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Abstract 

Cyber-physical-social systems (CPSS) are physical devices that are embedded in human 

society and possess highly integrated functionalities of sensing, computing, communication, and 

control. CPSS rely on their intense collaboration and information sharing through networks to be 

functioning. In this paper, topology-informed network information dynamics models are proposed 

to characterize the evolution of information processing capabilities of CPSS nodes in networks. 

The models are based on a mesoscale probabilistic graph model, where the sensing and computing 

capabilities of the nodes are captured as the probabilities of correct predictions. A topology-

informed vector autoregression model and a latent variable vector autoregression model are 

proposed to model the correlations between prediction capabilities of nodes as linear functional 

relationships. A hybrid Gaussian process regression model is also developed to capture both the 

nonlinear spatial and temporal correlations between nodes. The new information dynamics models 

are demonstrated and tested with a simulator of CPSS networks. The results show that the 

topological information of networks can improve the efficiency in constructing the time series 

models. The network topology also has influences on the prediction capabilities of CPSS.  

Keywords: 
Complex systems, Gaussian process regression, Information diffusion, Probabilistic graph model, 
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1 Introduction 

Cyber-physical-social systems (CPSS) are physical devices that are embedded in the human 

society and possess highly integrated functionalities of sensing, computing, communication, and 

actuation. They are the essential elements for smart home, smart office, smart manufacturing, 

personalized medicine, autonomous transportation, and many other applications. Although human 

is regarded as a component of the complex sociotechnical systems at large, our focus of discourse 

is engineering design of physical systems that interface with human beings.   

In CPSS networks, decision makings are done at the individual node level and enhanced by 

intensive information sharing, as more high-quality information leads to better decisions. The 

quality of information can be measured by accuracy, consistency, completeness, timeliness, 

precision, and interpretability [1]. CPSS nodes also interact with and change the surrounding 

environment via their control function, which in turn affects their neighboring nodes. As a result, 

the level of interdependencies among CPSS nodes for their collected information is very high.  

There is a strong need to understand the deep information dependency between CPSS devices in a 

network. The knowledge about the behaviors of CPSS networks can help us to design more reliable 

and dependable systems. 

Existing research on information diffusion focused on traditional computer networks and 

social networks. There is a lack of studies of information dynamics in CPSS networks which have 

unique characteristics. First, the topology of a CPSS network is complex with numerous weak and 

dynamically changing connections due to its ad hoc nature, e.g., in vehicle networks and 

manufacturing plants. Second, the nodes are heterogeneous CPSS devices with various functions. 

In particular, they have the sensing and control capabilities which do not exist in traditional 

computer networks. Information sharing is intensive and decisions of what and when to share are 

made locally by individual nodes. Thus strong correlations can exist in the shared information. 

Third, the types of information generated and shared among CPSS nodes can vary greatly. In 

contrast, existing studies of information diffusion in traditional computer networks and social 

networks focus on the passive propagation or simple forwarding of specific information, such as 

virus, keywords, and new concepts. To properly design the architecture of CPSS networks with 

good adaptability and scalability, it is important to understand the evolution of information in 
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CPSS networks as a system of systems, as well as the sensitivity of the system and device behaviors 

with respect to the information propagation.  

In a dynamically evolving CPSS network, the effects of information generation and sharing 

need to be quantified and analyzed so that the long-term behaviors of the network can be predicted, 

which is useful in systems design. To model the effects of information exchange, recently a data-

driven information dynamics modeling approach [2] was proposed to analyze the information 

interdependency among CPSS nodes and subnetworks. The model keeps track of the probability 

that each node detects and predicts the true state of its environment along time with its sensing, 

computing, and communication functions. The interdependency between the probabilities of 

different nodes was explicitly modeled with copulas and vector autoregression (VAR) models. The 

proposed linear models provide the insight of how nodes have an influence on each other on the 

prediction capabilities when information is exchanged and how the behavior of networks evolves 

dynamically. This dynamics analysis is useful for the design of an open system with good 

adaptability, where the topology of ad hoc networks changes with nodes continuously added or 

removed. These models predict the global trend of information dynamics well. Nevertheless, the 

black-box approaches for model fitting require a large amount of training data as the number of 

nodes and thus the number of model parameters increase. Furthermore, nonlinear relationships 

between state variables associated with the nodes need to be captured with more complex models. 

In this paper, a gray-box modeling approach is taken. A topology-informed VAR model is 

proposed so that the prior knowledge of correlation between the predictions as a result of direct 

connections between nodes can be applied. This simplifies the modeling process such that the 

number of coefficients or model parameters to be fitted is reduced. The amount of training data 

can be reduced. The reduction is significant when the network connection is sparse. To further 

capture the correlation among the nodes’ prediction capabilities, a latent variable VAR model is 

proposed where hidden state variables are introduced. The observed changes in prediction 

capabilities are caused by the interactions among hidden state variables. In addition, a topology-

informed Gaussian process regression (GPR) modeling approach is developed to predict the time 

series of information dynamics, where nonlinear temporal and spatial correlations are captured. A 

hybrid kernel function is developed with continuous time and discrete node labels as the inputs. 

The node labels are specifically designed based on network topology such that the adjacency 
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information is applied to infer the similarity of information sources between nodes to improve the 

accuracy of the kernel function. 

The proposed information dynamics modeling approaches are based on a generic 

probabilistic graph model of networks ([4], [5]), where information exchange and processing at 

nodes are modeled at the mesoscale. In the probabilistic graph model, the sensing and computing 

capabilities of each node are characterized by a prediction probability, whereas the communication 

capabilities between nodes are characterized by pairwise reliance probabilities. The prediction 

probability measures how well a node can gather information and make sound judgment. The 

reliance probabilities capture the extent of influences for one node to another via information 

exchange. In the proposed information dynamics models, the dynamics is modeled based on the 

evolution of prediction probabilities as a result of information exchange, instead of explicitly 

modeling the information that is being exchanged as in other information diffusion models. The 

evolution of prediction capabilities of nodes is captured in the time series models, where the 

prediction accuracies of nodes are influenced by each other, given that the decision of each node 

is made based on the information gathered from itself as well as its neighboring nodes. To train 

the model parameters, simulations are performed based on the probabilistic graph model for 

demonstration.  

In the remainder of this paper, the background of CPSS design, existing models of 

information diffusion in networks, and the probabilistic graph model are introduced in Section 2. 

The proposed information dynamics models are described in Section 3. The models are 

demonstrated and tested with a CPSS simulator in Section 4. 

2 Background 

In this section, an overview of relevant work on CPSS design at the system-of-systems level 

is given. The models of information diffusion in networks are reviewed. The background of the 

probabilistic graph model which the proposed information dynamics models are based on is also 

provided. 

2.1 CPSS System-of-Systems Level Design 

The design of CPSS architecture at the system-of-systems level needs to incorporate several 

factors. First, given the evolution nature of cyber and physical technologies, adaptability that 
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enables the capabilities of self-learning, self-organization, and context awareness is important to 

design open systems that can evolve along technology advancement [6][7]. Using new 

technologies as the augmentation to existing products can effectively enhance adaptability [8]. 

