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Abstract

A major challenge in network neuroscience lies in understanding the organizational principles of the

brain at di↵erent spatial scales. The brain is highly modular, in that brain regions naturally divide

into densely connected subnetworks, which often themselves contain densely connected subnetworks.

Modeling these complex hierarchies is a major technical challenge currently inhibiting progress in the

field. We develop the hierarchical latent space model (HLSM) that can capture hierarchy at both the

individual and population levels, account for multiple predictors of functional connectivity, and account

for individual heterogeneity that manifests over a population. We apply several specifications of our

model to healthy and paranoid schizophrenia patients collected from the Center for Biomedical Research

Excellence project. We find that for both healthy and patient groups, the spatial location of two regions,

in hemisphere and functional subnetwork, strongly influence their propensity to connect. We also find that

alone, the spatial distance between two regions is significantly and inversely related to their connection

probability, but that it is no longer significant once hemisphere and subnetwork locations have been

controlled for. The HLSM also identifies increased heterogeneity in the connectivity of the healthy

individuals over the patient group, suggesting a di↵erence in overall connectivity patterns between the

two populations.

Keywords: latent space model, Markov chain Monte Carlo, stochastic block model, Bayesian hierarchical
modeling
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1 Introduction

Network analyses of functional connectivity of the brain have revealed that the brain demonstrates a
hierarchical structure at both the individual and population levels. In particular, the brain demonstrates (i)
individual hierarchy : the brain itself has been found to consist of densely connected functional subnetworks
that are involved in specific cognitive functions [Meunier et al., 2010, Bressler and Menon, 2010]; and (ii)
population hierarchy : the connectivity of individuals from a population di↵er according to similar traits and
clinical diagnoses. It is well known, for example, that patients with schizophrenia show di↵erences in brain
structure (e.g., de Souza Crippa et al. [2006], Heckers [2001]), function during tasks (e.g., Carter et al. [1997]),
and cognitive qualities (e.g., Luck and Gold [2008], Wykes et al. [2000]), and that these di↵erences have been
discovered in network organization [Supekar et al., 2019]. Individual hierarchy has led to the identification
of important subnetworks and their function (see Table 1). These subnetworks are consistent with those
identified with data-driven clustering and community detection techniques [Power et al., 2011, Yeo et al.,
2011] and are often the basis for analysis and prediction of brain illness or injury [Medaglia et al., 2015,
Betzel and Bassett, 2016, Sporns, 2011, Bullmore and Sporns, 2009, Bassett and Sporns, 2017]. While much
is known about the functional subnetworks of the brain, the principles that govern their organization remain
unclear. Initial analyses in functional magnetic resonance imaging (fMRI) suggest both consistencies and
di↵erences when investigating network structure at di↵erent scales. Both the whole-brain and its functional
subnetworks, for example, have been shown to display high clustering. Yet, while the whole-brain has been
shown to exhibit a small-world structure, analyses of subnetworks of the brain reveal that locally, the brain
displays a segregated highway architecture [Stillman et al., 2017, 2019].

Many of the challenges and seemingly contradictory findings in network neuroscience stem from a lack
of statistical methodology able to deal with the complex and dynamic nature of the human brain. Because
functional connectivity varies across time, across person, and across cognitive task [Betzel and Bassett,
2016] it is problematic that a majority of network neuroscience strategies consider only a static network
representation of the brain. As a result, researchers who are interested in characterizing networks across
(for instance) di↵erent people either analyze each individual network separately before comparing across
analyses, or aggregate the connectivity across people. Such single-layered analyses neglect heterogeneity
among individuals as well as their interdependencies (see Wilson et al. [2017b] for a discussion). Multilayer
network representations of the brain enable researchers to fully analyze the relationships within and between
networks observed over time, person, and/or task [e.g., Bassett et al., 2011, 2015].

A second statistical problem exists: Initial attempts at discerning population- and individual-level hierar-
chies have focused on the analyses of activation motifs like clustering, overall connectivity, and others [Sporns,
2011]. Many techniques analyze single activation motifs in isolation [Rubinov and Sporns, 2010]. Activation
motifs, however, are often highly correlated with one another, and thus may have unexpected interactions
that are only apparent when considering multiple motifs simultaneously. Second, current techniques are
often unable to separate the influence of activation motifs from the influence of anatomical properties. For
example, the distance between nodes is often strongly related to connection strength [Honey et al., 2009],
and may confound attempts to quantify activation motifs. Finally, most existing techniques provide only a
single point estimate of a given statistic, making it di�cult to compare that value against chance. These
challenges necessitate the use of generative network models that not only jointly characterize the e↵ect of
the activation motifs on the structure of the brain, but also provide a measure of statistical certainty to
the observed trend. Recent work has called for the use of such generative network models in structural and
functional analyses [Betzel et al., 2016, Betzel and Bassett, 2017].

In this manuscript, we introduce and investigate a generative network model, called the hierarchical
latent space model (HLSM), that characterizes the hierarchical structure of functional connectivity networks
at both the individual and population level. The HLSM is a joint probability distribution that models the
generative mechanism of a collection of connectivity networks arising at the group level as a function of
observable covariates, which are common across individuals, as well as unobserved latent information that
describes individual and population-level hierarchical structures. Our model quantifies both the e↵ect of
activation motifs as well as anatomical properties on the generative mechanism describing the brain. We
demonstrate the use of the HLSM through its application on functional images from a group of healthy
individuals and a group of patients with schizophrenia that was collected from the Center for Biomedical
Research Excellence.
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Subnetwork Function

Visual Vision
Auditory Hearing
Somatosensory/Motor Bodily perceptions and motor movement
Subcortical Thalamus, putaman, and brainstem
Dorsal Attention Top-down influences on attention
Ventral Attention Attention switching
Salience Directing attention to emotionally relevant external stimuli
Cingulo-Opercular Task Control Initiating and sustaining task behavior
Fronto-Parietal Task Control Top-down exertion of control and executive function
Default Mode Internally generated cognition

Table 1: Brief description of the function of important subnetworks of the brain

Our analysis reveals several important aspects of these groups. First, for both healthy and patient groups,
the hemisphere and subnetwork location of two regions strongly influence their propensity to connect. We
also find that alone, spatial distance between two regions is significantly and inversely related to their
connection probability, but that it is no longer significant once hemisphere and subnetwork locations have
been controlled for. Within-network clustering is also identified by the HLSM, and when accounted for,
systematically outperform other covariate models when clusters do not confound with the included covariates.
Finally, we find increased heterogeneity in the connectivity of the healthy group over the patient group which
may explain less resilient connectivity patterns in patients with schizophrenia.

