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Abstract

Cyber-physical-social systems (CPSS) are physical devices that are embedded in human
society and possess highly integrated functionalities of sensing, computing, communication, and
control. CPSS rely on their intense collaboration and information sharing through networks to be
functioning. In this paper, topology-informed network information dynamics models are proposed
to characterize the evolution of information processing capabilities of CPSS nodes in networks.
The models are based on a mesoscale probabilistic graph model, where the sensing and computing
capabilities of the nodes are captured as the probabilities of correct predictions. A topology-
informed vector autoregression model and a latent variable vector autoregression model are
proposed to model the correlations between prediction capabilities of nodes as linear functional
relationships. A hybrid Gaussian process regression model is also developed to capture both the
nonlinear spatial and temporal correlations between nodes. The new information dynamics models
are demonstrated and tested with a simulator of CPSS networks. The results show that the
topological information of networks can improve the efficiency in constructing the time series

models. The network topology also has influences on the prediction capabilities of CPSS.
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Complex systems, Gaussian process regression, Information diffusion, Probabilistic graph model,
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1 Introduction

Cyber-physical-social systems (CPSS) are physical devices that are embedded in the human
society and possess highly integrated functionalities of sensing, computing, communication, and
actuation. They are the essential elements for smart home, smart office, smart manufacturing,
personalized medicine, autonomous transportation, and many other applications. Although human
is regarded as a component of the complex sociotechnical systems at large, our focus of discourse
is engineering design of physical systems that interface with human beings.

In CPSS networks, decision makings are done at the individual node level and enhanced by
intensive information sharing, as more high-quality information leads to better decisions. The
quality of information can be measured by accuracy, consistency, completeness, timeliness,
precision, and interpretability [1]. CPSS nodes also interact with and change the surrounding
environment via their control function, which in turn affects their neighboring nodes. As a result,
the level of interdependencies among CPSS nodes for their collected information is very high.
There is a strong need to understand the deep information dependency between CPSS devices in a
network. The knowledge about the behaviors of CPSS networks can help us to design more reliable
and dependable systems.

Existing research on information diffusion focused on traditional computer networks and
social networks. There is a lack of studies of information dynamics in CPSS networks which have
unique characteristics. First, the topology of a CPSS network is complex with numerous weak and
dynamically changing connections due to its ad hoc nature, e.g., in vehicle networks and
manufacturing plants. Second, the nodes are heterogeneous CPSS devices with various functions.
In particular, they have the sensing and control capabilities which do not exist in traditional
computer networks. Information sharing is intensive and decisions of what and when to share are
made locally by individual nodes. Thus strong correlations can exist in the shared information.
Third, the types of information generated and shared among CPSS nodes can vary greatly. In
contrast, existing studies of information diffusion in traditional computer networks and social
networks focus on the passive propagation or simple forwarding of specific information, such as
virus, keywords, and new concepts. To properly design the architecture of CPSS networks with

good adaptability and scalability, it is important to understand the evolution of information in
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CPSS networks as a system of systems, as well as the sensitivity of the system and device behaviors
with respect to the information propagation.

In a dynamically evolving CPSS network, the effects of information generation and sharing
need to be quantified and analyzed so that the long-term behaviors of the network can be predicted,
which is useful in systems design. To model the effects of information exchange, recently a data-
driven information dynamics modeling approach [2] was proposed to analyze the information
interdependency among CPSS nodes and subnetworks. The model keeps track of the probability
that each node detects and predicts the true state of its environment along time with its sensing,
computing, and communication functions. The interdependency between the probabilities of
different nodes was explicitly modeled with copulas and vector autoregression (VAR) models. The
proposed linear models provide the insight of how nodes have an influence on each other on the
prediction capabilities when information is exchanged and how the behavior of networks evolves
dynamically. This dynamics analysis is useful for the design of an open system with good
adaptability, where the topology of ad hoc networks changes with nodes continuously added or
removed. These models predict the global trend of information dynamics well. Nevertheless, the
black-box approaches for model fitting require a large amount of training data as the number of
nodes and thus the number of model parameters increase. Furthermore, nonlinear relationships
between state variables associated with the nodes need to be captured with more complex models.
In this paper, a gray-box modeling approach is taken. A topology-informed VAR model is
proposed so that the prior knowledge of correlation between the predictions as a result of direct
connections between nodes can be applied. This simplifies the modeling process such that the
number of coefficients or model parameters to be fitted is reduced. The amount of training data
can be reduced. The reduction is significant when the network connection is sparse. To further
capture the correlation among the nodes’ prediction capabilities, a latent variable VAR model is
proposed where hidden state variables are introduced. The observed changes in prediction
capabilities are caused by the interactions among hidden state variables. In addition, a topology-
informed Gaussian process regression (GPR) modeling approach is developed to predict the time
series of information dynamics, where nonlinear temporal and spatial correlations are captured. A
hybrid kernel function is developed with continuous time and discrete node labels as the inputs.

The node labels are specifically designed based on network topology such that the adjacency
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information is applied to infer the similarity of information sources between nodes to improve the
accuracy of the kernel function.

The proposed information dynamics modeling approaches are based on a generic
probabilistic graph model of networks ([4], [5]), where information exchange and processing at
nodes are modeled at the mesoscale. In the probabilistic graph model, the sensing and computing
capabilities of each node are characterized by a prediction probability, whereas the communication
capabilities between nodes are characterized by pairwise reliance probabilities. The prediction
probability measures how well a node can gather information and make sound judgment. The
reliance probabilities capture the extent of influences for one node to another via information
exchange. In the proposed information dynamics models, the dynamics is modeled based on the
evolution of prediction probabilities as a result of information exchange, instead of explicitly
modeling the information that is being exchanged as in other information diffusion models. The
evolution of prediction capabilities of nodes is captured in the time series models, where the
prediction accuracies of nodes are influenced by each other, given that the decision of each node
is made based on the information gathered from itself as well as its neighboring nodes. To train
the model parameters, simulations are performed based on the probabilistic graph model for
demonstration.

In the remainder of this paper, the background of CPSS design, existing models of
information diffusion in networks, and the probabilistic graph model are introduced in Section 2.
The proposed information dynamics models are described in Section 3. The models are

demonstrated and tested with a CPSS simulator in Section 4.

2 Background

In this section, an overview of relevant work on CPSS design at the system-of-systems level
is given. The models of information diffusion in networks are reviewed. The background of the
probabilistic graph model which the proposed information dynamics models are based on is also

provided.
2.1 CPSS System-of-Systems Level Design

The design of CPSS architecture at the system-of-systems level needs to incorporate several

factors. First, given the evolution nature of cyber and physical technologies, adaptability that
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enables the capabilities of self-learning, self-organization, and context awareness is important to
design open systems that can evolve along technology advancement [6][7]. Using new
technologies as the augmentation to existing products can effectively enhance adaptability [8].
Second, the complexity of the CPSS has significantly increased from traditional products and
devices. The CPSS products are connected through Internet of Things and heavily rely on data
exchange from each other to realize their functions. Communication between devices plays a major
role. Therefore, how to design systems of CPSS which have dependable communication is
important. Reliable large-scale networked systems that do not fail are impossible to achieve.
Resilient systems that can recover automatically from partial failures are more likely to be realized
[4][5]. Third, the high-dimensional design space of CPSS includes not only the cyber and physical
subspaces, but also the social subspace. Examples of the emerging research issues are how to
design the modalities for human-system interaction [9], how to enable context awareness and
personalized communication between CPSS and humans [10], and how to quantify trustworthy
strategic relationships for information sharing [11]-[15].

Network connectivity is essential for CPSS. A standalone CPSS device cannot perform the
functions which it is designed for. Compared to traditional products, the design of CPSS devices
requires engineers to have better understanding of the system level behaviors, as well as the new
methodology for the optimization at the network scale. Systems level modeling methods and tools
have been developed for CPSS design and analysis, such as hybrid discrete-event and continuous
simulations [16]-[18], inductive constraint logic programming [19] abductive reasoning [20],
hybrid timed automaton [21], ontologies [22], information schema [23], UML [24], and SysML
[25].

2.2 Information Diffusion in CPSS Networks

The information flow in computer networks and social networks has been studied by
researchers. The propagation of information can be modeled in different ways. The most used
approach is the epidemic model of networks, where transmission probabilities of virus between
nodes are mainly used to model the speed of infection and the dynamics of outbreak and decay is
captured with ordinary differential equations [26][27]. The epidemic model has been widely
applied to study the propagation of keywords or phrases among blogs [28] and within social

networks [29]. In the linear influence model [30], the propagation of information is modeled and
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parameterized by the influences of individual nodes in the network. In the event-driven modeling
approaches, the adoption of new information by nodes is characterized by discrete Poisson
processes [31][32] or continuous hazard function [33].

Very limited work has been done in studying information diffusion in CPSS networks.
Yagan et al. [34] studied the information transmission in the coupled social and physical networks
according to the epidemic model. Lu et al. [35] investigated how to maximize the information
diffusion in CPSS networks when nodes are connected probabilistically. Wang et al. [36] used a
game theoretic approach in combination with the epidemic model at the system level to study the
effects when nodes make local decisions of forwarding information to others. Yi et al. [37] defined
the states of each node in both physical and social spaces for the epidemic model so that the mutual
influence between social behavior spread and multimedia data transmission can be revealed. Wang
[2][3] developed statistical approaches where copula and VAR models were used to model the
information correlations among CPSS nodes.

Given that CPSS nodes possess local functions of sensing, computing, and decision making,
we need to study not only how information propagates but more importantly how the information
propagation directly affects these functions. In the proposed models, the propagation of
information elements is not modeled directly. Rather, the dynamic effect of information diffusion,
which is the change of the sensing and computing capabilities of CPSS nodes, is used to quantify
the information dynamics. That is, the dynamic changes of those capabilities along time are
directly captured in the proposed information dynamics models. The sensing and computing
capabilities of CPSS are quantified based on a probabilistic graph model, as introduced in the next

section.

2.3 Probabilistic graph model

A recently developed probabilistic graph model [5] for CPSS networks is the foundation of
the proposed information dynamics models. In the probabilistic graph model, each node has its
own sensing, reasoning, and communication units. As illustrated in Figure 1, there are probabilities
associated with information gathering and exchange between nodes. For each node, there is a
prediction probability indicating the capabilities of information gathering and reasoning. For each
directed edge indicating information exchange, there are reliance probabilities associated with it.

The two types of probabilities are defined as follows.
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Figure 1. Probabilistic graph model of CPSS systems
The prediction probability that the k-th node detects the true state of world 6 is
P(x, = 0) = py (1)

where x; is the state variable. For convenience, we denote q, = 1 — p,. The information

dependency between nodes i and j is modeled with P-reliance probability

which is the probability that the j-th node predicts the true state of world given that the i-th node

predicts correctly. Similarly, we also have Q-reliance probability
]P(Xj = 9|xl- * 0) = CIij (3)

because nodes could be negatively correlated, or miscommunication between nodes could exist.
The reliance probability can be used to model reliability of communication between nodes, e.g. in
moving vehicles’ ad hoc wireless networks, data packet loss is not uncommon.

Therefore, different from the adjacency matrix in traditional graph model with binary “yes-
or-no” edge connection topology, there are reliance probabilities associated with each pair of nodes
in the new probabilistic graph model. If the communication channel from node i and node j is
disrupted, both p;; and q;; are zeros.

The random state variables with binary values ( = 6 or # 0) can be extended to multiple
values or continuous. For instance, one sensor measures a value (e.g. temperature or flow speed)
which follows some distribution, as in prediction probability. If there are a finite set of possible
values {6, ...,0y} for state variables. The prediction probability P(x; = 6,,) and reliance

probability ]P’(xj = 9n|xl- = Hm), where 1 <m,n < N, can be enumerated similarly. As a
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simplification without loss of generality, in this paper we assume that the state variables take binary
values.

The edges in the probabilistic graph are directional. The neighbors of each node can be
further differentiated as source nodes or destination nodes, as illustrated in Figure 2. For one node,
its source nodes are those sending information to this node, whereas the destination nodes are those
receiving information from it. When receiving different cues from source nodes, a CPSS node can
update its prediction probability to reflect its perception of the world. The aggregation of prediction

probabilities sensitively depends on the rules of information fusion during the prediction update.