Second, the complexity of the CPSS has significantly increased from traditional products and 

devices. The CPSS products are connected through Internet of Things and heavily rely on data 

exchange from each other to realize their functions. Communication between devices plays a major 

role. Therefore, how to design systems of CPSS which have dependable communication is 

important. Reliable large-scale networked systems that do not fail are impossible to achieve. 

Resilient systems that can recover automatically from partial failures are more likely to be realized 

[4][5]. Third, the high-dimensional design space of CPSS includes not only the cyber and physical 

subspaces, but also the social subspace. Examples of the emerging research issues are how to 

design the modalities for human-system interaction [9], how to enable context awareness and 

personalized communication between CPSS and humans [10], and how to quantify trustworthy 

strategic relationships for information sharing [11]-[15].  

Network connectivity is essential for CPSS. A standalone CPSS device cannot perform the 

functions which it is designed for. Compared to traditional products, the design of CPSS devices 

requires engineers to have better understanding of the system level behaviors, as well as the new 

methodology for the optimization at the network scale. Systems level modeling methods and tools 

have been developed for CPSS design and analysis, such as hybrid discrete-event and continuous 

simulations [16]-[18], inductive constraint logic programming [19] abductive reasoning [20], 

hybrid timed automaton [21], ontologies [22], information schema [23], UML [24], and SysML 

[25].  

2.2 Information Diffusion in CPSS Networks 

The information flow in computer networks and social networks has been studied by 

researchers. The propagation of information can be modeled in different ways. The most used 

approach is the epidemic model of networks, where transmission probabilities of virus between 

nodes are mainly used to model the speed of infection and the dynamics of outbreak and decay is 

captured with ordinary differential equations [26][27].  The epidemic model has been widely 

applied to study the propagation of keywords or phrases among blogs [28] and within social 

networks [29]. In the linear influence model [30], the propagation of information is modeled and 
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parameterized by the influences of individual nodes in the network. In the event-driven modeling 

approaches, the adoption of new information by nodes is characterized by discrete Poisson 

processes [31][32] or continuous hazard function [33].   

Very limited work has been done in studying information diffusion in CPSS networks. 

Yagan et al. [34] studied the information transmission in the coupled social and physical networks 

according to the epidemic model. Lu et al. [35] investigated how to maximize the information 

diffusion in CPSS networks when nodes are connected probabilistically. Wang et al. [36] used a 

game theoretic approach in combination with the epidemic model at the system level to study the 

effects when nodes make local decisions of forwarding information to others. Yi et al. [37] defined 

the states of each node in both physical and social spaces for the epidemic model so that the mutual 

influence between social behavior spread and multimedia data transmission can be revealed. Wang 

[2][3] developed statistical approaches where copula and VAR models were used to model the 

information correlations among CPSS nodes. 

Given that CPSS nodes possess local functions of sensing, computing, and decision making, 

we need to study not only how information propagates but more importantly how the information 

propagation directly affects these functions. In the proposed models, the propagation of 

information elements is not modeled directly. Rather, the dynamic effect of information diffusion, 

which is the change of the sensing and computing capabilities of CPSS nodes, is used to quantify 

the information dynamics. That is, the dynamic changes of those capabilities along time are 

directly captured in the proposed information dynamics models. The sensing and computing 

capabilities of CPSS are quantified based on a probabilistic graph model, as introduced in the next 

section. 

2.3 Probabilistic graph model 

A recently developed probabilistic graph model [5] for CPSS networks is the foundation of 

the proposed information dynamics models. In the probabilistic graph model, each node has its 

own sensing, reasoning, and communication units. As illustrated in Figure 1, there are probabilities 

associated with information gathering and exchange between nodes. For each node, there is a 

prediction probability indicating the capabilities of information gathering and reasoning. For each 

directed edge indicating information exchange, there are reliance probabilities associated with it. 

The two types of probabilities are defined as follows. 
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Figure 1. Probabilistic graph model of CPSS systems 

 
The prediction probability that the k-th node detects the true state of world 𝜃𝜃 is 

 ℙ(𝑥𝑥𝑘𝑘 = 𝜃𝜃) = 𝑝𝑝𝑘𝑘  (1) 

where 𝑥𝑥𝑘𝑘 is the state variable. For convenience, we denote 𝑞𝑞𝑘𝑘 = 1 − 𝑝𝑝𝑘𝑘. The information 

dependency between nodes i and j is modeled with P-reliance probability 

 ℙ�𝑥𝑥𝑗𝑗 = 𝜃𝜃�𝑥𝑥𝑖𝑖 = 𝜃𝜃� = 𝑝𝑝𝑖𝑖𝑖𝑖  (2) 

which is the probability that the j-th node predicts the true state of world given that the i-th node 

predicts correctly. Similarly, we also have Q-reliance probability 

 ℙ�𝑥𝑥𝑗𝑗 = 𝜃𝜃�𝑥𝑥𝑖𝑖 ≠ 𝜃𝜃� = 𝑞𝑞𝑖𝑖𝑖𝑖  (3) 

because nodes could be negatively correlated, or miscommunication between nodes could exist. 

The reliance probability can be used to model reliability of communication between nodes, e.g. in 

moving vehicles’ ad hoc wireless networks, data packet loss is not uncommon. 

Therefore, different from the adjacency matrix in traditional graph model with binary “yes-

or-no” edge connection topology, there are reliance probabilities associated with each pair of nodes 

in the new probabilistic graph model. If the communication channel from node i and node j is 

disrupted, both 𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖 are zeros.  

The random state variables with binary values ( = 𝜃𝜃 or ≠ 𝜃𝜃) can be extended to multiple 

values or continuous. For instance, one sensor measures a value (e.g. temperature or flow speed) 

which follows some distribution, as in prediction probability.  If there are a finite set of possible 

values {𝜃𝜃1, … ,𝜃𝜃𝑁𝑁} for state variables. The prediction probability ℙ(𝑥𝑥𝑘𝑘 = 𝜃𝜃𝑛𝑛) and reliance 

probability ℙ�𝑥𝑥𝑗𝑗 = 𝜃𝜃𝑛𝑛�𝑥𝑥𝑖𝑖 = 𝜃𝜃𝑚𝑚�, where 1 ≤ 𝑚𝑚,𝑛𝑛 ≤ 𝑁𝑁, can be enumerated similarly. As a 
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simplification without loss of generality, in this paper we assume that the state variables take binary 

values.  

The edges in the probabilistic graph are directional. The neighbors of each node can be 

further differentiated as source nodes or destination nodes, as illustrated in Figure 2. For one node, 

its source nodes are those sending information to this node, whereas the destination nodes are those 

receiving information from it. When receiving different cues from source nodes, a CPSS node can 

update its prediction probability to reflect its perception of the world. The aggregation of prediction 

probabilities sensitively depends on the rules of information fusion during the prediction update.  