The HLSM allows the researcher to account for the network structure of the brain, including its individual
and population hierarchy, in a statistically principled way while also allowing for covariates, multiple e↵ects,
weighted edges, dynamic change in the network, and other complexities essential to modeling the human
brain. The result is a powerful and stable model that radically expands the space of e↵ects that can be
used to model the brain, thus possessing the potential to solve old questions about competing and dynamic
e↵ects, and to pose new ones about the role that activation motifs play in human cognition.

1.1 Related Work

Hierarchical Bayesian models have been developed to factorize multi-dimensional model parameters into
a series of conditional probabilities that depend on structure of the model [Kruschke, 2014, Woolrich, 2012].
Through the hierarchical structure, we can constrain the inference process using shared components of the
model across subnetworks and subjects, reducing the impact of random noise on the estimated parameters.
The approach has been used to impose spatial constraints on voxel-level analyses [Bowman et al., 2008] as
well as task and subject constraints on ROI analyses in task fMRI research [Molloy et al., 2018, 2019]. Our
development in this paper on functional connectivity analyses compliments those earlier developments in
task fMRI.

The latent space network model from Ho↵ et al. [2002] has since been adapted to networks beyond binary
unweighted networks, including networks with clustering [Handcock et al., 2007, Krivitsky et al., 2009], as
well as dynamic network sequences Sarkar and Moore [2005], Sewell and Chen [2015, 2016]. Latent space
approaches have been formulated for several application areas, including Gormley and Murphy [2007], who
developed a model for voting data from an Irish election; Sweet et al. [2013] who proposed a hierarchical
LSM for education research. Smith et al. [2017] provides a detailed review of the properties of di↵erent latent
spaces themselves, which should help guide future methodological development and novel applications. Our
model is most closely related to the latent cluster random e↵ects model (LCREM) from Krivitsky et al.
[2009]. The LCREM incorporates both clustering structure of each vertex as structure (Equation (4)) and
random e↵ects for the vertex propensity to connect (Equation (5)). Our hierarchical model extends the
LCREM to a population of networks that is made up of distinct subpopulations, or clusters, of networks.

The HLSM simultaneously models the community structure of each individual network, as well as the
clustering of networks according to individual similarity. Community detection is a common and powerful
exploratory technique that identifies densely connected subregions in a network. Community detection
has been well-studied over the past two decades and many detection algorithms have been developed for
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static, temporal, and multilayer networks (see for example, Mucha et al. [2010]). Community detection
techniques have been widely applied in network neuroscience for both structural and functional connectivity
networks [Bassett et al., 2011]. Network clustering, which focuses on clustering populations of networks into
subpopulations of similar networks, is a relatively new problem for which research is in its nascent studies.
Network clustering techniques have been largely motivated by studies in group-level fMRI [Durante et al.,
2017, Mukherjee et al., 2017].

In the last decade, there has been substantial interest in the development of generative network models
for structural and functional connectivity of the brain (see Betzel and Bassett [2017] for a recent review).
Generative network models seek to characterize the (stochastic) mechanism that gives rise to the biological
features of the brain. Examples of recent generative network models developed for functional connectivity
networks include the exponential random graph model for unweighted networks [Simpson et al., 2011], which
was later extended for groups [Simpson et al., 2012]. The correlation generalized exponential random graph
model from Stillman et al. [2017] was developed to directly model correlation networks arising in fMRI and
applied to the default mode network and later to thirteen other well-known subnetworks in [Stillman et al.,
2019].

There are three other recently proposed generative network models that model populations of networks,
including the the random e↵ects stochastic block model [Paul and Chen, 2018] and the multi-subject stochas-
tic block model [Pavlovic et al., 2019], as well as the edge-based logistic model from Simpson and Laurienti
[2015], Simpson et al. [2019]. Given the subpopulation label of the individual, these three models assume
independence of the edges within and across individuals. Like the HLSM, the random e↵ects and multi-
subject stochastic block models both capture individual hierarchy and model the community structure of the
regions of each connectivity network. Both of these models characterize individual heterogeneity through
possible di↵erences in the community structure across individuals. The block models cannot, however, di-
rectly capture other activation motifs in the brain. The logistic model from Simpson and Laurienti [2015],
Simpson et al. [2019] models both activation motifs and individual variability of each individual directly like
the HLSM. However, the logistic model assumes edges in the population are independent across pairs given
network information, which is a stronger assumption than the conditional independence assumption of the
HLSM.

2 A Hierarchical Latent Space Network Model for Population
Level Functional Connectivity

We are interested in modeling the generative process of the hierarchical structures that give rise to the
whole-brain network of an individual. We aim to develop a model that characterizes an individual while
accounting for hierarchies that arise at two levels: (i) the whole-brain as a function of functional subnetworks,
and (ii) the brain of an individual as a function of that individual’s subpopulation. We first describe network
modeling of group-level fMRI and then describe our latent space model for group functional connectivity.