1
-~ ——
destination

Figure 2. Source and destination nodes with respect to node j

If P(x,) and P(x{) denote the probabilities of a positive and a negative prediction from

node k respectively, we define the best-case fusion rule as
P'(x) =1— (1= P(x) T2, POe) (A = PO lx ) T2 PG (1 — P(aelxf)) (4

where node k updates its prediction based on its own current prediction and those cues from its
Mp + My source nodes, out of which Mp of the source nodes provide positive predictions whereas
My of them provide negative predictions, P(x;|x;) indicates the probability that a positive
message from node 7 leads to a positive prediction of node k, and P (x;, |ij) is the probability that
a negative message from node j leads to a positive prediction of node k. Therefore, if any of the
cues from the source nodes is positive, the prediction of the node is positive. Some variations of
this fusion rules exist. For instance, the previous prediction from itself can be either included or
excluded during the update.

Similarly, the worst-case fusion rule can be defined as

P'(xi) = P(xi) T2, P () P e |x) T2 P(xF )P (el xf) (5)
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That is, if any of the cues from the source nodes is negative, the prediction of the node is negative.

The Bayesian fusion rule is defined as

P o) max{(Pxi)) (1-P ()}

P'(x;) = —
() f(P(xk))T(l_P(xk))s ar

(6)

where the prediction of the node is updated to P’ from prior prediction P, and out of S cues that
the neighboring nodes provide, » of them provide are positive, if the maximum likelihood principle
is taken.

The probabilistic graph model provides a system level abstraction and a mesoscale
description of CPSS networks, where information exchange and aggregation are captured with the
overall probabilistic measures instead of the detailed level of information elements. More details

about the probabilistic graph model can be found in Ref.[5].

3  The Proposed Information Dynamics Models

The information dynamics models are to characterize and predict how information is
consumed and affects the decision making of individual nodes in a networked CPSS environment.
In CPSS networks, each node produces information by sensing and processing. Information is
exchanged between nodes. When a node receives some information from others, the received
information is combined and digested, which is then used to update the prediction of the node.
Thus the prediction probabilities of CPSS nodes are dynamically updated with the mutual
influence from each other. As a result, strong dependencies exist among the prediction
probabilities from different nodes.

As an extension of previous work [2][3], the dynamic changes of network topology are
considered in the proposed VAR models, where the connections between nodes can vary instead
of being static. The proposed data-driven models can be updated periodically. When the network
topology is changed, the VAR models can be re-parameterized with the new training dataset.
Furthermore, a new latent variable VAR model is proposed so that the hidden correlations can be
parameterized with latent variables. This enables the linear VAR models to capture more complex
dependency relations.

In our information dynamics models, the effects of information diffusion are quantified by

the prediction probabilities associated with nodes. The influences and interdependency among
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information producers and consumers are captured as functions of these probabilities. Generally

speaking, the dynamics of prediction probabilities can be modelled by

D = gy (PCxa, . P 0) +
P Gint) _ (7)
P(xp,t
== g (P(xy, t) LP(xp, D) + €,
where g4, ..., g, can be linear or nonlinear functions to capture the interdependency between

prediction probabilities P(x)’s in the probabilistic graph model as introduced in Section 2.3. The
high correlation between nodes is incorporated in modeling the dynamics, where the evolution of
the prediction probability for each node is characterized. With the data-driven approach, the

dynamics model can be simplified as time series in

p(x,t) = f(x,t) + €(x) (8)

where x = (x4,...,x,) denotes the vector of state variables for all nodes, p(x,t) =
(P(xq,t), ..., P(xp, t)) is the vector of all prediction probabilities, and € = (€4, ..., €y)
characterizes the uncertainty.

Three information dynamics models are introduced here to capture the information diffusion
in CPSS networks based on the prediction probabilities that the nodes produce meaningful
information. The first model is the latent variable VAR where hidden state variables are
introduced. The second one is the topology-informed VAR model where the dynamic network
topology is applied for more flexible and efficient model training. The third one is the topology-
informed GPR model where the connectivity provides additional information about the similarity
between nodes. In the VAR modeling approach, the interactions of the individual prediction
probabilities are directly modeled with the parameters in VAR models. The parameters or
coefficients of the linear models capture the coupling explicitly as functional relationships. That
is, the prediction probability of one node is a function of the probabilities from its neighbors. The
prior knowledge of network topology provides us a more compact VAR model. In the GPR
modeling approach, the time series with inputs of time and node labels is developed based on both
spatial and temporal correlations. The correlations are captured implicitly with the covariance or

kernel functions in the model.
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The effects of information accumulation are manifested by how well CPSS nodes make
sound decisions. The accuracy and effectiveness of decisions are quantified by the probabilistic
measures of their prediction capabilities, i.e. prediction probabilities. Based on new information,
the CPSS nodes update their prediction probabilities as their perceptions of the world based on
certain information fusion rules. The information dynamics models, discretized as time series
models, elucidate how the prediction probabilities of nodes in the network are correlated. The
understanding of correlation helps us to answer design questions, such as how to design network
topology to control variability or fluctuation of prediction capabilities, how to assign key
influencers in the network to improve the effectiveness of information propagation, and others.

To train the proposed data-driven models, training data are generated from simulations of
information propagation in the probabilistic graph model. The coefficients in the VAR models and
hyperparameters in the GPR models are first trained based on the simulation data before they can
be applied for future prediction. During simulations, predictions about the state of the world are
randomly generated based on the prediction probability for each node. The information exchanged
between nodes is also generated based on the reliance probabilities. Based on information fusion
rules introduced in Section 2.3, the prediction of each node is then updated. The new predictions
are recorded and the statistics are used to update the prediction probability. The above simulation
procedures are repeated iteratively for each time epoch, and the evolutions of the prediction
probabilities are simulated.

In the remainder of this section, the VAR modeling approach is introduced in Section 3.1,
where the latent variable VAR model and the topology-informed VAR model are introduced. In
Section 3.2, the new spatial-temporal GPR model is described, where the correlation along time

for each node and correlation between nodes are captured based on a new kernel function.

3.1  Vector Autoregression Models

VAR models provide a direct approach to represent time-dependency and mutual influences
between variables in time series problems. In traditional VAR models, it is assumed that all
variables are linearly dependent on each other for each intermediate step. Here, a latent variable
VAR and a topology-informed VAR model are proposed. The prior knowledge of network
topology is incorporated in model training, and functional dependency between nodes is directly

modeled with the adjacency information. That is, two prediction probabilities are functionally
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related to each other at two immediate time steps only if there is a direct connection between the
two nodes. This approach can reduce the number of parameters to be trained and improve the

training efficiency.

3.1.1 Topology-Informed VAR

The traditional VAR time series model is
P(s)=A,+Y_ AP(s—1D+e 9)

where the values of prediction probabilities for all n nodes at the s-th time step form the column
vector P(s) = (P,(s), ..., B,(s)). The prediction probabilities at the s-th time step are dependent
on the values of P(s — 1), ... P(s — L) at all the previous L steps. A, € R" is the column vector of
intercepts that indicate the bias. The noise e~N' (0, XZ,) is modeled as the multi-variant normal
random variable, and the n X n coefficient matrices A;’s capture the interdependency between
prediction probabilities. The VAR model in Eq. (9) captures the time and location dependencies
of nodes simultaneously as the linear relationships. The time series model captures the memory
effect where the data sharing history in the previous L steps affects the current values. It also
implicitly captures the potential effect of possible delays in communication, where data arriving
at a node could be sent by other nodes several time steps before. The positive or negative signs of
the elements in A;’s indicate the positive or negative correlations of the pairs. The correlations will
cause fluctuations of the P values between 0 and 1.

One issue of VAR for network modeling is that the number of parameters increases
quadratically as the number of nodes increases. In the topology-informed VAR model, not all
parameters in Eq. (9) are equally important. If one node is connected with and shares information
directly to another node, the information dependency is more evident than those that are not
directly connected. Therefore, the topology of the network provides indications of dependency.
This prior knowledge can be applied to the VAR model as the constraints to reduce the effective
coefficients and simplify the model training process. In a sparsely connected network, dependency
between nodes is loose, and the number of effective coefficients becomes small. This will improve
the efficiency of the training process where the required training data size can be reduced
accordingly.

The topology-informed VAR model is defined as
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P(s) =Ay+Xio,(DT o ADP(s =) + € (10)

where D = (d- ) is the adjacency matrix of the network with n nodes. Its elements are d;; = 1
U/lnxn U

if a directed edge exists from node i to node j, and d;; = 0 otherwise. The diagonal elements d;; =
1 for all i’s. In addition, T is the matrix transpose operator, and o is the element-wise product or
Hadamard product between two matrices.

In the original VAR model in Eq. (9), the number of parameters or coefficients that need to
be calibrated through training is n + n%L. When the topology is considered as the constraint, the
number of parameters is reduced to n + eL where e is the number of directed edges in the graph.
The reduction is significant if the nodes are sparsely connected. With a smaller number of
parameters, the training or data fitting process can be more efficient where the required number of
training data points for good fitting is also reduced. Note that the topology-informed VAR is
reduced to the original VAR when the network is fully connected.

The training of topology-informed VAR model in Eq. (10) can be implemented as a
constrained optimization problem, where the loss or error of model prediction is minimized subject

to constraint
Yl (M=DT) oAl =0 (11)

where II is a matrix with the same size of D and all elements are 1°s. ||| is the matrix norm which
quantifies the distance to the origin and can be calculated with L> norm. Constrained nonlinear
optimization algorithms can be applied to solve this training problem. Because the elements in
coefficient matrices A;’s contain the physical meanings of adjacency between nodes, they are also
related to the reliance probabilities as described in Section 2.3. Therefore, the coefficients can
also be treated as probabilities. The values of the coefficients can be further constrained to between
0and I.

Notice that all coefficients and parameters of the VAR models can be time-dependent. When
the network topology dynamically changes, the model parameters need to be re-calibrated to
reflect the changes. One advantage of data-driven modeling is that the model parameters can be
updated frequently once new datasets are available. The proposed VAR models can be readily

applied to the dynamic CPSS networks where the topology is not fixed and evolves along time.
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3.1.2 Latent Variable VAR

More complex models can be applied to capture the functional interdependency between
prediction probabilities. Here, latent variables or hidden state variables are introduced to capture
the inherent correlations between prediction capabilities. The latent variable VAR model is defined

as
P(s) =BY(s) + 17 (12)
Y) =YL TY(s—D+e (13)

where Eq. (12) captures the relation between observable P € R" and hidden state or latent
variables Y € RX, and the evolution of hidden state variables as state transition is modeled in
Eq.(13). Here, T, € RK*K (1 =1, ...,L) is the coefficient matrix that captures the dependency
between the hidden state variables, and B € R™ K is the observation matrix. Notice that the
dimension of state vector Y is not necessarily the same as the dimension of observable vector P.
The number of hidden state variables is typically less than that of the observable in a correlated
system, i.e. K <n. n~N(0,%,) and £~N(0, Z,) are associated with the noises of observation
and state transition, respectively, and modeled as multi-variate normal variables. In the hidden
state model, the interdependency among nodes is captured through the hidden state variables. The
direct correlations between state variables cause the inherent correlations between the observables
so that more complex dependency relations are captured.

In the VAR model in Eq. (9), the parameters to be calibrated are vector A,, matrices A;’s,
and covariance matrix X.. For the latent variable VAR model in Egs. (12) and (13), the parameters
to be calibrated or trained include T;’s, B, as well as X, and Z.. The Expectation-Maximization
(EM) algorithm [38] can be applied to train the model with a large number of parameters. The EM
algorithm consists iterations of two alternating steps. In the E-step, the expectation of the log-
likelihood for hidden state variables and the available training dataset conditional on the
parameters A = {T;, B, X,, X, } is calculated. The available training dataset P is the time series of
prediction probabilities P’s. The hidden state variables V include all ¥’s. The expectation of the
log-likelihood at the k-th iteration is calculated as E(log f (P, V|A4") |/1(k_1)). In the M-step, the

parameters are  updated by  solving the  maximization problem A® =
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argmax, E(log f (P, V|A") |/1(k_1)). The E-step and M-step are applied iteratively until the
parameters converge.