 
Figure 2. Source and destination nodes with respect to node j 

 

If 𝑃𝑃(𝑥𝑥𝑘𝑘) and 𝑃𝑃(𝑥𝑥𝑘𝑘𝐶𝐶) denote the probabilities of a positive and a negative prediction from 

node k respectively, we define the best-case fusion rule as 

 𝑃𝑃′(𝑥𝑥𝑘𝑘) = 1 − �1 − 𝑃𝑃(𝑥𝑥𝑘𝑘)�∏ 𝑃𝑃(𝑥𝑥𝑖𝑖)(1 − 𝑃𝑃(𝑥𝑥𝑘𝑘|𝑥𝑥𝑖𝑖))𝑀𝑀𝑃𝑃
𝑖𝑖=1 ∏ 𝑃𝑃(𝑥𝑥𝑗𝑗𝐶𝐶)�1 − 𝑃𝑃(𝑥𝑥𝑘𝑘|𝑥𝑥𝑗𝑗𝐶𝐶)�𝑀𝑀𝑁𝑁

𝑗𝑗=1   (4) 

where node k updates its prediction based on its own current prediction and those cues from its 

𝑀𝑀𝑃𝑃 + 𝑀𝑀𝑁𝑁 source nodes, out of which 𝑀𝑀𝑃𝑃 of the source nodes provide positive predictions whereas 

𝑀𝑀𝑁𝑁 of them provide negative predictions, 𝑃𝑃(𝑥𝑥𝑘𝑘|𝑥𝑥𝑖𝑖) indicates the probability that a positive 

message from node i leads to a positive prediction of node k, and 𝑃𝑃(𝑥𝑥𝑘𝑘|𝑥𝑥𝑗𝑗𝐶𝐶) is the probability that 

a negative message from node j leads to a positive prediction of node k. Therefore, if any of the 

cues from the source nodes is positive, the prediction of the node is positive. Some variations of 

this fusion rules exist. For instance, the previous prediction from itself can be either included or 

excluded during the update.  

Similarly, the worst-case fusion rule can be defined as 

 𝑃𝑃′(𝑥𝑥𝑘𝑘) = 𝑃𝑃(𝑥𝑥𝑘𝑘)∏ 𝑃𝑃(𝑥𝑥𝑖𝑖)𝑃𝑃(𝑥𝑥𝑘𝑘|𝑥𝑥𝑖𝑖)
𝑀𝑀𝑃𝑃
𝑖𝑖=1 ∏ 𝑃𝑃(𝑥𝑥𝑗𝑗𝐶𝐶)𝑃𝑃(𝑥𝑥𝑘𝑘|𝑥𝑥𝑗𝑗𝐶𝐶)𝑀𝑀𝑁𝑁

𝑗𝑗=1   (5) 
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That is, if any of the cues from the source nodes is negative, the prediction of the node is negative. 

The Bayesian fusion rule is defined as 

 𝑃𝑃′(𝑥𝑥𝑘𝑘) =
𝑃𝑃(𝑥𝑥𝑘𝑘)max

P
�(𝑃𝑃(𝑥𝑥𝑘𝑘))𝑟𝑟�1−𝑃𝑃(𝑥𝑥𝑘𝑘)�𝑆𝑆−𝑟𝑟�

∫(𝑃𝑃(𝑥𝑥𝑘𝑘))𝑟𝑟�1−𝑃𝑃(𝑥𝑥𝑘𝑘)�𝑆𝑆−𝑟𝑟𝑑𝑑𝑑𝑑
   (6) 

where the prediction of the node is updated to 𝑃𝑃′ from prior prediction 𝑃𝑃, and out of S cues that 

the neighboring nodes provide, r of them provide are positive, if the maximum likelihood principle 

is taken. 

The probabilistic graph model provides a system level abstraction and a mesoscale 

description of CPSS networks, where information exchange and aggregation are captured with the 

overall probabilistic measures instead of the detailed level of information elements. More details 

about the probabilistic graph model can be found in Ref.[5]. 

3 The Proposed Information Dynamics Models 

The information dynamics models are to characterize and predict how information is 

consumed and affects the decision making of individual nodes in a networked CPSS environment. 

In CPSS networks, each node produces information by sensing and processing. Information is 

exchanged between nodes. When a node receives some information from others, the received 

information is combined and digested, which is then used to update the prediction of the node. 

Thus the prediction probabilities of CPSS nodes are dynamically updated with the mutual 

influence from each other. As a result, strong dependencies exist among the prediction 

probabilities from different nodes.  

As an extension of previous work [2][3], the dynamic changes of network topology are 

considered in the proposed VAR models, where the connections between nodes can vary instead 

of being static. The proposed data-driven models can be updated periodically. When the network 

topology is changed, the VAR models can be re-parameterized with the new training dataset. 

Furthermore, a new latent variable VAR model is proposed so that the hidden correlations can be 

parameterized with latent variables. This enables the linear VAR models to capture more complex 

dependency relations.  

In our information dynamics models, the effects of information diffusion are quantified by 

the prediction probabilities associated with nodes. The influences and interdependency among 
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information producers and consumers are captured as functions of these probabilities. Generally 

speaking, the dynamics of prediction probabilities can be modelled by  

 

𝑑𝑑𝑑𝑑(𝑥𝑥1,𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑔𝑔1�𝑃𝑃(𝑥𝑥1, 𝑡𝑡), … ,𝑃𝑃(𝑥𝑥𝑛𝑛, 𝑡𝑡)� + 𝜖𝜖1
⋮

𝑑𝑑𝑑𝑑(𝑥𝑥𝑛𝑛,𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑔𝑔𝑛𝑛�𝑃𝑃(𝑥𝑥1, 𝑡𝑡), … ,𝑃𝑃(𝑥𝑥𝑛𝑛, 𝑡𝑡)� + 𝜖𝜖𝑛𝑛

  (7) 

where 𝑔𝑔1, …, 𝑔𝑔𝑛𝑛 can be linear or nonlinear functions to capture the interdependency between 

prediction probabilities 𝑃𝑃(𝑥𝑥𝑘𝑘)’s in the probabilistic graph model as introduced in Section 2.3. The 

high correlation between nodes is incorporated in modeling the dynamics, where the evolution of 

the prediction probability for each node is characterized. With the data-driven approach, the 

dynamics model can be simplified as time series in 

 𝒑𝒑(𝒙𝒙, 𝑡𝑡) = 𝒇𝒇(𝒙𝒙, 𝑡𝑡) + 𝝐𝝐(𝒙𝒙)  (8) 

where 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) denotes the vector of state variables for all nodes, 𝒑𝒑(𝒙𝒙, 𝑡𝑡) =

(𝑃𝑃(𝑥𝑥1, 𝑡𝑡), … ,𝑃𝑃(𝑥𝑥𝑛𝑛, 𝑡𝑡)) is the vector of all prediction probabilities, and 𝝐𝝐 = (𝜖𝜖1, … , 𝜖𝜖𝑛𝑛) 

characterizes the uncertainty. 