2.1 Network Modeling of Functional Connectivity

Network neuroscience takes on the perspective that the structural and functional characteristics of the
brain manifest in network models of the brain. A common strategy for generating group-level functional
connectivity networks, the focus of this paper, is described as follows. A toy demonstration is shown in
Figure 1. For each individual, images of the whole brain are collected over time. For example in resting state
fMRI, the individual is given no task but to stay awake under the fMRI machine and images are continually
taken for several minutes. Each image represents the measured blood oxygen level depdendence (BOLD)
response across small spatial regions of the brain. Regions of interest (ROIs) are often defined either based
on anatomical structures or functional clusters, and the average time series of all the voxels in each region is
treated as the time series of BOLD respones. The granularity of the spatial resolution depends on the user
and machine; high resolution images, for instance, measure BOLD responses at 2mm3 cubes called voxels.
Images are transformed to a multivariate time series of these BOLD levels, where each region is treated as
a time series of BOLD responses. Network representations of these time series are created based on the
temporal similarity between each pair of regions. In the final network model, regions are modeled as vertices
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network_creation.png

Figure 1: Example of generating a network representation for a collection of fMRI images for an individual.
Scans are collected over time, mapped to a multivariate time series, and finally represented as a network.

and edges between incident regions represent the similarity of the two regions over time. Edges may be
weighted to represent the strength of connection between incident regions based on the similarity metric
used [Stillman et al., 2017, 2019], or unweighted to represent statistically significant relationships.

In the setting of group-fMRI, a group of individuals undergo an fMRI session with the same machine
and for the same amount of time. Network representations for each individual are generated using the same
strategy as described above, and standard preprocessing steps (motion correction, anatomical registration,
spatial-temporal smoothing) are used for each individual to ensure that networks are registered across regions.
Preprocessing is particularly important for group studies – network models must be appropriately aligned
so that comparisons across individuals are valid. We provide details of the preprocessing we used in our
application study in Section 5.

2.2 A Hierarchical Latent Space Model

We begin with a collection of L undirected functional connectivity networks Y = {Y1, Y2, . . . , YL} from a
group of individuals, where Y` is a network (weighted or unweighted) that encodes the functional connectivity
for individual `. Suppose that the networks are each constructed on n regions. Then Y` is a random vector
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whose entries yij,` 2 Y are the edge weights that describe the connection strengths between regions i and j,
for i, j = 1, . . . , n.

Our proposed model, the hierarchical latent space model, is a probability distribution function that
characterizes the strength of a connection between regions i and j as a function of observable covariate
information X = {xij,` : i < j, ` = 1, . . . , L} as well as unobserved latent variables for (i) the individual
with the vector W = {w`, ` = 1, . . . , L}, (ii) for the latent position of region through the vector Z = {zi, i =
1, . . . , n}, and (iii) for random e↵ects of each region with the variable � = {�i, i = 1, . . . , n}. We assume
that w` and zi 2 Rd, d � 1, and that �i 2 R. We now describe the model in more detail.

The observable covariates, X, capture properties of the whole-brain network at a vertex or dyad level.
These features are well-suited to incorporate features that characterize homophily among regions as well as
other structural motifs present in the network. For example, one can readily evaluate whether or not the
hemisphere location of two regions – left, right, or midline – are positively related to the connection of two
regions as expected from previous studies [Pandya and Rosene, 1985]. We assume that these features, and
their e↵ects, are common across individuals.

The latent variable w` quantifies individual random e↵ects of individual ` on the overall connectivity of
Y`. The variable zi quantifies the latent position for region i, which are common across individuals. The
variable �i models the random e↵ects of region i on the propensity of connectivity for that region. Given
the latent variables W , Z and �, edges are assumed to be conditionally independent across pairs of regions
and across individuals. Therefore, the joint probability distribution of Y can be decomposed as:

P(Y | W,X,Z) =
LY

`=1

Y

i<j

P(yij,` | w`, zi, zj , �i, �j , xij,`) (1)

Suppose that xij,` is a p-dimensional vector of covariates describing the connectivity of regions i and j
for individual `. We model Y` as a function of observed and unobserved e↵ects through a random e↵ects
model over the population. Let � 2 Rp and let E[yij,` | w`, zi, zj , xij,`] denote the conditional expectation
of yij,` given the its latent postitions w`, zi, zj and covariate information xij,`. For a specified link function
� : Y ! R, the HLSM relates the edge weight yij,` to w`, zi, zj , and xij,` as a generalized linear model:

�(E[yij,` | w`, zi, zj , xij,`]) = �Txij,` � |zi � zj |d + �i + �j + w`, i < j, ` = 1, . . . , L. (2)

Model (2) fits networks with edge values that are assumed to follow an exponential family probability
distribution. Common distributions include the Poisson, binomial, and Gaussian distributions. In this way,
model (2) is suitable for networks unweighted networks, for weighted networks with continuous-valued edge
weights, as well as weighted networks with discrete-valued edge weights. Choices of � depend on the nature
of the connectivity network under consideration. In the simplest case when Y` is assumed to have binary
edge weights (i.e., when each connectivity matrix is unweighted), one can specify � as the logit link function.
In this case, model (2) simplifies to:

logit(P(yij,` | w`, zi, zj , xij,`)) = �Txij,` � |zi � zj |d + �i + �j + w`, i < j, ` = 1, . . . , L.

Other common choices of link functions include the identity link for continuous-valued edge weights,
and the natural log link function for discrete-valued edge weights. See Sewell and Chen [2016] for a recent
discussion of link functions for weighted networks. Model (2) explicitly models the distribution of an edge
between each pair of regions across all individuals in the population. It is through the latent variables W and
Z that we model both the hierarchy of the whole-brain and the hierarchy of population of individuals being
analyzed. We use model-based clustering to quantify the division of the population into subpopulations as
well as the clustering of the whole brain into subnetworks. Let K denote the number of subnetworks present
in the whole-brain, and let M  L denote the number of subpopulations in the group under study. We
model the latent variables as Gaussian mixture models:

w` ⇠
MX

m=1

�mMVNd(µm,�2
mId), ` = 1, . . . , L; (3)
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zi ⇠
KX

k=1

�kMVNd(⌫k, ⌧
2
k Id), i = 1, . . . , n. (4)

In model (3), �m specifies the probability that individual ` belongs to the mth subpopulation. The
parameter �k from (4) is the probability that region i belongs to the kth subnetwork. In this way, model (3)
represents clustering of the individuals into subpopulations; whereas, model (4) represents clustering of the
network into subnetworks.