When the number of latent variables K is the same as the number of the observable n, the
latent variables can be interpreted as the state variables associated with the individual nodes. The
coefficients T;’s then can be regarded as the associations between nodes in information exchange,
similar to the topology-informed VAR model in Section 3.1.1. Similarly, the network topology
can be applied as constraints to simplify the model training process. In the topology-informed

latent variable VAR model, the state transition in Eq.(13) is replaced by
Y(s) =Yl (DT oT)Y(s—1) +¢ (14)

where D is similarly the adjacency matrix of the network. The training of the constrained latent

variable VAR model can be done with constrained nonlinear optimization methods.

3.2 Topology-Informed Gaussian Process Regression Model

Different from the VAR models where the linear response relationships between variables
are assumed, GPR is a more generic regression method that can capture the nonlinearity. GPR also
provides uncertainty predictions of responses in addition to the mean values locally at different
locations in the input space. In the information dynamics model, the function in Eq.(8) is now a

Gaussian process, with the noise level e~N'(0, 63).
3.2.1 GPR Model

In the GPR model y(x)~GP (u(x), k(x,x")) with mean function u(x) and covariance or
kernel function k(x,x"), given M samples x = (x4, ..., X)) and the functional values y(x) =
(y(x1), ..., y(xp)) as the training dataset, the joint distribution between the training data set and
test data set y(x,) follows Gaussian distribution

Y| e (o[ K60 K@)y

y(x.) K'(x,x.) K(x,x,) (15)

where K(x, x) is the covariance matrix of training data points, K(x, x,) is the covariance matrix
between the training data and test data. The posterior predictions for new samples x, given the

existing ones from x is p(y.|y)~N (u., X.), where

. =K' (x, x)(K(x, x) + 62D~ 1y (16)
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I, = K(x,, x,) — KT(x,x,) (K(x, x) + 621) K(x,x,) + 021 (17)

with identity matrix I. GPR models predict not only mean values but also uncertainty associated

with the predictions locally. This provides more flexibility than traditional regression models.

3.2.2 Spatial-Temporal GPR Time Series Model

Here a new GPR model is proposed to explicitly capture the information correlation
between nodes as a nonlinear time series model. If the time series of prediction probability for
each node is modeled by the traditional GPR model with time as the input, the correlations between
different time series cannot be explicitly captured. The proposed GPR model uses two dimensions
of inputs, which are time and node label. The node label indicates which time series or which node

the output is associated with. With discretized time index s and node label m, the GPR model is

y(s,m) N(O I K((s,m), (s, m))  K((s,m),(s.,m.)) D

y(s.m)] K"((s,m), (s.,m.)) k((s.,m.),(s.,m.)) (49

where K((s,m), (s',m)) is the covariance matrix of existing observations, K((s, m), (s.,m.)) is
the column vector of covariance between existing observations and the new prediction (s,, m,).
The core idea of this GPR model is the new kernel function with hybrid inputs of continuous time

and discrete node label, defined as
k((s,m), (s, m")) = ky(s,5)ky(m,m") (19)

which is composed with kernel functions k; (s, s") for the time dimension and k,(m, m") for the
spatial dimension indicated by node labels. Kernel function k;(s,s") needs to capture the temporal
correlation which causes fluctuations of prediction probabilities. That is, one node’s prediction
probability is not static and it fluctuates between 0 and 1. The fluctuation is a result of positive or
negative influence from other nodes as well as the potential time delay factor. In GPR modeling,
the fluctuation pattern is usually quantified with a periodic kernel function. Therefore, the periodic

kernel here is defined as

ki(s,s") = exp(=2sin*(ndg(s,s")/p)/1*) (20)

with hyperparameters of period p and length scale [, and Euclidean distance function dg(:,").
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Kernel function k,(m, m") needs to be designed properly to capture the spatial correlation
between nodes. The kernel needs to incorporate the similarity or difference between input variable
values, which is quantified as the distance between them. A properly defined distance function
allows the kernel to distinguish different input values, which in turn helps build an accurate
surrogate. In this work, the input variables for k,(m, m") are node labels. Node labels need to
include enough information so that the distance or difference between two nodes can be intuitively

calculated. We propose to use
k,(m,m’) = exp(—0.5dy(m,m")/z?) (21)

with the hyperparameter of length scale z, and Hamming distance dy(-,-) between node labels.
The node labels are based on the adjacency information of the nodes, because two directly
connected nodes have stronger interdependency or correlation with information sharing. If two
nodes have similar connectivity in the neighbourhood, i.e. they have similar information sources,
then the values of their prediction probabilities should be similar. Thus the labels of the nodes need
to reflect the topology of the network. In combination with the Hamming distance, the node labels
are encoded as binary strings. For a network with z nodes, the node label is an n-bit binary number,
where each bit corresponds to a node. In the label of node i, if node j is directly connected to node
i, the bit corresponding to node j is “1” in the label of node i. Otherwise, it is “0”. For example,
the labels for a four-node network are four-bit strings as “bs3b,b,b,”, where bs, b,, by, b,
correspond to nodes 3, 2, 1, and 0, respectively. If node 0 is connected to nodes 1 and 3, and node
1 is also connected to node 2, the labels for nodes 3, 2, 1, and 0 will be “1001”, “0110”, “0111”,
and “1011”, respectively. The bit for the node itself is always set to be “1”. The difference between
two node labels measured by the Hamming distance indicates to some extent how strong the
correlation is between the two nodes. A small difference indicates that the two nodes are connected
to similar neighbours and have similar information sources. For instance, in the above four-node
example, the distance between node 3 and node 2 is dy(m5, m,) = 4. Similarly, dy(m;,m;) =
3, dy(mg,my) = 1. The prediction of node 3 is more similar to the one of node 0 than the other
two nodes, given that node 3 is directly connected to node 0. The Hamming distance based on the
labels can provide some estimations of differences that are meaningful for the GPR surrogate

model. Therefore, correlations of information between nodes can be quantified based on the labels.
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4 Demonstrative Examples

In this section, several examples are used to demonstrate the proposed information dynamics
models. Some simple networks are constructed with the associated prediction and reliance
probabilities randomly generated. A CPSS network simulator ProbNet is developed to simulate
the information update based on Monte Carlo sampling. The proposed information dynamics
models were developed and compared with the Monte Carlo simulation results. Both the simulator
and the information dynamics models were implemented in python programming language.

Monte Carlo sampling is applied to simulate the process of prediction probability updates.
In each time step, random samples of observations are generated for each node based on its current
prediction probability. Then the observations are shared with the neighboring nodes, and the shared
information is sampled based on the reliance probabilities. When a node receives the information
from its source nodes, a fusion rule (e.g. worst-case, best-case, Bayesian) is applied to update its
prediction. The predictions are compared with the randomly generated ground truth state value
and the correct instances are recorded. The above sampling procedure repeats many times, and the
probability of correct prediction for each node is obtained and updated for this time step. The

simulation clock advances, and the next iteration of update is done in the same way.

4.1 Demonstration of VAR Models

The VAR models are first demonstrated with a four-node-four-edge example in Figure 3 (a).
The simulation data are collected to train the VAR model in Eq. (9) with lag order L=2. The
training is done with the simulation data from the first 50 time steps. The forecast in the next 30
time steps is generated from the VAR model. The same data are used to train the constrained VAR
model in Eq. (10). The results are shown in Figure 3 (b) and (c) respectively, where the solid lines
are the simulated probabilities and the dash lines indicate the predictions or forecasts from the
models. The shaded regions indicate the predicted error bounds with one standard deviation (+0).
Here the worst-case fusion rule is applied in the simulation. It is seen that the models predict the
general trend well. The predictions from the two models are similar. Similar to any other time
series models, VAR models focus more on the near-term forecasts. The forecasts of the distant
future are more of the average trend. The calibrated coefficients of the two VAR models after
training are compared in Table 1. If there is no directed edge connection between nodes, the

corresponding coefficients in the constrained VAR model are zeros. Notice that some fitted
18
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coefficients in the traditional VAR model have negative values, whereas the ones in the
constrained VAR model are all positive with values between zero and one. Since the values of
both independent and dependent variables here are probabilities, it is difficult to interpret the
negative coefficients. In contrast, the fitted coefficients in the constrained VAR model are
associated with the reliance probabilities. They can be interpreted as the conditional probability of
positive prediction for a node given its information source. Therefore, the sparser set of parameters
in the constrained VAR model provides both efficient and physically meaningful representations.
To quantitatively compare the forecast accuracy, mean squared error (MSE), which is the average
squared difference between the forecasts and the original data during the forecast period, is
calculated. The MSE for the VAR model is 0.02083, whereas the one for the constrained VAR
model is 0.02116. Although the coefficients in the constrained VAR model are much sparser and
there are only 13 out of 36 coefficients are non-zero, the model still can have the similar

performance as in the traditional VAR model.

VAR (Worst-Case fusion): # of nodes=4 Topology constrained VAR (Worst-Case fusion): # of nodes=4
1.0

— noded  —-- VAR forecast — node 0 --- CVAR forecast

0.8
0.6
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0.8 0.8

0 06 0.6
/ 0.4 B 0.4
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04 0.4
0.2 0.2
(a) 28 8
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Figure 3. The simulated prediction probabilities and forecast with 50 time steps of training. (a) the
four-node-four-edge example; (b) result of the VAR model (MSE=0.02083); and (c) result of the
constrained VAR model (MSE=0.02116).
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Table 1. Comparison of the calibrated parameters between the VAR model and constrained VAR
model in Figure 3 for the four-node-four-edge network.

VAR Constrained VAR

A, | [-0.69957 0.86059 —0.14549 —0.13852]T [0 0.34793 0 0.46340]"
—0.30989 0.37412 —0.18996 —0.04054 ) 0 0 0

A 1.13367 —0.35650 0.67226  0.24123 0.34452 0 0.50053 0

111 0.80635 —0.29293 0.33254 1.07381 0 0.32673 0.07335 0
196312 —1.30183 137625 0.26925 L0 0 0.14887 0.00713!
132495 —0.51906  0.85481 0.29281 r0.18678 0 0 0 7

A 0.84116 —0.31187  0.53460 0.09564 0.42275 0 0.25119 0

2| 1-3.13919 1.63936 —2.11252 —0.60259 00 0 0
—025101 0.05738 —0.18614 —0.05667 L 0.0 0.00582 _0.034744

To further demonstrate the training efficiency, fewer training data are applied to the four-
node-four-edge example. Only the first 10 steps of simulation data are used to train the VAR
models. The results are shown in Figure 4. The traditional VAR model is not fully trained and the
predictions become very unstable with the limited training data, whereas the constrained VAR
model still predicts reasonably well. The MSEs for the VAR model and constrained VAR model
are 0.16667 and 0.03118, respectively.

Topology constrained VAR (Worst-Case fusion): # of nodes=4
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Figure 4. The simulated prediction probabilities and forecast with only 10 time steps of training
from (a) the VAR model (MSE=0.16667) and (b) the constrained VAR model (MSE=0.03118).
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The sensitivity of the model performance with respect to the lag order is tested. The
traditional and constrained VAR models with lag orders of L = 6 and L = 12 are constructed. The
results are compared in Figure 5. It is seen that higher-order models can provide more details of
longer-term predictions instead of average values only. However, the number of model parameters
to be fitted also increases. As seen in Figure 5 (b), the number of coefficients in the traditional
VAR model with lag order L =12 has increased so much that 50 time steps of training data become
not enough for model training. In contrast, the constrained VAR model has the reduced number of
effective coefficients. As seen in Figure 5 (d), the model with L = 12 shows good prediction

performance.