Three information dynamics models are introduced here to capture the information diffusion 

in CPSS networks based on the prediction probabilities that the nodes produce meaningful 

information. The first model is the latent variable VAR where hidden state variables are 

introduced. The second one is the topology-informed VAR model where the dynamic network 

topology is applied for more flexible and efficient model training. The third one is the topology-

informed GPR model where the connectivity provides additional information about the similarity 

between nodes. In the VAR modeling approach, the interactions of the individual prediction 

probabilities are directly modeled with the parameters in VAR models. The parameters or 

coefficients of the linear models capture the coupling explicitly as functional relationships. That 

is, the prediction probability of one node is a function of the probabilities from its neighbors. The 

prior knowledge of network topology provides us a more compact VAR model. In the GPR 

modeling approach, the time series with inputs of time and node labels is developed based on both 

spatial and temporal correlations. The correlations are captured implicitly with the covariance or 

kernel functions in the model. 
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The effects of information accumulation are manifested by how well CPSS nodes make 

sound decisions. The accuracy and effectiveness of decisions are quantified by the probabilistic 

measures of their prediction capabilities, i.e. prediction probabilities. Based on new information, 

the CPSS nodes update their prediction probabilities as their perceptions of the world based on 

certain information fusion rules. The information dynamics models, discretized as time series 

models, elucidate how the prediction probabilities of nodes in the network are correlated. The 

understanding of correlation helps us to answer design questions, such as how to design network 

topology to control variability or fluctuation of prediction capabilities, how to assign key 

influencers in the network to improve the effectiveness of information propagation, and others.  

To train the proposed data-driven models, training data are generated from simulations of 

information propagation in the probabilistic graph model. The coefficients in the VAR models and 

hyperparameters in the GPR models are first trained based on the simulation data before they can 

be applied for future prediction. During simulations, predictions about the state of the world are 

randomly generated based on the prediction probability for each node. The information exchanged 

between nodes is also generated based on the reliance probabilities. Based on information fusion 

rules introduced in Section 2.3, the prediction of each node is then updated. The new predictions 

are recorded and the statistics are used to update the prediction probability. The above simulation 

procedures are repeated iteratively for each time epoch, and the evolutions of the prediction 

probabilities are simulated.  

In the remainder of this section, the VAR modeling approach is introduced in Section 3.1, 

where the latent variable VAR model and the topology-informed VAR model are introduced.  In 

Section 3.2, the new spatial-temporal GPR model is described, where the correlation along time 

for each node and correlation between nodes are captured based on a new kernel function.  

3.1 Vector Autoregression Models 

VAR models provide a direct approach to represent time-dependency and mutual influences 

between variables in time series problems. In traditional VAR models, it is assumed that all 

variables are linearly dependent on each other for each intermediate step. Here, a latent variable 

VAR and a topology-informed VAR model are proposed. The prior knowledge of network 

topology is incorporated in model training, and functional dependency between nodes is directly 

modeled with the adjacency information. That is, two prediction probabilities are functionally 
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related to each other at two immediate time steps only if there is a direct connection between the 

two nodes. This approach can reduce the number of parameters to be trained and improve the 

training efficiency. 

3.1.1 Topology-Informed VAR 

The traditional VAR time series model is  

 𝑷𝑷(𝑠𝑠) = 𝑨𝑨0 + ∑ 𝐀𝐀𝑙𝑙𝑷𝑷(𝑠𝑠 − 𝑙𝑙)𝐿𝐿
𝑙𝑙=1 + 𝝐𝝐  (9) 

where the values of prediction probabilities for all 𝑛𝑛 nodes at the s-th time step form the column 

vector 𝑷𝑷(𝑠𝑠) = (𝑃𝑃1(𝑠𝑠), … ,𝑃𝑃𝑛𝑛(𝑠𝑠)). The prediction probabilities at the s-th time step are dependent 

on the values of 𝑷𝑷(𝑠𝑠 − 1), …𝑷𝑷(𝑠𝑠 − 𝐿𝐿) at all the previous L steps. 𝑨𝑨0 ∈ ℝ𝑛𝑛 is the column vector of 

intercepts that indicate the bias. The noise 𝝐𝝐~𝒩𝒩(𝟎𝟎,𝚺𝚺𝜖𝜖) is modeled as the multi-variant normal 

random variable, and the 𝑛𝑛 × 𝑛𝑛 coefficient matrices 𝐀𝐀𝑙𝑙’s capture the interdependency between 

prediction probabilities. The VAR model in Eq. (9) captures the time and location dependencies 

of nodes simultaneously as the linear relationships. The time series model captures the memory 

effect where the data sharing history in the previous L steps affects the current values. It also 

implicitly captures the potential effect of possible delays in communication, where data arriving 

at a node could be sent by other nodes several time steps before. The positive or negative signs of 

the elements in 𝐀𝐀𝑙𝑙’s indicate the positive or negative correlations of the pairs. The correlations will 

cause fluctuations of the 𝑷𝑷 values between 0 and 1.  

One issue of VAR for network modeling is that the number of parameters increases 

quadratically as the number of nodes increases. In the topology-informed VAR model, not all 

parameters in Eq. (9) are equally important. If one node is connected with and shares information 

directly to another node, the information dependency is more evident than those that are not 

directly connected. Therefore, the topology of the network provides indications of dependency. 

This prior knowledge can be applied to the VAR model as the constraints to reduce the effective 

coefficients and simplify the model training process.  In a sparsely connected network, dependency 

between nodes is loose, and the number of effective coefficients becomes small. This will improve 

the efficiency of the training process where the required training data size can be reduced 

accordingly.  

The topology-informed VAR model is defined as 
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 𝑷𝑷(𝑠𝑠) = 𝑨𝑨0 + ∑ (𝐃𝐃𝑇𝑇 ∘ 𝐀𝐀𝑙𝑙)𝑷𝑷(𝑠𝑠 − 𝑙𝑙)𝐿𝐿
𝑙𝑙=1 + 𝝐𝝐  (10) 

where 𝐃𝐃 = �𝑑𝑑𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
 is the adjacency matrix of the network with n nodes. Its elements are 𝑑𝑑𝑖𝑖𝑖𝑖 = 1 

if a directed edge exists from node i to node j, and 𝑑𝑑𝑖𝑖𝑖𝑖 = 0 otherwise. The diagonal elements 𝑑𝑑𝑖𝑖𝑖𝑖 =

1 for all i’s. In addition, 𝑇𝑇 is the matrix transpose operator, and ∘ is the element-wise product or 

Hadamard product between two matrices.  

In the original VAR model in Eq. (9), the number of parameters or coefficients that need to 

be calibrated through training is 𝑛𝑛 + 𝑛𝑛2𝐿𝐿. When the topology is considered as the constraint, the 

number of parameters is reduced to 𝑛𝑛 + 𝑒𝑒𝑒𝑒 where 𝑒𝑒 is the number of directed edges in the graph. 

The reduction is significant if the nodes are sparsely connected. With a smaller number of 

parameters, the training or data fitting process can be more efficient where the required number of 

training data points for good fitting is also reduced. Note that the topology-informed VAR is 

reduced to the original VAR when the network is fully connected.   

