

imization problem. Recently, Wang et al. [24] have analyzed

the performance of the greedy algorithm in the general setting

of maximizing a monotone nondecreasing objective function

that is not necessarily submodular. They used a notion of the

elemental curvature µ of the objective function to show that

the greedy algorithm provides a ((1 + µ)−1) approximation

under a matroid constraint. However, determining the elemental

curvature defined in [24] is itself an NP-hard problem. Therefore,

providing performance guarantees for the settings, where the

objective function is not submodular or supermodular, such as

the trace of the covariance matrix of the estimation error in the

sensor selection problem, remains a challenge. On another note,

processing massive amounts of data collected by modern large-

scale networks may be challenging even for greedy algorithms.

To further reduce the computational burden of maximizing a

monotone increasing submodular function subject to cardinality

constraints, the authors of [2] proposed a stochastic greedy

algorithm that achieves (1− 1/e− ε) approximation factor,

where ε denotes a parameter that can be varied to explore the

performance–complexity tradeoff. However, the results of [2]

do not apply to the sensor selection problem under the (nonsub-

modular) MSE objective.

The following are contributions of this article.

1) We formulate the task of selecting sensors in a large-

scale network as the problem of maximizing a monotone

nonsubmodular objective function directly related to the

mean square estimation error.

2) By closely inspecting curvature of the objective function,

we derive sufficient conditions under which the function is

weak submodular. This enables us to argue that when the

measurement vectors are Gaussian or Bernoulli, as fre-

quently encountered in reduced-dimensionality Kalman

filtering via random projections [25], the MSE objective

is with high probability weak submodular.

3) We study the important setting, where the dynamics of

the process and sensor observations is described by a

state-space model and, building upon the work of Mirza-

soleiman et al. [2], propose a randomized greedy algo-

rithm for sensor selection and derive a bound on the MSE

of the state estimate formed by the Kalman filter that uses

the measurements of the selected sensors.

4) Our novel technique for the analysis of the randomized

greedy algorithm provides results that improve over the

existing performance guarantees of [2] for submodular

maximization problems.

5) Extensive simulations demonstrate that the proposed ran-

domized greedy sensor selection scheme significantly

outperforms both greedy and SDP relaxation methods in

terms of computational complexity, and hence runtime,

while providing essentially the same or improved MSE.

Our preliminary work on randomized greedy sensor selection

was presented at the 2018 American Control Conference [1].

The current article presents a significantly more thorough and

detailed analysis of the proposed algorithmic framework. This

includes the results in Theorem 3 and its corollary regarding

performance guarantee of the randomized greedy algorithm

for any instance of the sensor selection problem; prior results,

summarized in Theorem 2, were limited to the guarantees of the

expected performance. Moreover, we complement our theoreti-

cal results by presenting numerical evaluations for an application

of multiobject tracking via UAVs.

The rest of this article is organized as follows. Section II

presents a motivating example and sets up the system model.

In Section III, we describe the novel formulation of the sensor

selection problem and derive a bound on the curvature of the

MSE-related objective function. In Section IV, we introduce

the randomized greedy algorithm and analyze its performance.

Section V presents the simulation results, Finally, Section VI

concludes this article.

Notation: Bold capital letters denote matrices, while bold

lowercase letters represent vectors. Hk(i, j) is the (i, j) entry

of the time-varying matrix Hk at time k, hk,j is the jth row

of Hk, Hk,S is a submatrix of Hk that consists of the rows

of Hk indexed by the set S, and λmax(Hk) and λmin(Hk) are

the maximum and minimum eigenvalues of Hk, respectively.

Spectral (�2) norm of a matrix is denoted by ‖.‖. In ∈ R
n×n is

the identity matrix. Moreover, let [n] := {1, 2, . . . , n}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section starts by a description of a motivating exam-

ple of multiobject tracking under communication and power

constraints. Then, we proceed to define the system model and

mathematically formulate the sensor selection problem studied

in this article.

A. Motivating Example: Accelerated Multiobject Tracking

Consider a tracking system, shown in Fig. 1, where a control

unit surveys an area via a swarm of unmanned aerial vehicles

(UAVs). The UAVs are equipped with GPS and radar systems

and can communicate with each other over locally established

communication channels. However, only a few of the UAVs

known as swarm leaders are allowed to communicate to the

control unit because of various practical restrictions such as

power constraints. The UAVs patrol the area according to a

predefined search pattern (i.e., a dynamic model) to gather

information about the location of mobile objects of interest. That

is, the UAVs move along an elliptically shaped path with constant

speed. Each UAV, by using its radar system, acquires range

and angular measurements of all the objects that are within the
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Fig. 1. Multiobject tracking via a swarm of UAVs. The UAVs can
communicate with each other and are equipped with GPS and radar
systems. The objective is to select a small subset of range and angular
measurements gathered by the UAVs to communicate to the control unit.

maximum radar detection range and are capable of transmitting

those measurements to the swarm leaders. Therefore, we assume

that the detection probability is one for all the targets that are

within the sensing range of each UAV. Additionally, we assume

that there are a finite number of targets that are uniquely tagged

in a way that the UAVs can exactly identify them in order to

achieve error-free data association.

Due to limitations on the rate of communication between

the swarm leaders and the control unit, and to reduce delays

in tracking from high computation, only a subset of the gathered

measurements is communicated to the control unit. In order

to track the locations of the objects, the control unit employs

Kalman filtering using the received measurements. Therefore,

the goal of swarm leaders is to perform sensor scheduling and

select a subset of range and angular measurements such that 1)

the communication constraint is satisfied and 2) the MSE of the

Kalman filter estimate of the objects’ locations is minimized.

B. System Model

Consider a discrete-time, linear, time-varying state-space

model described by

xk+1 = Akxk +wk

yk = Hkxk + vk (1)

where xk ∈ R
m is the state vector at time k that we aim to

estimate, yk ∈ R
n is the measurement vector, wk ∈ R

m and

vk ∈ R
n are zero-mean white Gaussian noise processes with

covariances Qk and Rk, respectively, Ak ∈ R
m×m is the state

transition matrix, and Hk ∈ R
n×m is the matrix, whose rows

at time k are the measurement vectors hk,i ∈ R
m, 1 ≤ i ≤ n.

We assume that the states xk are uncorrelated with wk and

vk. Additionally, we assume that x0 ∼ N (0,Σx) withΣx � 0,

and Rk = diag(σ2
1 , . . . , σ

2
n). Note that, unlike the past work on

greedy sensor selection in [4], [13], [26], and [27], this model

does not restrict the measurement noise covariance matrix to be

a multiple of identity.