21

This document is the unedited Author’s version of a submitted work that was subsequently accepted for publication in Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, copyright © Cambridge University Press. To access the final edited and published work, see
https://doi.org/10.1017/S0890060421000159



https://doi.org/10.1017/S0890060421000159

VAR (Worst-Case fusion): # of nodes=4 VAR (Worst-Case fusion): # of nodes=4

10 T
— node®  --- VAR forecast 109/ noded, --- VAR forecast I N :!{
AN
i

—— nodel --- VAR forecast —— nodel --- VAR forecast

08
06

o)
04 \

— node2  --- VAR forecast

06 "
, -
0.4

8= node3  --- VAR forecast = node3 --- VAR forecast

o L node2  --- VAR forecast P .E

[ 20 40 60 80
time

(a)

Topology constrained VAR (Worst-Case fusion): # of nodes=4

Topology constrained VAR (Worst-Case fusion): # of nodes=4

— noded  --- CVAR forecast 10

— node D --- CVAR forecast

— nodel -—- CVAR forecast 8
08
0.6
04

— node2  --- CVAR forecast 28

0.6
04

—— nodel --- cVAR forecast

—— node2  --- cVAR forecast

) - node3  --- CVAR forecast
08
06
04
02
00
0 20 20 60 80 0.0
ime o 20 40 60 80
time

Figure 5. The sensitivity studies of different lag orders. (a) VAR model with L =6 (MSE=0.03522);
(b) VAR model with L = 12 (MSE=0.15196); (c¢) constrained VAR model with L = 6
(MSE=0.02697); (d) constrained VAR model with L = 12 (MSE=0.04394).

A second example is to demonstrate how data-driven modeling can be applied to dynamic
networks where topology changes along time. As shown in Figure 6 (a), an 8-node network with
10 edges is initially constructed. After 30 time steps, the network topology is changed to 18 edges
at the second epoch. The network is further changed to 54 edges during the third epoch. The
simulated and forecasted prediction probabilities with the constrained VAR model are shown in
Figure 6 (b), whereas the forecasts by the traditional VAR model are shown in Figure 6 (c). For
each epoch of 30 time steps, the data of the first 20 time steps are used to train the VAR models.
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The forecasts of the next 10 steps are compared with the simulation data. A different case is shown
in Figure 6 (d), where the numbers of edges change to 43 and 10 during the next two epochs from
the same initial 8-node-10-edge network as in Figure 6 (a). The simulation and forecast results
are shown in Figure 6 (e) and (f). It is seen that the constrained VAR model predicts the trends
reasonably well even with the dynamic topological changes and small training datasets.
Dynamically evolving networks may not allow us to collect a large amount of data for training.
As also seen in Figure 6, the fluctuation patterns of prediction probabilities vary when the
network topology changes, because information sharing patterns are different. When there are
more connections, the coupling between nodes becomes stronger. The prediction probabilities tend
to fluctuate more and be more synchronized. When a node does not receive information from
others, such as nodes 0, 6, and 7 during the first epoch and nodes 1 and 4 during the third epoch in
Figure 6 (d), the prediction can still fluctuate as a result of pure random effects. Some levels of
information sharing suppress the fluctuations. Yet fully connected network can amplify the

fluctuation with synchronization.
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Figure 6. The dynamic 8-node network with topology changes: (a) 8-node-10-edge network
changes to 18 and 54 edges along time; (b) the constrained VAR model (MSE=0.05563); (c) the
VAR model (MSE=0.20507); (d) 8-node-10-edge network changes to 43 and 10 edges along time;
(e) the constrained VAR model (MSE=0.05997); and (f) the VAR model (MSE=0.24637).
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4.2  Demonstration of Latent Variable VAR Model

Here the latent variable VAR model is demonstrated. The model is constructed to predict
the previous 4-node-4-edge network example in Figure 3 (a). Different values of factor number K
and lag order L in Eqgs. (12) and (13) are tested. The results are shown in Figure 7. The MSEs of
forecasts from the latent variable VAR, topology constrained VAR, and traditional VAR are
compared in Table 2. The forecasts by latent variable VAR and constrained VAR are more accurate
than those by traditional VAR. Similar to other VAR models, when the lag order increases, the
longer-term fluctuation can be predicted. In comparison with Figure 5 (a) for traditional VAR
model of lag order L = 6, the results in Figure 7 (b), (d), and (f) with the same lag order are more
stable and accurate. Therefore, introducing latent variables helps identify the intrinsic

interdependency between observable variables.

Table 2. Comparison of forecast MSEs by the latent variable VAR, constrained VAR, and

traditional VAR models
Latent variable VAR Constrained VAR Traditional VAR
K=1 L =2 0.04138 0.04117 0.04401
L=26 0.04187 0.03486 0.05372
K=3 L =2 0.01790 0.01844 0.02223
L =26 0.02634 0.02696 0.05726
K=4 L =2 0.03167 0.03108 0.03481
L=26 0.02573 0.02238 0.03994
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Figure 7. The latent variable VAR model forecasts for 4-node-4-edge network with different latent
variable number K and lag order L. (a) K=1, L=2; (b) K=1, L=6; (c) K=3, L=2; (d) K=3, L=6; (e)
K=4, L=2; (f) K=4, L=6.

The topology constrained latent variable VAR is further demonstrated with the 4-node-4-
edge network example. With the factor number fixed as K = 4, three cases with different lag orders
are compared. The results of MSEs from the constrained latent variable VAR model, in
comparison with the latent variable VAR, constrained VAR, and traditional VAR, are shown in
Table 3. It is seen that the topology constraints can help improve the forecast accuracy for both
VAR and latent variable VAR models. The accuracy levels are similar for these two constrained
models. The forecasts of the latent variable VAR models with and without topology constraints
are also shown in Figure 8. As the lag order increases, the number of coefficients to be trained also

increases, which requires more training data. The topology constraints can effectively reduce the
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number of coefficients and improve the training efficiency with less training data, such as the case

when L = 8.

Table 3. Comparison of forecast MSEs by constrained latent variable VAR, latent variable VAR,
constrained VAR, and traditional VAR with K = 4

Constrained latent Latent variable VAR Constrained VAR Traditional VAR
variable VAR
L =3 0.06912 0.08165 0.07330 0.08594
L =4 0.05405 0.07160 0.04918 0.06606
L =28 0.04178 0.26609 0.04116 0.28155
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Figure 8. The latent variable VAR model forecasts for the 4-node-4-edge network with different
lag orders where K=4. (a) L=3 with constraints; (b) L=4 with constraints; (c) L=8 with constraints;
(d) L=3 without constraints; (¢) L=4 without constraints; (f) L=8 without constraints.
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4.3 Demonstration of Spatial-Temporal GPR Model

We also implemented and tested the proposed spatial-temporal hybrid GPR time series
model to predict the dynamics of prediction probabilities. The results for the 3-node-3-edge
example are shown in Figure 9. Two different data fusion rules, worst-case and best-case scenarios,
are applied here. The results for the 8-node-10-edge example are shown in Figure 10. Compared
to the previous linear VAR models which only predict the general trend in long term, the GPR
model predicts the nonlinear dynamics of probabilities better. More fluctuations for both means
and variances are observed in the forecasts. This is because of the kernel functions in GPR models
which are able to capture differences locally based on the distance metrics. Thus the GPR model
provides more details about the long-term dynamics in the networks. The proposed GPR model
with the considerations of both spatial and temporal correlations between nodes captures the
information dependency between nodes.

When all 8 nodes in the network are fully connected, the simulation and forecast results of
the 8-node-56-edge example are shown in Figure 11. Because each node is connected with all
other nodes, very strong correlations exist in the fully connected network. It is seen that the
prediction probabilities of all nodes are synchronously fluctuating with the same values after a

short period. The GPR model also predicts the synchronized fluctuations with error bounds.

Info Dynamics: GP (Worst-Case fusion): # of nodes=3 Info Dynamics: GP (Best-Case Fusion): # of nodes=3
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Figure 9. The simulated prediction probabilities and forecast by the GPR model in the 3-node-3-
edge example, with (a) the worst-case fusion rule (MSE=0.03203), and (b) the best-case fusion
rule (MSE=0.03795).
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Figure 10. The simulated prediction probabilities and forecast by the GPR model in the 8-node-
10-edge example, with (a) the worst-case fusion rule (MSE=0.03924), and (b) the best-case fusion
rule (MSE=0.05461).
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Figure 11. The simulated prediction probabilities and forecasts by the GPR model in the 8-node-
56-edge example, with (a) the worst-case fusion rule (MSE=0.06174), and (b) the best-case fusion
rule (MSE=0.08055).

5 Concluding Remarks

The analyses of the systems level behavior of CPSS networks enable us to design better

systems. How to design a system of CPSS which promotes effective information sharing or
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prevents misinformation propagation is one of the major aspects of design. Therefore, we need
models that can characterize and predict the effects of information sharing and system behaviors.

In this paper, three information dynamics models are proposed to predict the information
propagation within a CPSS network. Based on a recently developed mesoscale probabilistic graph
model, the dynamics models are introduced to capture the mutual influences between nodes during
their reasoning processes. The representation of prediction correlations between nodes is the
central theme in both types of models. The results show that the topological information of
networks can improve the efficiency in constructing the time series models. The network topology
also has influences on the prediction capabilities of CPSS. Compared to other information
diffusion models for CPSS, the proposed two types of models focus on the effects of information
propagation on reasoning and prediction, instead of only on the diffusion speed and patterns in the
network as in other models such as the epidemic model.

The first type of models represent the interdependency between nodes for their prediction
capabilities explicitly as linear functions. It is demonstrated that the VAR linear model and latent
variable VAR model can predict the general trend and the error bounds well. By introducing prior
knowledge of network topology, the proposed topology-informed VAR models can significantly
improve the training efficiency by reducing the number of effective coefficients or model
parameters. The results show that the information correlations between nodes can be reasonably
assumed to be directly related to the network connectivity. The adjacency information is useful to
make the VAR models more compact and efficient. This is particularly important for large-scale
networks where the number of nodes increases. If the connections remain sparse, the constrained
VAR models are scalable. Training efficiency with reduced amount of training data is also
important for dynamically evolving networks.

The proposed two-dimensional GPR model captures the correlated time series patterns,
where a new kernel function is developed to consider both the temporal and spatial correlations of
the data collected by CPSS nodes. The composite kernel function models the discrete spatial
correlation with the topological adjacency relationship between nodes, in addition to temporal
correlation. The GPR model has shown the advantage of revealing longer-term nonlinear dynamics
in comparison with the linear models. The extent of local fluctuations can be predicted by the GPR
model. This is because GPR models predict based on the similarity between inputs which is

quantified with the kernel functions.
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The prediction accuracy from the data-driven models sensitively relies on the training
datasets. In general, larger datasets are always better for model training and calibration. The
training effectiveness of parameters or hyperparameters also depends on the optimization
algorithms applied in the training. For GPR models, the optimization of hyperparameters can affect
the accuracy of model predictions. For situations where there is a lack of training data, the proposed
modeling approach will not be feasible. Alternative modeling approaches that are based more on
the detailed knowledge about the systems will be needed. Another limitation of the data-driven
models is that the determination of model-form parameters such as lag orders and number of laten
variables relies on empirical sensitivity studies. The choice of the best model form remains
problem-specific and requires additional efforts. Nevertheless, it is seen that the physical
knowledge of interdependency between nodes can enhance the data-driven approaches in
modeling correlations, as demonstrated with the topology-informed VAR models and GPR model.
The spatial correlation captured by the adjacency relationships between nodes deserve further