The training of topology-informed VAR model in Eq. (10) can be implemented as a 

constrained optimization problem, where the loss or error of model prediction is minimized subject 

to constraint 

 ∑ ‖(𝚷𝚷− 𝐃𝐃𝑇𝑇) ∘ 𝐀𝐀𝑙𝑙‖𝐿𝐿
𝑙𝑙=1 = 𝟎𝟎  (11) 

where 𝚷𝚷 is a matrix with the same size of 𝐃𝐃 and all elements are 1’s. ‖⋅‖ is the matrix norm which 

quantifies the distance to the origin and can be calculated with L2 norm. Constrained nonlinear 

optimization algorithms can be applied to solve this training problem. Because the elements in 

coefficient matrices 𝐀𝐀𝑙𝑙’s contain the physical meanings of adjacency between nodes, they are also 

related to the reliance probabilities as described in Section  2.3. Therefore, the coefficients can 

also be treated as probabilities. The values of the coefficients can be further constrained to between 

0 and 1. 

Notice that all coefficients and parameters of the VAR models can be time-dependent. When 

the network topology dynamically changes, the model parameters need to be re-calibrated to 

reflect the changes. One advantage of data-driven modeling is that the model parameters can be 

updated frequently once new datasets are available. The proposed VAR models can be readily 

applied to the dynamic CPSS networks where the topology is not fixed and evolves along time. 
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3.1.2 Latent Variable VAR 

More complex models can be applied to capture the functional interdependency between 

prediction probabilities. Here, latent variables or hidden state variables are introduced to capture 

the inherent correlations between prediction capabilities. The latent variable VAR model is defined 

as 

 𝑷𝑷(𝑠𝑠) = 𝐁𝐁𝒀𝒀(𝑠𝑠) + 𝜼𝜼  (12) 

 𝒀𝒀(𝑠𝑠) = ∑ 𝐓𝐓𝑙𝑙𝒀𝒀(𝑠𝑠 − 𝑙𝑙)𝐿𝐿
𝑙𝑙=1 + 𝜺𝜺  (13) 

where Eq. (12) captures the relation between observable 𝑷𝑷 ∈ ℝ𝑛𝑛 and hidden state or latent 

variables 𝒀𝒀 ∈ ℝ𝐾𝐾, and the evolution of hidden state variables as state transition is modeled in 

Eq.(13). Here, 𝐓𝐓𝑙𝑙 ∈ ℝ𝐾𝐾×𝐾𝐾 (𝑙𝑙 = 1, … , 𝐿𝐿) is the coefficient matrix that captures the dependency 

between the hidden state variables, and 𝐁𝐁 ∈ ℝ𝑛𝑛×𝐾𝐾 is the observation matrix. Notice that the 

dimension of state vector 𝒀𝒀 is not necessarily the same as the dimension of observable vector 𝑷𝑷. 

The number of hidden state variables is typically less than that of the observable in a correlated 

system, i.e. 𝐾𝐾 ≤ 𝑛𝑛.  𝜼𝜼~𝒩𝒩(𝟎𝟎,𝚺𝚺𝜂𝜂) and  𝜺𝜺~𝒩𝒩(𝟎𝟎,𝚺𝚺𝜀𝜀) are associated with the noises of observation 

and state transition, respectively, and modeled as multi-variate normal variables. In the hidden 

state model, the interdependency among nodes is captured through the hidden state variables. The 

direct correlations between state variables cause the inherent correlations between the observables 

so that more complex dependency relations are captured.   

In the VAR model in Eq. (9), the parameters to be calibrated are vector 𝑨𝑨0, matrices 𝐀𝐀𝑙𝑙’s, 

and covariance matrix 𝚺𝚺𝜖𝜖. For the latent variable VAR model in Eqs. (12) and (13), the parameters 

to be calibrated or trained include 𝐓𝐓𝑙𝑙’s, 𝐁𝐁, as well as 𝚺𝚺𝜂𝜂 and 𝚺𝚺𝜀𝜀. The  Expectation-Maximization 

(EM) algorithm [38] can be applied to train the model with a large number of parameters. The EM 

algorithm consists iterations of two alternating steps. In the E-step, the expectation of the log-

likelihood for hidden state variables and the available training dataset conditional on the 

parameters 𝛬𝛬 = {𝐓𝐓𝑙𝑙 ,𝐁𝐁,𝚺𝚺𝜂𝜂 ,𝚺𝚺𝜀𝜀} is calculated. The available training dataset 𝒫𝒫 is the time series of 

prediction probabilities 𝑷𝑷’s. The hidden state variables 𝒱𝒱 include all 𝒀𝒀’s. The expectation of the 

log-likelihood at the 𝑘𝑘-th iteration is calculated as 𝔼𝔼�log 𝑓𝑓(𝒫𝒫,𝒱𝒱|𝛬𝛬′) |𝛬𝛬(𝑘𝑘−1)�. In the M-step, the 

parameters are updated by solving the maximization problem 𝛬𝛬(𝑘𝑘) =
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argmax𝛬𝛬′ 𝔼𝔼�log 𝑓𝑓(𝒫𝒫,𝒱𝒱|𝛬𝛬′) |𝛬𝛬(𝑘𝑘−1)�. The E-step and M-step are applied iteratively until the 

parameters converge.  

When the number of latent variables 𝐾𝐾 is the same as the number of the observable 𝑛𝑛, the 

latent variables can be interpreted as the state variables associated with the individual nodes. The 

coefficients 𝐓𝐓𝑙𝑙’s then can be regarded as the associations between nodes in information exchange, 

similar to the topology-informed VAR model in Section 3.1.1. Similarly, the network topology 

can be applied as constraints to simplify the model training process. In the topology-informed 

latent variable VAR model, the state transition in Eq.(13) is replaced by  

 𝒀𝒀(𝑠𝑠) = ∑ (𝐃𝐃𝑇𝑇 ∘ 𝐓𝐓𝑙𝑙)𝒀𝒀(𝑠𝑠 − 𝑙𝑙)𝐿𝐿
𝑙𝑙=1 + 𝜺𝜺  (14) 

where 𝐃𝐃 is similarly the adjacency matrix of the network. The training of the constrained latent 

variable VAR model can be done with constrained nonlinear optimization methods.  

3.2 Topology-Informed Gaussian Process Regression Model 

Different from the VAR models where the linear response relationships between variables 

are assumed, GPR is a more generic regression method that can capture the nonlinearity. GPR also 

provides uncertainty predictions of responses in addition to the mean values locally at different 

locations in the input space. In the information dynamics model, the function in Eq.(8) is now a 

Gaussian process, with the noise level 𝜖𝜖~𝒩𝒩(0,𝜎𝜎02).  