Due to limited resources, the fusion center aims to select K
out of n sensors and uses their measurements to estimate the

state vector xk such that the trace of the covariance matrix of

the estimation error, i.e., the MSE of the estimator implemented

using the Kalman filter, is minimized. Similar to prior work

in [4], [13], and [16], we assume that the measurement vectors

hk,i are available at the fusion center. Let x̂k|k−1 and x̂k|k
denote the predicted and filtered linear minimum mean square

error (LMMSE) estimators of xk, respectively. In other words,

x̂k|k−1 is the LMMSE estimator of xk given {yS1
, . . . ,ySk−1

}
and x̂k|k is the LMMSE estimator of xk given {yS1

, . . . ,ySk
},

where Sj denotes the set of sensors selected at time j and ySj

denotes the vector of measurements collected by those sensors.

Moreover, let Pk|k−1 and Pk|k denote the predicted and filtered

error covariance matrix of the Kalman filter at time instant k,

respectively, i.e.,

Pk|k−1 = AkPk−1|k−1A
�
k +Qk

Pk|k =
(

P−1
k|k−1 +H�

k,Sk
R−1

k,Sk
Hk,Sk

)−1

where P0|0 = Σx. Since Rk = diag(σ2
1 , . . . , σ

2
n) and the mea-

surements are uncorrelated across sensors, it holds that

Pk|k =
(

P−1
k|k−1 +H�

k,Sk
diag({σ−2

i }i∈Sk
)Hk,Sk

)−1

.

Furthermore, FSk
= P−1

k|k = P−1
k|k−1 +

∑

i∈Sk
σ−2
i hk,ih

�
k,i is

the corresponding Fisher information matrix. In the information

form, the filtered estimator of xk is expressed as

x̂k|k = F−1
Sk
H�

k,Sk
diag({σ−2

i }i∈Sk
)yk. (2)

The MSE of the estimate found in (2) is given by the trace of

the filtered error covariance matrix Pk|k

MSESk
= E

[

∥

∥xk − x̂k|k
∥

∥

2

2

]

= Tr
(

F−1
Sk

)

. (3)

To minimize (3), at each time step, the fusion center seeks a

solution to the optimization problem

min
S

Tr
(

F−1
S

)

s.t. S ⊂ [n], |S| = K. (4)

By a reduction to the well-known set cover problem, the combi-

natorial optimization (4) can be shown to be NP-hard [15], [28].

In principle, to find the optimal solution, one needs to exhaus-

tively search over all schedules of K sensors. The techniques

proposed in [16], albeit for an optimality criterion different

from MSE and a simpler measurement model, find a subset of

sensors that yields a suboptimal MSE performance while being

computationally much more efficient than the exhaustive search.

In particular, Joshi and Boyd [16] rely on finding the solution to

the following SDP relaxation:

min
zk,Y

Tr(Y)

s.t. 0 ≤ zk,i ≤ 1, ∀i ∈ [n]

n
∑

i=1

zk,i = K

[

Y I

I P−1
k|k−1 +

∑n
i=1 zk,iσ

−2
i hk,ih

�
k,i

]


 0. (5)

The complexity of the SDP algorithm scales as O(n3), which

is infeasible in many practical settings. Furthermore, there are

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 30,2021 at 21:59:29 UTC from IEEE Xplore.  Restrictions apply. 



202 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 1, JANUARY 2021

no guarantees on the achievable MSE performance of the SDP

relaxation. Note that when the number of sensors in a network

and the size of the state vector xk are relatively large, even

the greedy algorithm proposed in [4] may be computationally

prohibitive.

III. SENSOR SELECTION VIA OPTIMIZING A WEAK

SUBMODULAR OBJECTIVE

Leveraging the idea of weak submodularity, in this section,

we propose a new formulation of the sensor selection problem

concerned with minimizing the MSE of the Kalman filter that

relies on a subset of network nodes to track states of a hidden

random process. We first overview concepts that are essential

for the development of the proposed framework.

Definition 1: A set function f : 2X → R is monotone non-

decreasing if f(S) ≤ f(T ) for all S ⊆ T ⊆ X .

Definition 2: A set function f : 2X → R is submodular if

f(S ∪ {j})− f(S) ≥ f(T ∪ {j})− f(T ) (6)

for all subsets S ⊆ T ⊂ X and j ∈ X\T .

A concept closely related to submodularity is the notion of

curvature of a set function. The curvature quantifies how close

the function is to being submodular. In particular, here, we state

the definition of the elementwise curvature (also known as the

approximate weak submodularity constant) [24], [26], [29], [30].

Definition 3: The elementwise curvature Cl of a monotone

nondecreasing function f is defined as

Cl = max
(S,T,i)∈Xl

fi(T )/fi(S) (7)

where fi(S) = f(S ∪ {i})− f(S) and fi(T ) = f(T ∪ {i})−
f(T ) denote the marginal values of adding element i to sets

S and T , respectively, and Xl = {(S, T, i)|S ⊂ T ⊂ X, i ∈
X\T, |T\S| = l, |X| = n}. Furthermore, the maximum ele-

mentwise curvature is denoted by Cmax = maxl Cl.
A set function is submodular if and only if Cmax ≤ 1. We refer

to f(S) as being weak submodular if its curvature Cmax > 1
is bounded above. Note that while computing the elementwise

curvature is NP-hard, the bound on the proposed sensor selec-

tion objective that we derive in Theorem 1 can be efficiently

evaluated.

Definition 4: LetX be a finite set and letI denote a collection

of subsets of X . The pair M = (X, I) is a matroid if the

following two statements hold.

1) Hereditary property: If T ∈ I, then S ∈ I for all S ⊆ T .

2) Augmentation property: If S, T ∈ I and |S| < |T |, then

there exists e ∈ T\S such that S ∪ {e} ∈ I.

The collection I is called the set of independent sets of the

matroid M. A maximal independent set is a basis. It is easy to

show that all the bases of a matroid have the same cardinality.

Given a monotone nondecreasing set function f : 2X → R

with f(∅) = 0, and a uniform matroid M = (X, I), we are

interested in solving the combinatorial problem

max
S∈I

f(S). (8)

Recall that for Kalman filtering in the resource constrained

scenario, if Sk is the set of sensors selected at time k, then the

error covariance matrix of the filtered estimate is Pk|k = F−1
Sk

,

the inverse of the corresponding Fisher information matrix. Let

us define f(S) as

f(S) = Tr
(

Pk|k−1 − F−1
S

)

.

Clearly, since Pk|k−1 is known, there is a one-to-one correspon-

dence between f(Sk) computed for a given subset of sensors Sk

and the MSE of the LMMSE estimator (i.e., filtered estimate of

the Kalman filter) that uses measurements acquired by the sen-

sors in Sk. Therefore, we can express the optimization problem

(4) as

max
S

f(S) s.t. S ⊂ [n], |S| = K. (9)

We now argue that (9) is indeed an instance of the general

combinatorial problem (8). By defining X = [n] and I = {S ⊂
X||S| ≤ K}, it is easy to see that M = (X, I) is a uniform

matroid. In Proposition 1, we characterize important properties

of f(S) and develop a recursive scheme to efficiently compute

the marginal gain of querying a sensor. The formula for the

marginal gain of f(S) is also of interest in our subsequent

analysis of its weak submodularity properties.

