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Abstract
Population analyses of functional connectivity have provided a rich understanding of how brain function
differs across time, individual, and cognitive task. An important but challenging task in such population
analyses is the identification of reliable features that describe the function of the brain, while accounting for
individual heterogeneity. Our work is motivated by two particularly important challenges in this area: first,
how can one analyze functional connectivity data over populations of individuals, and second, how can
one use these analyses to infer group similarities and differences. Motivated by these challenges, we model
population connectivity data as a multilayer network and develop the multi-node2vec algorithm, an effi-
cient and scalable embedding method that automatically learns continuous node feature representations
from multilayer networks. We use multi-node2vec to analyze resting state fMRI scans over a group of 74
healthy individuals and 60 patients with schizophrenia. We demonstrate how multilayer network embed-
dings can be used to visualize, cluster, and classify functional regions of the brain for these individuals. We
furthermore compare themultilayer network embeddings of the two groups.We identify significant differ-
ences between the groups in the default mode network and salience network—findings that are supported
by the triple network model theory of cognitive organization. Our findings reveal that multi-node2vec is
a powerful and reliable method for analyzing multilayer networks. Data and publicly available code are
available at https://github.com/jdwilson4/multi-node2vec.

Keywords: multilayer networks; network embedding; node2vec; Skip-gram; functional connectivity; imaging; network
neuroscience

1. Introduction
Human cognition is an emergent phenomenon of complex interactions among many different
brain regions (Bressler & Menon, 2010; Medaglia et al., 2015; Sporns, 2011, 2014). Network neu-
roscience is a common perspective of the brain in which neural connectivity is characterized
through network-based models. Such network investigations have revealed general organizing
principles of the whole brain, including high modularity (Sporns & Betzel, 2016), a “rich-club" of
interconnected hub regions (van den Heuvel & Sporns, 2011; van den Heuvel et al., 2012), and
topologies that demonstrate small-world structure (Bassett & Bullmore, 2006; Achard et al., 2006;
Bassett et al., 2006; He et al., 2007). These findings have shown, for instance, that the regions of the
brain not only exhibit strong clustering but also enable the brain to minimize wiring costs while
© The Author(s), 2020. Published by Cambridge University Press.
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maintaining robust transfer and integration of information across regions (Bullmore & Sporns,
2012; Fornito et al., 2011). Network investigations have also advanced our understanding of neu-
ral processes, such as learning and memory (Bassett et al., 2011, 2015), cognitive control (Cole
et al., 2012), and emotion (Kinnison et al., 2012). Investigations of local subnetwork structure of
the brain have revealed consistent architectures that may describe overall functional efficiency
(Stillman et al., 2017, 2019). Several large-scale projects have arisen from network neuroscience,
such as the Human Connectome Project (Van Essen et al., 2012, 2013), as well as the BRAIN
initiative (Insel et al., 2013).

Despite the many successes of network neuroscience in understanding the structure and func-
tion of the brain, many challenges remain. Our work is motivated by two particularly important
challenges: (1) how can one analyze functional connectivity data over populations of individuals
and (2) how can one utilize these analyses to infer group similarities and differences. To answer
these two questions, we propose analyzing multilayer networks that effectively model the func-
tional organization of each group. Population data of functional connectivity give rise to brain
networks that are inherentlymultilayer—they vary across time, across person, and across cognitive
task (Betzel & Bassett, 2017). Unfortunately, many network neuroscience strategies are static and
consider only a single-layered network representation of the brain. Single-layered analyses neglect
heterogeneity among individuals as well as their interdependencies (see Wilson et al., 2017a for
a discussion). Multilayer network representations of the brain enable researchers to fully analyze
the relationships within and between networks observed over time, person, or task (Bassett et al.,
2011, 2015).

Multilayer networks model the functional connections between regions of the brain across a
population of individuals. Multilayer networks themselves are challenging data objects to analyze,
and there is a lot of current research devoted to handling these challenges (see Kivelä et al., 2014
for a recent survey). In this paper, we propose a fast and scalable algorithm, calledmulti-node2vec,
that learns the nodal features from complex multilayer networks through the Skip-gram neural
network model. By embedding multilayer networks of the brain to nodal features, we enable the
direct analysis of the regions of the brain that are representative of the group under study.

We apply multi-node2vec to a multilayer brain network representing the functional connec-
tivity of 74 healthy individuals and 70 patients with schizophrenia who underwent resting state
fMRI. We demonstrate how to utilize the results of multi-node2vec for three primary objectives:
(i) visualization and clustering of these regions into communities of similar features, (ii) classifi-
cation of regions into anatomical regions of interest (ROIs) in the brain, and (iii) comparing two
populations of individuals.We find that multi-node2vec identifies feature embeddings that closely
match the functional organization of healthy individuals and also provides a powerful strategy for
comparing groups of individuals. Our proposed embedding technique provides a valuable step in
automatically learning neurological variation among brains, including individual differences and
disease.

1.1 Related work
Feature engineering is a common and important learning task in statistics and machine learn-
ing. Traditionally, feature engineering for networks, often referred to as network embedding, has
amounted to manually describing summaries of networks based on a collection of user-selected
network properties, like structural importance or subgraph counts (Gallagher & Eliassi-Rad, 2010;
Henderson et al., 2011). A similar strategy has been applied to multilayer networks, where chosen
features attempt to quantify the within- and between-layer relationships among nodes (Boccaletti
et al., 2014; Kivelä et al., 2014). In contrast to these approaches, the multi-node2vec algorithm
automatically learns important continuous features of multilayer networks and requires no user
input on what properties to capture.

Feature engineering techniques have been extensively used to identify low-rank representa-
tions of multivariate data. In this setting, the data matrix X is an n× p matrix whose rows are
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n independent observations measured on p features. Dimension reduction techniques are par-
ticularly important when the data are high dimensional—when p> n—as traditional statistical
inference is often no longer reliable (Bühlmann & Van De Geer, 2011). Singular value decom-
positions, principal components analysis, and spectral clustering, for instance, are well-studied
decomposition techniques that have been applied to a number of high-dimensional problems
ranging from topic modeling to micro-array analysis. These techniques rely on the spectral
decomposition of X, its empirical covariance matrix, and the graph Laplacian of a similarity
matrix on the columns of X, respectively. Though these methods are known to provide accurate
representations of X, they face a drawback in computational complexity for large p due to matrix
inversion, which can be prohibitive for especially high-dimensional problems. In Section 6, we
show thatmulti-node2vec is in fact an approximation to closed-form implicit matrix factorization.

There have been many feature learning techniques for static networks developed in the past
decade. The latent space model from Hoff et al. (2002), for example, is a common model-based
embedding technique that embeds the observed network onto Euclidean space—typically onto
two dimensions. Our current work is most closely related to the automatic feature learning
techniques LINE (Tang et al., 2015), DeepWalk (Perozzi et al., 2014), and node2vec (Grover &
Leskovec, 2016). We briefly discuss these here but refer the reader to Goyal & Ferrara (2018)
for a recent review of node embedding techniques for static networks. LINE, DeepWalk, and
node2vec each learn features of a node from the neighborhoods of the node in the observed graph.
LINE learns d-dimensional features by an objective function that preserves first- and second-
order network properties. DeepWalk and node2vec each learn D-dimensional features using the
Skip-gram neural network model, which minimizes a log-likelihood loss function that character-
izes relationships from node neighborhoods in the observed graph. The Skip-gram model was
originally developed for learning efficient representations of words in a large document of text
(Mikolov et al., 2013b; Pennington et al., 2014). The first application of the Skip-gram model was
in the word2vec algorithm (Mikolov et al., 2013a), where it was used to estimate a word’s fea-
tures through the log-likelihood cost minimization from the prediction of that word’s context.
DeepWalk, node2vec, and multi-node2vec differ in the way they collect node neighborhoods.
DeepWalk extracts neighborhoods using truncated random walks. Node2vec performs second
random walks based on hyperparameters that guide the likelihood of visiting nodes either closer
to or further away from previously visited nodes. The development of our algorithm is motivated
by the recent success of the node2vec algorithm on consensus matrices of structural magnetic res-
onance imaging, (Rosenthal et al., 2018). Themulti-node2vec algorithm, however, directly handles
the analysis of populations of functional connectivity data. Multi-node2vec is also random walk
based and can be thought of as a generalization of the original DeepWalk and node2vec algo-
rithms. Utilizing Laplacian dynamics like that discussed in Mucha et al. (2010), we incorporate a
walk parameter that dictates the probability of moving from one layer to the next.