3.2.1 GPR Model 

In the GPR model 𝑦𝑦(𝑥𝑥)~𝒢𝒢𝒢𝒢(𝜇𝜇(𝑥𝑥),𝑘𝑘(𝑥𝑥, 𝑥𝑥′)) with mean function 𝜇𝜇(𝑥𝑥) and covariance or 

kernel function 𝑘𝑘(𝑥𝑥, 𝑥𝑥′), given 𝑀𝑀 samples 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑀𝑀) and the functional values 𝒚𝒚(𝒙𝒙) =

(𝑦𝑦(𝑥𝑥1), … ,𝑦𝑦(𝑥𝑥𝑀𝑀)) as the training dataset, the joint distribution between the training data set and 

test data set 𝒚𝒚(𝒙𝒙∗) follows Gaussian distribution  

 � 𝒚𝒚(𝒙𝒙)
𝒚𝒚(𝒙𝒙∗)

�~𝒩𝒩�𝟎𝟎, �
𝐊𝐊(𝒙𝒙,𝒙𝒙) 𝐊𝐊(𝒙𝒙,𝒙𝒙∗)
𝐊𝐊𝑇𝑇(𝒙𝒙,𝒙𝒙∗) 𝐊𝐊(𝒙𝒙∗,𝒙𝒙∗)

��  (15) 

where 𝐊𝐊(𝒙𝒙,𝒙𝒙) is the covariance matrix of training data points, 𝐊𝐊(𝒙𝒙,𝒙𝒙∗) is the covariance matrix 

between the training data and test data. The posterior predictions for new samples 𝒙𝒙∗ given the 

existing ones from 𝒙𝒙 is 𝑝𝑝(𝒚𝒚∗|𝒚𝒚)~𝒩𝒩(𝝁𝝁∗,𝚺𝚺∗), where 

 𝝁𝝁∗ = 𝐊𝐊𝑇𝑇(𝒙𝒙,𝒙𝒙∗)(𝐊𝐊(𝒙𝒙,𝒙𝒙) + 𝜎𝜎0𝟐𝟐𝐈𝐈)−1𝒚𝒚  (16) 
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 𝚺𝚺∗ = 𝐊𝐊(𝒙𝒙∗,𝒙𝒙∗) − 𝐊𝐊𝑇𝑇(𝒙𝒙,𝒙𝒙∗)�𝐊𝐊(𝒙𝒙,𝒙𝒙) + 𝜎𝜎0𝟐𝟐𝐈𝐈�
−1𝐊𝐊(𝒙𝒙,𝒙𝒙∗) + 𝜎𝜎0𝟐𝟐𝐈𝐈  (17) 

with identity matrix 𝐈𝐈. GPR models predict not only mean values but also uncertainty associated 

with the predictions locally. This provides more flexibility than traditional regression models. 

 

3.2.2 Spatial-Temporal GPR Time Series Model 

 Here a new GPR model is proposed to explicitly capture the information correlation 

between nodes as a nonlinear time series model. If the time series of prediction probability for 

each node is modeled by the traditional GPR model with time as the input, the correlations between 

different time series cannot be explicitly captured. The proposed GPR model uses two dimensions 

of inputs, which are time and node label. The node label indicates which time series or which node 

the output is associated with. With discretized time index 𝑠𝑠 and node label 𝑚𝑚, the GPR model is 

  � 𝒚𝒚(𝑠𝑠,𝑚𝑚)
𝑦𝑦(𝑠𝑠∗,𝑚𝑚∗)

�~𝒩𝒩�𝟎𝟎, �
𝐊𝐊�(𝑠𝑠,𝑚𝑚), (𝑠𝑠′,𝑚𝑚′)� 𝑲𝑲�(𝑠𝑠,𝑚𝑚), (𝑠𝑠∗,𝑚𝑚∗)�
𝑲𝑲𝑇𝑇�(𝑠𝑠,𝑚𝑚), (𝑠𝑠∗,𝑚𝑚∗)� 𝑘𝑘�(𝑠𝑠∗,𝑚𝑚∗), (𝑠𝑠∗,𝑚𝑚∗)�

��  (18) 

where 𝐊𝐊�(𝑠𝑠,𝑚𝑚), (𝑠𝑠′,𝑚𝑚′)� is the covariance matrix of existing observations, 𝑲𝑲�(𝑠𝑠,𝑚𝑚), (𝑠𝑠∗,𝑚𝑚∗)� is 

the column vector of covariance between existing observations and the new prediction (𝑠𝑠∗,𝑚𝑚∗). 

The core idea of this GPR model is the new kernel function with hybrid inputs of continuous time 

and discrete node label, defined as  

  𝑘𝑘�(𝑠𝑠,𝑚𝑚), (𝑠𝑠′,𝑚𝑚′)� = 𝑘𝑘1(𝑠𝑠, 𝑠𝑠′)𝑘𝑘2(𝑚𝑚,𝑚𝑚′)  (19) 

which is composed with kernel functions 𝑘𝑘1(𝑠𝑠, 𝑠𝑠′) for the time dimension and 𝑘𝑘2(𝑚𝑚,𝑚𝑚′) for the 

spatial dimension indicated by node labels. Kernel function  𝑘𝑘1(𝑠𝑠, 𝑠𝑠′) needs to capture the temporal 

correlation which causes fluctuations of prediction probabilities. That is, one node’s prediction 

probability is not static and it fluctuates between 0 and 1. The fluctuation is a result of positive or 

negative influence from other nodes as well as the potential time delay factor. In GPR modeling, 

the fluctuation pattern is usually quantified with a periodic kernel function. Therefore, the periodic 

kernel here is defined as 

   𝑘𝑘1(𝑠𝑠, 𝑠𝑠′) = exp(−2 sin2(𝜋𝜋𝑑𝑑𝐸𝐸(𝑠𝑠, 𝑠𝑠′)/𝑝𝑝)/𝑙𝑙2)  (20) 

with hyperparameters of period 𝑝𝑝 and length scale 𝑙𝑙, and Euclidean distance function 𝑑𝑑𝐸𝐸(⋅,⋅).  
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Kernel function 𝑘𝑘2(𝑚𝑚,𝑚𝑚′) needs to be designed properly to capture the spatial correlation 

between nodes. The kernel needs to incorporate the similarity or difference between input variable 

values, which is quantified as the distance between them. A properly defined distance function 

allows the kernel to distinguish different input values, which in turn helps build an accurate 

surrogate. In this work, the input variables for 𝑘𝑘2(𝑚𝑚,𝑚𝑚′) are node labels. Node labels need to 

include enough information so that the distance or difference between two nodes can be intuitively 

calculated.  We propose to use  

   𝑘𝑘2(𝑚𝑚,𝑚𝑚′) = exp(−0.5𝑑𝑑𝐻𝐻(𝑚𝑚,𝑚𝑚′)/𝑧𝑧2)  (21) 

with the hyperparameter of length scale 𝑧𝑧, and Hamming distance 𝑑𝑑𝐻𝐻(⋅,⋅) between node labels. 