The parameters µm and �2
m characterize the mean and variance of the overall propensity of connection

in the mth subpopulation. Model (3) enables the direct quantification of individual variability in functional
connectivity. The choice ofM is flexibile, and guides model granularity at the individual level. WhenM = L,
estimates of the variability of each individual will be provided through �2

m. In cases when subsamples of the
group under study have di↵ering clinical illnesses, one may instead wish to set M equal to the number of
diagnoses in the group to capture the overall variability of each of the subpopulations. The parameters ⌫k
and ⌧2k from model (4) characterize the mean and variance of the latent position of the kth subnetwork. Here,
K generally represents the number of functional subnetworks in the parcellation under study though again
the choice of this number is flexible with the extreme case of K = n providing mean and variance estimators
for each region in the network. Model-based clustering for Gaussian data was introduced in Banfield and
Raftery [1993] and has been applied to model-based clustering of networks Handcock et al. [2007].

We incorporate random e↵ects of region i, �i, in model (2.2) to capture the degree heterogeneity of each
vertex in the population of networks. Degree heterogeneity is an important feature of real networks that
manifests in social, biological, and functional connectivity networks. There has been an emphasis on the
importance of modeling degree variability in network neuroscience as well as other network analysis tasks
like community detection and parametric modeling [Wilson et al., 2014, 2017b, Krivitsky et al., 2009, Karrer
and Newman, 2011]. As these e↵ects are unobserved, we model �i as independent and identically distributed
Gaussian random variables:

�i
iid⇠ N(0,�2

� ), (5)

where the parameter �2
� provides a measure of the overall variation of the degree distribution over the entire

population.
Further discussion of the di↵erences between the logistic model from Simpson and Laurienti [2015] and

Simpson et al. [2019] and the HLSM is warranted. The original specification of the logistic model from
Simpson and Laurienti [2015] is similar to the HLSM in that both models quantify the connection probability
of two regions as a function of activation motifs and latent variables that represent individual heterogeneity.
Furthermore, both models directly assess the e↵ect of dyad-level covariates on connection probability. These
two models di↵er, however, in their generalization to weighted networks as well as the inclusion of node-based
network features like the clustering coe�cient, and degree in the model. The logistic model can be used to
directly model correlation networks via a Fisher transform on the observed logistic values. The HLSM, on
the other hand, can model any weighted network from which the edge weights follow an exponential family
distribution. Thus, the HLSM and logistic model are complementary. The HLSM also implicitly accounts
for these features through the inclusion of the latent position of each region, represented by Z. The logistic
model, on the other hand, explicitly models the e↵ects of these terms at the population and individual level
using node-level covariates. Furthermore, the HLSM directly estimates and accounts for the community
structure of a connectivity network using a Gaussian mixture model. The logistic model, on the other hand,
cannot directly estimate community structure in a network, though it can incorporate model terms that
are functions of known communities. In practice, the logistic model from Simpson and Laurienti [2015] and
Simpson et al. [2019] enables the direct quantification of the e↵ect of node-level summaries; whereas, the
HLSM implicitly captures these features through modeling latent positions and directly estimates community
structure in functional connectivity networks.

Our proposed hierarchical model is a generalization of the latent space model (LSM), which was first
introduced in Ho↵ et al. [2002]. The basic idea behind the LSM is that network dependencies can be viewed
as the proximity of vertices in some unobserved social, physical, or other latent space. Vertices that are
nearer to one another in latent space will be more likely to tie. In social relations, the intuition is easy to see:
everyone is part of society’s social fabric and those nearer to each other in that fabric are more likely to form
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friendships, business relationships, romantic partnerships and other social interactions. In the context of
functional connectivity networks, this latent space is not only physical, but rather it represents proximity in
functional space, which may be correlated to, for example the physical distance or white matter connectivity
of two regions.

3 Estimation of the Model

Once a model has been specified, fitting model (2.2) to a collection of functional connectivity networks
provides estimates of the e↵ects of observed dyad-level features, as well as unobserved individual and subnet-
work e↵ects. Fitting the full model from (2.2) – including clustering, individual and population hierarchies
and random e↵ects – requires estimating 3M + 3K + p+ 2 parameters summarized in Table 2 below. Here,
we provide a schematic for estimation of these parameters.

Parameter(s) Common across individuals? Fixed or Latent? Description
{�j : j = 1, . . . , p} Y F e↵ect size of each observed covariate
{�k : k = 1, . . . ,K} Y L �k =probability of region belonging to subnetwork k
{⌫k, ⌧2k : k = 1, . . . ,K} Y L means and variances of connection propensity for regional cluster k
�2
� Y L variance of the random e↵ects of degree heterogeneity

{�m : m = 1, . . . ,M} N L �m = probability of individual belonging to subpopulation m
{µm, �2

m : m = 1, . . . ,M} N L means and variances of subpopulation connection propensity

Table 2: A summary of the parameters that can be estimated with the HLSM.

Given a collection of connectivity networks Y and observable covariate matrix X, the estimation of model
(2) can be achieved in three steps. Suppose that ⇥ represents the collection of all parameters in model (2).
We describe maximum likelihood estimation of these parameters; however, we note that Bayesian estimation
(as in Krivitsky et al. [2009]) can also be used. Maximum likelihood estimation of model (2) consists of three
key steps, described as follows.

