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Randomized Greedy Sensor Selection:
Leveraging Weak Submodularity

Abolfazl Hashemi
Haris Vikalo

Abstraci—We study the problem of estimating a random
process from the observations collected by a network of
sensors that operate under resource constraints. When
the dynamics of the process and sensor observations are
described by a state-space model and the resource are
unlimited, the conventional Kalman filter provides the mini-
mum mean square error (MMSE) estimates. However, at any
given time, restrictions on the available communications
bandwidth and computational capabilities and/or power im-
pose a limitation on the number of network nodes, whose
observations can be used to compute the estimates. We
formulate the problem of selecting the most informative
subset of the sensors as a combinatorial problem of max-
imizing a monotone set function under a uniform matroid
constraint. For the MMSE estimation criterion, we show
that the maximum elementwise curvature of the objective
function satisfies a certain upper-bound constraint and is,
therefore, weak submodular. Building upon the work of
Mirzasoleiman et al. on submodular maximization, we de-
velop an efficient randomized greedy algorithm for sen-
sor selection and establish guarantees on the estimator’s
performance in this setting. Extensive simulation results
demonstrate the efficacy of the randomized greedy algo-
rithm compared to state-of-the-art greedy and semidefinite
programming relaxation methods.

Index Terms—Kalman filtering, sensor networks, sensor
selection, weak submodularity.
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|. INTRODUCTION

ODERN sensor networks deploy alarge number of nodes

M that either exchange their noisy and possibly processed
observations of a random process or forward those observations
to a data fusion center. Due to constraints on computation,
power, and communication resources, instead of estimating the
process using information collected by the entire network, the
fusion center typically queries a relatively small subset of the
available sensors. The problem of selecting the sensors that
would acquire the most informative observations arises in a
number of applications in control and signal processing systems,
including sensor selection for Kalman filtering [3]-[5], batch
state and stochastic process estimation [6], [7], minimal actuator
placement [8], [9], voltage control and meter placement in
power networks [10]-[12], sensor scheduling in wireless sensor
networks [3], [13], and subset selection in machine learning [2].
For a variety of performance criteria, finding an optimal subset
of sensors requires solving a computationally challenging com-
binatorial optimization problem, possibly using branch-and-
bound search [14]. By reducing it to the set cover problem, sensor
selection was, in fact, shown to be NP-hard [15]. This hardness
result has motivated development of numerous heuristics and
approximate algorithms. For instance, Joshi and Boyd [16]
formulated the sensor selection problem as the maximization
(minimization) of the log det of the Fisher information matrix
(error covariance matrix) and found a solution by relaxing the
problem to a semidefinite program (SDP). The computational
complexity of finding the solution to the SDP relaxation of the
sensor selection problem is cubic in the total number of available
sensors, which limits its practical feasibility in large-scale net-
works consisting of many sensing nodes. Moreover, the solution
to the SDP relaxation comes with no performance guarantees.
To overcome these drawbacks, Shamaiah et al. [4] proposed a
greedy algorithm guaranteed to achieve at least (1 — 1/e) of
the optimal objective at a complexity lower than that of the SDP
relaxation. The theoretical underpinnings of the greedy approach
to the sensor selection problem in [4] are drawn from the area
of submodular function optimization. In particular, these results
stem from the fact that the logarithm of the determinant (log det)
of the Fisher information matrix is a monotone submodular func-
tion. Nemhauser et al. [17] studied maximization of such a func-
tion subject to a uniform matroid constraint and showed that the
greedy algorithm, which iteratively selects items providing max-
imum marginal gain, achieves (1 — 1/e) approximation factor.

0018-9286 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 30,2021 at 21:59:29 UTC from IEEE Xplore. Restrictions apply.



200 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 1, JANUARY 2021

More recently, the authors of [5]-[7] and [9] have employed and
analyzed greedy algorithms for finding approximate solutions
to the log det maximization problem in a number of practical
settings.

Most of the existing work on greedy sensor selection has
been focused on optimizing the log det of the Fisher information
matrix, an objective indicative of the volume of the confidence
ellipsoid. However, this criterion does not explicitly relate to the
mean square error (MSE), which is often a natural performance
metric of interest in estimation problems. The MSE, i.e., the
trace of the covariance matrix of the estimation error, is not
supermodular [18]-[23]. Therefore, its negative value, which
we would like to maximize, is not submodular. Consequently,
the setting and results of [17] do not apply to the MSE min-
imization problem. Recently, Wang et al. [24] have analyzed
the performance of the greedy algorithm in the general setting
of maximizing a monotone nondecreasing objective function
that is not necessarily submodular. They used a notion of the
elemental curvature p of the objective function to show that
the greedy algorithm provides a ((1 + p)~!) approximation
under a matroid constraint. However, determining the elemental
curvature defined in [24] is itself an NP-hard problem. Therefore,
providing performance guarantees for the settings, where the
objective function is not submodular or supermodular, such as
the trace of the covariance matrix of the estimation error in the
sensor selection problem, remains a challenge. On another note,
processing massive amounts of data collected by modern large-
scale networks may be challenging even for greedy algorithms.
To further reduce the computational burden of maximizing a
monotone increasing submodular function subject to cardinality
constraints, the authors of [2] proposed a stochastic greedy
algorithm that achieves (1 — 1/e — €) approximation factor,
where € denotes a parameter that can be varied to explore the
performance—complexity tradeoff. However, the results of [2]
do not apply to the sensor selection problem under the (nonsub-
modular) MSE objective.

The following are contributions of this article.

1) We formulate the task of selecting sensors in a large-
scale network as the problem of maximizing a monotone
nonsubmodular objective function directly related to the
mean square estimation error.

2) By closely inspecting curvature of the objective function,
we derive sufficient conditions under which the functionis
weak submodular. This enables us to argue that when the
measurement vectors are Gaussian or Bernoulli, as fre-
quently encountered in reduced-dimensionality Kalman
filtering via random projections [25], the MSE objective
is with high probability weak submodular.

3) We study the important setting, where the dynamics of
the process and sensor observations is described by a
state-space model and, building upon the work of Mirza-
soleiman et al. [2], propose a randomized greedy algo-
rithm for sensor selection and derive a bound on the MSE
of the state estimate formed by the Kalman filter that uses
the measurements of the selected sensors.

4) Our novel technique for the analysis of the randomized
greedy algorithm provides results that improve over the

existing performance guarantees of [2] for submodular
maximization problems.

5) Extensive simulations demonstrate that the proposed ran-
domized greedy sensor selection scheme significantly
outperforms both greedy and SDP relaxation methods in
terms of computational complexity, and hence runtime,
while providing essentially the same or improved MSE.