The node labels are based on the adjacency information of the nodes, because two directly 

connected nodes have stronger interdependency or correlation with information sharing. If two 

nodes have similar connectivity in the neighbourhood, i.e. they have similar information sources, 

then the values of their prediction probabilities should be similar. Thus the labels of the nodes need 

to reflect the topology of the network. In combination with the Hamming distance, the node labels 

are encoded as binary strings.  For a network with n nodes, the node label is an n-bit binary number, 

where each bit corresponds to a node. In the label of node i, if node j is directly connected to node 

i, the bit corresponding to node j is “1” in the label of node i. Otherwise, it is “0”. For example, 

the labels for a four-node network are four-bit strings as “𝑏𝑏3𝑏𝑏2𝑏𝑏1𝑏𝑏0”, where 𝑏𝑏3, 𝑏𝑏2, 𝑏𝑏1, 𝑏𝑏0 

correspond to nodes 3, 2, 1, and 0, respectively. If node 0 is connected to nodes 1 and 3, and node 

1 is also connected to node 2, the labels for nodes 3, 2, 1, and 0 will be “1001”, “0110”, “0111”, 

and “1011”, respectively. The bit for the node itself is always set to be “1”.  The difference between 

two node labels measured by the Hamming distance indicates to some extent how strong the 

correlation is between the two nodes. A small difference indicates that the two nodes are connected 

to similar neighbours and have similar information sources. For instance, in the above four-node 

example, the distance between node 3 and node 2 is 𝑑𝑑𝐻𝐻(𝑚𝑚3,𝑚𝑚2) = 4. Similarly, 𝑑𝑑𝐻𝐻(𝑚𝑚3,𝑚𝑚1) =

3, 𝑑𝑑𝐻𝐻(𝑚𝑚3,𝑚𝑚0) = 1. The prediction of node 3 is more similar to the one of node 0 than the other 

two nodes, given that node 3 is directly connected to node 0. The Hamming distance based on the 

labels can provide some estimations of differences that are meaningful for the GPR surrogate 

model. Therefore, correlations of information between nodes can be quantified based on the labels.  
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4 Demonstrative Examples 

In this section, several examples are used to demonstrate the proposed information dynamics 

models. Some simple networks are constructed with the associated prediction and reliance 

probabilities randomly generated. A CPSS network simulator ProbNet is developed to simulate 

the information update based on Monte Carlo sampling. The proposed information dynamics 

models were developed and compared with the Monte Carlo simulation results. Both the simulator 

and the information dynamics models were implemented in python programming language.   

Monte Carlo sampling is applied to simulate the process of prediction probability updates. 

In each time step, random samples of observations are generated for each node based on its current 

prediction probability. Then the observations are shared with the neighboring nodes, and the shared 

information is sampled based on the reliance probabilities. When a node receives the information 

from its source nodes, a fusion rule (e.g. worst-case, best-case, Bayesian) is applied to update its 

prediction. The predictions are compared with the randomly generated ground truth state value 

and the correct instances are recorded. The above sampling procedure repeats many times, and the 

probability of correct prediction for each node is obtained and updated for this time step. The 

simulation clock advances, and the next iteration of update is done in the same way. 

4.1 Demonstration of VAR Models 

The VAR models are first demonstrated with a four-node-four-edge example in Figure 3 (a). 

The simulation data are collected to train the VAR model in Eq. (9) with lag order L=2. The 

training is done with the simulation data from the first 50 time steps. The forecast in the next 30 

time steps is generated from the VAR model. The same data are used to train the constrained VAR 

model in Eq. (10). The results are shown in Figure 3 (b) and (c) respectively, where the solid lines 

are the simulated probabilities and the dash lines indicate the predictions or forecasts from the 

models. The shaded regions indicate the predicted error bounds with one standard deviation (±𝜎𝜎). 

Here the worst-case fusion rule is applied in the simulation. It is seen that the models predict the 

general trend well. The predictions from the two models are similar. Similar to any other time 

series models, VAR models focus more on the near-term forecasts. The forecasts of the distant 

future are more of the average trend.  The calibrated coefficients of the two VAR models after 

training are compared in Table 1.  If there is no directed edge connection between nodes, the 

corresponding coefficients in the constrained VAR model are zeros. Notice that some fitted 
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coefficients in the traditional VAR model have negative values, whereas the ones in the 

constrained VAR model are all positive with values between zero and one. Since the values of 

both independent and dependent variables here are probabilities, it is difficult to interpret the 

negative coefficients. In contrast, the fitted coefficients in the constrained VAR model are 

associated with the reliance probabilities. They can be interpreted as the conditional probability of 

positive prediction for a node given its information source. Therefore, the sparser set of parameters 

in the constrained VAR model provides both efficient and physically meaningful representations. 

To quantitatively compare the forecast accuracy, mean squared error (MSE), which is the average 

squared difference between the forecasts and the original data during the forecast period, is 

calculated. The MSE for the VAR model is 0.02083, whereas the one for the constrained VAR 

model is 0.02116. Although the coefficients in the constrained VAR model are much sparser and 

there are only 13 out of 36 coefficients are non-zero, the model still can have the similar 

performance as in the traditional VAR model. 

 

 
 
Figure 3. The simulated prediction probabilities and forecast with 50 time steps of training. (a) the 
four-node-four-edge example; (b) result of the VAR model (MSE=0.02083); and (c) result of the 
constrained VAR model (MSE=0.02116).  
 
 

(b) 

(a) 

(c) 
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Table 1. Comparison of the calibrated parameters between the VAR model and constrained VAR 
model in Figure 3 for the four-node-four-edge network. 

 VAR Constrained VAR 
𝑨𝑨0 [−0.69957 0.86059 −0.14549 −0.13852]T [0 0.34793 0 0.46340]T 

𝐀𝐀1 �
−0.30989 0.37412
1.13367 −0.35650

−0.18996 −0.04054
0.67226 0.24123

0.80635 −0.29293
1.96312 −1.30183

0.33254 1.07381
1.37625 0.26925

� �
0 0

0.34452 0
0 0

0.50053 0
 0 0.32673
 0 0

0.07335 0
0.14887 0.00713

� 

𝐀𝐀2 �
1.32495 −0.51906
0.84116 −0.31187

0.85481 0.29281
0.53460 0.09564

−3.13919 1.63936
−0.25101 0.05738

−2.11252 −0.60259
−0.18614 −0.05667

� �
0.18678 0
0.42275 0

0 0
0.25119 0

0 0
0 0

0 0
0.00582 0.03474

� 

 
  

To further demonstrate the training efficiency, fewer training data are applied to the four-

node-four-edge example. Only the first 10 steps of simulation data are used to train the VAR 

models. The results are shown in Figure 4. The traditional VAR model is not fully trained and the 

predictions become very unstable with the limited training data, whereas the constrained VAR 

model still predicts reasonably well. The MSEs for the VAR model and constrained VAR model 

are 0.16667 and 0.03118, respectively. 

 

 
Figure 4. The simulated prediction probabilities and forecast with only 10 time steps of training 
from (a) the VAR model (MSE=0.16667) and (b) the constrained VAR model (MSE=0.03118).  

 

(a) (b) 
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The sensitivity of the model performance with respect to the lag order is tested. The 

traditional and constrained VAR models with lag orders of L = 6 and L = 12 are constructed. The 

results are compared in Figure 5. It is seen that higher-order models can provide more details of 

longer-term predictions instead of average values only. However, the number of model parameters 

to be fitted also increases. As seen in Figure 5 (b), the number of coefficients in the traditional 

VAR model with lag order L =12 has increased so much that 50 time steps of training data become 

not enough for model training. In contrast, the constrained VAR model has the reduced number of 

effective coefficients. As seen in Figure 5 (d), the model with L = 12 shows good prediction 

performance.  
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Figure 5. The sensitivity studies of different lag orders. (a) VAR model with L = 6 (MSE=0.03522); 
(b) VAR model with L = 12 (MSE=0.15196); (c) constrained VAR model with L = 6 
(MSE=0.02697); (d) constrained VAR model with L = 12 (MSE=0.04394).  