Other recent work has focused on generative network models that model populations of net-
works, including the random effects stochastic blockmodel (Paul &Chen, 2018), themulti-subject
stochastic block model (Pavlovic et al., 2019), the hierarchical latent space model (Wilson et al.,
2020), as well as the edge-based logistic model from Simpson et al. (2019). These threemodels each
assume independence of the edges within and across individuals. Even so, estimation methods for
these models are sometimes prohibitive and typically require small network representations (on
the order of 10 s of nodes) for each individual.

The community detection task of partitioning the nodes of a multilayer network into densely
connected subgroups, or communities, can be viewed as multilayer embedding. Specifically, the
results of a community detection algorithm is an N ×Dmatrix F, where the vth row fv is a binary
vector that indicates which community(ies) the node v is contained. The development of multi-
layer community detection methods is still in its early stages, but several useful techniques have
been developed over the past decade (De Domenico et al., 2015; Mucha et al., 2010; Stanley et al.,
2016; Wilson et al., 2017a). Though not the focus of this paper, it would be interesting to fully
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explore the use of communities as features for regression and other machine learning tasks in
future work.

2. Multilayer embedding with multi-node2vec
In resting state functional connectivity, network models are constructed by gauging the degree
to which two regions’ time series activity is related to one another. The intuition is that the
greater two regions are functionally connected, the more their time series should co-activate. In
the present study, we model the strength of connection between two regions based on the corre-
lation between the two regions’ activity during a resting state fMRI scan (i.e., when participants
have no task except to stay awake (Bullmore & Sporns, 2009; Smith et al., 2011). We can subse-
quently apply the multi-node2vec technique to identify local features of the brain from a group of
individuals.

A multilayer network of lengthm is a collection of networks or graphs {G1, . . . ,Gm}, where the
graph G! models the relational structure of the !th layer of the network. Each layer G! = (V!,W!)
is described by the vertex set V! that describes the units, or actors, of the layer, and the intra-layer
edge weights W! = {w!(u, v) : u, v ∈V!} that describes the strength of relationship between the
nodes. Furthermore, there is a collection of inter-layer edge weights IL := {w!,!′(u, v) : u ∈V!, v ∈
V!′} that describe relationships between nodes of differing layers. Note that layers in the multi-
layer sequence may be heterogeneous across vertices, edges, and size. In the case of population
studies of functional connectivity, each layer G! represents the correlation network arising from
resting state fMRI for individual !. Denote the set of unique nodes in {G1, . . . ,Gm} by N , and
let N = |N | denote the number of nodes in that set. Throughout the remainder of this paper, to
signify the unique node set N , we represent multilayer networks with m layers and node set N
as Gm

N .
Multilayer networks are inherently complex and high dimensional. Without further assump-

tions onGm
N , inference onN necessitates the modeling ofN2 (possibly dependent) edge variables,

which is computationally challenging even for moderately sized N. In light of this challenge, the
aim of the current work is to learn an interpretable low-dimensional feature representation of the
nodes in a multilayer network. In particular, we seek a D-dimensional representation:

F :N →RD (1)

where D<<N. The function F can be viewed as an N ×Dmatrix whose rows {fv : v= 1, . . . ,N}
represent the feature space of each node inN .

2.1 Maximum likelihood formulation
Let Gm

N be an observed multilayer network with m layers and the set of unique nodes N . Our
aim is to learn D representative features ofN given by the matrix F in Equation (1). This learning
task can be formulated as a problem of maximum likelihood estimation. To see this, one can view
Gm
N as a realization of a random graph on the node set N whose joint probability distribution is

dictated by the feature matrix F. We calculate an estimator for F in Equation (1), F̂, that maximizes
the joint likelihood:

L(F |Gm
N )= P(Gm

N | F) (2)

where P is the joint distribution of a multilayer graph with m layers and unique node set N
given the feature representation F. In general, maximization of Equation (2) is computationally
intractable. We therefore make two simplifying assumptions about the joint distribution P. Our
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assumptions rely upon a suitable definition of a multilayer neighborhood. Defining the neighbor-
hood of a node is related to the problem of defining the context of a word in a large document
from natural language processing. In static unweighted networks, the neighborhood of the node
u is often defined as the collection of nodes that share an edge with u. This definition is moti-
vated by the homophily principle (McPherson et al., 2001), which posits that nodes with similar
features are highly connected to one another in the network. In many cases, this definition of a
neighborhood is restrictive. This is particularly true when the observed network is only partially
observed or when the edges of the network are generated from some underlying noisy process.
We instead define a multilayer neighborhood of node u based on a dynamic process across the
network. Our construction is a generalization of the random walk constructions from Grover &
Leskovec (2016), Perozzi et al. (2014), and Tang et al. (2015) and is analogous to the defining of
communities via Laplacian dynamics as in Lambiotte et al. (2008) and Mucha et al. (2010). To be
specific, we define the neighborhood of node u as the collection of vertices that are visited over a
random walk on the multilayer network Gm

N . We make this more formal below when describing
the neighborhood search procedure of the algorithm.

Once the multilayer neighborhood of each node has been defined, we make two simplifying
assumptions given the feature matrix F. First, we assume that the joint distribution characterizing
Gm
N is the same as the distribution characterizing the collection of neighborhoods in Gm

N . This
assumption is reasonable if we believe that the features F provide the same information as the
multilayer network itself. Second, given the feature matrix F, we assume that the neighborhood
of a node v depends only on its own feature representation, fv and given this representation is
independent of the neighborhoods of other nodes u ∈N . These assumptions are the same as those
made for the node2vec algorithm for static networks (Grover & Leskovec, 2016) and are analagous
to thosemade for word2vec, which assumes that the joint probability distribution of a collection of
text can be characterized by the distribution of the collection of conditionally independent word
contexts given each word’s feature representation (Mikolov et al., 2013b).

With the conditional independence assumptions of the neighborhoods given F, maximizing the
joint likelihood of F given the entire network Gm

N reduces to the task of identifying the features
fv given the neighborhood of v in Gm

N . Let Ne(u) denote the neighborhood of node u, namely the
collection of nodes that are linked to u. Given the neighborhood of each node, the likelihood from
Equation (2) simplifies to:

L(F |Gm
N )=

∏

u∈N
P (Ne(u) | fu) (3)

As it remains a challenging task to quantify the dependence between the neighborhoods of dif-
fering layers, the maximization of Equation (3) is still computationally difficult. Thus, we define a
family of multilayer graphs for which this maximization is feasible. It turns out that we can define
such a family by assuming minimal conditional independence assumptions given the representa-
tion F, described as follows. Let Gm

N denote the family of multilayer graphs whose members are
random graphs with m layers and unique nodes N . For every member of Gm

N , assume that the
following hold

(A1) For all u ∈N , P(Ne(u) | fu)=
∏

v∈Ne(u) P(v | fu)
(A2) Let u ∈N . For every v ∈Ne(u), P(v | fu)= P(u | fv).