Our preliminary work on randomized greedy sensor selection
was presented at the 2018 American Control Conference [1].
The current article presents a significantly more thorough and
detailed analysis of the proposed algorithmic framework. This
includes the results in Theorem 3 and its corollary regarding
performance guarantee of the randomized greedy algorithm
for any instance of the sensor selection problem; prior results,
summarized in Theorem 2, were limited to the guarantees of the
expected performance. Moreover, we complement our theoreti-
cal results by presenting numerical evaluations for an application
of multiobject tracking via UAVs.

The rest of this article is organized as follows. Section II
presents a motivating example and sets up the system model.
In Section III, we describe the novel formulation of the sensor
selection problem and derive a bound on the curvature of the
MSE-related objective function. In Section IV, we introduce
the randomized greedy algorithm and analyze its performance.
Section V presents the simulation results, Finally, Section VI
concludes this article.

Notation: Bold capital letters denote matrices, while bold
lowercase letters represent vectors. Hy (i, j) is the (7, ) entry
of the time-varying matrix Hj, at time k, hy, ; is the jth row
of Hy, Hj, s is a submatrix of Hj, that consists of the rows
of Hy, indexed by the set .S, and A (Hy) and Ay (Hy) are
the maximum and minimum eigenvalues of Hy, respectively.
Spectral (£2) norm of a matrix is denoted by ||.||. I, € R™*™ is
the identity matrix. Moreover, let [n] := {1,2,...,n}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section starts by a description of a motivating exam-
ple of multiobject tracking under communication and power
constraints. Then, we proceed to define the system model and
mathematically formulate the sensor selection problem studied
in this article.

A. Motivating Example: Accelerated Multiobject Tracking

Consider a tracking system, shown in Fig. 1, where a control
unit surveys an area via a swarm of unmanned aerial vehicles
(UAVs). The UAVs are equipped with GPS and radar systems
and can communicate with each other over locally established
communication channels. However, only a few of the UAVs
known as swarm leaders are allowed to communicate to the
control unit because of various practical restrictions such as
power constraints. The UAVs patrol the area according to a
predefined search pattern (i.e., a dynamic model) to gather
information about the location of mobile objects of interest. That
is, the UAVs move along an elliptically shaped path with constant
speed. Each UAV, by using its radar system, acquires range
and angular measurements of all the objects that are within the
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Fig. 1. Multiobject tracking via a swarm of UAVs. The UAVs can
communicate with each other and are equipped with GPS and radar
systems. The objective is to select a small subset of range and angular
measurements gathered by the UAVs to communicate to the control unit.

maximum radar detection range and are capable of transmitting
those measurements to the swarm leaders. Therefore, we assume
that the detection probability is one for all the targets that are
within the sensing range of each UAV. Additionally, we assume
that there are a finite number of targets that are uniquely tagged
in a way that the UAVs can exactly identify them in order to
achieve error-free data association.

Due to limitations on the rate of communication between
the swarm leaders and the control unit, and to reduce delays
in tracking from high computation, only a subset of the gathered
measurements is communicated to the control unit. In order
to track the locations of the objects, the control unit employs
Kalman filtering using the received measurements. Therefore,
the goal of swarm leaders is to perform sensor scheduling and
select a subset of range and angular measurements such that 1)
the communication constraint is satisfied and 2) the MSE of the
Kalman filter estimate of the objects’ locations is minimized.

B. System Model

Consider a discrete-time, linear, time-varying state-space
model described by

Xp+1 = ApXp + Wy
yvi = Hixp + vy (D

where x;, € R™ is the state vector at time k that we aim to
estimate, y, € R" is the measurement vector, wj € R™ and
v € R™ are zero-mean white Gaussian noise processes with
covariances Q and Ry, respectively, A, € R™*"™ is the state
transition matrix, and H; € R™*™ is the matrix, whose rows
at time k are the measurement vectors hy ; € R™, 1 <7 <n.
We assume that the states xj; are uncorrelated with wy and
v}.. Additionally, we assume that xo ~ N (0, ) with 3, = 0,
and Ry, = diag(c?,...,02). Note that, unlike the past work on
greedy sensor selection in [4], [13], [26], and [27], this model
does not restrict the measurement noise covariance matrix to be
a multiple of identity.

Due to limited resources, the fusion center aims to select
out of n sensors and uses their measurements to estimate the
state vector x; such that the trace of the covariance matrix of
the estimation error, i.e., the MSE of the estimator implemented

using the Kalman filter, is minimized. Similar to prior work
in [4], [13], and [16], we assume that the measurement vectors
hy ; are available at the fusion center. Let Xj;_1 and Xy
denote the predicted and filtered linear minimum mean square
error (LMMSE) estimators of x;, respectively. In other words,
Xp|k—1 is the LMMSE estimator of x;, given {ys,,...,¥s, ,}
and Xy, is the LMMSE estimator of x, given {ys,,...,¥s, },
where S; denotes the set of sensors selected at time j and ys;
denotes the vector of measurements collected by those sensors.
Moreover, let Py, 1 and Py denote the predicted and filtered
error covariance matrix of the Kalman filter at time instant k,
respectively, i.e.,

Prj-1 = AP 1-1A) + Qi

1
Py = (PgﬁH + HZ,SkRE,lska,Sk)

where Pyp = ;. Since R, = diag(of,...,02) and the mea-
surements are uncorrelated across sensors, it holds that

-1
Pk\k = (P;ﬁgfl + H;cr,Skdiag({O—;2}iESk)Hhsk) .

_p-1 _p-1 -2 T
Furthermore, ].?S’“ = Pk[k = PWC* + Ziesk o; .hk,ihk,i. is
the corresponding Fisher information matrix. In the information
form, the filtered estimator of x;, is expressed as

Xplk = FEiHZ,skdiag({Uf}ieSk)Yk~ (2

The MSE of the estimate found in (2) is given by the trace of
the filtered error covariance matrix Py,

MSEs, = E [ka - *k\k”ﬂ =Tr (Fg,) - 3)

To minimize (3), at each time step, the fusion center seeks a
solution to the optimization problem

min Tr (Fg') st Scin], |S|=K. 4)

By areduction to the well-known set cover problem, the combi-
natorial optimization (4) can be shown to be NP-hard [15], [28].
In principle, to find the optimal solution, one needs to exhaus-
tively search over all schedules of K sensors. The techniques
proposed in [16], albeit for an optimality criterion different
from MSE and a simpler measurement model, find a subset of
sensors that yields a suboptimal MSE performance while being
computationally much more efficient than the exhaustive search.
In particular, Joshi and Boyd [16] rely on finding the solution to
the following SDP relaxation:
min Tr(Y)

Z,

st 0<z,, <1, Vi€en]

n
E Zki = K
i=1

Y I =0. (5
I P+ 20 hyghf |

The complexity of the SDP algorithm scales as O(n?), which
is infeasible in many practical settings. Furthermore, there are
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no guarantees on the achievable MSE performance of the SDP
relaxation. Note that when the number of sensors in a network
and the size of the state vector xj; are relatively large, even
the greedy algorithm proposed in [4] may be computationally
prohibitive.