Step 1: First, the non-clustering parameters are estimated by fitting a latent space model, as described in
Ho↵ et al. [2002]. To begin, let ↵` represent an intercept term of individual `. The parameter ↵` will serve
as a nuance parameter that will be later used for estimation of the mixture model from (3). Estimators for
↵`, �, and � are obtained by optimizing the joint log-likelihood function given by:

b⇥1 = argmax�,�i,�j

8
<

:

MX

`=1

X

i<j

log
⇥
��1(�Txij,` � |zi � zj |d + �i + �j + ↵`)

⇤
9
=

; . (6)

The log-likelihood in (6) is convex in the latent distances |zi � zj |, but not in the latent positions
themselves. Thus, to solve (6), one first optimizes the log-likelihood over latent distances using multi-
dimensional scaling methods. From these distances, a configuration of latent positions Z = (z1, . . . , zn), who
are centered at the origin, can be generated. Using this configuration as a starting point, one next solves
for �, �i, and �j using a Metropolis-Hastings rejection algorithm update, as described in Section 3 of Ho↵

et al. [2002]. This results in a configuration of latent positions bZ = (bz1, . . . , bzn), and estimated parameters

{b�, b↵`, b�i, b�j : i = 1, . . . , n, ` = 1, . . . , L}.

Step 2: The second step of maximimum likelihood estimation consists of identifying the maximum likelihood

estimator of the mixture model for the latent positions provided in model (4). Given bZ and the estimated
parameters from Step 1, we now solve

b�k, b⌫k, b⌧2k = argmax�k,⌫k,⌧2
k

(
nX

i=1

KX

k=1

pik
�
log�k + logN(zi | ⌫k, ⌧2k )

�
)
, (7)

where pik is the probability that zi belongs to the kth class, and N(a|b, c) is the probability density function
of a Normal random variable with mean b and variance c evaluated at a. Maximization of (7) can be done
using the Expectation-Maximization algorithm [Dempster et al., 1977]. The likelihood function for model
(7) does not have a unique local maximum, and the local maximum that is found by the EM algorithm can
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depend on the starting values. We use starting values from k-means with k = K clustering of the estimated
latent values bZ.

Step 3: The final step of model estimation involves the estimation of the clustering of the individuals
according to the mixture model in model (3). Given the estimators from Step 1 and Step 2, we solve:

b�m, bµm, b�2
m = argmax�m,µm,�2

m

(
LX

`=1

MX

m=1

r`m
�
log�m + logN(w` | µm,�2

m)
�
)
, (8)

where r`m is the probability that well belongs to the mth class. As in Step 2, the Expectation-Maximization
algorithm can be used to provide an approximate solution to this mixture model. We use k-means clustering
with k = M on the estimated coe�cients b↵1, . . . , b↵L to provide starting values for the algorithm.

The estimation procedure outlined above can be readily implemented using the latentnet package in the
R software language [Krivitsky and Handcock, 2008]. Estimation of the latent space model is both straight-
forward and numerically stable [Shortreed et al., 2006, Raftery et al., 2012]. The expectation maximization
algorithm has been widely applied to Gaussian mixture models; thus, accomplishing Steps 2 and 3 above is
straightforward with standard software in, for example, R, Python or Matlab.

4 Analysis of the COBRE Data Set

4.1 Description of the Data

We apply our latent space model to a subset of participants from the dataset contributed to the 1000
connectomes project by the Center for Biomedical Research Excellence (COBRE) (http://fcon_1000.
projects.nitrc.org/indi/retro/cobre.html). The original dataset includes 72 patients with schizophre-
nia and 75 healthy controls (HC). Exclusion criteria for both groups were history of neurological disorder,
mental retardation, severe head trauma (more than 5 minutes of unconsciousness), and substance abuse or
dependence within the last 12 months. Diagnostic information was collected using the Structured Clinical
Interview for the Diagnostic and Statistical Manual, 4th edition [First et al., 2015]. We additionally removed
participants who were diagnosed with disorders other than schizophrenia or schizoa↵ective disorders. The
remaining population contained 71 healthy controls. The breakdown of subtypes of patients with schizophre-
nia were as follows: 24 paranoid type (8 female, mean age = 40 ± 14, range 19 - 65), 2 disorganized type
(0 female, mean age = 44 ± 23, range 28 - 60), 9 residual (1 female, mean age = 36 ± 15, range 19 - 57), 4
NOS (2 female, mean age = 26 ± 6, range 20 - 33), and 3 schizoa↵ective disorder (0 female, mean age = 39
± 14, range 23 - 50).

IQ scores were collected by administering the Wechsler Abbreviated Scale of Intelligence (WASI). All
patients in the study were taking some form of antipsychotic medication. The mean and standard deviations
on the olanzapine total equivalent dose, as well as the IQ scores for performance, overall, and reading are
reported in Table 3.

IQ Scores Olanzapine
Performance Overall Verbal Equivalents

HC 113.74(11.15) 111.40(11.34) 106.52(11.28) –
disorganized 104.67(11.02) 98.67(19.22) 96.00(24.64) 126.73(150.05)
paranoid 101.92(17.77) 98.17(18.64) 96.97(18.34) 35.59(27.21)
residual 106.33(13.67) 103.33(12.23) 100.22(9.50) 16.20(10.36)
schizoa↵ective 110.00(23.30) 107.00(13.75) 104.67(3.79) 25.03(21.85)
schizophrenia NOS 104.33(20.13) 94.00(16.37) 85.33(10.26) 63.12(55.88)

Table 3: Mean and standard deviation of IQ scores and total olanzapine equivalents of participants

4.2 Preprocessing

The participants’ structural MRI scans were completed using a multi-echo MPRAGE sequence with the
following parameters: TR/TE/TI = 2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900 ms, flip angle = 7 degree, FOV =
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256x256 mm, Slab thickness = 176 mm, Matrix = 256x256x176, Voxel size =1x1x1 mm, Number of echos =
5, Pixel bandwidth =650 Hz, Total scan time = 6 min. Given five echoes the multi-echo MPRAGE’s TR, TI
and time to encode partitions are similar to that of a conventional MPRAGE granting similar gray matter,
white matter (WM), and cerebrospinal fluid (CSF) contrast. Slices were collected interleaved in the sagittal
plane (multi-slice mode, single shot).