Assumption (A1) characterizes the local conditional independence among nodes in the neigh-
borhoods of a node v given its feature representation, fv. Assumption (A2) enforces a symmetric
effect of neighboring nodes in their feature space. A consequence of (A2) is that for any node v
that is a neighbor of u, the following relationship holds
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P(v | fu)=
exp{fTv fu}∑

w∈N
exp{fTwfu}

If the observed graph Gm
N is a realization of a multilayer random graph from the family Gm

N
under which assumptions (A1) and (A2) hold, then Equation (3) can be expressed as:

L(F |Gm
N )=

∏

u∈N

∏

v∈Ne(u)

exp{fTv fu}∑

w∈N
exp{fTwfu}

(4)

Maximizing Equation (4) is equivalent to maximizing the following log-likelihood:

L(F |Gm
N )=

∑

u∈N

∑

v∈Ne(u)

[
fTv fu − log (Zu)

]
(5)

where Zu = ∑
w∈N exp{fTwfu} is a normalization constant for the node u. Following the approach

of Grover & Leskovec (2016) and Mikolov et al. (2013b), we approximate Zu using negative sam-
pling. We note, however, that Markov chain Monte Carlo sampling methods could also be used
to approximate Zu as in Wilson et al. (2017b) and Denny et al. (2017). The use of Skip-gram with
negative sampling is appealing for two reasons: (i) the algorithm is fast and scalable to large mul-
tilayer networks and (ii) the strategy is closely related to matrix factorization (Levy & Goldberg,
2014; Qiu et al., 2018) as we will see in Section 5.

Given an observed multilayer network Gm
N , multi-node2vec is an approximate algorithm that

estimates F through maximization of the log-likelihood function in Equation (5). The algorithm
consists of two key steps. First, the NeighborhoodSearch procedure identifies a collection of s
neighborhoods of length l for Gm

N through second-order random walks on the network. The
NeighborhoodSearch procedure depends on three hyperparameters—p, q, and r—that dictate the
exploration of the random walk away from the source node and the tendency to traverse layers.
Once a collection of neighborhoods or BagOfNodes have been identified, the log-likelihood in
Equation (5) is optimized in the Optimization step using stochastic gradient descent on the two-
layer Skip-gram neural network model of context size k. The result of the Optimization procedure
is a D-dimensional feature representation F. Figure 1 provides an illustration. We describe the
NeighborhoodSearch and Optimization procedures in more detail next.

2.2 The NeighborhoodSearch procedure
Multi-node2vec begins by parsing a multilayer network into a collection of neighborhoods for
each unique node in N . The NeighborhoodSearch procedure identifies this collection of neigh-
borhoods, or BagofNodes, using s truncated second-order random walks of length l. Without loss
of generality, suppose that node labels among layers are registered in the sense that node u in ver-
tex set V! represents the same actor as node u in vertex set V!′ . To construct the random walk,
we consider the collection of weights {w!,!′(u, v) : !, !′ ∈ 1, . . . ,m; u, v ∈N }, where w!,!′(u, v)
defines the edge weight between node u from layer ! and node v from layer !′. Thus, the col-
lection of edge weights {w!,!′(·, ·) : ! '= !′} represent the inter-layer edges, whereas, the collection
{w!,!′(·, ·) : ! = !′} represent the intra-layer edges in the multilayer network.

For an observed multilayer network and its edge weights defined as above, the
NeighborhoodSearch procedure identifies s neighborhoods using second-order random walks
over the nodes and layers of length !, constructed as follows. Let ui be the ith node visited by the
random walk and !i the corresponding layer. Suppose, without loss of generality, that the initial
pair (u1, !1) is chosen uniformly at random. Subsequent vertex, layer pairs are visited according
to the conditional probability:
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Figure 1. Demonstration of the multi-node2vec algorithm. Beginning with a multilayer network (left), one first identifies a
collection of multilayer neighborhoods (bag of nodes) via the NeighborhoodSearch procedure. Next, the Optimization pro-
cedure calculates themaximum likelihood estimator F through the use of the Skip-gram neural networkmodel (right) on the
identified bag of nodes.

P(ui = x, !i = !′ | ui−1 = v, !i−1 = !)= πv,x,!,!′

Z , w!,!′(v, x)> 0 (6)

where πv,x,!,!′ is the unnormalized transition probability of moving from vertex–layer pair (v, !)
to pair (x, !′), and Z is a normalizing constant. We set πv,x,!,!′ as a function of the walk parameters
p, q, and r as follows:

πv,x,!,!′ = αpqr(t, x, !, !′) ·w!,!′(v, x) (7)
The αpqr(t, x, !, !′) term acts as a search bias on the observed weights that depends on the

previously traversed edge (t, v). That is, the walk now resides at node v having just traveled from
node t and the next node that the random walk visits depends on (a) the distance t is from
the future node and (b) whether there is a layer transition. Let d!(t, x) denote the shortest path
distance between nodes t and x in layer !. To account for layer transitions, we further decompose
αpqr(t, v, x, !, !′) as:

αpqr(t, x, !, !′)= βpq(t, x) I(!′ = !)+ γr(v, x) I(!′ '= !) (8)

where βpq(t, x) = p−1I(d!(t, x) = 0) + I(d!(t, x) = 1)+ q−1I(d!(t, x)= 2) and γr(v, x)= r−1

I(x= v). The βpq(t, x) term controls the rate at which the random walk explores and leaves the
neighborhood of a node within layer !. This quantity is the same as that specified for static
networks in node2vec and has been shown to identify neighborhoods that interpolate between
outcomes of breadth first search and depth first search. The return parameter p controls the likeli-
hood of revisiting the same node, layer pair, whereas, the in-out parameter q controls exploration
of the walk in layer !. The γr(v, x) term controls the rate at which a random walk transitions
from one layer to another. Setting the layer walk parameter r to be large (>max (p, q, 1)) ensures
little layer-to-layer exploration. Setting r in this way encourages independent neighborhood sam-
pling across layers. On the other hand, setting r to be small (<min (p, q, 1)) promotes exploration
among layers, and the resulting neighborhoods will reflect dependency among the layers.

Once the parameters s, l, p, q, and r have been chosen, s randomwalks of length l are performed
on the nodes of the observed multilayer network using transition probabilities from Equation (6).
These s samples serve as the BagofNodes from which the nodal features are learned.
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2.3 Optimization
For a given dimension size D, a context size k, and the collection of neighborhoods from the
NeighborhoodSearch step, multi-node2vec thenminimizes the cost of Equation (5) using stochas-
tic gradient descent and the Skip-gram two-layer neural network model. For each node, the
normalization constant Zu is approximated using negative sampling. The Skip-gram model iter-
atively updates the matrix F in the following manner. Each node is encoded as a one-hot vector
and provided as the input layer to a two-layer neural network from which the neighborhood of
the node is predicted. Applying the log-likelihood L as a cost function, the error of the predic-
tion is calculated. Partial derivatives of the cost function with respect to the rows of each of the
intermediate weight matrices are calculated and updated using stochastic gradient descent to min-
imize cost. This procedure is repeated across all nodes inN until the cost function can no longer
be reduced. After learning from each of the neighborhoods in our bag of nodes, we extract the
model’s node embeddings—the N ×D representation weight matrix associated with Skip-gram’s
input layer.

This optimization is analogous to that of the node2vec algorithm, but in our application the
weight matrices of the two-layer neural network are D-dimensional representations of the unique
nodes N and thus account for the dependence among layers in the multilayer network. It should
be noted that multi-node2vec is an approximate algorithm that relies upon the normalizing con-
stants {Zu}, as well as the approximate optimization of stochastic gradient descent. Though not
the focus of this paper, there has been a lot of recent work investigating the optimality land-
scape of gradient descent methods (see e.g., Lee et al., 2016), which provides promising theoretical
justification for its use.