Ill. SENSOR SELECTION VIA OPTIMIZING A WEAK
SUBMODULAR OBJECTIVE

Leveraging the idea of weak submodularity, in this section,
we propose a new formulation of the sensor selection problem
concerned with minimizing the MSE of the Kalman filter that
relies on a subset of network nodes to track states of a hidden
random process. We first overview concepts that are essential
for the development of the proposed framework.

Definition 1: A set function f : 2¥ — R is monotone non-
decreasing if f(S) < f(T) forall S C T C X.

Definition 2: A set function f : 2% — R is submodular if

FSU{sh) = £(8) = f(Tu{j}) — f(T) (©6)

for all subsets S C T C X and j € X\T.

A concept closely related to submodularity is the notion of
curvature of a set function. The curvature quantifies how close
the function is to being submodular. In particular, here, we state
the definition of the elementwise curvature (also known as the
approximate weak submodularity constant) [24], [26], [29], [30].

Definition 3: The elementwise curvature C; of a monotone
nondecreasing function f is defined as

G = (S’I%I’?))é% fl(T)/f’L(S) @)
where £(S) = f(S U{i}) = f(S) and fi(T) = f(T U {i}) -
f(T) denote the marginal values of adding element i to sets
S and T, respectively, and X; = {(S,T,4)|S CT C X,i €
X\T,|T\S| =1,|X| = n}. Furthermore, the maximum ele-
mentwise curvature is denoted by Cy,ax = max; C;.

A set function is submodular if and only if Cax < 1. We refer
to f(S) as being weak submodular if its curvature Cpax > 1
is bounded above. Note that while computing the elementwise
curvature is NP-hard, the bound on the proposed sensor selec-
tion objective that we derive in Theorem 1 can be efficiently
evaluated.

Definition 4: Let X be afinite set and let Z denote a collection
of subsets of X. The pair M = (X,Z) is a matroid if the
following two statements hold.

1) Hereditary property: If 7" € Z, then S € Z forall S C T

2) Augmentation property: If S, T € 7 and |S| < |T|, then

there exists e € T'\\S such that S U {e} € Z.

The collection 7 is called the set of independent sets of the
matroid M. A maximal independent set is a basis. It is easy to
show that all the bases of a matroid have the same cardinality.

Given a monotone nondecreasing set function f : 2%X — R
with f(0) =0, and a uniform matroid M = (X,Z), we are
interested in solving the combinatorial problem

max f(95). (8)

SeT

Recall that for Kalman filtering in the resource constrained
scenario, if S}, is the set of sensors selected at time &, then the

error covariance matrix of the filtered estimate is Py, = ng,
the inverse of the corresponding Fisher information matrix. Let
us define f(S) as

f(S) =Tr (Pyr_1 — Fg').

Clearly, since Py, is known, there is a one-to-one correspon-
dence between f(.Si) computed for a given subset of sensors Sy,
and the MSE of the LMMSE estimator (i.e., filtered estimate of
the Kalman filter) that uses measurements acquired by the sen-
sors in Sy. Therefore, we can express the optimization problem
(4) as

max f(S) st. ScCn], |S]=K. )
We now argue that (9) is indeed an instance of the general
combinatorial problem (8). By defining X = [n]andZ = {S C
X||S| < K}, it is easy to see that M = (X,7) is a uniform
matroid. In Proposition 1, we characterize important properties
of f(S) and develop a recursive scheme to efficiently compute
the marginal gain of querying a sensor. The formula for the
marginal gain of f(S) is also of interest in our subsequent
analysis of its weak submodularity properties.

Proposition 1: Let f(S) = Tr(Ppjp_1 — Fg'). Then, f(S)
is a monotonically increasing set function, f (@) = 0, and

T -2
hk,st hk,j
2 T -1 ]
0; +hk,jFS hy ;

fi(S) = (10)

where upon adding element j € X\S to S, Fg is updated
according to

F_l = F_1 _ Fglhkvjh;cr,]Fgl (11)
st =S T 2 n] Ry
Proof: See Appendix A. |

As stated in Section I, the MSE is not supermodular [18], [23].
Consequently, the proposed objective f(S) = Tr(Py—1 —
Fgl) is also not submodular. However, as we show in
Theorem 1, under certain conditions, f(.5) is characterized by
a bounded maximum elementwise curvature C,,,,. Theorem 1
also states a probabilistic theoretical upper bound on Cp,.x in
scenarios, where, at each time step, the measurement vectors
hy, ;s are realizations of independent identically distributed
(i.i.d.) random vectors drawn from a suitable distribution.

Before proceeding to Theorem 1 and its proof, we first state
the matrix Bernstein inequality [31] and Weyl’s inequality [32],
which we will later use in the proof of Theorem 1.

Lemma I (Matrix Bernstein inequality [31]): Let {X,}}_,
be a finite collection of independent, random, Hermitian ma-
trices in R™*™. Assume that for all £ € [n], we have

E [Xd = 07 )\max(Xé) < L. (12)

LetY = >, Xj. Then, for all ¢ > 0, it holds that

—¢*/2
ENT] +Lq/3> - WY

Pr{imax(Y) > q} < mexp <
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Lemma 2 (Weyl’s inequality [32]): Let A and B be twom x
m real positive-definite matrices. Then, it holds that

3(A) + i (B) < M(A + B) < Ay(A) + Amax(B) (14)

where A;(A) denotes the [th largest eigenvalue of A.
We now proceed to the statement and proof of Theorem 1.
Theorem 1: LetCppax be the maximum elementwise curvature
of f(.9), the objective function of the sensor selection problem.
Assume that ||hy, ;||3 < C forall j and k. If

1 1
Amax (HL Hy) < ( - ) min o2 (15)
( i k) N ¢> )Lmin(Pk|k:71) J€ln] /
for some 0 < ¢ < Amin(Pg|x—1), then it holds that
Amax (Prik—1)2(02 + Amax(Prip_1)C
O < max (Prjr—1)*(o3 (Prjr-1)0) (16)

¢? (0% + ¢C)

Furthermore, if hy, ;s are i.i.d. zero-mean random vectors with
covariance matrix 031, such that o7 < C, then, for all ¢ > 0,
with probability

j€[n]

a7

—*/2
p>1—mexp <(C_g,2l)(na,3 +q/3))

it holds that

—1
' 1 noi +q
N 0. 18
el <kmin(Pkk—1)+ o3 > - "

J

Proof: We prove the statement of the theorem by relying
on the recursive expression for the marginal gain stated in
Proposition 1. We first establish a sufficient condition for weak
submodularity of f(.S). In particular, from the definition of the
elementwise curvature and (10), for all (S, T', j) € X}, we obtain

€= max (h;jF%ghk,j)(%z'+h;,jF§1hk7j)
(S (0] B she ) (07 + B Py i)