Resting state data was collected with single-shot full k-space echo-planar imaging (EPI) with ramp sam-
pling correction using the intercomissural line (AC-PC) as a reference (TR: 2 s, TE: 29 ms, matrix size: 64x64,
32 slices, voxel size: 3x3x4 mm3). Slices were collected ascending in the axial plane (multi-slice mode, series
interleaved). Scans were preprocessed using FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl) and
FEAT (FMRI Expert Analysis Tool) Version 6.00. Scans were motion corrected using MCFLIRT [Jenkinson
and Smith, 2001], non-brain stripping with BET [Smith, 2002], spatial smoothing using a Gaussian kernel
of FWHM 6 mm, grand-mean intensity normalization of the entire 4D dataset using a single multiplicative
factor, and high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, sigma = 45
s). Finally, nonlinear registration was completed to Montreal-Neurological Institute space using FNIRT
[Jenkinson et al., 2002, Jenkinson and Smith, 2001].

Scans were preprocessed using FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl) and FEAT (FMRI
Expert Analysis Tool) Version 6.00. Scans were motion corrected using MCFLIRT Jenkinson and Smith
[2001], non-brain stripping with BET Smith [2002], spatial smoothing using a Gaussian kernel of FWHM 6
mm, grand-mean intensity normalization of the entire 4D dataset using a single multiplicative factor, and
high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, sigma = 45 s). Finally,
nonlinear registration was completed to Montreal-Neurological Institute space using FNIRT Jenkinson et al.
[2002], Jenkinson and Smith [2001].

To construct adjacency matrices for each participant we use the Power atlas Power et al. [2011], which
specifies 264 8mm3 regions of interest (ROIs). Voxel time-series within each ROI were averaged, yielding
264 time-series per participant. From each time series we regressed out 6 motion parameters accounting for
head movement, 4 parameters account for CSF, and 4 parameters accounting for WM in order to reduce
bias and noise within the data Ashby [2011]. Finally, for each participant, we correlated each of the 264
time series with the others, resulting in a 264 x 264 correlation matrix for each participant. We retrieve
an unweighted connectivity network for each participant by thresholding the correlation matrix so that
edges represent correlations that are above 0.50. We investigate the e↵ect of thresholding the networks on
coe�cient estimates in the Appendix.

4.3 Model Specification

We apply the hierarchical latent space model to the population of 71 healthy individuals and 24 patients
with paranoid type schizophrenia from the COBRE data set. We consider three network-based features
in our analysis: hemisphere location, subnetwork location, and spatial distance. The hemisphere location
and spatial distance features describe the spatial relationship of the regions in the brain. The hemisphere
location feature is a binary dyad-level variable that indicates whether or not a pair of nodes (regions) are
located in the same hemisphere of the brain, either the left hemisphere, right hemisphere, or the midline.
Given that regions within a hemisphere are typically more connected within rather than across hemisphere
[Pandya and Rosene, 1985], we expected this covariate to be significantly positive. The subnetwork location
is also a binary dyad-level variable that indicates whether or not two regions are located in the same known
subnetwork, where the subnetworks considered are those described in Table 1. The spatial distance covariate
describes the Euclidean distance between regions. We expect the spatial distance between two regions to be
inversely related to their propensity to interact.

For our demonstration, we fit the following three models for each of the individuals in the study:

• Cluster model: We set d = 2 and K = 3 to identify three clusters that best partition the network.
No other features were considered in this model.

• Spatial distance model: We included the spatial distance between pairs of nodes as well as random
e↵ects to model degree heterogeneity.
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Networks.png

Figure 2: The connectivity networks from individual 1 from the (Left) healthy control group and the (Right)
patient group. Each of these networks were drawn using a force-directed layout and nodes are colored
according to functional subnetwork location.

• Full covariate model (Full): We included the spatial distance, subnetwork location, and hemisphere
location in the model. Random e↵ects were included to model degree heterogeneity Furthermore, we
included clusters and set d = 2 and K = 3 for clustering in each network.

In the present study, we set M = L and thus consider population hierarchy at the individual level. Future
work will further explore other specifications of the model on population studies like the one considered here.

5 Results

5.1 Exploratory Analysis

Before fitting the latent space model, we first analyzed the patterns of connectivity for individuals in
the study. Figure 2 provides a force-directed layout of a functional connectivity network from each group.
Although it provides just one example from the two groups, Figure 2 seems to suggest that the structures
of these networks are similar. To further test this, we further calculated three summaries of these networks
that may reveal di↵erences. The first is network density, which measures the average strength of connections
between regions in the network. The second summary is the tendency for two nodes connected to a third
to be connected to one another. This is called “triadic closure” or “clustering,” and is found in many
networks across disciplines and application areas. We next calculated the modularity of each network, which
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quantifies the extent to which the regions cluster into tightly connected communities. The modularity score
was calculated after the fast and greedy community detection algorithm in the igraph package in R was run
to identify an approximate partitioning of the network [Clauset et al., 2004]. We report the edge density,
clustering coe�cient, and modularity of the best partition identified by the fast and greedy community
detection method in Figure 3.

Figure 3 provides further support that the structure of the connectivity networks is similar across
groups. Indeed, independent Bayesian t-test comparisons between the groups were not statistically sig-
nificant (Bayesian p-values greater than 0.585) for each summary statistic. Notably, Figure 3 reveals two
other properties of these connectivity networks. First, the networks exhibit moderate clustering – the global
clustering coe�cient is about 0.50 for each network. Finally, a vast majority of the networks have a high
modularity (> 0.7), suggesting that the connectivity networks in this study exhibit clear community struc-
ture.

5.2 Model Results

With the HLSM, we can formally test the e↵ect of features like those discovered from the exploratory
analysis on the likelihood of the observed network. Furthermore, we can make inferential statements about
the di↵erences between two groups. We apply the three hierarchical latent space models described in Section
5.3. For each model, we estimate the observed feature e↵ects, as well as the latent variable means and
variances when they were included in the model. Below, we investigate the goodness of fit of each model,
the estimated covariate e↵ects, and the degree heterogeneity for each group. We discuss these in turn and
highlight the similarities and di↵erences between groups.