The choice of k directly affects the amount of information one gains for each node but its value
depends on the sparsity of the observed network. Large values of k introduce undesired noise
to the identified neighborhoods, whereas, values of k that are too small result in neighborhoods
that do not contain significant information about the neighborhoods in the network. We found
that setting k near the average degree of the network provided the best results in our numerical
studies. In the case that the observed network is either densely connected or contains few layers,
the neighborhoods for each node may not contain sufficient information to inform the desired
features. In such scenarios, it may be desirable to sample multiple neighborhoods for each node.
Thus, we include an optional parameter a that specifies the minimum number of samples gener-
ated for each node. Unless otherwise specified, we set a= 1 in our numerical studies. Finally, the
dimensionality parameter D should be chosen to provide sufficient information about the multi-
layer network while greatly reducing the total number of nodes N, though it is an open problem
to understand an optimal dimension to represent general static networks.

3. Efficient implementation of multi-node2vec
Consider a multilayer functional connectivity network Gm

N withN unique nodes andm layers and
non-negative edge weights. By construction, multi-node2vec requires the storage of O(mN2 +
Nm2) different edge weights, since there are O(mN2) intra-layer edges and O(Nm2) inter-layer
edges. This can quickly overwhelm computational resources when the number of layers or unique
nodes is large. It turns out that multi-node2vec can be applied by only storingO(N2) values, which
greatly improves the efficiency of the algorithm. We begin by analyzing the relationship of multi-
node2vec with the node2vec and DeepWalk algorithms. To do so, we need a notion of equivalence
between two stochastic algorithms. For this purpose, we consider the stochastic equivalence of two
algorithms, defined as follows.

Definition 1. Let A1 and A2 be two stochastic algorithms, each with the same set of possible out-
comes &. That is, for fixed input data X, Ak is a random function that maps X to an outcome o ∈ &:
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Ak(X)→ o ∈ &. Define Pk as the probability mass function characterizing the probability of each
possible outcome of Ak: {Pk(Ak(X)= o) : o ∈ &}. A1 and A2 are said to be stochastically equivalent
if P1 = P2.

Let A denote the N ×N aggregate adjacency matrix of the nodes N with entries Au,v =∑
!

∑
!′ w!,!′(u, v). Define the adjusted version of A, Ã(r), as the N ×N matrix with entries:

Ãu,v(r)= r−1
∑

! '=!′
w!,!′(u, v)+

∑

!

w!,!(u, v), u, v ∈N

Note that Ã(r)=A when r = 1. One can view the matrix Ã(r) as an adjusted adjacency matrix
whose edge weights depend on the layer walk parameter r. Write G̃N (r) as the graph with nodes
N and edge weights specified by the adjacency matrix Ã(r).

The following lemma relates multi-node2vec with node2vec and DeepWalk and shows under
what conditions they are stochastically equivalent in terms of the walk parameters p, q, and r.

Lemma 3.1. Let Gm
N be an observed multilayer network and let G̃N (r) be its adjusted aggregate

network. Suppose that the parameters D, k, s, l are held constant. Then, the following hold

(a) for all p, q, r > 0, the application of multi-node2vec to Gm
N is stochastically equivalent to the

application of node2vec to G̃N (r);
(b) if p= q= 1, the application of multi-node2vec to Gm

N is stochastically equivalent to the
application of DeepWalk to G̃N (r).

Proof. Since multi-node2vec, node2vec, and DeepWalk all use Skip-gram on identified neighbor-
hoods, it will suffice to show that the transition probabilities of the random walks used to identify
the neighborhoods for each method are equal under the stated conditions to prove Theorem 3.1.
We begin by proving part (a) for general p, q, r > 0. Let πu,v denote the unnormalized transition
probability of the random walk traveling from u→ v based on the application of node2vec on
the graph G̃N(r). Similarly, let π∗

u,v denote this unnormalized transition probability of the random
walk based on the application of multi-node2vec to Gm

N . Then by the law of total probability, we
have

π∗
u,v := Z · PGm

N
(uj+1 = u | uj = v)= Z ·

∑

!

∑

!′
w!,!′(v, x)P(!i−1 = !)

= βpq(t, v)
∑

!

w!,!(u, v)+ γr(u, x)
∑

! '=!′
w!,!′(u, v).

Note that βpq(t, v)= 1 when v= u and that γr(u, x)= r−1. It follows that π∗
u,v = πu,v and thus

part (a) is proved. Part (b) is proven in an analogous fashion by taking πu,v as the transition
probability for the random walk associated with DeepWalk on the graph G̃N(r) and noting that
βpq(t, v)≡ 1 when p= q= 1.

Lemma 3.1 reveals that the application of multi-node2vec on an observed multilayer network
Gm
N is stochastically equivalent to the application of node2vec on the adjusted aggregate graph

G̃N (r). In practice, this means that running multi-node2vec on an observed multilayer net-
work will provide the same results as running node2vec on the corresponding adjusted aggregate
network if the same seed set is specified for a random number generator. This suggests that multi-
node2vec can be implemented with just the storage of Ã(r), which containsO(N2) edge weights. In
the special case that p= q= 1, one can equivalently run multi-node2vec, node2vec, or DeepWalk.
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Table 1. The number of regions in each functional subnetwork of the whole brain when the
Power atlas parcellation is applied to each whole-brain network. These subnetworks are used
to demonstrate the use of multi-node2vec in the classification study in Section 4.3

Auditory: 13 Dorsal attention: 11 Default mode: 58
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Salience: 15 Memory/retrieval: 5 Frontoparietal task control: 25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visual: 31 Ventral attention: 9 Subcortical: 13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cerebellar: 4 Uncertain: 28 Cingulo-opercular task control: 14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sensory—Hand: 30 Sensory—Mouth: 5

4. Numerical study
We now apply multi-node2vec to a multilayer brain network representing the functional connec-
tivity of 74 healthy individuals and 60 patients with schizophrenia who underwent resting state
fMRI. In this case study, we demonstrate the use of multi-node2vec for three primary objectives:
(i) clustering of brain regions into communities of similar features, (ii) classification of nodes into
anatomical ROIs in the brain, and (iii) comparing and classifying two populations of individuals.
To assess overall performance, we comparedmulti-node2vec with several off-the-shelf embedding
techniques, including LINE, DeepWalk, and node2vec. Our analysis reveals that multi-node2vec
identifies features that closely associate with the functional organization of the brain and provides
a powerful strategy for comparing across groups of individuals.

To analyze the efficacy of multi-node2vec, we consider the tasks of clustering and classification
of of ROIs using the subnetwork labels as ground truth. We furthermore analyze multi-node2vec
via a classification study, where we aim to classify healthy individuals from schizophrenia patients
using global summaries of the identified multilayer embeddings. Publicly available code for
the multi-node2vec algorithm as well as all code used for our findings are available at https://
github.com/jdwilson4/multi-node2vec.

4.1 Description of data
We investigate a dataset of resting state fMRI scans of 74 healthy individuals (aged 18–65 years,
23 female) and 60 individuals with schizophrenia (aged 18–65 years, 16 female) from the Center
for Biomedical Research Excellence (COBRE Mayer et al., 2013) posted to the 1,000 Functional
Connectomes Project (Biswal et al., 2010). Participants had no history of neurological disorder,
mental retardation, substance abuse, or dependencies in the last 12months, or severe head trauma.
Participants underwent 5 minutes of resting state fMRI in which they had no task except to stay
awake, followed by a multi-echo MPRAGE scan (see Mayer et al., 2013 for scanning parameters
and preprocessing information).