< )“maX(FJ_“Q)(UJQ‘ + )‘maX(Fgl)Hhk,j H%)
S max o\, 2 1 2
(S.T.7)eX Amin(Fg”)(0F + Amin(F7) [P 513)
where the inequality follows from the Courant—Fischer min—
max theorem [32]. Notice that AmaX(Fgl) = Amin(Fs)~! and
)Lmin(FT) > )Lmin(FS) > )Lmin(F(b) = )Lmin(P;ﬁc,l) by Lemma
2. This fact, along with the definition of Cp,,x implies
)\max(Pk\kfl)Q(UJQ‘ + )\max(Pk\kfl)"hk,j'
Cmax S max DY) 1 2
jelm]  Amax(Fs)™ (Uj + Amax (F) 7|y 5(|3)
(a) Amax (Preji—1)2(07 4 Amax (Prjr—1) [ 513)
< max 32 1 2
Jj€ln] )‘maX(F[n]) (Uj + )‘maX(F[n]) [hy,;113)
(b) max )"max(Pk\k—l)z(o—?‘ + )"max(Pk\k—l)C)
~ jen) AmaX(F[n])*Q(cr? + Amax (Fpr)) 71C)
where (a) follows from the fact that A (Fs) < Amax(Fr) <
Amax(F[)) and () holds since

(19)

5)

(20)

O—JQ‘ + Amax(Pk\k—l)x

(21
0—? + Amax(]-:"[n])71:17

g(z) =

is a monotonically increasing function for z > 0. Now, since the
maximum eigenvalue of a positive-definite matrix satisfies the
triangle inequality, we have

1 "1
Aomax (Fr)) < ——————— + A —hy, h;
max( [n]) > )\min(Pk\k_l) + Amax ; sz kg, 4

1
<
" Amin(Prjg—1)

Therefore, by combining inequalities (15) and (20), we obtain
the result in (16).

Next, to analyze the setting of i.i.d random measurement
vectors, we bound Amax(F[n]) using Lemma 1. Let X; =
hy jhy, ; — 071, and Y =377 X;. To use the result of
Lemma 1, one should first verify expressions in (12). To this
end, note that

E[X;] = E[hy jh; ; — o7 1,,]
=E[hy ;h} ;] — 071, =0.

1
+ max — Amax (Hy Hy).  (22)
j€[n] a5

(23)

This, in turn, implies that E[Y] = 0. Since X ;s are independent,
then

n

IECY?) = IE[D_X3])| < Z IEXF @

j=1

by the linearity of expectation and the triangle inequality. To
proceed, we need to determine Amax (X;) and IE[X?] First, let
us verify that hy, ; is an eigenvector of X; by observing that

Xjh; = (hk,jhz,j — opLy) hy
= (I 415 — o7) b5

where hy, ; h;’ i 071, is the corresponding eigenvalue. Since

(25)

hy ;h) ; is arank-1 matrix, other eigenvalues of X ; are all equal

to —o3. Hence, we have
)&max(Xj) <C- 0'}21 (26)

and we recall that C — o > 0. We can now establish an upper
bound on E[X?] as

E[X2] = E[ (hy by, — 07L,) (hy by — 07l ]
= (g3 — o7) E[hy ;hy ;]
— 0 E[ (hg by ; — 071n) ]
= (|bg, |2 — 03) 021, < (C —0})oil,  (27)

where we have used the fact that E[X ;] = 0. Thus, L = C' — 0}
and |E[Y?]|| < n(C — o)o?. Now, according to Lemma 1, for
all ¢ > 0, it holds that Pr{im.x (Y) < ¢} > p, where
2
—¢*/2 )
p:l—mexp( . (28)
(C = o})(noj +4/3)

Therefore, we have

1 no? +q
Mnax(F) € ———=—— +max ——— = ¢! (29)
Ftet) Amin(Prk-1)  jelol 07 ¢
with probability p. This completes the proof. |
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Remark 1: The setting of i.i.d. random vectors described in
Theorem 1 arises in scenarios where sketching techniques, such
as random projections, are used to reduce dimensionality of the
measurement equation (see [25] for more details). The following
are often encountered examples of such settings.

1) Multivariate Gaussian measurement vectors: Let hy, j ~
N(0,L1,,) for all j. It is straightforward to show
that E[||hy, ;||3] = 1. Furthermore, it can be shown that
|hy ;|13 is with high probability concentrated around its
expected value. Therefore, for this case, 0121 = % and
C=1.

2) Centered Bernoulli measurement vectors: Let each en-
try of hy ; be i\/% with equal probability. Therefore,
|hy ;|13 = 1= C. Additionally, o7 = L, since the en-
tries of hy, ; are i.i.d. zero-mean random variables with
variance %

We can interpret the conditions stated in Theorem 1 as require-
ments on the condition number of P ;,_; as argued next. For a
sufficiently large m and o7 = %, it holds that C' ~ 1. Assume
that ¢ > Amax (Pjr—1)/A for some A > 1, and af— = o2 for all
i € [n]. Define

)Vmax(Pk\kfl)

SNR =~

(30)

and let

_ )\max(Pk\k—l)
Amin(Pjr—1)

be the condition number of Pj,_;. Then, following some
elementary numerical approximations, we obtain the following
corollary.

Corollary 1.1: Let

>1 31)

A >k +c—SNR (32)
m
for some ¢; > 1. Then, with probability
p>1—mexp (—202) (33)
m

it holds that Cpax < A3 for some ¢4 > 0.

Informally, Theorem 1 states that for a well-conditioned
Pyji—1. the curvature of f(S) is small, which implies weak
submodularity of f(S). Furthermore, the probability of such
an event exponentially increases with the number of available
measurements.

IV. RANDOMIZED GREEDY SENSOR SELECTION

The complexity of SDP relaxation and greedy algorithms
for sensor selection becomes prohibitive in large-scale systems.
Motivated by the need for practically feasible schemes, we
present a randomized greedy algorithm for finding an approx-
imate solution to (9) and derive its performance guarantees. In
particular, inspired by the technique in [2] proposed in the con-
text of optimizing submodular objective functions, we develop
a computationally efficient randomized greedy algorithm (see
Algorithm 1) that finds an approximate solution to (9) with a
guarantee on the achievable MSE performance of the Kalman

Algorithm 1: Randomized Greedy Sensor Scheduling.
1: Input: Pk‘k,l,Hk,K, €.
Output: Subset Sy, C [n] with |Si| = K.
Initialize S\ = 0, F;io) = Py 1.
fori=0,..., K —1do
Choose R by sampling s = # log (1/¢) indices

uniformly at random from [n}\S,(:)
h;jF;?:) hy.,;

ST I nh
7; +hkij

6: is = argmax;cp S

70 Set SYTY = 5V U (i)

-1 T -1
Fomheihe F )
8: F_l,,=F_, — == —
Sl(cH»l) SI(C'L) o-j2'+h—1£,isF;,(i)hkv’iS
k
9: end for

10:  return S, = S,(CK).

filter that uses only the observations of the selected sensors.
Algorithm 1 performs the task of sensor scheduling in the
following way. At each iteration of the algorithm, a subset R of
size s is sampled uniformly at random and without replacement
from the set of available sensors. The marginal gain provided
by each of these s sensors to the objective function is computed
using (10), and the one yielding the highest marginal gain is
added to the set of selected sensors. Then, the efficient recursive
formula in (11) is used to update Fgl so it can be analyzed
when making the selection in the next iteration. This procedure
is repeated K times.