Proposition 1: Let f(S) = Tr(Pk|k−1 − F−1
S ). Then, f(S)

is a monotonically increasing set function, f(∅) = 0, and

fj(S) =
h�
k,jF

−2
S hk,j

σ2
j + h�

k,jF
−1
S hk,j

(10)

where upon adding element j ∈ X\S to S, FS is updated

according to

F−1
S∪{j} = F−1

S −
F−1

S hk,jh
�
k,jF

−1
S

σ2
j + h�

k,jF
−1
S hk,j

. (11)

Proof: See Appendix A. �

As stated in Section I, the MSE is not supermodular [18], [23].

Consequently, the proposed objective f(S) = Tr(Pk|k−1 −
F−1

S ) is also not submodular. However, as we show in

Theorem 1, under certain conditions, f(S) is characterized by

a bounded maximum elementwise curvature Cmax. Theorem 1

also states a probabilistic theoretical upper bound on Cmax in

scenarios, where, at each time step, the measurement vectors

hk,js are realizations of independent identically distributed

(i.i.d.) random vectors drawn from a suitable distribution.

Before proceeding to Theorem 1 and its proof, we first state

the matrix Bernstein inequality [31] and Weyl’s inequality [32],

which we will later use in the proof of Theorem 1.

Lemma 1 (Matrix Bernstein inequality [31]): Let {X�}n�=1

be a finite collection of independent, random, Hermitian ma-

trices in R
m×m. Assume that for all � ∈ [n], we have

E [X�] = 0, λmax(X�) ≤ L. (12)

Let Y =
∑n

�=1 X�. Then, for all q > 0, it holds that

Pr{λmax(Y) ≥ q} ≤ m exp

( −q2/2

‖E [Y2] ‖+ Lq/3

)

. (13)
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Lemma 2 (Weyl’s inequality [32]): LetA andB be twom×
m real positive-definite matrices. Then, it holds that

λl(A) + λmin(B) ≤ λl(A+B) ≤ λl(A) + λmax(B) (14)

where λl(A) denotes the lth largest eigenvalue of A.

We now proceed to the statement and proof of Theorem 1.

Theorem 1: LetCmax be the maximum elementwise curvature

of f(S), the objective function of the sensor selection problem.

Assume that ‖hk,j‖22 ≤ C for all j and k. If

λmax(H
�
kHk) ≤

(

1

φ
− 1

λmin(Pk|k−1)

)

min
j∈[n]

σ2
j (15)

for some 0 < φ < λmin(Pk|k−1), then it holds that

Cmax ≤ max
j∈[n]

λmax(Pk|k−1)
2(σ2

j + λmax(Pk|k−1)C)

φ2(σ2
j + φC)

. (16)

Furthermore, if hk,js are i.i.d. zero-mean random vectors with

covariance matrix σ2
hIm such that σ2

h < C, then, for all q > 0,

with probability

p ≥ 1−m exp

( −q2/2

(C − σ2
h)(nσ

2
h + q/3)

)

(17)

it holds that

φ = min
j∈[n]

(

1

λmin(Pk|k−1)
+

nσ2
h + q

σ2
j

)−1

> 0. (18)

Proof: We prove the statement of the theorem by relying

on the recursive expression for the marginal gain stated in

Proposition 1. We first establish a sufficient condition for weak

submodularity of f(S). In particular, from the definition of the

elementwise curvature and (10), for all (S, T, j) ∈ Xl, we obtain

Cl = max
(S,T,j)∈Xl

(h�
k,jF

−2
T hk,j)(σ

2
j + h�

k,jF
−1
S hk,j)

(h�
k,jF

−2
S hk,j)(σ2

j + h�
k,jF

−1
T hk,j)

≤ max
(S,T,j)∈Xl

λmax(F
−2
T )(σ2

j + λmax(F
−1
S )‖hk,j‖22)

λmin(F
−2
S )(σ2

j + λmin(F
−1
T )‖hk,j‖22)

(19)

where the inequality follows from the Courant–Fischer min–

max theorem [32]. Notice that λmax(F
−1
S ) = λmin(FS)

−1 and

λmin(FT ) ≥ λmin(FS) ≥ λmin(F∅) = λmin(P
−1
k|k−1) by Lemma

2. This fact, along with the definition of Cmax implies

Cmax ≤ max
j∈[n]

λmax(Pk|k−1)
2(σ2

j + λmax(Pk|k−1)‖hk,j‖22)
λmax(FS)−2(σ2

j + λmax(FT )−1‖hk,j‖22)
(a)

≤ max
j∈[n]

λmax(Pk|k−1)
2(σ2

j + λmax(Pk|k−1)‖hk,j‖22)
λmax(F[n])−2(σ2

j + λmax(F[n])−1‖hk,j‖22)
(b)

≤ max
j∈[n]

λmax(Pk|k−1)
2(σ2

j + λmax(Pk|k−1)C)

λmax(F[n])−2(σ2
j + λmax(F[n])−1C)

(20)

where (a) follows from the fact that λmax(FS) ≤ λmax(FT ) ≤
λmax(F[n]) and (b) holds since

g(x) =
σ2
j + λmax(Pk|k−1)x

σ2
j + λmax(F[n])−1x

(21)

is a monotonically increasing function for x > 0. Now, since the

maximum eigenvalue of a positive-definite matrix satisfies the

triangle inequality, we have

λmax(F[n]) ≤
1

λmin(Pk|k−1)
+ λmax

⎛

⎝

n
∑

j=1

1

σ2
j

hk,jh
�
k,j

⎞

⎠

≤ 1

λmin(Pk|k−1)
+ max

j∈[n]

1

σ2
j

λmax(H
�
kHk). (22)

Therefore, by combining inequalities (15) and (20), we obtain

the result in (16).

Next, to analyze the setting of i.i.d random measurement

vectors, we bound λmax(F[n]) using Lemma 1. Let Xj =

hk,jh
�
k,j − σ2

hIm and Y =
∑n

j=1 Xj . To use the result of

Lemma 1, one should first verify expressions in (12). To this

end, note that

E[Xj ] = E[hk,jh
�
k,j − σ2

hIm]

= E[hk,jh
�
k,j ]− σ2

hIm = 0. (23)

This, in turn, implies that E[Y] = 0. SinceXjs are independent,

then

‖E[Y2]‖ = ‖E[

n
∑

j=1

X2
j ]‖ ≤

n
∑

j=1

‖E[X2
j ]‖ (24)

by the linearity of expectation and the triangle inequality. To

proceed, we need to determine λmax(Xj) and E[X2
j ]. First, let

us verify that hk,j is an eigenvector of Xj by observing that

Xjhj =
(

hk,jh
�
k,j − σ2

hIm
)

hk,j

=
(

‖hk,j‖22 − σ2
h

)

hk,j (25)

where hk,jh
�
k,j − σ2

hIm is the corresponding eigenvalue. Since

hk,jh
�
k,j is a rank-1 matrix, other eigenvalues ofXj are all equal

to −σ2
h. Hence, we have

λmax(Xj) ≤ C − σ2
h (26)

and we recall that C − σ2
h > 0. We can now establish an upper

bound on E[X2
j ] as

E[X2
j ] = E[

(

hk,jh
�
k,j − σ2

hIm
) (

hk,jh
�
k,j − σ2

hIm
)