To construct the multilayer representation of this dataset, we use a previously validated atlas
(Power et al., 2011) that specifies 264 spheres of radius 8mm, which constitute our 264 ROIs.
We averaged the fMRI time series from all voxels within each ROI, yielding 264 time series per
participant. For each of these time series, we regressed out six motion parameters (to account
for head movement), four parameters corresponding to cerebrospinal fluid, and four param-
eters corresponding to white matter. These steps have been shown to reduce bias and noise
within the data (Chai et al., 2012). Finally, for each participant, we correlated the 264 time
series with one another, yielding a 264× 264 correlation matrix for each participant. We ana-
lyze the weighted multilayer network representation of these data. Intra-layer edges are encoded
with a weight of w!,!(u, v)I(r(u, v)> 0), where r(u, v) is the correlation between the two incident
regions. Inter-layer edges are encoded as w!,!′(u, v)= 1 when u= v and 0 otherwise. The ground-
truth subnetwork labels are previously defined functional subnetworks, established in Power et al.
(2011). The subnetwork labels and number of regions belonging to each functional subnetwork
are presented in Table 1.
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4.2 Simulation study and parameter choices
Before applying multi-node2vec to the fMRI data, we first describe a strategy for choosing the
parameters for the algorithm through the use of simulation and theoretical study. In Grover &
Leskovec (2016), the authors recommended values for the walk parameters p and q based on
extensive empirical studies for node2vec. For consistency and ease of comparison, we use their
recommended values (p= 1, q= 0.5) for both node2vec and multi-node2vec in our application
though we mention that these too could be tuned using simulation. In Section 5, we study the
limiting behavior of multi-node2vec as a function of the walk length parameter, l, and find that
asymptotically in l the embeddings from multi-node2vec converge to the result of non-negative
matrix factorization. To balance computational speed and theoretical gaurantees, we therefore
suggest using a moderately sized l in application and opt for l= 30. For the layer walk parame-
ter r, we assess the performance of three different values, r = 0.25, .5, .75, on the fMRI dataset to
investigate differences among these values.

Through simulation, we are particularly interested in three aspects of multi-node2vec: (i) ana-
lyzing the specificity of multi-node2vec, (ii) investigating the effects of the neighborhood or
context size of the identified neighborhoods, k, and the dimension of the feature vectors D as
they relate to the size, structure, and connectivity of the network, and (iii) analyzing the scalability
of multi-node2vec for networks with a large number of nodes and/or layers.

For (i), we simulated a multilayer graph where each layer was an independent Erdős–Rényi
random graph with probability of connection set to the average degree of that group. These sim-
ulated graphs represent what a multilayer network would look like at random with no topological
structure other than preserving the average degree of the group of images.

For (ii) and (iii), we use unweighted multilayer networks using a multilayer generalization of
the planted partition model, designed to align with the connectivity, clustering, and size of the
observed multilayer networks in our fMRI study. In all simulations, each layer of the simulated
multilayer network contains n= 264 nodes to match the fMRI networks in our application. Nodes
were placed randomly into c equally sized communities. For each layer, edges are placed randomly
between two nodes of the same community with probability pin and edges are placed between two
nodes of differing communities with probability pout . With this construction, each layer of the
generated network has the same community structure across layers. This graph model is a special
case of the multilayer stochastic block model (MSBM) considered (Han et al., 2015; Stanley et al.,
2016; Wilson et al., 2017a). For our analysis, nodes of the same community are expected to have
similar features with one another and different features than nodes from other communities. This
model therefore provides a well-structured multilayer network for which we can study and tune
multi-node2vec. We analyze the effect of k on the performance of the algorithm on the MSBM.
We note that one could also tune the dimension parameter D through an analogous simulation
study. In our application, we have access to ground-truth labels for the nodes—the functional
subnetwork label—and therefore directly compare the performance of multi-node2vec against
competing methods by running each method across a grid of dimension D ranging from 2 to 100.

For each of the following studies, we set pin = 0.49 tomatch the average degree of the functional
brain networks. To assess the relevance of the features identified by multi-node2vec, we compare
the clusters obtained from the k-means algorithm on the feature matrix with the true community
labels of the network and calculate the adjusted rand score as a measurement of match between
the two partitions. For each simulation, we replicate the study 30 times and report the average
adjusted rand score. The results for each simulation is presented in Figure 2 and discussed below.

4.2.1 Specificity of multi-node2vec
To test the specificity of the results identified in our study, we first applied multi-node2vec to mul-
tilayer Erdős–Rényi random graphs of the same size and expected degree as the populations that
we investigated. We expect that the embeddings of completely random multilayer graphs would
give no structural insights, and thus that the clusters identified from the embeddings would not
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Figure 2. Simulation results from the numerical study described in Section 6. All simulations are repeated 30 times and the
average is shown. (a) The adjusted rand index score of the clusters identified by k-means clustering on the identified feature
matrix frommulti-node2vec applied to theMSBM as a function of the signal-to-noise ratio (SNR) = pin/pout − 1 and (b) across
the number of layers in the network. (c) The adjusted rand index score of the clusters identified by k-means clustering on the
identified featurematrix frommulti-node2vec as a function of the neighborhood size input to the algorithm. (d) The average
time (in seconds) requiredbymulti-node2vec onmultilayer randomgraphswith 10 nodes in each layer andm layers. Notably,
networks with 1 million layers required just 58 seconds.

closely align with the functional subnetworks. This test provides a validation that multi-node2vec
can effectively distinguish real signal from noisy networks. To test this, we first identified the
embeddings on a simulated multilayer network using multi-node2vec. Then, we identified 13
clusters from the embeddings and calculated the adjusted rand index (as done in our applica-
tion study) of the clusters with the true subnetwork labels. We repeated this across 100 simulated
multilayer networks from both the healthy and patient groups.

For the simulated networks for the healthy group, we calculated an average adjusted rand of
0.25 (st. deviation 0.08). For the simulated networks representing the patient group, we calculated
an average adjusted rand of 0.21 (st. dev 0.10). These results reveal that there is no structure in
the embeddings of these random multilayer graph models for each group and suggest that the
multi-node2vec algorithm does not incorrectly identify structure in a noisy network.

4.2.2 Sensitivity of multi-node2vec
Community Strength
We first investigate the effects of the strength of community structure on multi-node2vec. To
do so, we varied the out-group probabilities pout to be between 10% and 90% of pin and assess
the performance of the algorithm over values of the SNR= pin/pout − 1. We simulated mul-
tilayer networks like this with 74 layers, across c= 2 to 14 communities per layer. Results are
shown in plot (a) of Figure 2. We observe that as the disparity between in-group and out-group
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probabilities increased, the feature embeddingsmore clearly represented the community structure
in the graph. Furthermore, across all values of pout , the performance of multi-node2vec improved
as the number of communities decreased. For multilayer networks with two communities, the
feature embeddings perfectly represented the community structure for values of SNR greater
than or equal to 0.4. Networks with 14 communities per layer required SNR greater than 2.0 to
achieve the same result. These results provide evidence that the feature embeddings identified by
multi-node2vec are able to efficiently capture the community structure of multilayer networks.

Effect of the Number of Layers
We next analyze the effect of the number of layers on the multi-node2vec algorithm.
In this simulation, we generated multilayer graphs from the planted partition model with
m= 5, 10, 15, . . ., 65, 74. As before, we fixed pin = 0.49 and varied pout = 0.245, 0.196, and 0.147
to match the best three values from the community strength simulations. We report the average
adjusted rand from 30 replications on networks with c= 12 communities in plot (b) of Figure 2.
For all three values of pout , the performance of multi-node2vec consistently improves across an
increasing number layers. This result supports the belief that each layer provides additional neigh-
borhood information for each node from which the multi-node2vec algorithm can efficiently
learn.

Effects of Context Size, k
To test the effect of neighborhood size, k, we ran simulations of the planted partition model mul-
tilayer networks with m= 5, 15, 25, 50, and74 over a range of 8–20 nodes per neighborhood with
pout = 0.245. We plot the average adjusted rand of the clusters identified on the feature matrix for
networks with c= 12 communities in the plot (c) of Figure 2.We find that the algorithm improves
with an increasing context size; however, the number of layers in the network has more impact on
the performance of the algorithm. Indeed, when m≥ 25, the neighborhood size does not signifi-
cantly affect (if at all) the performance of the algorithm. On the other hand, for a small number
of layers (say, m= 5), the increasing the context size plays a more important role in its identi-
fied features. Thus, for multilayer networks with a large enough of layers, the context size will not
dramatically affect the results of multi-node2vec, but in networks with fewer than 25 layers, one
should carefully tune this parameter.