Remark 2: The parameter € in Algorithm 1, e K <e<l,is
a predefined constant that is chosen to strike a desired balance
between performance and complexity. When e = e~ %, eachiiter-
ation includes all of the nonselected sensors in R, and Algorithm
1 coincides with the conventional greedy scheme. However,
as e approaches 1, |R| and, thus, the overall computational
complexity decrease.

A. Performance Analysis of the Proposed Scheme

In this section, we analyze Algorithm 1 and in Theorem 2
provide a bound on the performance of the proposed randomized
greedy scheme when applied to finding an approximate solution
to maximization problem (9).

Before deriving the main result, we first provide two lemmas.
Lemma 3 from [24] states an upper bound on the difference
between the values of the objective function corresponding to
two sets having different cardinalities, while Lemma 4 provides
a lower bound on the expected marginal gain.

Lemma 3: Let {C;}7—} denote the elementwise curvatures
of f(S). Let S and T be any subsets of sensors such that S C
T C [n] with |T\\S| = r. Then, it holds that

F(T) = f(S) < C(r) Y 1;(9) (34)

JET\S

where C(r) = L(1+ Y21 C)).

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 30,2021 at 21:59:29 UTC from IEEE Xplore. Restrictions apply.



HASHEMI et al.: RANDOMIZED GREEDY SENSOR SELECTION: LEVERAGING WEAK SUBMODULARITY 205

Proof: See Appendix B. |

Lemma 4: Let S,(:) be the set of selected sensors at the end
of the 7th iteration of Algorithm 1. Then, we have

_ B .
IT S s

jeOr\S

E [foen. (SP)IS0] 2 (35)

where Oy, is the set of optimal sensors at time k, (i + 1) is
the index of the selected sensor at the (7 + 1)th iteration, 5 =
1+ max{0, 5 — 55—}, and s = % log (1/e).

Proof: See Appendix C. |

Theorem 2 specifies how accurate the approximate solution
to the sensor selection problem found by Algorithm 1 is. In
particular, if f(5) is characterized by a bounded maximum
elementwise curvature, Algorithm 1 returns a subset of sensors
yielding an objective that is, on average, within a multiplicative
factor of the objective achieved by the optimal schedule.

Theorem 2: LetCpax be the maximum elementwise curvature
of f(5),1i.e., the objective function of sensor scheduling problem
in (9). Let S}, denote the subset of sensors selected by Algorithm
1 at time &, and let Oy, be the optimum solution to (9) such that
|Ok| = K. Then, f(S)) is on expectation a multiplicative factor
away from f(Oy), i.e.,

1 €
Elfs = (1ot = S) 00 6o
where ¢ =max{Cpax,1}, e X <e<1l, and pB=
1 + max{0, 5~ — 2(%5)} Furthermore, the computational

complexity of Algorithm 1 is O(nm?log(L)), where n is the
total number of sensors and m is the dimension of xy.
Proof: Consider .S ,S), the set generated by the end of the ith

iteration of Algorithm 1. Employing Lemma 3 with S = .S, ,Ei)
and T = O, US @) and using monotonicity of f, yields

F00) = F(8{") _ fOxUS) = £(5)
Losxiia) t(+xiia)

< > 5 (37)
jEOK\SL)
where [O;\S ,(f)\ = r. Now, using Lemma 4, we obtain
0y gl f(On) = £(5)
E [f(i+1)5 (:7)1Sy )] > (1-¢) . —k L. (38)
o (1 + 2= Cl)
Applying the law of total expectation yields
E [f(iH)S(S,S))} -E [ F(SEHDY - f(s,g“)}
£(00) —E [£(5")]
> (1-¢ (39)

Using the definition of the maximum elementwise curvature, we
obtain
< - (14 (r — 1)Ciax)

=g(r). (40

| =
VR
—
+
<
M1
O
~__—
—

It is easy to verify, e.g., by taking the derivative, that g(r) is
decreasing (increasing) with respect to 7 if Cppax < 1 (Cax >
1). Let ¢ = max{Cmax, 1 }. Then, we have

r—1
1 1
- (1 <-(1 —1)Cnax) < c
<+ch>_T(+(r )Crmax) < €

Hence, we have

(41)

. . _ B .
(1) 4/ qli) L—e B (i)
E[£(50) - 1(5)] 2 —= (00 ~E[£(50)]).
(42)
Using an inductive argument and due to the fact that f () = 0,
we obtain

K
E[f(Sk)] > (1 —~ (1 - 1;(53) ) f(Or).  43)

Finally, using the fact that (1 + x)¥ < e*¥ for y > 0 and the
easily verifiable fact that e < 14 axe® for 0 <z < 1, we
obtain

(44)

To take a closer look at computational complexity of Algorithm
1, note that step 6 costs O(Zm?log(1)), since one needs to
compute 7 log (1) marginal gains, each requiring O(m?) opera-
tions. Furthermore, step 8 requires O (m?) arithmetic operations.
Since there are K such iterations, the running time of Algorithm
1is O(nm?log(1)). This completes the proof. [ |

Using the definition of f(.S), we obtain Corollary 2.1 stating
that, at each time step, the achievable MSE in (3) obtained by
forming an estimate using sensors selected by the randomized
greedy algorithm is within a factor of the optimal MSE.

Corollary 2.1: Consider the notation and assumptions of
Theorem 2 and introduce o = 1 — e~ ¢ — %. Let MSEg, de-
note the mean square estimation error obtained by forming an
estimate using information provided by the sensors selected by
Algorithm 1 at time k, and let MSE, be the optimal MSE
formed using information collected by the sensors specified
by the optimum solution of (9). Then, the expected MSEg, is
bounded as

E [MSEs,] < aMSE, + (1 — a)Tr(Py_1).  (45)

Remark 3: Since the proposed sensor selection scheme is
a randomized algorithm, the analysis of its expected MSE, as
provided by Theorem 2 and Corollary 2.1, is a meaningful
performance characterization. Notice that, as expected, « is
decreasing in both ¢ and e. If f(S) is characterized by a small
curvature, then f(S) is nearly submodular, and the randomized
greedy algorithm delivers a near-optimal sensor scheduling. As
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we decrease €, o increases, which, in turn, leads to a better
approximation factor. Moreover, by following an argument sim-
ilar to that of the classical analysis in [17], one can show that
the approximation factor for the greedy algorithm is given by
g =1-— e (see also [22] and [27]). Therefore, the term E in
« denotes the difference between the approximation factors of
the proposed randomized greedy algorithm and the conventional
greedy scheme.