]

=
(

‖hk,j‖22 − σ2
h

)

E[hk,jh
�
k,j ]

− σ2
hE[

(

hk,jh
�
k,j − σ2

hIm
)

]

=
(

‖hk,j‖22 − σ2
h

)

σ2
hIm � (C − σ2

h)σ
2
hIm (27)

where we have used the fact that E[Xj ] = 0. Thus,L = C − σ2
h

and ‖E[Y2]‖ ≤ n(C − σ2
h)σ

2
h. Now, according to Lemma 1, for

all q > 0, it holds that Pr{λmax(Y) ≤ q} ≥ p, where

p = 1−m exp

( −q2/2

(C − σ2
h)(nσ

2
h + q/3)

)

. (28)

Therefore, we have

λmax(F[n]) ≤
1

λmin(Pk|k−1)
+ max

j∈[n]

nσ2
h + q

σ2
j

= φ−1 (29)

with probability p. This completes the proof. �
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Remark 1: The setting of i.i.d. random vectors described in

Theorem 1 arises in scenarios where sketching techniques, such

as random projections, are used to reduce dimensionality of the

measurement equation (see [25] for more details). The following

are often encountered examples of such settings.

1) Multivariate Gaussian measurement vectors: Let hk,j ∼
N (0, 1

m
Im) for all j. It is straightforward to show

that E[‖hk,j‖22] = 1. Furthermore, it can be shown that

‖hk,j‖22 is with high probability concentrated around its

expected value. Therefore, for this case, σ2
h = 1

m
and

C = 1.

2) Centered Bernoulli measurement vectors: Let each en-

try of hk,j be ± 1√
m

with equal probability. Therefore,

‖hk,j‖22 = 1 = C. Additionally, σ2
h = 1

m
, since the en-

tries of hk,j are i.i.d. zero-mean random variables with

variance 1
m

.

We can interpret the conditions stated in Theorem 1 as require-

ments on the condition number of Pk|k−1 as argued next. For a

sufficiently large m and σ2
h = 1

m
, it holds that C ≈ 1. Assume

that φ ≥ λmax(Pk|k−1)/∆ for some ∆ > 1, and σ2
j = σ2 for all

i ∈ [n]. Define

SNR =
λmax(Pk|k−1)

σ2
(30)

and let

κ =
λmax(Pk|k−1)

λmin(Pk|k−1)
≥ 1 (31)

be the condition number of Pk|k−1. Then, following some

elementary numerical approximations, we obtain the following

corollary.

Corollary 1.1: Let

∆ ≥ κ+ c1
n

m
SNR (32)

for some c1 > 1. Then, with probability

p ≥ 1−m exp
(

− n

m
c2

)

(33)

it holds that Cmax ≤ ∆3 for some c2 > 0.

Informally, Theorem 1 states that for a well-conditioned

Pk|k−1, the curvature of f(S) is small, which implies weak

submodularity of f(S). Furthermore, the probability of such

an event exponentially increases with the number of available

measurements.

IV. RANDOMIZED GREEDY SENSOR SELECTION

The complexity of SDP relaxation and greedy algorithms

for sensor selection becomes prohibitive in large-scale systems.

Motivated by the need for practically feasible schemes, we

present a randomized greedy algorithm for finding an approx-

imate solution to (9) and derive its performance guarantees. In

particular, inspired by the technique in [2] proposed in the con-

text of optimizing submodular objective functions, we develop

a computationally efficient randomized greedy algorithm (see

Algorithm 1) that finds an approximate solution to (9) with a

guarantee on the achievable MSE performance of the Kalman

Algorithm 1: Randomized Greedy Sensor Scheduling.

1: Input: Pk|k−1, Hk, K, ε.
2: Output: Subset Sk ⊆ [n] with |Sk| = K.

3: Initialize S
(0)
k = ∅, F−1

S
(0)
k

= Pk|k−1.

4: for i = 0, . . . ,K − 1 do

5: Choose R by sampling s = n
K

log (1/ε) indices

uniformly at random from [n]\S(i)
k .

6: is = argmaxj∈R

h
�
k,jF

−2

S
(i)

k

hk,j

σ2
j+h�

k,j
F

−1

S
(i)

k

hk,j
.

7: Set S
(i+1)
k = S

(i)
k ∪ {is}.

8: F−1

S
(i+1)
k

= F−1

S
(i)
k

−
F

−1

S
(i)

k

hk,ish
�
k,is

F
−1

S
(i)

k

σ2
j+h�

k,is
F

−1

S
(i)

k

hk,is

9: end for

10: return Sk = S
(K)
k .

filter that uses only the observations of the selected sensors.

Algorithm 1 performs the task of sensor scheduling in the

following way. At each iteration of the algorithm, a subset R of

size s is sampled uniformly at random and without replacement

from the set of available sensors. The marginal gain provided

by each of these s sensors to the objective function is computed

using (10), and the one yielding the highest marginal gain is

added to the set of selected sensors. Then, the efficient recursive

formula in (11) is used to update F−1
S so it can be analyzed

when making the selection in the next iteration. This procedure

is repeated K times.

Remark 2: The parameter ε in Algorithm 1, e−K ≤ ε < 1, is

a predefined constant that is chosen to strike a desired balance

between performance and complexity. When ε = e−K , each iter-

ation includes all of the nonselected sensors inR, and Algorithm

1 coincides with the conventional greedy scheme. However,

as ε approaches 1, |R| and, thus, the overall computational

complexity decrease.

A. Performance Analysis of the Proposed Scheme

In this section, we analyze Algorithm 1 and in Theorem 2

provide a bound on the performance of the proposed randomized

greedy scheme when applied to finding an approximate solution

to maximization problem (9).

Before deriving the main result, we first provide two lemmas.

Lemma 3 from [24] states an upper bound on the difference

between the values of the objective function corresponding to

two sets having different cardinalities, while Lemma 4 provides

a lower bound on the expected marginal gain.

Lemma 3: Let {Cl}n−1
l=1 denote the elementwise curvatures

of f(S). Let S and T be any subsets of sensors such that S ⊂
T ⊆ [n] with |T\S| = r. Then, it holds that

f(T )− f(S) ≤ C(r)
∑

j∈T \S
fj(S) (34)

where C(r) = 1
r
(1 +

∑r−1
l=1 Cl).
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Proof: See Appendix B. �

Lemma 4: Let S
(i)
k be the set of selected sensors at the end

of the ith iteration of Algorithm 1. Then, we have

E

[

f(i+1)s(S
(i)
k )|S(i)

k

]

≥ 1− εβ

K

∑

j∈Ok\S(i)
k

fj(S
(i)
k ) (35)

where Ok is the set of optimal sensors at time k, (i+ 1)s is

the index of the selected sensor at the (i+ 1)th iteration, β =
1 +max{0, s

2n − 1
2(n−s)}, and s = n

K
log (1/ε).