studies.
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	Abstract
	Cyber-physical-social systems (CPSS) are physical devices that are embedded in human society and possess highly integrated functionalities of sensing, computing, communication, and control. CPSS rely on their intense collaboration and information sharing through networks to be functioning. In this paper, topology-informed network information dynamics models are proposed to characterize the evolution of information processing capabilities of CPSS nodes in networks. The models are based on a mesoscale probabilistic graph model, where the sensing and computing capabilities of the nodes are captured as the probabilities of correct predictions. A topology-informed vector autoregression model and a latent variable vector autoregression model are proposed to model the correlations between prediction capabilities of nodes as linear functional relationships. A hybrid Gaussian process regression model is also developed to capture both the nonlinear spatial and temporal correlations between nodes. The new information dynamics models are demonstrated and tested with a simulator of CPSS networks. The results show that the topological information of networks can improve the efficiency in constructing the time series models. The network topology also has influences on the prediction capabilities of CPSS. 
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	1 Introduction
	Cyber-physical-social systems (CPSS) are physical devices that are embedded in the human society and possess highly integrated functionalities of sensing, computing, communication, and actuation. They are the essential elements for smart home, smart office, smart manufacturing, personalized medicine, autonomous transportation, and many other applications. Although human is regarded as a component of the complex sociotechnical systems at large, our focus of discourse is engineering design of physical systems that interface with human beings.  
	In CPSS networks, decision makings are done at the individual node level and enhanced by intensive information sharing, as more high-quality information leads to better decisions. The quality of information can be measured by accuracy, consistency, completeness, timeliness, precision, and interpretability [1]. CPSS nodes also interact with and change the surrounding environment via their control function, which in turn affects their neighboring nodes. As a result, the level of interdependencies among CPSS nodes for their collected information is very high.  There is a strong need to understand the deep information dependency between CPSS devices in a network. The knowledge about the behaviors of CPSS networks can help us to design more reliable and dependable systems.
	Existing research on information diffusion focused on traditional computer networks and social networks. There is a lack of studies of information dynamics in CPSS networks which have unique characteristics. First, the topology of a CPSS network is complex with numerous weak and dynamically changing connections due to its ad hoc nature, e.g., in vehicle networks and manufacturing plants. Second, the nodes are heterogeneous CPSS devices with various functions. In particular, they have the sensing and control capabilities which do not exist in traditional computer networks. Information sharing is intensive and decisions of what and when to share are made locally by individual nodes. Thus strong correlations can exist in the shared information. Third, the types of information generated and shared among CPSS nodes can vary greatly. In contrast, existing studies of information diffusion in traditional computer networks and social networks focus on the passive propagation or simple forwarding of specific information, such as virus, keywords, and new concepts. To properly design the architecture of CPSS networks with good adaptability and scalability, it is important to understand the evolution of information in CPSS networks as a system of systems, as well as the sensitivity of the system and device behaviors with respect to the information propagation. 
	In a dynamically evolving CPSS network, the effects of information generation and sharing need to be quantified and analyzed so that the long-term behaviors of the network can be predicted, which is useful in systems design. To model the effects of information exchange, recently a data-driven information dynamics modeling approach [2] was proposed to analyze the information interdependency among CPSS nodes and subnetworks. The model keeps track of the probability that each node detects and predicts the true state of its environment along time with its sensing, computing, and communication functions. The interdependency between the probabilities of different nodes was explicitly modeled with copulas and vector autoregression (VAR) models. The proposed linear models provide the insight of how nodes have an influence on each other on the prediction capabilities when information is exchanged and how the behavior of networks evolves dynamically. This dynamics analysis is useful for the design of an open system with good adaptability, where the topology of ad hoc networks changes with nodes continuously added or removed. These models predict the global trend of information dynamics well. Nevertheless, the black-box approaches for model fitting require a large amount of training data as the number of nodes and thus the number of model parameters increase. Furthermore, nonlinear relationships between state variables associated with the nodes need to be captured with more complex models. In this paper, a gray-box modeling approach is taken. A topology-informed VAR model is proposed so that the prior knowledge of correlation between the predictions as a result of direct connections between nodes can be applied. This simplifies the modeling process such that the number of coefficients or model parameters to be fitted is reduced. The amount of training data can be reduced. The reduction is significant when the network connection is sparse. To further capture the correlation among the nodes’ prediction capabilities, a latent variable VAR model is proposed where hidden state variables are introduced. The observed changes in prediction capabilities are caused by the interactions among hidden state variables. In addition, a topology-informed Gaussian process regression (GPR) modeling approach is developed to predict the time series of information dynamics, where nonlinear temporal and spatial correlations are captured. A hybrid kernel function is developed with continuous time and discrete node labels as the inputs. The node labels are specifically designed based on network topology such that the adjacency information is applied to infer the similarity of information sources between nodes to improve the accuracy of the kernel function.
	The proposed information dynamics modeling approaches are based on a generic probabilistic graph model of networks ([4], [5]), where information exchange and processing at nodes are modeled at the mesoscale. In the probabilistic graph model, the sensing and computing capabilities of each node are characterized by a prediction probability, whereas the communication capabilities between nodes are characterized by pairwise reliance probabilities. The prediction probability measures how well a node can gather information and make sound judgment. The reliance probabilities capture the extent of influences for one node to another via information exchange. In the proposed information dynamics models, the dynamics is modeled based on the evolution of prediction probabilities as a result of information exchange, instead of explicitly modeling the information that is being exchanged as in other information diffusion models. The evolution of prediction capabilities of nodes is captured in the time series models, where the prediction accuracies of nodes are influenced by each other, given that the decision of each node is made based on the information gathered from itself as well as its neighboring nodes. To train the model parameters, simulations are performed based on the probabilistic graph model for demonstration. 
	In the remainder of this paper, the background of CPSS design, existing models of information diffusion in networks, and the probabilistic graph model are introduced in Section 2. The proposed information dynamics models are described in Section 3. The models are demonstrated and tested with a CPSS simulator in Section 4.
	2 Background
	2.1 CPSS System-of-Systems Level Design
	2.2 Information Diffusion in CPSS Networks
	2.3 Probabilistic graph model