Remark 4: The computational complexity of the greedy
method for sensor selection that finds marginal gains via the
efficient recursion given in Proposition 1 is O(Knm?). Hence,
our proposed scheme provides a reduction in complexity by
K /log(1), which may be particularly beneficial in large-scale
networks, as illustrated in our simulation results.

Remark 5: In contrast to the results of [2] derived in the
context of maximizing monotone submodular functions, The-
orem 2 relaxes the submodularity assumption and states that the
randomized greedy algorithm does not require submodularity to
achieve near-optimal performance. Rather, if the set function is
weak submodular, Algorithm 1 still selects a subset of sensors
that provide an MSE near that achieved by the optimal subset of
sensors. In addition, even if the function is submodular (e.g., if
we use the log det objective instead of the MSE), the results of
Theorem 2 offer an improvement over the theoretical results
of [2] due to a tighter approximation bound stemming from
the analysis presented in the proof of Theorem 2. Moreover,
a major assumption in [2] is that R is constructed by sampling
with replacement. Clearly, this contradicts the fact that a sensor
selected in one iteration will not be in R in the subsequent
iteration with probability 1. On the contrary, we assume that
R is constructed by sampling without replacement and carry out
the analysis in this setting that matches the actual randomized
greedy sensor selection strategy.

The randomized selection step of Algorithm 1 can be inter-
preted as an approximation of the marginal gains of the selected
sensors using a greedy scheme [4]. More specifically, for the ith
iteration, it holds that f; (S,(:)) = n,(:) fia (Sl(;)), where sub-
scripts g and g refer to the sensors selected by the randomized
greedy algorithm (see Algorithm 1) and the greedy algorithm,
respectively, and {ng)}fil are random variables with mean
i (€) that satisfy 0 < £;(e) < n,(;) < 1foralli € [K]." In view
of this argument, we obtain Theorem 3, which states that if f(.5)
is characterized by a bounded maximum elementwise curvature
and {771?)}1'](:1 are independent random variables, Algorithm
1 returns a subset of sensors yielding an objective that, with
high probability, is only a multiplicative factor away from the
objective achieved by the optimal schedule.

Theorem 3: Instate the notation and assumptions of Theorem
2. Let {77,(;)}{21 denote a collection of random variables such
that 0 < 4;(e) < 77](;’) <1, and ]E[n](;’)} = p;(e) for all ¢ and
k. Let lyin(€) = min; {¢;(¢)} and pmin(€) = min, x{pi(e)}.

INotice that £; (¢) and p; (€) are time-varying quantities, where the time index
is omitted for the simplicity of notation.

Then, we have

_ “min(e)

F(Sk) = (1—e ™ (46)

) £O0).
Furthermore, if {n,(f) K | are independent, then for all 0 < ¢ <
1 with probability at least 1 — =% it holds that

) £00)

_ (A -q@)pmin(e)

flsi) = (1-e %
for some C' > 0. '

Proof: Consider S,(CZ), the set generated by the end of the ith
iteration of Algorithm 1 and let (i + 1), and (¢ + 1),, denote
the sensors selected by the greedy and randomized greedy algo-
rithm in the ith iteration, respectively. Let ¢ = max{Cpax, 1}.
Employing Lemma 3 with S = S](;') and T = Oy U S,(;), and
using monotonicity of f, yields

F(0) = £(5) < f(Ox U S — F(5L7)

(47)

<c Y s (48)
jeOr\S
Using the fact that
FS0) € Farn, (S0) < farn, (57) @9)
for all 7, we obtain
FOR) = F(SI) < e frigny, (S). (50)
On the other hand, we have
FEST) = £S5 = farny,, (S)
=i fen, (). 6D
Combining (50) and (51) yields
i+1 i U(iﬂ) i
FSE) = £(50) = B (£(O0) = £(S1)) - (52)

Using an inductive argument similar to the one in the proof of
Theorem 2, and noting that f({)) = 0, we have

K n(i)
F(Sk) = (1 - (1 - Z&)) 1(Ox)

(a) Cx )
> |[1—e 2= %7 | f(O)

where to obtain (a), we use the fact that

(53)

(14 x)¥ <e¥fory >
0. Therefore, since, by assumption, ¢min(€) < ¢;(€) < 77,(;) <1,
we establish (46).

To show the second statement, i.e., to prove that (47) holds in
the setting of independent {n,(:) K |, we apply the Bernstein’s
inequality [33] to the sum of independent random variables
Zfil 77,(:’). Since {77,8)} are bounded random variables, from
Popoviciu’s inequality [33] for all ¢ € [K], it follows that

1

Varlp,'] < (1~ :(e))*. (54)
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Hence, based on the Bernstein’s inequality, for all 0 < ¢ < 1,
we have

(55)

K K
Pr {Zmﬁl) <(1- Q)ZM} <p
=1 i=1
where

b= e <_ (1 (S ml9)? )
LS K o) + 1K (1 ti(e))?
(%) exp <_ 1_ K(l — q)2u“r2nin(€) >
S pimin(€) + (1 — lmin(€))?

— ¢ CleK

(56)

where (b) follows because p increases as we replace p;(€) and
¢;(¢€) by their lower bounds. Finally, substituting this result into
(53) yields

(@) ppin (€)

F(81) > (1-e 22 f(0p) (57)
with probability at least 1 — e®(©9X  This completes the
proof. ]

Our simulation studies in Section V empirically confirm the
results of Theorems 2 and 3 and illustrate that Algorithm 1
performs favorably compared to the competing schemes both
on average as well as for each individual sensor scheduling task.

Similar to Corollary 2.1, we can now obtain a probabilistic
bound on the MSE (3) achievable at each time step using the
proposed randomized greedy algorithm. This result is stated in
Corollary 3.1.

Corollary 3.1: Consider the notation and assumptions of
Corollary 2.1 and Theorem 3. Let0 < ¢ < landdefinea =1 —
exp(— w). Then, with probability at least 1 — e~ % it
holds that

MSEg, < aMSE, + (1 — a)Tr(Pjjx-1) (58)

for some C' > 0.

V. SIMULATION RESULTS

To test the performance of the proposed randomized greedy
algorithm, we compare it with the classic greedy algorithm and
the SDP relaxation in a variety of settings, as detailed next.
We implemented the greedy and randomized greedy algorithms
in MATLAB and the SDP relaxation scheme via CVX [34].
All simulations were run on a laptop with 2.0-GHz Intel Core
i7-4510 U CPU and 8.00 GB of RAM.