Proof: See Appendix C. �

Theorem 2 specifies how accurate the approximate solution

to the sensor selection problem found by Algorithm 1 is. In

particular, if f(S) is characterized by a bounded maximum

elementwise curvature, Algorithm 1 returns a subset of sensors

yielding an objective that is, on average, within a multiplicative

factor of the objective achieved by the optimal schedule.

Theorem 2: LetCmax be the maximum elementwise curvature

of f(S), i.e., the objective function of sensor scheduling problem

in (9). LetSk denote the subset of sensors selected by Algorithm

1 at time k, and let Ok be the optimum solution to (9) such that

|Ok| = K. Then, f(Sk) is on expectation a multiplicative factor

away from f(Ok), i.e.,

E [f(Sk)] ≥
(

1− e−
1
c − εβ

c

)

f(Ok) (36)

where c = max{Cmax, 1}, e−K ≤ ε < 1, and β =
1 +max{0, s

2n − 1
2(n−s)}. Furthermore, the computational

complexity of Algorithm 1 is O(nm2 log( 1
ε
)), where n is the

total number of sensors and m is the dimension of xk.

Proof: Consider S
(i)
k , the set generated by the end of the ith

iteration of Algorithm 1. Employing Lemma 3 with S = S
(i)
k

and T = Ok ∪ S
(i)
k , and using monotonicity of f , yields

f(Ok)− f(S
(i)
k )

1
r

(

1 +
∑r−1

l=1 Cl
) ≤ f(Ok ∪ S

(i)
k )− f(S

(i)
k )

1
r

(

1 +
∑r−1

l=1 Cl
)

≤
∑

j∈Ok\S(i)
k

fj(S
(i)
k ) (37)

where |Ok\S(i)
k | = r. Now, using Lemma 4, we obtain

E

[

f(i+1)s(S
(i)
k )|S(i)

k

]

≥
(

1− εβ
) f(Ok)− f(S

(i)
k )

K
r

(

1 +
∑r−1

l=1 Cl
) . (38)

Applying the law of total expectation yields

E

[

f(i+1)s(S
(i)
k )

]

= E

[

f(S
(i+1)
k )− f(S

(i)
k )

]

≥
(

1− εβ
)

f(Ok)− E

[

f(S
(i)
k )

]

K
r

(

1 +
∑r−1

l=1 Cl
) . (39)

Using the definition of the maximum elementwise curvature, we

obtain

1

r

(

1 +

r−1
∑

l=1

Cl
)

≤ 1

r
(1 + (r − 1)Cmax) = g(r). (40)

It is easy to verify, e.g., by taking the derivative, that g(r) is

decreasing (increasing) with respect to r if Cmax < 1 (Cmax >
1). Let c = max{Cmax, 1}. Then, we have

1

r

(

1 +

r−1
∑

l=1

Cl
)

≤ 1

r
(1 + (r − 1)Cmax) ≤ c. (41)

Hence, we have

E

[

f(S
(i+1)
k )− f(S

(i)
k )

]

≥ 1− εβ

Kc

(

f(Ok)− E

[

f(S
(i)
k )

])

.

(42)

Using an inductive argument and due to the fact that f(∅) = 0,

we obtain

E[f(Sk)] ≥
(

1−
(

1− 1− εβ

Kc

)K
)

f(Ok). (43)

Finally, using the fact that (1 + x)y ≤ exy for y > 0 and the

easily verifiable fact that eax ≤ 1 + axea for 0 < x < 1, we

obtain

E[f(Sk)] ≥
(

1− e−
1−εβ

c

)

f(Ok)

≥
(

1− e−
1
c − εβ

c

)

f(Ok). (44)

To take a closer look at computational complexity of Algorithm

1, note that step 6 costs O( n
K
m2 log( 1

ε
)), since one needs to

compute n
K

log( 1
ε
)marginal gains, each requiringO(m2) opera-

tions. Furthermore, step 8 requiresO(m2) arithmetic operations.

Since there are K such iterations, the running time of Algorithm

1 is O(nm2 log( 1
ε
)). This completes the proof. �

Using the definition of f(S), we obtain Corollary 2.1 stating

that, at each time step, the achievable MSE in (3) obtained by

forming an estimate using sensors selected by the randomized

greedy algorithm is within a factor of the optimal MSE.

Corollary 2.1: Consider the notation and assumptions of

Theorem 2 and introduce α = 1− e−
1
c − εβ

c
. Let MSESk

de-

note the mean square estimation error obtained by forming an

estimate using information provided by the sensors selected by

Algorithm 1 at time k, and let MSEo be the optimal MSE

formed using information collected by the sensors specified

by the optimum solution of (9). Then, the expected MSESk
is

bounded as

E [MSESk
] ≤ αMSEo + (1− α)Tr(Pk|k−1). (45)

Remark 3: Since the proposed sensor selection scheme is

a randomized algorithm, the analysis of its expected MSE, as

provided by Theorem 2 and Corollary 2.1, is a meaningful

performance characterization. Notice that, as expected, α is

decreasing in both c and ε. If f(S) is characterized by a small

curvature, then f(S) is nearly submodular, and the randomized

greedy algorithm delivers a near-optimal sensor scheduling. As
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we decrease ε, α increases, which, in turn, leads to a better

approximation factor. Moreover, by following an argument sim-

ilar to that of the classical analysis in [17], one can show that

the approximation factor for the greedy algorithm is given by

αg = 1− e−
1
c (see also [22] and [27]). Therefore, the term ε

c
in

α denotes the difference between the approximation factors of

the proposed randomized greedy algorithm and the conventional

greedy scheme.

Remark 4: The computational complexity of the greedy

method for sensor selection that finds marginal gains via the

efficient recursion given in Proposition 1 is O(Knm2). Hence,

our proposed scheme provides a reduction in complexity by

K/ log( 1
ε
), which may be particularly beneficial in large-scale

networks, as illustrated in our simulation results.

Remark 5: In contrast to the results of [2] derived in the

context of maximizing monotone submodular functions, The-

orem 2 relaxes the submodularity assumption and states that the

randomized greedy algorithm does not require submodularity to

achieve near-optimal performance. Rather, if the set function is

weak submodular, Algorithm 1 still selects a subset of sensors

that provide an MSE near that achieved by the optimal subset of

sensors. In addition, even if the function is submodular (e.g., if

we use the log det objective instead of the MSE), the results of

Theorem 2 offer an improvement over the theoretical results

of [2] due to a tighter approximation bound stemming from

the analysis presented in the proof of Theorem 2. Moreover,

a major assumption in [2] is that R is constructed by sampling

with replacement. Clearly, this contradicts the fact that a sensor

selected in one iteration will not be in R in the subsequent

iteration with probability 1. On the contrary, we assume that

R is constructed by sampling without replacement and carry out

the analysis in this setting that matches the actual randomized

greedy sensor selection strategy.