Scalability
Identifying a neighborhood for the bag of nodes needed for the algorithm relies upon a random
walk strategy, which can be done in constant time using alias sampling (as done in the node2vec
algorithm). The optimization part of the algorithm turns out to be linear in the number of distinct
nodes in the multilayer network. Notably, this is drastically faster than the spectral decomposition
of the network, which in the best-case scenario is of cubic in the unique number of nodes. To
show this empirically, we consider multilayer networks with n= 10 unique nodes in each of m
total layers. We apply multi-node2vec on planted partition networks across a range the number
of layersm from 10 to 1 million layers. We calculate the amount of time (in seconds) required for
multi-node2vec with fixed k=D= 5 on 30 replications and report the average time in the plot
(d) of Figure 2. For networks with 1 million layers, multi-node2vec took on average of only 58
seconds. We note that the complexity of multi-node2vec as a function of n is also linear, and this
is justified with the scalability analysis in Grover & Leskovec (2016). This figure suggests that the
multi-node2vec algorithm is linear in the number of layers in the network and provides evidence
that this algorithm is well suited for embedding massive multilayer networks.

4.3 Analysis of schizophrenia data
Based on our discussion and results in Sections 4.1 and 4.2, we set k= 10 and l= 30. We set
p= 1 and q= 0.5 to match the parameter settings of node2vec as suggested in Grover & Leskovec
(2016), and we investigated the effects of the layer walk parameter r = 0.25, 0.50, and 0.75.
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4.3.1 Clustering ROIs
To explore functional region segmentation, we first clustered the rows of the feature matrices
identified from multi-node2vec across all three walk parameter settings. For this task, we were
particularly interested in the effect of the feature dimension on clustering performance. To test
this effect, we proceeded as follows. Multi-node2vec was run using D features. The k-means clus-
tering algorithm was then applied on the rows of the resulting N ×D matrix, and the number of
clusters was set to 13 to match the true number of subnetwork labels. For each run, the identi-
fied clusters were compared against the true subnetwork labels using the adjusted rand score. We
repeated this process for each method across a grid of D from 2 to 100 in increments of 2.

The match of the identified clusters with the ground truth improves as the number of features,
D increases. Notably, even for D as small as 6, the ROI clusters closely resemble the ground-
truth labels (adjusted rand ≈ 0.83). We note that such clustering analyses provide a heuristic for
assessing how many dimensions should be used to capture a desired ground truth in a multilayer
network. For example, in this case, we can use even just two dimensions and still capture more
than 80% of the functional organization of the healthy individuals. These results reveal that the
features of multi-node2vec provide practically relevant information about the functional subnet-
work to which these ROIs belong. This finding is further supported in the classification study
performed next.

4.3.2 Classification of functional subnetworks
We now assess the utility of the features learned from multi-node2vec through the classification
task of predicting the functional subnetwork location for each ROI in the healthy individuals. We
considered the classification of the 9 subnetworks containing 10 or more ROIs, which included
the auditory, cingulo-opercular task control, default mode, frontoparietal task control, salience,
sensory/somatomotor—hand, subcortical, visual, and dorsal attention subnetworks. In the classifi-
cation task, we tested two scenarios for network embedding methods—(i) the multilayer network
representing the resting state fMRI of 74 healthy individuals alone and (ii) the multilayer network
with additional noisy layers.

For each subnetwork, we trained a one-versus-all logistic regression classifier on the rows of
the feature matrix for each method on 80% of the regions using D identified features. We applied
the classifier to the remaining 20% of the ROIs and assessed the performance of the classifier
using the area under the curve (AUC). We performed this classification on the feature matrices
for each method and calculated the resulting AUC of the classifier across D ranging from 2 to 100
in increments of 2.

We compared multi-node2vec to several off-the-shelf embedding methods including
node2vec, DeepWalk, and LINE. As these methods are single-layer methods, we ran them on
the average weighted network of each population where layers were the same as those used for
multi-node2vec. For node2vec, we set the return parameter as p= 1 and the in-out parame-
ter as q= 0.5 to guide the neighborhood search following the suggestions of the original paper.
For DeepWalk, we kept default parameters. Matching multi-node2vec, we set k= 10 for both
node2vec and DeepWalk. For LINE, we used its default parameters: negative sampling = 5 and
ρ = 0.025. To match LINE’s default of 1 million training samples, we sampled s= 3, 788 neigh-
borhoods for each node in node2vec and DeepWalk. We ran all methods to learnD features, from
D= 2, . . . , 100. All experiments were performed on an AWS T2.Xlarge instance (specs: a 64-bit
Linux platform with 16 GiB memory). We report the AUC for each method and each subnetwork
when 20 layers of noise were added in Figure 3. Results for the non-noisy setting and the setting
with 10 layers of noise are shown in the Appendix.

Our study reveals that even in the presence of noise, multilayer embeddings of the healthy
individuals closely match the functional organization of the brain. Furthermore, multi-node2vec
is comparable to the competing methods in the non-noisy setting, where we expect layers to be
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Figure 3. The AUC of a one versus all logistic regression classifier for the nine major functional subnetworks of the brain of
all 74 healthy individuals and 20 layers of noise. Plots show the AUC of the classifier against the number of dimensions D for
feature representations frommulti-node2vec, node2vec, DeepWalk, and LINE.

homogeneous across the healthy patients. We further find that multi-node2vec is robust to mul-
tilayer networks with additional noisy layers. Indeed in this setting, we find that multi-node2vec
outperforms its competitors in seven of nine classification studies. These results provide evidence
of the robustness of multi-node2vec across multilayer networks with heterogeneous layers and
reveal the overall utility of the algorithm for noisy and non-noisy networks.

We begin by analyzing the classification result on the original 74 individuals (figure shown
in the Appendix.). Since each individual in the original study is healthy, we expect the networks
of each these individuals to share similar structure. It follows that the aggregate network pro-
vides an unbiased summary of the multilayer network with less variability than each layer alone.
Thus, methods applied to the aggregate network are expected to do better than multi-node2vec.
Despite this, we find that multi-node2vec is comparable to the competing methods for seven out
of nine subnetworks and outperforms other methods for small D in the visual and sensory motor
(hand) regions. The LINEmethod does particularly well in the salience and dorsal attention classi-
fications and outperforms multi-node2vec and all other methods across D. All methods improve
with increasing D and approach 1, indicating perfect classification.

To test the performance of multi-node2vec on multilayer networks with noise, we next gener-
ated b layers, each with 264 nodes to match the number of regions in every other layer, from an
Erdős–Rényi with edge probability set to the average edge density across all 74 layers. In this way,
we add b layers of randomly connected nodes that act as noise against the structure present in
the 74 individuals in the study. We set b= 10 and 20 and reran all of the methods with the same
parameter settings as in the original study.

As can be seen in Figure 3, single-layer embedding methods are dramatically affected by the
addition of noisy layers, whereas, multi-node2vec is robust to noise. For both b= 10 (in the
Appendix Figure A1) and b= 20 (Appendix Figure A2), all three runs of multi-node2vec out-
performs competing methods for seven out of nine of the classification studies. In particular,
multi-node2vec has clear advantages over the competing methods in the subcortical, salience,
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Table 2. Two-sided 95% confidence intervals for the difference of mean squared deviation in
healthy controls and schizophrenia patients. Deviations were calculated using 100 features from
the network embedding for each group

Subnetwork MSDhealthy −MSDpatient Subnetwork MSDhealthy −MSDpatient
Auditory (−0.108, 0.332) Dorsal attention (−0.326, 0.106)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C-O task control (−0.319, 0.155) Default mode (−0.241,−0.031)†
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Salience (−0.373, 0.047)∗ Memory/retrieval (−0.359, 0.581)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F-P task control (−0.213, 0.187) Visual (−0.160, 0.095)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sensory—hand (−0.295, 0.089) Ventral attention (−0.204, 0.434)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

subcortical (−0.198, 0.488) Cerebellar (−0.578, 0.379)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sensory—mouth (−0.440, 0.269)
∗The sum of squares deviation in healthy controls was less than that in the schizophrenia patients at a 0.10 level.
†The sum of squares deviation in healthy controls was less than that in the patients with schizophrenia at a 0.001
level

sensory motor (hand), and frontoparietal task control regions. Importantly, multi-node2vec’s per-
formance is not strongly affected by the addition of more noisy layers suggesting that the features
identified by the method align with the true 74 layers of the population. We find that the LINE
method is most affected by noise, followed by node2vec.