	In this section, an overview of relevant work on CPSS design at the system-of-systems level is given. The models of information diffusion in networks are reviewed. The background of the probabilistic graph model which the proposed information dynamics models are based on is also provided.
	The design of CPSS architecture at the system-of-systems level needs to incorporate several factors. First, given the evolution nature of cyber and physical technologies, adaptability that enables the capabilities of self-learning, self-organization, and context awareness is important to design open systems that can evolve along technology advancement [6][7]. Using new technologies as the augmentation to existing products can effectively enhance adaptability [8]. Second, the complexity of the CPSS has significantly increased from traditional products and devices. The CPSS products are connected through Internet of Things and heavily rely on data exchange from each other to realize their functions. Communication between devices plays a major role. Therefore, how to design systems of CPSS which have dependable communication is important. Reliable large-scale networked systems that do not fail are impossible to achieve. Resilient systems that can recover automatically from partial failures are more likely to be realized [4][5]. Third, the high-dimensional design space of CPSS includes not only the cyber and physical subspaces, but also the social subspace. Examples of the emerging research issues are how to design the modalities for human-system interaction [9], how to enable context awareness and personalized communication between CPSS and humans [10], and how to quantify trustworthy strategic relationships for information sharing [11]-[15]. 
	Network connectivity is essential for CPSS. A standalone CPSS device cannot perform the functions which it is designed for. Compared to traditional products, the design of CPSS devices requires engineers to have better understanding of the system level behaviors, as well as the new methodology for the optimization at the network scale. Systems level modeling methods and tools have been developed for CPSS design and analysis, such as hybrid discrete-event and continuous simulations [16]-[18], inductive constraint logic programming [19] abductive reasoning [20], hybrid timed automaton [21], ontologies [22], information schema [23], UML [24], and SysML [25]. 
	The information flow in computer networks and social networks has been studied by researchers. The propagation of information can be modeled in different ways. The most used approach is the epidemic model of networks, where transmission probabilities of virus between nodes are mainly used to model the speed of infection and the dynamics of outbreak and decay is captured with ordinary differential equations [26][27].  The epidemic model has been widely applied to study the propagation of keywords or phrases among blogs [28] and within social networks [29]. In the linear influence model [30], the propagation of information is modeled and parameterized by the influences of individual nodes in the network. In the event-driven modeling approaches, the adoption of new information by nodes is characterized by discrete Poisson processes [31][32] or continuous hazard function [33].  
	Very limited work has been done in studying information diffusion in CPSS networks. Yagan et al. [34] studied the information transmission in the coupled social and physical networks according to the epidemic model. Lu et al. [35] investigated how to maximize the information diffusion in CPSS networks when nodes are connected probabilistically. Wang et al. [36] used a game theoretic approach in combination with the epidemic model at the system level to study the effects when nodes make local decisions of forwarding information to others. Yi et al. [37] defined the states of each node in both physical and social spaces for the epidemic model so that the mutual influence between social behavior spread and multimedia data transmission can be revealed. Wang [2][3] developed statistical approaches where copula and VAR models were used to model the information correlations among CPSS nodes.
	Given that CPSS nodes possess local functions of sensing, computing, and decision making, we need to study not only how information propagates but more importantly how the information propagation directly affects these functions. In the proposed models, the propagation of information elements is not modeled directly. Rather, the dynamic effect of information diffusion, which is the change of the sensing and computing capabilities of CPSS nodes, is used to quantify the information dynamics. That is, the dynamic changes of those capabilities along time are directly captured in the proposed information dynamics models. The sensing and computing capabilities of CPSS are quantified based on a probabilistic graph model, as introduced in the next section.
	A recently developed probabilistic graph model [5] for CPSS networks is the foundation of the proposed information dynamics models. In the probabilistic graph model, each node has its own sensing, reasoning, and communication units. As illustrated in Figure 1, there are probabilities associated with information gathering and exchange between nodes. For each node, there is a prediction probability indicating the capabilities of information gathering and reasoning. For each directed edge indicating information exchange, there are reliance probabilities associated with it. The two types of probabilities are defined as follows.
	/
	Figure 1. Probabilistic graph model of CPSS systems
	The prediction probability that the k-th node detects the true state of world 𝜃 is
	 ℙ𝑥𝑘=𝜃=𝑝𝑘  (1)
	where 𝑥𝑘 is the state variable. For convenience, we denote 𝑞𝑘=1−𝑝𝑘. The information dependency between nodes i and j is modeled with P-reliance probability
	 ℙ𝑥𝑗=𝜃𝑥𝑖=𝜃=𝑝𝑖𝑗  (2)
	which is the probability that the j-th node predicts the true state of world given that the i-th node predicts correctly. Similarly, we also have Q-reliance probability
	 ℙ𝑥𝑗=𝜃𝑥𝑖≠𝜃=𝑞𝑖𝑗  (3)
	because nodes could be negatively correlated, or miscommunication between nodes could exist. The reliance probability can be used to model reliability of communication between nodes, e.g. in moving vehicles’ ad hoc wireless networks, data packet loss is not uncommon.
	Therefore, different from the adjacency matrix in traditional graph model with binary “yes-or-no” edge connection topology, there are reliance probabilities associated with each pair of nodes in the new probabilistic graph model. If the communication channel from node i and node j is disrupted, both 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are zeros. 
	The random state variables with binary values ( =𝜃 or ≠𝜃) can be extended to multiple values or continuous. For instance, one sensor measures a value (e.g. temperature or flow speed) which follows some distribution, as in prediction probability.  If there are a finite set of possible values 𝜃1,…,𝜃𝑁 for state variables. The prediction probability ℙ𝑥𝑘=𝜃𝑛 and reliance probability ℙ𝑥𝑗=𝜃𝑛𝑥𝑖=𝜃𝑚, where 1≤𝑚,𝑛≤𝑁, can be enumerated similarly. As a simplification without loss of generality, in this paper we assume that the state variables take binary values. 
	The edges in the probabilistic graph are directional. The neighbors of each node can be further differentiated as source nodes or destination nodes, as illustrated in Figure 2. For one node, its source nodes are those sending information to this node, whereas the destination nodes are those receiving information from it. When receiving different cues from source nodes, a CPSS node can update its prediction probability to reflect its perception of the world. The aggregation of prediction probabilities sensitively depends on the rules of information fusion during the prediction update. 
	/
	Figure 2. Source and destination nodes with respect to node j
	If 𝑃𝑥𝑘 and 𝑃(𝑥𝑘𝐶) denote the probabilities of a positive and a negative prediction from node k respectively, we define the best-case fusion rule as
	 𝑃′𝑥𝑘=1−1−𝑃𝑥𝑘𝑖=1𝑀𝑃𝑃(𝑥𝑖)1−𝑃(𝑥𝑘|𝑥𝑖)𝑗=1𝑀𝑁𝑃(𝑥𝑗𝐶)1−𝑃(𝑥𝑘|𝑥𝑗𝐶)  (4)
	where node k updates its prediction based on its own current prediction and those cues from its 𝑀𝑃+𝑀𝑁 source nodes, out of which 𝑀𝑃 of the source nodes provide positive predictions whereas 𝑀𝑁 of them provide negative predictions, 𝑃(𝑥𝑘|𝑥𝑖) indicates the probability that a positive message from node i leads to a positive prediction of node k, and 𝑃(𝑥𝑘|𝑥𝑗𝐶) is the probability that a negative message from node j leads to a positive prediction of node k. Therefore, if any of the cues from the source nodes is positive, the prediction of the node is positive. Some variations of this fusion rules exist. For instance, the previous prediction from itself can be either included or excluded during the update. 
	Similarly, the worst-case fusion rule can be defined as
	 𝑃′𝑥𝑘=𝑃𝑥𝑘𝑖=1𝑀𝑃𝑃(𝑥𝑖)𝑃(𝑥𝑘|𝑥𝑖)𝑗=1𝑀𝑁𝑃(𝑥𝑗𝐶)𝑃(𝑥𝑘|𝑥𝑗𝐶)  (5)
	That is, if any of the cues from the source nodes is negative, the prediction of the node is negative. The Bayesian fusion rule is defined as
	 𝑃′𝑥𝑘=𝑃(𝑥𝑘)maxP𝑃(𝑥𝑘)𝑟1−𝑃𝑥𝑘𝑆−𝑟𝑃(𝑥𝑘)𝑟1−𝑃𝑥𝑘𝑆−𝑟𝑑𝑃   (6)
	where the prediction of the node is updated to 𝑃′ from prior prediction 𝑃, and out of S cues that the neighboring nodes provide, r of them provide are positive, if the maximum likelihood principle is taken.
	The probabilistic graph model provides a system level abstraction and a mesoscale description of CPSS networks, where information exchange and aggregation are captured with the overall probabilistic measures instead of the detailed level of information elements. More details about the probabilistic graph model can be found in Ref.[5].
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	The information dynamics models are to characterize and predict how information is consumed and affects the decision making of individual nodes in a networked CPSS environment. In CPSS networks, each node produces information by sensing and processing. Information is exchanged between nodes. When a node receives some information from others, the received information is combined and digested, which is then used to update the prediction of the node. Thus the prediction probabilities of CPSS nodes are dynamically updated with the mutual influence from each other. As a result, strong dependencies exist among the prediction probabilities from different nodes. 
	As an extension of previous work [2][3], the dynamic changes of network topology are considered in the proposed VAR models, where the connections between nodes can vary instead of being static. The proposed data-driven models can be updated periodically. When the network topology is changed, the VAR models can be re-parameterized with the new training dataset. Furthermore, a new latent variable VAR model is proposed so that the hidden correlations can be parameterized with latent variables. This enables the linear VAR models to capture more complex dependency relations. 
	In our information dynamics models, the effects of information diffusion are quantified by the prediction probabilities associated with nodes. The influences and interdependency among information producers and consumers are captured as functions of these probabilities. Generally speaking, the dynamics of prediction probabilities can be modelled by 
	 𝑑𝑃𝑥1,𝑡𝑑𝑡=𝑔1𝑃𝑥1,𝑡,…,𝑃𝑥𝑛,𝑡+𝜖1⋮𝑑𝑃𝑥𝑛,𝑡𝑑𝑡=𝑔𝑛𝑃𝑥1,𝑡,…,𝑃𝑥𝑛,𝑡+𝜖𝑛  (7)
	where 𝑔1, …, 𝑔𝑛 can be linear or nonlinear functions to capture the interdependency between prediction probabilities 𝑃𝑥𝑘’s in the probabilistic graph model as introduced in Section 2.3. The high correlation between nodes is incorporated in modeling the dynamics, where the evolution of the prediction probability for each node is characterized. With the data-driven approach, the dynamics model can be simplified as time series in
	 𝒑𝒙,𝑡=𝒇(𝒙,𝑡)+𝝐(𝒙)  (8)
	where 𝒙=(𝑥1,…,𝑥𝑛) denotes the vector of state variables for all nodes, 𝒑(𝒙,𝑡)=(𝑃(𝑥1,𝑡),…,𝑃(𝑥𝑛,𝑡)) is the vector of all prediction probabilities, and 𝝐=(𝜖1,…,𝜖𝑛) characterizes the uncertainty.
	Three information dynamics models are introduced here to capture the information diffusion in CPSS networks based on the prediction probabilities that the nodes produce meaningful information. The first model is the latent variable VAR where hidden state variables are introduced. The second one is the topology-informed VAR model where the dynamic network topology is applied for more flexible and efficient model training. The third one is the topology-informed GPR model where the connectivity provides additional information about the similarity between nodes. In the VAR modeling approach, the interactions of the individual prediction probabilities are directly modeled with the parameters in VAR models. The parameters or coefficients of the linear models capture the coupling explicitly as functional relationships. That is, the prediction probability of one node is a function of the probabilities from its neighbors. The prior knowledge of network topology provides us a more compact VAR model. In the GPR modeling approach, the time series with inputs of time and node labels is developed based on both spatial and temporal correlations. The correlations are captured implicitly with the covariance or kernel functions in the model.
	The effects of information accumulation are manifested by how well CPSS nodes make sound decisions. The accuracy and effectiveness of decisions are quantified by the probabilistic measures of their prediction capabilities, i.e. prediction probabilities. Based on new information, the CPSS nodes update their prediction probabilities as their perceptions of the world based on certain information fusion rules. The information dynamics models, discretized as time series models, elucidate how the prediction probabilities of nodes in the network are correlated. The understanding of correlation helps us to answer design questions, such as how to design network topology to control variability or fluctuation of prediction capabilities, how to assign key influencers in the network to improve the effectiveness of information propagation, and others. 
	To train the proposed data-driven models, training data are generated from simulations of information propagation in the probabilistic graph model. The coefficients in the VAR models and hyperparameters in the GPR models are first trained based on the simulation data before they can be applied for future prediction. During simulations, predictions about the state of the world are randomly generated based on the prediction probability for each node. The information exchanged between nodes is also generated based on the reliance probabilities. Based on information fusion rules introduced in Section 2.3, the prediction of each node is then updated. The new predictions are recorded and the statistics are used to update the prediction probability. The above simulation procedures are repeated iteratively for each time epoch, and the evolutions of the prediction probabilities are simulated. 
	In the remainder of this section, the VAR modeling approach is introduced in Section 3.1, where the latent variable VAR model and the topology-informed VAR model are introduced.  In Section 3.2, the new spatial-temporal GPR model is described, where the correlation along time for each node and correlation between nodes are captured based on a new kernel function. 
	VAR models provide a direct approach to represent time-dependency and mutual influences between variables in time series problems. In traditional VAR models, it is assumed that all variables are linearly dependent on each other for each intermediate step. Here, a latent variable VAR and a topology-informed VAR model are proposed. The prior knowledge of network topology is incorporated in model training, and functional dependency between nodes is directly modeled with the adjacency information. That is, two prediction probabilities are functionally related to each other at two immediate time steps only if there is a direct connection between the two nodes. This approach can reduce the number of parameters to be trained and improve the training efficiency.