The randomized selection step of Algorithm 1 can be inter-

preted as an approximation of the marginal gains of the selected

sensors using a greedy scheme [4]. More specifically, for the ith

iteration, it holds that fjrg (S
(i)
k ) = η

(i)
k fjg (S

(i)
k ), where sub-

scripts rg and g refer to the sensors selected by the randomized

greedy algorithm (see Algorithm 1) and the greedy algorithm,

respectively, and {η(i)k }Ki=1 are random variables with mean

µi(ε) that satisfy 0 < �i(ε) ≤ η
(i)
k ≤ 1 for all i ∈ [K].1 In view

of this argument, we obtain Theorem 3, which states that if f(S)
is characterized by a bounded maximum elementwise curvature

and {η(i)k }Ki=1 are independent random variables, Algorithm

1 returns a subset of sensors yielding an objective that, with

high probability, is only a multiplicative factor away from the

objective achieved by the optimal schedule.

Theorem 3: Instate the notation and assumptions of Theorem

2. Let {η(i)k }Ki=1 denote a collection of random variables such

that 0 < �i(ε) ≤ η
(i)
k ≤ 1, and E[η

(i)
k ] = µi(ε) for all i and

k. Let �min(ε) = mini,k{�i(ε)} and µmin(ε) = mini,k{µi(ε)}.

1Notice that �i(ε) andµi(ε) are time-varying quantities, where the time index
is omitted for the simplicity of notation.

Then, we have

f(Sk) ≥
(

1− e−
�min(ε)

c

)

f(Ok). (46)

Furthermore, if {η(i)k }Ki=1 are independent, then for all 0 < q <
1 with probability at least 1− e−CK , it holds that

f(Sk) ≥
(

1− e−
(1−q)µmin(ε)

c

)

f(Ok) (47)

for some C > 0.

Proof: Consider S
(i)
k , the set generated by the end of the ith

iteration of Algorithm 1 and let (i+ 1)g and (i+ 1)rg denote

the sensors selected by the greedy and randomized greedy algo-

rithm in the ith iteration, respectively. Let c = max{Cmax, 1}.

Employing Lemma 3 with S = S
(i)
k and T = Ok ∪ S

(i)
k , and

using monotonicity of f , yields

f(Ok)− f(S
(i)
k ) ≤ f(Ok ∪ S

(i)
k )− f(S

(i)
k )

≤ c
∑

j∈Ok\S(i)
k

fj(S
(i)
k ). (48)

Using the fact that

fj(S
(i)
k ) ≤ f(i+1)rg (S

(i)
k ) ≤ f(i+1)g (S

(i)
k ) (49)

for all j, we obtain

f(Ok)− f(S
(i)
k ) ≤ cKf(i+1)g (S

(i)
k ). (50)

On the other hand, we have

f(S
(i+1)
k )− f(S

(i)
k ) = f(i+1)rg (S

(i)
k )

= η
(i+1)
k f(i+1)g (S

(i)
k ). (51)

Combining (50) and (51) yields

f(S
(i+1)
k )− f(S

(i)
k ) ≥ η

(i+1)
k

Kc

(

f(Ok)− f(S
(i)
k )

)

. (52)

Using an inductive argument similar to the one in the proof of

Theorem 2, and noting that f(∅) = 0, we have

f(Sk) ≥
(

1−
(

1−
K
∑

i=1

η
(i)
k

Kc

))

f(Ok)

(a)

≥
(

1− e−
∑K

i=1

η
(i)

k
Kc

)

f(Ok) (53)

where to obtain (a), we use the fact that (1 + x)y ≤ exy for y >

0. Therefore, since, by assumption, �min(ε) ≤ �i(ε) ≤ η
(i)
k ≤ 1,

we establish (46).

To show the second statement, i.e., to prove that (47) holds in

the setting of independent {η(i)k }Ki=1, we apply the Bernstein’s

inequality [33] to the sum of independent random variables
∑K

i=1 η
(i)
k . Since {η(i)k } are bounded random variables, from

Popoviciu’s inequality [33] for all i ∈ [K], it follows that

Var[η
(i)
k ] ≤ 1

4
(1− �i(ε))

2. (54)
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Hence, based on the Bernstein’s inequality, for all 0 < q < 1,

we have

Pr

{

K
∑

i=1

η
(i)
k < (1− q)

K
∑

i=1

µi

}

< p (55)

where

p = exp

(

− (1− q)2(
∑K

i=1 µi(ε))
2

1−q
3

∑K
i=1 µi(ε) +

1
4

∑K
i=1(1− �i(ε))2

)

(b)

≤ exp

(

− K(1− q)2µ2
min(ε)

1−q
3 µmin(ε) +

1
4 (1− �min(ε))2

)

= e−C(ε,q)K (56)

where (b) follows because p increases as we replace µi(ε) and

�i(ε) by their lower bounds. Finally, substituting this result into

(53) yields

f(Sk) ≥
(

1− e−
(1−q)µmin(ε)

c

)

f(Ok) (57)

with probability at least 1− eC(ε,q)K . This completes the

proof. �

Our simulation studies in Section V empirically confirm the

results of Theorems 2 and 3 and illustrate that Algorithm 1

performs favorably compared to the competing schemes both

on average as well as for each individual sensor scheduling task.

Similar to Corollary 2.1, we can now obtain a probabilistic

bound on the MSE (3) achievable at each time step using the

proposed randomized greedy algorithm. This result is stated in

Corollary 3.1.

Corollary 3.1: Consider the notation and assumptions of

Corollary 2.1 and Theorem 3. Let 0 < q < 1 and defineα = 1−
exp(− (1−q)µmin(ε)

c
). Then, with probability at least 1− e−CK , it

holds that

MSESk
≤ αMSEo + (1− α)Tr(Pk|k−1) (58)

for some C > 0.

V. SIMULATION RESULTS

To test the performance of the proposed randomized greedy

algorithm, we compare it with the classic greedy algorithm and

the SDP relaxation in a variety of settings, as detailed next.

We implemented the greedy and randomized greedy algorithms

in MATLAB and the SDP relaxation scheme via CVX [34].

All simulations were run on a laptop with 2.0-GHz Intel Core

i7-4510 U CPU and 8.00 GB of RAM.

A. Kalman Filtering in Random Sensor Networks

We first consider the problem of state estimation in a linear

time-varying system via Kalman filtering. For simplicity, we

assume the state transition matrix to be identity, i.e., Ak = Im.

At each time step, the measurement vectors, i.e., the rows of

the measurement matrix Hk, are drawn according to N ∼
(0, 1

m
Im). The initial state is a zero-mean Gaussian random

Fig. 2. MSE comparison of randomized greedy, greedy, and SDP
relaxation sensor selection schemes employed in Kalman filtering.