A. Kalman Filtering in Random Sensor Networks

We first consider the problem of state estimation in a linear
time-varying system via Kalman filtering. For simplicity, we
assume the state transition matrix to be identity, i.e., Ap = I,,.
At each time step, the measurement vectors, i.e., the rows of
the measurement matrix Hj, are drawn according to A ~
(0, %Im). The initial state is a zero-mean Gaussian random

10 ‘
Greedy
- — —Proposed ¢ = 0.001

3 SDP
—
S
5
> e P |
<
s
[ i R i et Rl
n
g 4r
]
¥
=

2 L

0 L L L L L L L L L

2 4 6 8 10 12 14 16 18 20
Time horizon (k)
Fig. 2. MSE comparison of randomized greedy, greedy, and SDP

relaxation sensor selection schemes employed in Kalman filtering.

TABLE |
RUNNING TIME COMPARISON OF THE RANDOMIZED GREEDY, GREEDY, AND
SDP RELAXATION SENSOR SELECTION SCHEMES (m = 50, n = 400,
K =55, AND e = 0.001)

SDP Relaxation
249.86 s

Randomized Greedy
0.20 s

Greedy
0.38 s

vector with covariance 3y = 1,,,, and the process and measure-
ment noise are zero-mean Gaussian with covariance matrices
Q = 0.051,,, and R = 0.051,,, respectively.

The MSE of the filtered estimator and running time of each
scheme is averaged over 100 Monte Carlo simulations. The time
horizon for each runis 7' = 10 s.

We first consider a system having state dimension m = 50
and the total number of sensors 7. = 400. We set a constraint on
the number of sensors allowed to be queried at each time step to
K = 55 and compare the MSE achieved by each sensor selection
method over the time horizon of interest. For the randomized
greedy algorithm, we set e = 0.001. Fig. 2 shows that the greedy
method consistently yields the lowest estimation MSE, while the
MSE provided by the randomized greedy algorithm is slightly
higher. The MSE performance achieved by solving the SDP
relaxation is considerably larger than those of the greedy and
randomized greedy algorithms. The time it takes each method
to select K sensors is given in Table I. Both the greedy algorithm
and the randomized greedy algorithm are much faster than the
SDP formulation. Moreover, the randomized greedy scheme is
nearly two times faster than the greedy method.

Note that, in this example, in each iteration of the sensor
selection procedure, the randomized scheme only computes the
marginal gain for a sampled subset of size 50. In contrast, the
classic greedy approach computes the marginal gain for all 400
sensors. In summary, the greedy method yields slightly lower
MSE but is much slower than the proposed randomized greedy
algorithm.

To study the effect of the number of selected sensors on the
MSE performance, we vary K from 55 to 115 with increments
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Fig. 3. Comparison of randomized greedy, greedy, and SDP relaxation
schemes as the number of selected sensors increases. (a) Comparing
MSE performance of different schemes. (b) Running time comparison.

of 10. The MSE values at the last time step for each algorithm
are shown in Fig. 3(a). As the number of selected sensors
increases, the estimation becomes more accurate, as reflected by
the MSE of the estimates provided by each algorithm. Moreover,
the differences between the MSE values achieved by different
schemes monotonically decrease as more sensors are selected.
The sensor selection running times shown in Fig. 3(b) indicate
that the randomized greedy scheme is nearly twice as fast as the
greedy method, while the SDP method is orders of magnitude
slower than both greedy and randomized greedy algorithms.

To test the tightness of the bound established in
Theorem 1, we empirically study a sensor selection problem
with n = 12 Gaussian observations. Fig. 4 shows the true values
of the maximum elementwise curvature found via exhaustive
search as well as the bound stated in Theorem 1. As can be seen
in the figure, the gap between the two is negligible at small SNR
but becomes relatively loose at high SNR.

Finally, to empirically verify the results of Theorem 3, in
Fig. 5, we compare histograms of MSE achieved by the greedy

N
~

Bound on ¢y
————— True ¢f

N
[}
T

— —_ —_
~ [e)} e} [\
T T T T
I I I I

Element-wise curvature (cy)
.

—_—

o
o0

102

—_
S
&

Signal-to-noise ratio

Fig. 4. Evaluation of theoretical results in Theorem 1 for a sensor
network with m = 3 and n = 12.

20 T T T
[ Greedy
[JProposed € = 0.1
[]Proposed € = 0.01
15+ [ Proposed € = 0.001 | 1

3.2 34 3.6 3.8 4 4.2 44 4.6
MSE

Fig. 5. Histogram of MSE values for 100 independent realization of a
sensor scheduling task for a sensor network with m = 50, K = 60, and
n = 400.

and the proposed randomized greedy sensor selection schemes
with various choices of ¢ when K = 60. As shown in Fig. 5,
the MSE of sets selected by the proposed scheme is relatively
close to that selected by the state-of-the-art greedy algorithm. In
addition, as e decreases, the MSE of the randomized greedy algo-
rithm approaches that of the greedy algorithm. These empirical
observations coincide with our theoretical results in Theorem 3.
That is, the proposed algorithm, although a randomized scheme,
returns a near-optimal subset of sensors for each individual
sensor selection task.

B. State Estimation in Large-Scale Networks

Next, we compare the performance of the randomized greedy
algorithm to that of the greedy algorithm as the size of the
system increases. We run both methods for 20 different system
dimensions. The initial dimensions are set to m = 20, n = 200,
and K = 25, and all three parameters are scaled by ~, where ~y
varies from 1 to 20. In addition, to evaluate the effect of € on the
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Fig. 6.  Comparison of the randomized greedy and greedy algorithms
for varied network size. (a) Comparing MSE performance of different
schemes. (b) Running time comparison.

performance and runtime of the randomized greedy approach,
we repeat experiments for € € {0.1,0.01,0.001}. Note that the
computational complexity of the SDP relaxation scheme is
prohibitive in this setting, and hence, it is omitted. Fig. 6(a)
illustrates the MSE comparison of the greedy and randomized
greedy schemes. It shows that the difference between the MSEs
is negligible. The running time is plotted in Fig. 6(b). As the
figure illustrates, the gap between the running times grows with
the size of the system, and the randomized greedy algorithm
performs nearly 28 times faster than the greedy method for the
largest network. Fig. 6 shows that using a smaller € results in a
lower MSE, while it slightly increases the running time. These
results suggest that, for large systems, the randomized greedy
provides almost the same MSE while being much faster than the
greedy algorithm.

C. Accelerated Multiobject Tracking

Finally, we study the multiobject tracking application intro-
duced in Section II-A. Specifically, we consider a scenario,
where 20 moving objects are initially uniformly distributed in
a 5 x 10 area. At each time instance, each object moves in
a random direction with a constant speed set to 0.2. Twenty

10*
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=
g
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F il vt o phiet .
0 L L L L
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Time horizon (k)
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Fig. 7. Comparison of the randomized greedy and greedy algorithms

for a multiobject tracking application. (a) Comparing MSE performance
of different schemes. (b) Running time comparison.