	The traditional VAR time series model is 
	 𝑷𝑠=𝑨0+𝑙=1𝐿𝐀𝑙𝑷𝑠−𝑙+𝝐  (9)
	where the values of prediction probabilities for all 𝑛 nodes at the s-th time step form the column vector 𝑷𝑠=(𝑃1𝑠,…,𝑃𝑛(𝑠)). The prediction probabilities at the s-th time step are dependent on the values of 𝑷𝑠−1, …𝑷𝑠−𝐿 at all the previous L steps. 𝑨0∈ℝ𝑛 is the column vector of intercepts that indicate the bias. The noise 𝝐~𝒩(𝟎,𝚺𝜖) is modeled as the multi-variant normal random variable, and the 𝑛×𝑛 coefficient matrices 𝐀𝑙’s capture the interdependency between prediction probabilities. The VAR model in Eq. (9) captures the time and location dependencies of nodes simultaneously as the linear relationships. The time series model captures the memory effect where the data sharing history in the previous L steps affects the current values. It also implicitly captures the potential effect of possible delays in communication, where data arriving at a node could be sent by other nodes several time steps before. The positive or negative signs of the elements in 𝐀𝑙’s indicate the positive or negative correlations of the pairs. The correlations will cause fluctuations of the 𝑷 values between 0 and 1. 
	One issue of VAR for network modeling is that the number of parameters increases quadratically as the number of nodes increases. In the topology-informed VAR model, not all parameters in Eq. (9) are equally important. If one node is connected with and shares information directly to another node, the information dependency is more evident than those that are not directly connected. Therefore, the topology of the network provides indications of dependency. This prior knowledge can be applied to the VAR model as the constraints to reduce the effective coefficients and simplify the model training process.  In a sparsely connected network, dependency between nodes is loose, and the number of effective coefficients becomes small. This will improve the efficiency of the training process where the required training data size can be reduced accordingly. 
	The topology-informed VAR model is defined as
	 𝑷𝑠=𝑨0+𝑙=1𝐿(𝐃𝑇∘𝐀𝑙)𝑷𝑠−𝑙+𝝐  (10)
	where 𝐃=𝑑𝑖𝑗𝑛×𝑛 is the adjacency matrix of the network with n nodes. Its elements are 𝑑𝑖𝑗=1 if a directed edge exists from node i to node j, and 𝑑𝑖𝑗=0 otherwise. The diagonal elements 𝑑𝑖𝑖=1 for all i’s. In addition, 𝑇 is the matrix transpose operator, and ∘ is the element-wise product or Hadamard product between two matrices. 
	In the original VAR model in Eq. (9), the number of parameters or coefficients that need to be calibrated through training is 𝑛+𝑛2𝐿. When the topology is considered as the constraint, the number of parameters is reduced to 𝑛+𝑒𝐿 where 𝑒 is the number of directed edges in the graph. The reduction is significant if the nodes are sparsely connected. With a smaller number of parameters, the training or data fitting process can be more efficient where the required number of training data points for good fitting is also reduced. Note that the topology-informed VAR is reduced to the original VAR when the network is fully connected.  
	The training of topology-informed VAR model in Eq. (10) can be implemented as a constrained optimization problem, where the loss or error of model prediction is minimized subject to constraint
	 𝑙=1𝐿(𝚷−𝐃𝑇)∘𝐀𝑙=𝟎  (11)
	where 𝚷 is a matrix with the same size of 𝐃 and all elements are 1’s. ⋅ is the matrix norm which quantifies the distance to the origin and can be calculated with L2 norm. Constrained nonlinear optimization algorithms can be applied to solve this training problem. Because the elements in coefficient matrices 𝐀𝑙’s contain the physical meanings of adjacency between nodes, they are also related to the reliance probabilities as described in Section  2.3. Therefore, the coefficients can also be treated as probabilities. The values of the coefficients can be further constrained to between 0 and 1.
	Notice that all coefficients and parameters of the VAR models can be time-dependent. When the network topology dynamically changes, the model parameters need to be re-calibrated to reflect the changes. One advantage of data-driven modeling is that the model parameters can be updated frequently once new datasets are available. The proposed VAR models can be readily applied to the dynamic CPSS networks where the topology is not fixed and evolves along time.
	More complex models can be applied to capture the functional interdependency between prediction probabilities. Here, latent variables or hidden state variables are introduced to capture the inherent correlations between prediction capabilities. The latent variable VAR model is defined as
	 𝑷𝑠=𝐁𝒀𝑠+𝜼  (12)
	 𝒀𝑠=𝑙=1𝐿𝐓𝑙𝒀𝑠−𝑙+𝜺  (13)
	where Eq. (12) captures the relation between observable 𝑷∈ℝ𝑛 and hidden state or latent variables 𝒀∈ℝ𝐾, and the evolution of hidden state variables as state transition is modeled in Eq.(13). Here, 𝐓𝑙∈ℝ𝐾×𝐾 (𝑙=1,…,𝐿) is the coefficient matrix that captures the dependency between the hidden state variables, and 𝐁∈ℝ𝑛×𝐾 is the observation matrix. Notice that the dimension of state vector 𝒀 is not necessarily the same as the dimension of observable vector 𝑷. The number of hidden state variables is typically less than that of the observable in a correlated system, i.e. 𝐾≤𝑛.  𝜼~𝒩(𝟎,𝚺𝜂) and  𝜺~𝒩(𝟎,𝚺𝜀) are associated with the noises of observation and state transition, respectively, and modeled as multi-variate normal variables. In the hidden state model, the interdependency among nodes is captured through the hidden state variables. The direct correlations between state variables cause the inherent correlations between the observables so that more complex dependency relations are captured.  
	In the VAR model in Eq. (9), the parameters to be calibrated are vector 𝑨0, matrices 𝐀𝑙’s, and covariance matrix 𝚺𝜖. For the latent variable VAR model in Eqs. (12) and (13), the parameters to be calibrated or trained include 𝐓𝑙’s, 𝐁, as well as 𝚺𝜂 and 𝚺𝜀. The  Expectation-Maximization (EM) algorithm [38] can be applied to train the model with a large number of parameters. The EM algorithm consists iterations of two alternating steps. In the E-step, the expectation of the log-likelihood for hidden state variables and the available training dataset conditional on the parameters 𝛬={𝐓𝑙,𝐁,𝚺𝜂,𝚺𝜀} is calculated. The available training dataset 𝒫 is the time series of prediction probabilities 𝑷’s. The hidden state variables 𝒱 include all 𝒀’s. The expectation of the log-likelihood at the 𝑘-th iteration is calculated as 𝔼log𝑓𝒫,𝒱𝛬′|𝛬𝑘−1. In the M-step, the parameters are updated by solving the maximization problem 𝛬𝑘=argmax𝛬′𝔼log𝑓𝒫,𝒱𝛬′|𝛬𝑘−1. The E-step and M-step are applied iteratively until the parameters converge. 
	When the number of latent variables 𝐾 is the same as the number of the observable 𝑛, the latent variables can be interpreted as the state variables associated with the individual nodes. The coefficients 𝐓𝑙’s then can be regarded as the associations between nodes in information exchange, similar to the topology-informed VAR model in Section 3.1.1. Similarly, the network topology can be applied as constraints to simplify the model training process. In the topology-informed latent variable VAR model, the state transition in Eq.(13) is replaced by 
	 𝒀𝑠=𝑙=1𝐿(𝐃𝑇∘𝐓𝑙)𝒀𝑠−𝑙+𝜺  (14)
	where 𝐃 is similarly the adjacency matrix of the network. The training of the constrained latent variable VAR model can be done with constrained nonlinear optimization methods. 
	Different from the VAR models where the linear response relationships between variables are assumed, GPR is a more generic regression method that can capture the nonlinearity. GPR also provides uncertainty predictions of responses in addition to the mean values locally at different locations in the input space. In the information dynamics model, the function in Eq.(8) is now a Gaussian process, with the noise level 𝜖~𝒩(0,𝜎02). 
	In the GPR model 𝑦𝑥~𝒢𝒫(𝜇(𝑥),𝑘(𝑥,𝑥′)) with mean function 𝜇(𝑥) and covariance or kernel function 𝑘(𝑥,𝑥′), given 𝑀 samples 𝒙=(𝑥1,…,𝑥𝑀) and the functional values 𝒚(𝒙)=(𝑦(𝑥1),…,𝑦(𝑥𝑀)) as the training dataset, the joint distribution between the training data set and test data set 𝒚(𝒙∗) follows Gaussian distribution 
	 𝒚(𝒙)𝒚(𝒙∗)~𝒩𝟎,𝐊(𝒙,𝒙)𝐊(𝒙,𝒙∗)𝐊𝑇(𝒙,𝒙∗)𝐊(𝒙∗,𝒙∗)  (15)
	where 𝐊(𝒙,𝒙) is the covariance matrix of training data points, 𝐊(𝒙,𝒙∗) is the covariance matrix between the training data and test data. The posterior predictions for new samples 𝒙∗ given the existing ones from 𝒙 is 𝑝(𝒚∗|𝒚)~𝒩(𝝁∗,𝚺∗), where
	 𝝁∗=𝐊𝑇𝒙,𝒙∗(𝐊𝒙,𝒙+𝜎0𝟐𝐈)−1𝒚  (16)
	 𝚺∗=𝐊𝒙∗,𝒙∗−𝐊𝑇𝒙,𝒙∗𝐊𝒙,𝒙+𝜎0𝟐𝐈−1𝐊𝒙,𝒙∗+𝜎0𝟐𝐈  (17)
	with identity matrix 𝐈. GPR models predict not only mean values but also uncertainty associated with the predictions locally. This provides more flexibility than traditional regression models.
	 Here a new GPR model is proposed to explicitly capture the information correlation between nodes as a nonlinear time series model. If the time series of prediction probability for each node is modeled by the traditional GPR model with time as the input, the correlations between different time series cannot be explicitly captured. The proposed GPR model uses two dimensions of inputs, which are time and node label. The node label indicates which time series or which node the output is associated with. With discretized time index 𝑠 and node label 𝑚, the GPR model is
	  𝒚(𝑠,𝑚)𝑦(𝑠∗,𝑚∗)~𝒩𝟎,𝐊𝑠,𝑚,(𝑠′,𝑚′)𝑲𝑠,𝑚,(𝑠∗,𝑚∗)𝑲𝑇𝑠,𝑚,(𝑠∗,𝑚∗)𝑘𝑠∗,𝑚∗,(𝑠∗,𝑚∗)  (18)
	where 𝐊𝑠,𝑚,(𝑠′,𝑚′) is the covariance matrix of existing observations, 𝑲𝑠,𝑚,(𝑠∗,𝑚∗) is the column vector of covariance between existing observations and the new prediction (𝑠∗,𝑚∗). The core idea of this GPR model is the new kernel function with hybrid inputs of continuous time and discrete node label, defined as 
	  𝑘𝑠,𝑚,(𝑠′,𝑚′)=𝑘1𝑠,𝑠′𝑘2(𝑚,𝑚′)  (19)
	which is composed with kernel functions 𝑘1𝑠,𝑠′ for the time dimension and 𝑘2(𝑚,𝑚′) for the spatial dimension indicated by node labels. Kernel function  𝑘1𝑠,𝑠′ needs to capture the temporal correlation which causes fluctuations of prediction probabilities. That is, one node’s prediction probability is not static and it fluctuates between 0 and 1. The fluctuation is a result of positive or negative influence from other nodes as well as the potential time delay factor. In GPR modeling, the fluctuation pattern is usually quantified with a periodic kernel function. Therefore, the periodic kernel here is defined as
	   𝑘1𝑠,𝑠′=exp−2sin2(𝜋𝑑𝐸(𝑠,𝑠′)/𝑝)/𝑙2  (20)
	with hyperparameters of period 𝑝 and length scale 𝑙, and Euclidean distance function 𝑑𝐸(⋅,⋅). 
	Kernel function 𝑘2(𝑚,𝑚′) needs to be designed properly to capture the spatial correlation between nodes. The kernel needs to incorporate the similarity or difference between input variable values, which is quantified as the distance between them. A properly defined distance function allows the kernel to distinguish different input values, which in turn helps build an accurate surrogate. In this work, the input variables for 𝑘2(𝑚,𝑚′) are node labels. Node labels need to include enough information so that the distance or difference between two nodes can be intuitively calculated.  We propose to use 
	   𝑘2𝑚,𝑚′=exp−0.5𝑑𝐻(𝑚,𝑚′)/𝑧2  (21)
	with the hyperparameter of length scale 𝑧, and Hamming distance 𝑑𝐻(⋅,⋅) between node labels. The node labels are based on the adjacency information of the nodes, because two directly connected nodes have stronger interdependency or correlation with information sharing. If two nodes have similar connectivity in the neighbourhood, i.e. they have similar information sources, then the values of their prediction probabilities should be similar. Thus the labels of the nodes need to reflect the topology of the network. In combination with the Hamming distance, the node labels are encoded as binary strings.  For a network with n nodes, the node label is an n-bit binary number, where each bit corresponds to a node. In the label of node i, if node j is directly connected to node i, the bit corresponding to node j is “1” in the label of node i. Otherwise, it is “0”. For example, the labels for a four-node network are four-bit strings as “𝑏3𝑏2𝑏1𝑏0”, where 𝑏3, 𝑏2, 𝑏1, 𝑏0 correspond to nodes 3, 2, 1, and 0, respectively. If node 0 is connected to nodes 1 and 3, and node 1 is also connected to node 2, the labels for nodes 3, 2, 1, and 0 will be “1001”, “0110”, “0111”, and “1011”, respectively. The bit for the node itself is always set to be “1”.  The difference between two node labels measured by the Hamming distance indicates to some extent how strong the correlation is between the two nodes. A small difference indicates that the two nodes are connected to similar neighbours and have similar information sources. For instance, in the above four-node example, the distance between node 3 and node 2 is 𝑑𝐻𝑚3,𝑚2=4. Similarly, 𝑑𝐻𝑚3,𝑚1=3, 𝑑𝐻𝑚3,𝑚0=1. The prediction of node 3 is more similar to the one of node 0 than the other two nodes, given that node 3 is directly connected to node 0. The Hamming distance based on the labels can provide some estimations of differences that are meaningful for the GPR surrogate model. Therefore, correlations of information between nodes can be quantified based on the labels. 
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	In this section, several examples are used to demonstrate the proposed information dynamics models. Some simple networks are constructed with the associated prediction and reliance probabilities randomly generated. A CPSS network simulator ProbNet is developed to simulate the information update based on Monte Carlo sampling. The proposed information dynamics models were developed and compared with the Monte Carlo simulation results. Both the simulator and the information dynamics models were implemented in python programming language.  
	Monte Carlo sampling is applied to simulate the process of prediction probability updates. In each time step, random samples of observations are generated for each node based on its current prediction probability. Then the observations are shared with the neighboring nodes, and the shared information is sampled based on the reliance probabilities. When a node receives the information from its source nodes, a fusion rule (e.g. worst-case, best-case, Bayesian) is applied to update its prediction. The predictions are compared with the randomly generated ground truth state value and the correct instances are recorded. The above sampling procedure repeats many times, and the probability of correct prediction for each node is obtained and updated for this time step. The simulation clock advances, and the next iteration of update is done in the same way.