TABLE I
RUNNING TIME COMPARISON OF THE RANDOMIZED GREEDY, GREEDY, AND

SDP RELAXATION SENSOR SELECTION SCHEMES (m = 50, n = 400,
K = 55, AND ε = 0.001)

vector with covariance Σx = Im, and the process and measure-

ment noise are zero-mean Gaussian with covariance matrices

Q = 0.05Im and R = 0.05In, respectively.

The MSE of the filtered estimator and running time of each

scheme is averaged over 100 Monte Carlo simulations. The time

horizon for each run is T = 10 s.

We first consider a system having state dimension m = 50

and the total number of sensors n = 400. We set a constraint on

the number of sensors allowed to be queried at each time step to

K = 55 and compare the MSE achieved by each sensor selection

method over the time horizon of interest. For the randomized

greedy algorithm, we set ε = 0.001. Fig. 2 shows that the greedy

method consistently yields the lowest estimation MSE, while the

MSE provided by the randomized greedy algorithm is slightly

higher. The MSE performance achieved by solving the SDP

relaxation is considerably larger than those of the greedy and

randomized greedy algorithms. The time it takes each method

to selectK sensors is given in Table I. Both the greedy algorithm

and the randomized greedy algorithm are much faster than the

SDP formulation. Moreover, the randomized greedy scheme is

nearly two times faster than the greedy method.

Note that, in this example, in each iteration of the sensor

selection procedure, the randomized scheme only computes the

marginal gain for a sampled subset of size 50. In contrast, the

classic greedy approach computes the marginal gain for all 400

sensors. In summary, the greedy method yields slightly lower

MSE but is much slower than the proposed randomized greedy

algorithm.

To study the effect of the number of selected sensors on the

MSE performance, we vary K from 55 to 115 with increments
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Fig. 3. Comparison of randomized greedy, greedy, and SDP relaxation
schemes as the number of selected sensors increases. (a) Comparing
MSE performance of different schemes. (b) Running time comparison.

of 10. The MSE values at the last time step for each algorithm

are shown in Fig. 3(a). As the number of selected sensors

increases, the estimation becomes more accurate, as reflected by

the MSE of the estimates provided by each algorithm. Moreover,

the differences between the MSE values achieved by different

schemes monotonically decrease as more sensors are selected.

The sensor selection running times shown in Fig. 3(b) indicate

that the randomized greedy scheme is nearly twice as fast as the

greedy method, while the SDP method is orders of magnitude

slower than both greedy and randomized greedy algorithms.

To test the tightness of the bound established in

Theorem 1, we empirically study a sensor selection problem

with n = 12Gaussian observations. Fig. 4 shows the true values

of the maximum elementwise curvature found via exhaustive

search as well as the bound stated in Theorem 1. As can be seen

in the figure, the gap between the two is negligible at small SNR

but becomes relatively loose at high SNR.

Finally, to empirically verify the results of Theorem 3, in

Fig. 5, we compare histograms of MSE achieved by the greedy

Fig. 4. Evaluation of theoretical results in Theorem 1 for a sensor
network with m = 3 and n = 12.

Fig. 5. Histogram of MSE values for 100 independent realization of a
sensor scheduling task for a sensor network with m = 50, K = 60, and
n = 400.

and the proposed randomized greedy sensor selection schemes

with various choices of ε when K = 60. As shown in Fig. 5,

the MSE of sets selected by the proposed scheme is relatively

close to that selected by the state-of-the-art greedy algorithm. In

addition, as ε decreases, the MSE of the randomized greedy algo-

rithm approaches that of the greedy algorithm. These empirical

observations coincide with our theoretical results in Theorem 3.

That is, the proposed algorithm, although a randomized scheme,

returns a near-optimal subset of sensors for each individual

sensor selection task.

B. State Estimation in Large-Scale Networks

Next, we compare the performance of the randomized greedy

algorithm to that of the greedy algorithm as the size of the

system increases. We run both methods for 20 different system

dimensions. The initial dimensions are set to m = 20, n = 200,

and K = 25, and all three parameters are scaled by γ, where γ
varies from 1 to 20. In addition, to evaluate the effect of ε on the
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Fig. 6. Comparison of the randomized greedy and greedy algorithms
for varied network size. (a) Comparing MSE performance of different
schemes. (b) Running time comparison.

performance and runtime of the randomized greedy approach,

we repeat experiments for ε ∈ {0.1, 0.01, 0.001}. Note that the

computational complexity of the SDP relaxation scheme is

prohibitive in this setting, and hence, it is omitted. Fig. 6(a)

illustrates the MSE comparison of the greedy and randomized

greedy schemes. It shows that the difference between the MSEs

is negligible. The running time is plotted in Fig. 6(b). As the

figure illustrates, the gap between the running times grows with

the size of the system, and the randomized greedy algorithm

performs nearly 28 times faster than the greedy method for the

largest network. Fig. 6 shows that using a smaller ε results in a

lower MSE, while it slightly increases the running time. These

results suggest that, for large systems, the randomized greedy

provides almost the same MSE while being much faster than the

greedy algorithm.

C. Accelerated Multiobject Tracking

Finally, we study the multiobject tracking application intro-

duced in Section II-A. Specifically, we consider a scenario,

where 20 moving objects are initially uniformly distributed in

a 5× 10 area. At each time instance, each object moves in

a random direction with a constant speed set to 0.2. Twenty

Fig. 7. Comparison of the randomized greedy and greedy algorithms
for a multiobject tracking application. (a) Comparing MSE performance
of different schemes. (b) Running time comparison.

UAVs, equidistantly spread over the area, move according to a

periodic parallel-path search pattern [35]. The initial phases

of the UAVs’ motions are uniformly distributed to provide

a better coverage of the area. The UAVs can acquire range

and angular measurements of the objects that are within the

maximum radar detection range. The maximum radar detection

range is set such that at each time step, the UAVs together

collect approximately 600 range and angular measurements.

The communication bandwidth constraints limit the number of

measurements transmitted to the control unit to K = 100. Note

that since the radar measurement model is nonlinear, the control

unit tracks objects via the extended Kalman filter. Fig. 7 shows

a comparison in terms of the MSE and running time between

the greedy and randomized greedy schemes for various values

of ε. In Fig. 7, we show the performance of the scheme that

ignores communications constraints and uses all the available

measurements gathered by the UAVs. As Fig. 7(a) illustrates,

the MSE performance of the greedy and proposed schemes are

relatively close and similar to the performance of the scheme
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that uses all the measurements. However, a closer look at the

running time comparison shown in Fig. 7(b) reveals that the

combined runtime of randomized greedy sensor selection and

Kalman filtering tasks is approximately two times faster than

the runtime of the Kalman filter that uses all the measurements,

and approximately four times faster than the combined runtime

of the classical greedy sensor selection and Kalman filtering.

Therefore, the proposed scheme not only satisfies the commu-

nication constraint and performs nearly as well as using all the

measurements, but also significantly reduces the time needed to

perform sensor selection and process the selected measurements

in extended Kalman filtering.