These results, in combination to the clustering results from the previous section, provide strong
evidence that the features engineered frommulti-node2vec provide biologically relevant informa-
tion about the functional organization of the brain and is generally robust to moderate amounts
of noisy layers.

4.3.3 Comparison of healthy controls and patients
To compare the populations of patients with schizophrenia to their healthy peers, we apply multi-
node2vec with r = 0.25 to both groups using the same parameters as described above providing a
264 × 100 network embedding for each group. Importantly, the two embeddings are not directly
comparable as features for each population may differ or be arranged in differing order. To assess
differences between groups, then one must compare within population summaries across pop-
ulations. For our study, we compare the variability of the embeddings within each functional
subnetwork. To make this precise, let A represent the index of the regions that are contained
within a specified functional subnetwork A. Let fg,i denote the ith feature vector in group g and
f g,A denote the mean vector of the embeddings from region A in group g, where g =healthy
patient. Let || x ||F notate the Frobenius norm of the vector x. For each group, we calculate the
mean squared deviation for every regionA:

MSDg,A = 1
|A|

∑

i∈A
|| fg,i − f g,A ||2F

where | · | represents the cardinality of a set. The value of MSDg,A quantifies the inner regional
variability of the embeddings for regionA in the gth sample. Large values ofMSDg,A suggest low
similarity of nodes within the same region A and hence higher entropy among that region. For
each region Amentioned in Table 1, we compare the mean squared deviation across populations
using a two-sided t-test on the quantity:

MSDhealthy,A −MSDpatient,A

These results are reported in Table 2. We find a significant difference in the mean squared
deviation in the default mode network (DMN) (p-value < 0.001) as well as a strong trend within
the salience network (p-value = 0.085). In both subregions, the mean squared deviation was found
to be lower in the healthy group than in the patient population, suggesting higher variability in the
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patient group in these two regions. Our findings are well supported by the triple network model
(TNM) theory of the brain (Menon & Uddin, 2010; Seeley et al., 2007). The TNM explains how
individuals switch between externally motivated cognitive processes (i.e., goal-directed tasks) that
are associated with the central executive networks and internally motivated cognitive processes
(i.e., rumination and mind-wandering) that are associated with DMN via the salience network
(Menon & Uddin, 2010; Seeley et al., 2007).

The TNM foremost relates to schizophrenia because of differences observed in the DMN in
individuals with schizophrenia. Previous research has indicated increased activity and within-
network connectivity in the DMN (Whitfield-Gabrieli et al., 2009) and decreased segregation
between the DMN and central executive networks (Woodward et al., 2011) in patients with
schizophrenia versus healthy individuals. The TNM further posits that pathological salience
(inappropriate monitoring by the salience network) may be associated with DMN pathology and
consequently many of the symptoms of schizophrenia (Menon, 2011). This theory is consistent
with recent evidence indicating TNM, and particularly salience network, dysregulation is corre-
lated with symptom severity in patients with schizophrenia (Hare et al., 2018; Supekar et al., 2019).
Our findings that the DMN has significantly smaller variability within healthy individuals than in
individuals with schizophrenia as well as the fact that the salience network is statistically different
between individuals with schizophrenia and healthy controls empirically supports these findings.

Finally, our results are consistent with a recent meta-analysis investigating the effect of
schizophrenia on connectivity (Li et al., 2019), which found consistent hypoconnectivity among
the DMN in patients with schizophrenia. Notably, however, this meta-analysis also found aber-
rant connections in several other functional networks, a finding we do not replicate here. Future
research is clearly needed to know whether our lack of significant findings in other networks (e.g.,
auditory, somatomotor) reflects lower power in our study compared to the meta-analysis, or a
systematic difference as a result of the vastly different methodological approaches. Given that our
results with the DMN and the salience network are consistent with both the meta-analysis as well
as other papers using this same dataset (e.g., Wang et al., 2014), we suspect this is primarily an
issue of power, but future work is clearly necessary to fully understand these discrepancies.

4.3.4 Classification of patients and healthy controls
We next consider the classification task of differentiating schizophrenia patients from healthy
controls using the embeddings from multi-node2vec. We first apply multi-node2vec to each of
the 134 total individuals in the study separately (74 healthy and 60 patients) and extract D= 100
feature embeddings describing each person’s functional connectivity. From these embeddings, we
then calculate the mean squared deviance MSDj,A for each individual j= 1, . . . , 134 and each
region A. Using the binary response vector y= (y1, . . . , y134) where yj = 1 if individual j has
schizophrenia and 0 if individual j is a healthy control, we apply several off-the-shelf binary clas-
sification techniques—including k-nearest neighbors, logistic regression, an L2 penalized logistic
regression, and a random forest classifier—using the mean squared deviance vectors to predict
whether or not the individual has schizophrenia. We perform 10-fold cross-validation and report
the average and standard error of the results in Table 3. For k-nearest neighbors, we look across a
grid of k between 1 and 30 and report the result with the highest mean accuracy.

The random forest classifier performs better than the other off-the-shelf methods using our
discovered embeddings and obtains a classification accuracy of 0.787 on average. It is important
to reiterate that multi-node2vec is an unsupervised method, namely the algorithm is not trained
to explicitly distinguish between two populations as is done formally in the network classification
problem. With that in mind, there have studies on the COBRE dataset that were supervised and
though these studies are not directly comparable with our result, their comparison does deserve
some discussion.

We compare our findings with the recent work in Relión et al. (2019), which establishes the
highest performance to date on the COBRE dataset using supervised edge-based techniques (see
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Table 3. Ten-fold cross-validation results for classification of patients and
healthy controls using individual embeddings. The average and standard error
(s.e.) are reported

Method Mean accuracy (s.e.)

k-nearest neighbors 0.718 (0.017)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Logistic regression 0.758 (0.075)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L2 penalized logistic 0.592 (0.021)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Random forest 0.787 (0.077)

Table 1 for their results). Their method achieved an accuracy of 0.927. Furthermore, other edge-
based methods that employ variable selection on the edges in each network obtain accuracies
on average of approximately 0.85. As expected, such supervised methods do indeed outperform
our unsupervised strategy. Perhaps the most fair comparison among the results in Relión et al.
(2019) to our own result is the comparison of multi-node2vec with network summaries. Like
multi-node2vec, network summaries provide a dimension reduction to the original networks and
are not explicitly designed for classification. We find that classification via embeddings of multi-
node2vec significantly outperform the classification using network summaries, which obtained
0.614 accuracy on average. This study reinforces the fact that multi-node2vec provides biologically
relevant information for classification of disease type. In future work, we will investigate devel-
oping supervised embedding methods designed specifically to classify disease and other clinical
features.

5. Limiting behavior of multi-node2vec
Multi-node2vec is an approximate algorithm that seeks to maximize the log-likelihood objective
function given in Equation (5). Approximation is needed for two objectives—(i) the identification
of multilayer neighborhoods via random walks and (ii) the application of the Skip-gram neural
network model with negative sampling. By analyzing the asymptotic nature of the random walks
in the NeighborhoodSearch procedure as l→ ∞, one can leverage the recent work on the Skip-
gram with negative sampling from Levy & Goldberg (2014), Qiu et al. (2018) to show that multi-
node2vec approximates implicit matrix factorization. We describe this main result below.