UAVs, equidistantly spread over the area, move according to a
periodic parallel-path search pattern [35]. The initial phases
of the UAVs’ motions are uniformly distributed to provide
a better coverage of the area. The UAVs can acquire range
and angular measurements of the objects that are within the
maximum radar detection range. The maximum radar detection
range is set such that at each time step, the UAVs together
collect approximately 600 range and angular measurements.
The communication bandwidth constraints limit the number of
measurements transmitted to the control unit to ' = 100. Note
that since the radar measurement model is nonlinear, the control
unit tracks objects via the extended Kalman filter. Fig. 7 shows
a comparison in terms of the MSE and running time between
the greedy and randomized greedy schemes for various values
of €. In Fig. 7, we show the performance of the scheme that
ignores communications constraints and uses all the available
measurements gathered by the UAVs. As Fig. 7(a) illustrates,
the MSE performance of the greedy and proposed schemes are
relatively close and similar to the performance of the scheme
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that uses all the measurements. However, a closer look at the
running time comparison shown in Fig. 7(b) reveals that the
combined runtime of randomized greedy sensor selection and
Kalman filtering tasks is approximately two times faster than
the runtime of the Kalman filter that uses all the measurements,
and approximately four times faster than the combined runtime
of the classical greedy sensor selection and Kalman filtering.
Therefore, the proposed scheme not only satisfies the commu-
nication constraint and performs nearly as well as using all the
measurements, but also significantly reduces the time needed to
perform sensor selection and process the selected measurements
in extended Kalman filtering.

VI. CONCLUSION

In this article, we studied the problem of state estimation in
large-scale linear time-varying dynamical systems. We proposed
a randomized greedy algorithm for selecting sensors to query
such that their choice minimizes the estimator’s MSE at each
time step. We established the performance guarantee for the
proposed algorithm and analyzed its computational complexity.
To our knowledge, the proposed scheme is the first randomized
algorithm for sensor scheduling with an explicit bound on its
achievable MSE. In addition, we provided a probabilistic the-
oretical bound on the elementwise curvature of the objective
function. Furthermore, in several simulated settings, we demon-
strated that the proposed algorithm is superior to the classical
greedy and SDP relaxation methods in terms of running time
while providing the same or better utility.

As a future work, it is of interest to extend this approach to
nonlinear dynamical systems and obtain theoretical guarantees
on the quality of the resulting approximate solution found by the
randomized greedy algorithm. Moreover, it would be of interest
to extend the framework established in this article to related
problems, such as the minimal actuator placement.

APPENDIX A
PROOF OF PROPOSITION 1

First, note that
f(@)
Now, for j € [n]\S, it holds that
f3(8) = F(SU{i}) = f(5)

—Tr (Pk,,H _F

=Tr (Pk\k—l — Fal) =Tr (Pk|k—1 — Pk\k—l) =0.

(39)

5&@'}) —Tr (Py1 — Fg')
=Tr (Fg') - T (Fgly,))

=Tr (F;l) —Tr ((FS + U;Qhk,jhz,j)il)

@ [ Fs'hihi,;Fs'
o} +hj ;Fg'hy;

(:b) h;jF?th
o} +hy ;Fg'hy

(60)

where (a) is obtained by applying matrix inversion lemma
(Sherman—Morrison formula) [32] to (Fg + J;2hk7jh;€r)j)71,
and (b) follows from the properties of the matrix trace opera-
tor. Finally, since Fg is a symmetric positive-definite matrix,
/;(S) > 0, which, in turn, implies monotonicity.

APPENDIX B

PROOF OF LEMMA 3
Let S C T'and T\S = {41, ..., jr}. Therefore, we have

F(T) = 1(5) = F(SU{d,-..,gr}) = F(5)
= [ () + fn(SU{n}) +
+ [ (SU{g, e })
Definition of the elementwise curvature implies that

F(T) = f(S) < f5.(S) + Caf(S) + -+ 4+ Crn 5, (5)

+ Z le]z+1

Note that (62) is established for a specific ordering of el-
ements in 7\S. Given an ordering {ji,...,Jr}, one can
form a set P ={Pi,...,P.} of r permutations (e.g., by
defining the right circular-shift operator Pi({j1,...,Jjr}) =
{Jret41,- -+ J1,... } for 1 < ¢ <) such that P,(j) # P,(4)
for p # g and Vj € T'\\S; (62) holds for each such permutation.
By summing the corresponding r inequalities, we obtain

) < <1+ch) S ()
=1 jeT\S

Rearranging (63) yields the desired result.

(61)

= fi( (62)

r(f(T) - (63)

APPENDIX C
PROOF OF LEMMA 4

First, we aim to bound the probability of an event that a
random set I contains at least one index from the optimal set
of sensors, which is a necessary condition to reach the optimal

MSE. Let us consider St(i), the set of sensors selected by the end

of the ith iteration of Algorithm 1 and let ® = RN (0;\S{").
It holds that?

s—1 |O ,\S(i)|
Pr{@:@}:H<1—m>

1=0 n\S,"|

(@ |0,€\S(z = 1 ’
() |ok\s >| 1
= (1 Z n—1

where (a) holds due to the inequality of arithmetic and geometric
means, and (b) holds since |[n]\S;| < n.Now, recall that for any

(64)

~Without loss of generality, we assume that s is an integer.
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integer p,

p
1
HP:ZE:1ogp+y+cp (65)
=1

where H, is the pth harmonic number, «y is the Euler-Mascheroni
constant, and ¢, = % -0 (p%) is a monotonically decreasing
sequence related to the Hurwitz zeta function [37]. Therefore,
using the identity (65) we obtain

106\SY]
S

PI‘{(D = Q} < 1 (Hn - Hn—s)

S

10:\SY]

<10g < a >+<n_<n—s>
S n-—s

. IOk\SS,?H <log (n = 8) - 2n(:— s)>

d B 0\SW
2 (1= &) emmim ) %
n

1

S

—
(g}
~

IN

(66)

where follows since

(C) Cn - Cnfs = ﬁ
(’)H(ﬁ),and (d)isduetothe factthat (1 + z)¥ < e*¥ forany
real number y > 1. Next, the fact that log(1 — z) < —2 — %
for 0 < o < 1yields

1
T 2(n—s) +

(1— f)em < o
n

(67)

where 31 =1+ (55 — ﬁ) On the other hand, we can also

upper-bound Pr{® = ()} as

0\SV & 1
Pr{® = <[|1-— E
r{ (D}_ s l:On—l
(4)
< (1 lon\s
n

< e #1008,

(68)

where we again employed the inequality (1 + x)¥ < €. Letus
denote 8 = max{1, 51 }. Then, we have

1

s i —éP ;
PO £ 0) 21— O 2 LS (0s) (@)

Bs

by the definition of s and the fact that 1 — e~ = * is a concave
function. Finally, according to [2, Lemma 2], we have
< Pr{® # 0}

> i (). (70)
10:\S| 2 *

jeoR\S{Y

E[f(i41, (S7)S]

Combining (69) and (70) yields the stated results.
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