	The VAR models are first demonstrated with a four-node-four-edge example in Figure 3 (a). The simulation data are collected to train the VAR model in Eq. (9) with lag order L=2. The training is done with the simulation data from the first 50 time steps. The forecast in the next 30 time steps is generated from the VAR model. The same data are used to train the constrained VAR model in Eq. (10). The results are shown in Figure 3 (b) and (c) respectively, where the solid lines are the simulated probabilities and the dash lines indicate the predictions or forecasts from the models. The shaded regions indicate the predicted error bounds with one standard deviation (±𝜎). Here the worst-case fusion rule is applied in the simulation. It is seen that the models predict the general trend well. The predictions from the two models are similar. Similar to any other time series models, VAR models focus more on the near-term forecasts. The forecasts of the distant future are more of the average trend.  The calibrated coefficients of the two VAR models after training are compared in Table 1.  If there is no directed edge connection between nodes, the corresponding coefficients in the constrained VAR model are zeros. Notice that some fitted coefficients in the traditional VAR model have negative values, whereas the ones in the constrained VAR model are all positive with values between zero and one. Since the values of both independent and dependent variables here are probabilities, it is difficult to interpret the negative coefficients. In contrast, the fitted coefficients in the constrained VAR model are associated with the reliance probabilities. They can be interpreted as the conditional probability of positive prediction for a node given its information source. Therefore, the sparser set of parameters in the constrained VAR model provides both efficient and physically meaningful representations. To quantitatively compare the forecast accuracy, mean squared error (MSE), which is the average squared difference between the forecasts and the original data during the forecast period, is calculated. The MSE for the VAR model is 0.02083, whereas the one for the constrained VAR model is 0.02116. Although the coefficients in the constrained VAR model are much sparser and there are only 13 out of 36 coefficients are non-zero, the model still can have the similar performance as in the traditional VAR model.
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	Figure 3. The simulated prediction probabilities and forecast with 50 time steps of training. (a) the four-node-four-edge example; (b) result of the VAR model (MSE=0.02083); and (c) result of the constrained VAR model (MSE=0.02116). 
	Table 1. Comparison of the calibrated parameters between the VAR model and constrained VAR model in Figure 3 for the four-node-four-edge network.
	Constrained VAR
	VAR
	00.3479300.46340T
	−0.699570.86059−0.14549−0.13852T
	𝑨0
	000.344520000.500530 00.32673 000.0733500.148870.00713
	−0.309890.374121.13367−0.35650−0.18996−0.040540.672260.241230.80635−0.292931.96312−1.301830.332541.073811.376250.26925
	𝐀1
	0.1867800.422750000.2511900000000.005820.03474
	1.32495−0.519060.84116−0.311870.854810.292810.534600.09564−3.139191.63936−0.251010.05738−2.11252−0.60259−0.18614−0.05667
	𝐀2
	To further demonstrate the training efficiency, fewer training data are applied to the four-node-four-edge example. Only the first 10 steps of simulation data are used to train the VAR models. The results are shown in Figure 4. The traditional VAR model is not fully trained and the predictions become very unstable with the limited training data, whereas the constrained VAR model still predicts reasonably well. The MSEs for the VAR model and constrained VAR model are 0.16667 and 0.03118, respectively.
	/
	Figure 4. The simulated prediction probabilities and forecast with only 10 time steps of training from (a) the VAR model (MSE=0.16667) and (b) the constrained VAR model (MSE=0.03118). 
	The sensitivity of the model performance with respect to the lag order is tested. The traditional and constrained VAR models with lag orders of L = 6 and L = 12 are constructed. The results are compared in Figure 5. It is seen that higher-order models can provide more details of longer-term predictions instead of average values only. However, the number of model parameters to be fitted also increases. As seen in Figure 5 (b), the number of coefficients in the traditional VAR model with lag order L =12 has increased so much that 50 time steps of training data become not enough for model training. In contrast, the constrained VAR model has the reduced number of effective coefficients. As seen in Figure 5 (d), the model with L = 12 shows good prediction performance. 
	/
	Figure 5. The sensitivity studies of different lag orders. (a) VAR model with L = 6 (MSE=0.03522); (b) VAR model with L = 12 (MSE=0.15196); (c) constrained VAR model with L = 6 (MSE=0.02697); (d) constrained VAR model with L = 12 (MSE=0.04394). 
	A second example is to demonstrate how data-driven modeling can be applied to dynamic networks where topology changes along time. As shown in Figure 6 (a), an 8-node network with 10 edges is initially constructed. After 30 time steps, the network topology is changed to 18 edges at the second epoch. The network is further changed to 54 edges during the third epoch. The simulated and forecasted prediction probabilities with the constrained VAR model are shown in Figure 6 (b), whereas the forecasts by the traditional VAR model are shown in Figure 6 (c). For each epoch of 30 time steps, the data of the first 20 time steps are used to train the VAR models. The forecasts of the next 10 steps are compared with the simulation data. A different case is shown in Figure 6 (d), where the numbers of edges change to 43 and 10 during the next two epochs from the same initial 8-node-10-edge network as in Figure 6 (a).  The simulation and forecast results are shown in Figure 6 (e) and (f). It is seen that the constrained VAR model predicts the trends reasonably well even with the dynamic topological changes and small training datasets. Dynamically evolving networks may not allow us to collect a large amount of data for training. 
	As also seen in Figure 6, the fluctuation patterns of prediction probabilities vary when the network topology changes, because information sharing patterns are different. When there are more connections, the coupling between nodes becomes stronger. The prediction probabilities tend to fluctuate more and be more synchronized. When a node does not receive information from others, such as nodes 0, 6, and 7 during the first epoch and nodes 1 and 4 during the third epoch in Figure 6 (d), the prediction can still fluctuate as a result of pure random effects. Some levels of information sharing suppress the fluctuations. Yet fully connected network can amplify the fluctuation with synchronization. 
	/
	 Figure 6. The dynamic 8-node network with topology changes: (a) 8-node-10-edge network changes to 18 and 54 edges along time; (b) the constrained VAR model (MSE=0.05563); (c) the VAR model (MSE=0.20507); (d) 8-node-10-edge network changes to 43 and 10 edges along time; (e) the constrained VAR model (MSE=0.05997); and (f) the VAR model (MSE=0.24637).
	Here the latent variable VAR model is demonstrated. The model is constructed to predict the previous 4-node-4-edge network example in Figure 3 (a). Different values of factor number 𝐾 and lag order 𝐿 in Eqs. (12) and (13) are tested. The results are shown in Figure 7. The MSEs of forecasts from the latent variable VAR, topology constrained VAR, and traditional VAR are compared in Table 2. The forecasts by latent variable VAR and constrained VAR are more accurate than those by traditional VAR. Similar to other VAR models, when the lag order increases, the longer-term fluctuation can be predicted. In comparison with  Figure 5 (a) for traditional VAR model of lag order 𝐿=6, the results in Figure 7 (b), (d), and (f) with the same lag order are more stable and accurate. Therefore, introducing latent variables helps identify the intrinsic interdependency between observable variables.  
	Table 2. Comparison of forecast MSEs by the latent variable VAR, constrained VAR, and traditional VAR models
	Traditional VAR
	Constrained VAR
	Latent variable VAR
	0.04401
	0.04117
	0.04138
	𝐿 = 2
	𝐾=1
	0.05372
	0.03486
	0.04187
	𝐿 = 6
	0.02223
	0.01844
	0.01790
	𝐿 = 2
	𝐾=3
	0.05726
	0.02696
	0.02634
	𝐿 = 6
	0.03481
	0.03108
	0.03167
	𝐿 = 2
	𝐾=4
	0.03994
	0.02238
	0.02573
	𝐿 = 6
	/
	 Figure 7. The latent variable VAR model forecasts for 4-node-4-edge network with different latent variable number K and lag order L. (a) K=1, L=2; (b) K=1, L=6; (c) K=3, L=2; (d) K=3, L=6; (e) K=4, L=2; (f) K=4, L=6.
	The topology constrained latent variable VAR is further demonstrated with the 4-node-4-edge network example. With the factor number fixed as 𝐾=4, three cases with different lag orders are compared. The results of MSEs from the constrained latent variable VAR model, in comparison with the latent variable VAR, constrained VAR, and traditional VAR, are shown in Table 3. It is seen that the topology constraints can help improve the forecast accuracy for both VAR and latent variable VAR models. The accuracy levels are similar for these two constrained models. The forecasts of the latent variable VAR models with and without topology constraints are also shown in Figure 8. As the lag order increases, the number of coefficients to be trained also increases, which requires more training data. The topology constraints can effectively reduce the number of coefficients and improve the training efficiency with less training data, such as the case when 𝐿=8.
	Table 3. Comparison of forecast MSEs by constrained latent variable VAR, latent variable VAR, constrained VAR, and traditional VAR with 𝐾=4
	Traditional VAR
	Constrained VAR
	Latent variable VAR
	Constrained latent variable VAR
	0.08594
	0.07330
	0.08165
	0.06912
	𝐿 = 3
	0.06606
	0.04918
	0.07160
	0.05405
	𝐿 = 4
	0.28155
	0.04116
	0.26609
	0.04178
	𝐿 = 8
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	 Figure 8. The latent variable VAR model forecasts for the 4-node-4-edge network with different lag orders where K=4. (a) L=3 with constraints; (b) L=4 with constraints; (c) L=8 with constraints; (d) L=3 without constraints; (e) L=4 without constraints; (f) L=8 without constraints.
	We also implemented and tested the proposed spatial-temporal hybrid GPR time series model to predict the dynamics of prediction probabilities. The results for the 3-node-3-edge example are shown in Figure 9. Two different data fusion rules, worst-case and best-case scenarios, are applied here. The results for the 8-node-10-edge example are shown in Figure 10. Compared to the previous linear VAR models which only predict the general trend in long term, the GPR model predicts the nonlinear dynamics of probabilities better. More fluctuations for both means and variances are observed in the forecasts. This is because of the kernel functions in GPR models which are able to capture differences locally based on the distance metrics. Thus the GPR model provides more details about the long-term dynamics in the networks. The proposed GPR model with the considerations of both spatial and temporal correlations between nodes captures the information dependency between nodes. 
	When all 8 nodes in the network are fully connected, the simulation and forecast results of the 8-node-56-edge example are shown in Figure 11. Because each node is connected with all other nodes, very strong correlations exist in the fully connected network. It is seen that the prediction probabilities of all nodes are synchronously fluctuating with the same values after a short period. The GPR model also predicts the synchronized fluctuations with error bounds. 
	/
	 Figure 9. The simulated prediction probabilities and forecast by the GPR model in the 3-node-3-edge example, with (a) the worst-case fusion rule (MSE=0.03203), and (b) the best-case fusion rule (MSE=0.03795).
	/
	 Figure 10. The simulated prediction probabilities and forecast by the GPR model in the 8-node-10-edge example, with (a) the worst-case fusion rule (MSE=0.03924), and (b) the best-case fusion rule (MSE=0.05461).
	/
	 Figure 11. The simulated prediction probabilities and forecasts by the GPR model in the 8-node-56-edge example, with (a) the worst-case fusion rule (MSE=0.06174), and (b) the best-case fusion rule (MSE=0.08055).
	5 Concluding Remarks
	The analyses of the systems level behavior of CPSS networks enable us to design better systems. How to design a system of CPSS which promotes effective information sharing or prevents misinformation propagation is one of the major aspects of design. Therefore, we need models that can characterize and predict the effects of information sharing and system behaviors.  
	In this paper, three information dynamics models are proposed to predict the information propagation within a CPSS network. Based on a recently developed mesoscale probabilistic graph model, the dynamics models are introduced to capture the mutual influences between nodes during their reasoning processes. The representation of prediction correlations between nodes is the central theme in both types of models. The results show that the topological information of networks can improve the efficiency in constructing the time series models. The network topology also has influences on the prediction capabilities of CPSS. Compared to other information diffusion models for CPSS, the proposed two types of models focus on the effects of information propagation on reasoning and prediction, instead of only on the diffusion speed and patterns in the network as in other models such as the epidemic model. 
	The first type of models represent the interdependency between nodes for their prediction capabilities explicitly as linear functions. It is demonstrated that the VAR linear model and latent variable VAR model can predict the general trend and the error bounds well. By introducing prior knowledge of network topology, the proposed topology-informed VAR models can significantly improve the training efficiency by reducing the number of effective coefficients or model parameters. The results show that the information correlations between nodes can be reasonably assumed to be directly related to the network connectivity. The adjacency information is useful to make the VAR models more compact and efficient. This is particularly important for large-scale networks where the number of nodes increases. If the connections remain sparse, the constrained VAR models are scalable. Training efficiency with reduced amount of training data is also important for dynamically evolving networks.
	The proposed two-dimensional GPR model captures the correlated time series patterns, where a new kernel function is developed to consider both the temporal and spatial correlations of the data collected by CPSS nodes. The composite kernel function models the discrete spatial correlation with the topological adjacency relationship between nodes, in addition to temporal correlation. The GPR model has shown the advantage of revealing longer-term nonlinear dynamics in comparison with the linear models. The extent of local fluctuations can be predicted by the GPR model. This is because GPR models predict based on the similarity between inputs which is quantified with the kernel functions. 
	The prediction accuracy from the data-driven models sensitively relies on the training datasets. In general, larger datasets are always better for model training and calibration. The training effectiveness of parameters or hyperparameters also depends on the optimization algorithms applied in the training. For GPR models, the optimization of hyperparameters can affect the accuracy of model predictions. For situations where there is a lack of training data, the proposed modeling approach will not be feasible. Alternative modeling approaches that are based more on the detailed knowledge about the systems will be needed. Another limitation of the data-driven models is that the determination of model-form parameters such as lag orders and number of laten variables relies on empirical sensitivity studies. The choice of the best model form remains problem-specific and requires additional efforts. Nevertheless, it is seen that the physical knowledge of interdependency between nodes can enhance the data-driven approaches in modeling correlations, as demonstrated with the topology-informed VAR models and GPR model. The spatial correlation captured by the adjacency relationships between nodes deserve further studies. 
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