5.2.1 Goodness of Fit

We begin by assessing the goodness of fit of each fitted model to compare models for each individual.
We calculated the Bayesian information criterion (BIC) of each fitted model on the data. For the HLSM,
the overall BIC provides a summary of both the likelihood misspecification on the observed covariates, as
well as unexplained variation in the Gaussian models for random and clustering e↵ects (see Krivitsky et al.
[2009]). In general, lower values of BIC indicate better fit of the model. To get an idea of comparing these
models, we report the BICs for each model across the first 10 individuals in each group in Table 4.

Healthy Controls Patients
Individual Cluster Spatial Full Individual Cluster Spatial Full
1 3351.4 3622.8 2970.4 1 4798.1 5878.1 5331.1
2 5649.7 6745.4 5999.2 2 3403.1 3553.4 3068.8

3 3329.6 3722.1 2844.9 3 1753.3 1600.5 1299.9

4 4244.3 4885.1 4284.8 4 3685.8 4970.4 4635.6
5 2937.5 3344.5 2969.3 5 4021.9 4845.8 4366.2
6 2424.3 2321.2 1850.6 6 2661.6 2797.7 2231.3

7 1875.6 1765.6 1377.6 7 1841.9 1775.0 1470.5

8 8273.9 11597.9 10540.5 8 3063.3 3724.7 3235.1
9 6861.2 9234.7 8228.8 9 2075.5 1977.3 1560.8

10 3236.7 3705.4 3163.6 10 2641.6 2982.3 2352.1

Table 4: The Bayesian information criterion (BIC) for each overall model across the first 10 individuals in
each group. Lower values of BIC suggest better fit. Bolded values indicate which model had the lowest BIC
for that individual.

Table 4 reveals that across all individuals either the cluster model or the full covariate model had the
lowest BIC. Indeed, this trend extends to the entire population of each group as well. Over the entire
population of healthy patients, the cluster model outperformed competing models in 35 of 71 individuals,
and the full covariate model was best in the remaining 36 healthy individuals. In the population of 24
paranoid schizophrenia patients, the cluster model fit the network best in 12 of 24 individuals, while the
full covariate model was best for the other 12. Furthermore, for every individual the spatial model always
performed the worst among competing models.
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To further understand the di↵erences between the cluster and full models, we visualize two connectivity
networks - one where the cluster model performed best and the other where the full model performed best -
in Figure 4. The top left plot of Figure 4 shows the identified cluster labels of the regions when the cluster
model outperformed the full model. The top right plot is drawn with the same spatial layout but with vertex
colors representing subnetwork label. The bottom row of Figure 4 shows a side-by-side comparison of these
vertex labels in an example where the full model outperformed the cluster model.

In comparing the top and bottom rows of the figure, we find that the 3-cluster model performs best
when the identified clusters do not closely match the subnetwork location of the regions. That is to say, the
cluster model performs better when the subnetwork location and cluster labels do not provide confounding
information. We further support this finding by measuring the match between cluster label and subnetwork
location for each network using the rand index [Rand, 1971]. The rand index is a value between 0 and 1 and
provides a measure of similarity between two partitions. Large rand index values represent strong similarity.
Though not shown here, we investigated the rand index against the binary variable of whether the full model
was best and found a strong inverse relationship between the two variables (Spearman rank correlation =
0.72) as we expected.

Together, these results have two primary implications. First, models including only spatial distance do
not capture enough variability in the network and should be substituted for latent models with clustering or
models with more rich spatial information like the subnetwork and hemisphere location. Second, the cluster
model performs better than the more complete covariate model when the clusters do not closely match the
covariates included in the model.

5.2.2 Covariate E↵ects

We next investigate the e↵ects of the observable covariates considered in this study. We plot the posterior
mean estimators of each these coe�cients in Figure 5. Figure 5 reveals several interesting characteristics of
generative mechanisms describing the functional connectivity networks in both groups. First, the e↵ects of
the observable covariates considered in the study are similar across groups and models. This suggests that the
e↵ect of spatial location and homophily play an important and related role in the structure of the connectivity
networks in both healthy and patient groups. Next, it is notable that in the spatial model, when the spatial
distance is the only observable feature, the e↵ect of spatial distance on the connectivity is significant and
negative across 92 of the 95 individuals in the study. This agrees with previous empirical findings like those
in Honey et al. [2009]. When the hemisphere location and subnetwork location are controlled for in the
model, as is done with the full model, the e↵ect of spatial distance is no longer significant at a 0.95 level.
This perhaps expected finding suggests that the hemisphere and subnetwork location confounds with, and
is more important than, the spatial distance between regions.

Finally, Figure 5 reveals that the hemisphere location and subnetwork location of two regions significantly
influence their propensity to connect. The e↵ect of subnetwork location is particularly evident from this
study, and was significant across all 95 individuals in the full model. The average e↵ect size of subnetwork
location was approximately 3.02, suggesting that the propensity two regions to connect statistically increases
when the two regions are within the same functional subnetwork. The hemisphere location was significant
in 76 of the 95 participants and had an average e↵ect size of 0.35. Thus we find that when both hemisphere
and subnetwork location are considered as covariates, subnetwork location tends has a stronger and more
consistent e↵ect on the likelihood of two regions connecting.