VI. CONCLUSION

In this article, we studied the problem of state estimation in

large-scale linear time-varying dynamical systems. We proposed

a randomized greedy algorithm for selecting sensors to query

such that their choice minimizes the estimator’s MSE at each

time step. We established the performance guarantee for the

proposed algorithm and analyzed its computational complexity.

To our knowledge, the proposed scheme is the first randomized

algorithm for sensor scheduling with an explicit bound on its

achievable MSE. In addition, we provided a probabilistic the-

oretical bound on the elementwise curvature of the objective

function. Furthermore, in several simulated settings, we demon-

strated that the proposed algorithm is superior to the classical

greedy and SDP relaxation methods in terms of running time

while providing the same or better utility.

As a future work, it is of interest to extend this approach to

nonlinear dynamical systems and obtain theoretical guarantees

on the quality of the resulting approximate solution found by the

randomized greedy algorithm. Moreover, it would be of interest

to extend the framework established in this article to related

problems, such as the minimal actuator placement.

APPENDIX A
PROOF OF PROPOSITION 1

First, note that

f(∅) = Tr
(

Pk|k−1 − F−1
∅
)

= Tr
(

Pk|k−1 −Pk|k−1

)

= 0.
(59)

Now, for j ∈ [n]\S, it holds that

fj(S) = f(S ∪ {j})− f(S)

= Tr
(

Pk|k−1 − F−1
S∪{j}

)

− Tr
(

Pk|k−1 − F−1
S

)

= Tr
(

F−1
S

)

− Tr
(

F−1
S∪{j}

)

= Tr
(

F−1
S

)

− Tr
(

(

FS + σ−2
j hk,jh

�
k,j

)−1
)

(a)
= Tr

(

F−1
S hk,jh

�
k,jF

−1
S

σ2
j + h�

k,jF
−1
S hk,j

)

(b)
=

h�
k,jF

−2
S hk,j

σ2
j + h�

k,jF
−1
S hk,j

(60)

where (a) is obtained by applying matrix inversion lemma

(Sherman–Morrison formula) [32] to (FS + σ−2
j hk,jh

�
k,j)

−1,

and (b) follows from the properties of the matrix trace opera-

tor. Finally, since FS is a symmetric positive-definite matrix,

fj(S) > 0, which, in turn, implies monotonicity.

APPENDIX B
PROOF OF LEMMA 3

Let S ⊂ T and T\S = {j1, . . . , jr}. Therefore, we have

f(T )− f(S) = f(S ∪ {j1, . . . , jr})− f(S)

= fj1(S) + fj2(S ∪ {j1}) + . . .

+ fjr (S ∪ {j1, . . . , jr−1}). (61)

Definition of the elementwise curvature implies that

f(T )− f(S) ≤ fj1(S) + C1fj2(S) + · · ·+ Cr−1fjr (S)

= fj1(S) +

r−1
∑

l=1

Clfjl+1
(S). (62)

Note that (62) is established for a specific ordering of el-

ements in T\S. Given an ordering {j1, . . . , jr}, one can

form a set P = {P1, . . . ,Pr} of r permutations (e.g., by

defining the right circular-shift operator Pt({j1, . . . , jr}) =
{jr−t+1, . . . , j1, . . . } for 1 ≤ t ≤ r) such that Pp(j) �= Pq(j)
for p �= q and ∀j ∈ T\S; (62) holds for each such permutation.

By summing the corresponding r inequalities, we obtain

r(f(T )− f(S)) ≤
(

1 +
r−1
∑

l=1

Cl
)

∑

j∈T \S
fj(S). (63)

Rearranging (63) yields the desired result.

APPENDIX C
PROOF OF LEMMA 4

First, we aim to bound the probability of an event that a

random set R contains at least one index from the optimal set

of sensors, which is a necessary condition to reach the optimal

MSE. Let us consider S
(i)
t , the set of sensors selected by the end

of the ith iteration of Algorithm 1 and let Φ = R ∩ (Ok\S(i)
t ).

It holds that2

Pr{Φ = ∅} =

s−1
∏

l=0

(

1− |Ok\S(i)
k |

|[n]\S(i)
k | − l

)

(a)

≤
(

1− |Ok\S(i)
k |

s

s−1
∑

l=0

1

|[n]\S(i)
k | − l

)s

(b)

≤
(

1− |Ok\S(i)
k |

s

s−1
∑

l=0

1

n− l

)s

(64)

where (a) holds due to the inequality of arithmetic and geometric

means, and (b) holds since |[n]\Si| ≤ n. Now, recall that for any

2Without loss of generality, we assume that s is an integer.
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integer p,

Hp =

p
∑

l=1

1

p
= log p+ γ + ζp (65)

whereHp is thepth harmonic number,γ is the Euler–Mascheroni

constant, and ζp = 1
2p −O‖(

1
p4 ) is a monotonically decreasing

sequence related to the Hurwitz zeta function [37]. Therefore,

using the identity (65) we obtain

Pr{Φ = ∅} ≤
(

1− |Ok\S(i)
k |

s
(Hn −Hn−s)

)s

=

(

1− |Ok\S(i)
k |

s

(

log

(

n

n− s

)

+ζn−ζn−s

)

)s

(c)

≤
(

1− |Ok\S(i)
k |

s

(

log

(

n

n− s

)

− s

2n(n− s)

)

)s

(d)

≤
((

1− s

n

)

e
s

2n(n−s)

)|Ok\S(i)
k

|
(66)

where (c) follows since ζn − ζn−s =
1
2n − 1

2(n−s) +

O‖(
1

(n−s)4 ), and (d) is due to the fact that (1 + x)y ≤ exy for any

real number y ≥ 1. Next, the fact that log(1− x) ≤ −x− x2

2
for 0 < x < 1 yields

(1− s

n
)e

s
2n(n−s) ≤ e−

β1 s

n (67)

where β1 = 1 + ( s
2n − 1

2(n−s) ). On the other hand, we can also

upper-bound Pr{Φ = ∅} as

Pr{Φ = ∅} ≤
(

1− |Ok\S(i)
k |

s

s−1
∑

l=0

1

n− l

)s

≤
(

1− |Ok\S(i)
k |

n

)s

≤ e−
s
n
|Ok\S(i)

k
| (68)

where we again employed the inequality (1 + x)y ≤ exy . Let us

denote β = max{1, β1}. Then, we have

Pr{Φ �= ∅} ≥ 1− e−
βs
n

|Ok\S(i)
k

| ≥ 1− εβ

K
(|Ok\S(i)

k |) (69)

by the definition of s and the fact that 1− e−
βs
n

x is a concave

function. Finally, according to [2, Lemma 2], we have

E[f(i+1)s(S
(i)
k )|S(i)

k ] ≥ Pr{Φ �= ∅}
|Ok\S(i)

k |
∑

j∈Ok\S(i)
k

fo(S
(i)
k ). (70)

Combining (69) and (70) yields the stated results.
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