Denote D as the collection of neighborhoods identified by the NeighborhoodSearch proce-
dure. Let w= {u1, . . . , ul} ∈D be a collection of nodes resulting from a length l random walk in
the NeighborhoodSearch procedure. Define the k-length contexts for node ui as the nodes neigh-
borhing it in a k-sized window ui−k, . . ., ui−1, ui+1, . . ., ui+k and let c denote the collection of
contexts for w. Let #(w, c) denote the number of times the node–context pair (w, c) appears in D.
Further, let #(w) and #(c) denote the number of times the node w and the context c appear in D,
respectively. As shown in Levy & Goldberg (2014), running Skip-gram with negative sampling is
equivalent to implicitly factorizing:

log
(#(w, c)|D|

#(w)#(c)

)
− log (b) (9)

where b is the number of negative samples specified. Expression (9) suggests that by getting a hold
of the quantity in the first logarithm of the expression, we can relate multi-node2vec directly to
matrix factorization.

Our results provide asymptotic expressions for #(w, c)|D|/#(w)#(c) when the random walk
length l→ ∞. To make our result explicit, we need to first introduce a little more notation. Define
d̃u = ∑

v∈N Ãu,v(r) as the generalized degree of node u in G̃N (r) and let D̃= diag(̃d1, . . . , d̃N).
Define the volume of GN (r) as vol(G̃N (r))= ∑

u∈N d̃u. Define P as the array containing
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the second-order transition probabilities of NeighborhoodSearch: P= {Pu,v,w = P(uj+1 = u | uj =
v, uj−1 =w)} and let X be its corresponding stationary distribution satisfying

∑
w Pu,v,wXv,w =

Xu,v. Furthermore, let Pku,v,w = P(uj+r = u | uj = v, uj−1 =w)} denote the kth step transition prob-
ability.

Finally, suppose P→ denotes convergence in probability. Our analysis of multi-
node2vec depend on the bias of the transition probabilities for the random walks of the
NeighborhoodSearch procedure in Equation (7), αpqr(t, x, !, !′). We can now state our next
theorem, which relates multi-node2vec directly with matrix factorization.

Theorem 2. Let Gm
N be an observed multilayer network and let G̃N (r) be its adjusted aggregate

network. Suppose that G̃N (r) is connected, undirected, and non-bipartite. Let k be the context size
chosen for the Optimization procedure. Then as l→ ∞,

(a) For all p, q, r > 0,

#(w, c)|D|
#(w)#(c)

P→ 1
2k

∑k
j=1

(∑
u Xw,uP j

c,w,u + ∑
u Xc,uP j

w,c,u
)

(∑
u Xw,u

) (∑
u Xc,u

) (10)

(b) Let P̃= D̃−1Ã. If p= q= 1,

#(w, c)|D|
#(w)#(c)

P→ vol(G̃N (r))
k




k∑

x=1
P̃k



 D̃−1 (11)

for all r > 0.

By applying the result of Lemma 3.1, we can apply Theorems 2.1–2.3 and result (8) from Qiu
et al. (2018) directly to prove the Theorem 3. Results (10) and (11) provide closed-form limiting
expressions for the matrix factorization problem in Equation (9). These results suggest the use of
matrix factorization to identify features for a multilayer network; however, it should be noted that
calculating and storing the second-order transition probabilities P and its stationary distribution
X is computationally prohibitive. We do not consider such an algorithm in our current study but
plan to address fast matrix factorization in future work.

6. Discussion
In this paper, we introduced the multi-node2vec algorithm, the fast network embedding tech-
nique for complex multilayer networks. This work motivates several areas of future work. For
example, an important next step is to incorporate partial supervision for the detection of rele-
vant features that depend on the application under investigation. Recent work like Kipf &Welling
(2016) for semi-supervised feature engineering on static networks may provide a principled first
step in the investigation for multilayer networks. We furthermore believe that it will be fruitful
to thoroughly compare and contrast feature engineering methods like multi-node2vec with the
results of multilayer community detection methods so as to better understand the discovered fea-
tures. Furthermore, though not explicitly considered here, multi-node2vec is readily applicable
to dynamic networks, an example of multilayer networks where the ordering of layers depends
on time. This work will require incorporating appropriate notions of conditional dependence
between the layers that replace the conditional independence assumptions applied here. Finally,
our theoretical analysis of the multi-node2vec algorithmmotivates further work in understanding
the relationship between neural network algorithms with more traditional machine learning tasks
such as matrix factorization. We believe that more work should be done in this area to fully
understand the theoretical underpinnings of deep learning.
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There are several aspects of the multi-node2vec algorithm that open up new directions of
research. First, there is a need for an embedding procedure for dynamic networks that incorpo-
rates dependencies between each observed network in a sequence. This is particularly of interest
for functional connectivity data observed through time, like the raw data considered in this
paper. With multi-node2vec, a dynamic generalization is possible through the relaxing of sim-
plifying assumptions (A1) and (A2) to allow for dependence between neighborhoods across time.
Alternatively, one could directly construct an embedding algorithm for dynamic generative mod-
els like the family of temporal latent space models (Sewell & Chen, 2015) or temporal exponential
random graph models (Hanneke et al., 2010; Lee et al., 2020). Second, in this paper, we treated a
population as a collection of people across scans. However, in many instances, multiple scans like
different tasks, for example, are available for each individual. It would be interesting and perhaps
very fruitful to obtain a multilayer embedding for each individual instead using a multilayer net-
work collected across all the available scans. Finally, much work has recently focused on mixture
models for populations of networks, where the networks themselves cluster. One could account
for such structure in multi-node2vec by again reworking the assumptions in (A1) and (A2) to
account for differences between clusters of networks.

The multi-node2vec technique has potential for ground-breaking discovery in the study of
functional connectivity. By specifying a multilayered framework that (i) models weighted net-
works, (ii) does not require temporal ordering of the layers, and (iii) is robust to noisy layers,
multi-node2vec enables the study of networks that vary across individuals and cognitive tasks.
Neuroscientists have very recently begun to utilize multilayer analyses (Betzel & Bassett, 2017;
Bassett et al., 2015, 2011; Muldoon & Bassett, 2016; Braun et al., 2015). The majority of this work
has explored how community structure and network modules vary across time. For instance,
one study showed that shifts in community structure across time predict differences in learn-
ing a visual motor task (Bassett et al., 2015). Indeed, network neuroscientists have lately called
for greater emphasis on multilayer techniques, particularly those that do not require temporal
ordering of layers, thus allowing for more comprehensive quantification of networks across sam-
ples (Muldoon & Bassett, 2016). The multi-node2vec algorithm is a fully data-driven strategy
with the capabilities to learn significant neurological variation among brains and will progress
the investigation of individual differences and disease.
Funding. JDW gratefully acknowledges support on this project by the National Science Foundation grant NSF DMS-
1830547.
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Appendix: Additional results for subnetwork classification study
Below, we provide the AUC across competing methods for classification of functional subnetworks in healthy individuals.
These results illustrate the results when the methods are applied across the population of healthy individuals (Figure A1) and
when applied to the population of healthy individuals with 10 layers of noise added to the network (Figure A2). These results
complement those already provided and discussed in Section 4.3.

Figure A1. The AUC of a one versus all logistic regression classifier for the 9major functional subnetworks of the brain across
74 healthy individuals. Plots show the AUC of the classifier against the number of dimensions D for feature representations
frommulti-node2vec, node2vec, DeepWalk, LINE, and the spectral decomposition.
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Figure A2. The AUC of a one versus all logistic regression classifier for the 9major functional subnetworks of the brain across
all 74 healthy individuals and 10 layers of noise. Plots show the AUC of the classifier against the number of dimensions D for
feature representations frommulti-node2vec, node2vec, DeepWalk, LINE, and spectral decomposition.
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