5.2.3 Heterogeneity in Functional Connectivity

In the final part of our analysis, we investigate the heterogeneity in functional connectivity of the regions
across groups. In our model, this heterogeneity is quantified by the random e↵ect term for each node, �i.
We plot the distributions of the estimated connectivity values of the two groups in Figure 6. From Figure
6, we see that the degree heterogeneity distributions across groups are di↵erent, and that the patient group
exhibits less variability in connectivity. Indeed, for both the spatial and full model, we find that the group
distributions are statistically di↵erent with a Kolmogorov Smirno↵ comparison test (p-value < 0.001 in both
cases). This finding complements the recent work of Alnæs et al. [2019], who found that schizophrenia is
associated with anatomical heterogeneity in the brain, including heterogeneity in frontotemporal thickness
and area and cortical, ventricle, and hippocampal volumes. Our analysis suggests that patients with paranoid
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schizophrenia tend to have less variable connectivity patterns. That is, the latent degree of each region is more
dispersed in healthy controls than in patients with paranoid schizophrenia. This finding might reflect the fact
that we are comparing a specific subtype of schizophrenia, the paranoid type, with a broad classification of
healthy individuals. An interesting area of future work might include heterogeneity of functional connectivity
as a variable in the classification and identification of schizophrenia patients.

6 Discussion

In this paper, we introduced the hierarchical latent space network model (HLSM) as a means to charac-
terize functional connectivity of the whole brain in a population. The HLSM is a probability distribution
on the network describing functional connectivity within a population that characterizes both individual-
level and group-level hierarchy. We investigated the utility of the model through an application to group
comparisons of healthy individuals and patients with paranoid schizophrenia. With the HLSM, we were
able to formally test the e↵ects of network motifs on functional connectivity, and we found that across all
individuals the subnetwork and hemisphere location of two regions significantly increased the probability of
their connection. We also tested the e↵ect of clustering within each network and identified when clustering
variants of the HLSM outperform other covariate-based models. Finally, we identified intrinsic di↵erences
between the heterogeneity of functional connectivity between healthy and patient groups, and that in our
study patients tended to exhibit lower variability than their healthy counterparts.

We emphasize the point that the findings in our study would not have been possible through typical
separate analyses of activiation motifs. Rather, joint probability models like the HLSM are required to fully
characterize the marginal e↵ects and interactions of activiation motifs. Future research will investigate the
development and implementation of other hierarchical models for functional connectivity studies. Beyond the
brain, hierarchical structure frequently arises in systems of social interaction and movement. For example in
US county-to-county migration data, it is often the case that migration occurs in some systematic structured
manner among counties within the same state, but that the movement between states is much less likely.
Social network analysis has a rich literature from which models can be adapted to address challenges in
functional connectivity. A starting point includes the adaptation of more complex network models for
weighted networks like the generalized exponential random graph model [Wilson et al., 2017a, Denny et al.,
2017]. With generative models like the HLSM, we aim to fully understand the generative mechanisms
describing commonly observed structures in the brain like community structure and the small-world property.
We hope that the HLSM provides a starting-point for these endeavors.
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Appendix: The E↵ect of Thresholding on Coe�cient Estimators

In the application study presented in Section 5, we tested the HLSM on unweighted networks that were
thresholded so that binary edge values represented correlation values above 0.50. Here, we investigate the
e↵ect of the choice of threshold on the coe�cient estimators that we obtain from the HLSM. To test this,
we refit the Full Model unweighted HLSM on both groups, the 71 healthy individuals, and the 24 patients
with paranoid schizophrenia across threshold values 0.3, 0.35, . . . , 0.70. For each threshold value, we fit the
full model to each individual and report the coe�cient estimators for the subnetwork e↵ect, the hemisphere
e↵ect, and the spatial distance e↵ect. These results are shown in Figure 7.

Figure 7 suggests two important patterns. First, across threshold values the coe�cient estimators keep the
same sign and statistical significance. This reveals that the interpretation discussed in Section 5 is robust
across values of the threshold. Secondly, there are noticeable trends in the coe�cient estimators across
threshold values. For example, the subnetwork e↵ect tends to increase as the threshold increases, suggesting
that as the network becomes more sparse (and contains fewer edges), the subnetwork community structure
of the network has a stronger e↵ect on connection probability within the population. It also appears that
as the threshold increases, the variability in the estimators for the hemisphere and spatial distance e↵ects
increase. This trend intuitively suggests that estimator variability is inversely related to the number of edges
in the network.

This investigation supports the analysis and discussion of the application in Section 5 and provides some
intuition as to the e↵ect of thresholding on fitting the unweighted HLSM. In the future, a comparison between
these unweighted models and the weighted HLSM for correlation networks should be studied. We plan to
pursue this in future work.
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Figure 3: Summary statistics of the connectivity networks considered in this study. For each network,
the density, clustering coe�cient, and modularity of the best partition identified by the fast and greedy
community detection algorithm.

Colored by Cluster Colored by Subnetwork

Figure 4: Clustering layouts of networks, where clusters were identified by the cluster model. The top row
gives an example where the clustering model had a lower BIC than the full model. The bottom row gives
an example where the clustering model had a higher BIC than the full model.
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Spatial Model Results

spatial_coefficients.png

Full Model Results

full_model_coefficients.png

Figure 5: (Top) The estimated intercept and e↵ects of spatial distance in the spatial distance model.
(Bottom) The estimated e↵ects of the subnetwork location, hemisphere location, and spatial distance in the
full model. Shown are the 95% confidence intervals for each individual.
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Spatial Model Full Model

Figure 6: The distribution of estimated regional random e↵ects across each group from the full and spatial
distance models. Random e↵ects quantify the latent degree heterogeneity of the regions in each network. In
both models, healthy individuals have a significantly more variable latent heterogeneity than patients with
paranoid schizophrenia (p-value < 0.001 in both cases).

Hemisphere E↵ect Subnetwork E↵ect Spatial Distance E↵ect

hemisphere_effect.png

Spatial_effect.png

Figure 7: Coe�cient estimator distributions for the schizophrenia and healthy controls group across thresh-
old values. For each threshold value ⌧ , patient correlation networks were first binarized by setting all
correlations above Tau to 1 and keeping the remaining values 0. The full model HLSM was subsequently fit
to each network. The distribution of coe�cient estimators across patients is shown for each threshold value.
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