 

A second example is to demonstrate how data-driven modeling can be applied to dynamic 

networks where topology changes along time. As shown in Figure 6 (a), an 8-node network with 

10 edges is initially constructed. After 30 time steps, the network topology is changed to 18 edges 

at the second epoch. The network is further changed to 54 edges during the third epoch. The 

simulated and forecasted prediction probabilities with the constrained VAR model are shown in 

Figure 6 (b), whereas the forecasts by the traditional VAR model are shown in Figure 6 (c). For 

each epoch of 30 time steps, the data of the first 20 time steps are used to train the VAR models. 

(a) (b) 

(c) (d) 
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The forecasts of the next 10 steps are compared with the simulation data. A different case is shown 

in Figure 6 (d), where the numbers of edges change to 43 and 10 during the next two epochs from 

the same initial 8-node-10-edge network as in Figure 6 (a).  The simulation and forecast results 

are shown in Figure 6 (e) and (f). It is seen that the constrained VAR model predicts the trends 

reasonably well even with the dynamic topological changes and small training datasets. 

Dynamically evolving networks may not allow us to collect a large amount of data for training.  

As also seen in Figure 6, the fluctuation patterns of prediction probabilities vary when the 

network topology changes, because information sharing patterns are different. When there are 

more connections, the coupling between nodes becomes stronger. The prediction probabilities tend 

to fluctuate more and be more synchronized. When a node does not receive information from 

others, such as nodes 0, 6, and 7 during the first epoch and nodes 1 and 4 during the third epoch in 

Figure 6 (d), the prediction can still fluctuate as a result of pure random effects. Some levels of 

information sharing suppress the fluctuations. Yet fully connected network can amplify the 

fluctuation with synchronization.  
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 Figure 6. The dynamic 8-node network with topology changes: (a) 8-node-10-edge network 
changes to 18 and 54 edges along time; (b) the constrained VAR model (MSE=0.05563); (c) the 
VAR model (MSE=0.20507); (d) 8-node-10-edge network changes to 43 and 10 edges along time; 
(e) the constrained VAR model (MSE=0.05997); and (f) the VAR model (MSE=0.24637). 

(a) 

(e) (b) 

(d) 

(f) (c) 
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4.2 Demonstration of Latent Variable VAR Model 

Here the latent variable VAR model is demonstrated. The model is constructed to predict 

the previous 4-node-4-edge network example in Figure 3 (a). Different values of factor number 𝐾𝐾 

and lag order 𝐿𝐿 in Eqs. (12) and (13) are tested. The results are shown in Figure 7. The MSEs of 

forecasts from the latent variable VAR, topology constrained VAR, and traditional VAR are 

compared in Table 2. The forecasts by latent variable VAR and constrained VAR are more accurate 

than those by traditional VAR. Similar to other VAR models, when the lag order increases, the 

longer-term fluctuation can be predicted. In comparison with  Figure 5 (a) for traditional VAR 

model of lag order 𝐿𝐿 = 6, the results in Figure 7 (b), (d), and (f) with the same lag order are more 

stable and accurate. Therefore, introducing latent variables helps identify the intrinsic 

interdependency between observable variables.   

 

Table 2. Comparison of forecast MSEs by the latent variable VAR, constrained VAR, and 
traditional VAR models 

  Latent variable VAR Constrained VAR Traditional VAR 

𝐾𝐾 = 1 𝐿𝐿 =  2 0.04138 0.04117 0.04401 

𝐿𝐿 =  6 0.04187 0.03486 0.05372 

𝐾𝐾 = 3 𝐿𝐿 =  2 0.01790 0.01844 0.02223 

𝐿𝐿 =  6 0.02634 0.02696 0.05726 

𝐾𝐾 = 4 𝐿𝐿 =  2 0.03167 0.03108 0.03481 

𝐿𝐿 =  6 0.02573 0.02238 0.03994 
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 Figure 7. The latent variable VAR model forecasts for 4-node-4-edge network with different latent 
variable number K and lag order L. (a) K=1, L=2; (b) K=1, L=6; (c) K=3, L=2; (d) K=3, L=6; (e) 
K=4, L=2; (f) K=4, L=6. 
 

 

The topology constrained latent variable VAR is further demonstrated with the 4-node-4-

edge network example. With the factor number fixed as 𝐾𝐾 = 4, three cases with different lag orders 

are compared. The results of MSEs from the constrained latent variable VAR model, in 

comparison with the latent variable VAR, constrained VAR, and traditional VAR, are shown in 

Table 3. It is seen that the topology constraints can help improve the forecast accuracy for both 

VAR and latent variable VAR models. The accuracy levels are similar for these two constrained 

models. The forecasts of the latent variable VAR models with and without topology constraints 

are also shown in Figure 8. As the lag order increases, the number of coefficients to be trained also 

increases, which requires more training data. The topology constraints can effectively reduce the 

(a) 

(d) 

(c) (b) 

(e) (f) 

https://doi.org/10.1017/S0890060421000159


27 
This document is the unedited Author’s version of a submitted work that was subsequently accepted for publication in Artificial Intelligence for 
Engineering Design, Analysis and Manufacturing, copyright © Cambridge University Press. To access the final edited and published work, see 
https://doi.org/10.1017/S0890060421000159  

number of coefficients and improve the training efficiency with less training data, such as the case 

when 𝐿𝐿 = 8. 

 

Table 3. Comparison of forecast MSEs by constrained latent variable VAR, latent variable VAR, 
constrained VAR, and traditional VAR with 𝐾𝐾 = 4 

 Constrained latent 

variable VAR 

Latent variable VAR Constrained VAR Traditional VAR 

𝐿𝐿 =  3 0.06912 0.08165 0.07330 0.08594 

𝐿𝐿 =  4 0.05405 0.07160 0.04918 0.06606 

𝐿𝐿 =  8 0.04178 0.26609 0.04116 0.28155 

 

 

 Figure 8. The latent variable VAR model forecasts for the 4-node-4-edge network with different 
lag orders where K=4. (a) L=3 with constraints; (b) L=4 with constraints; (c) L=8 with constraints; 
(d) L=3 without constraints; (e) L=4 without constraints; (f) L=8 without constraints. 
 

(a) 

(d) 

(c) (b) 

(e) (f) 
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4.3 Demonstration of Spatial-Temporal GPR Model 

We also implemented and tested the proposed spatial-temporal hybrid GPR time series 

model to predict the dynamics of prediction probabilities. The results for the 3-node-3-edge 

example are shown in Figure 9. Two different data fusion rules, worst-case and best-case scenarios, 

are applied here. The results for the 8-node-10-edge example are shown in Figure 10. Compared 

to the previous linear VAR models which only predict the general trend in long term, the GPR 

model predicts the nonlinear dynamics of probabilities better. More fluctuations for both means 

and variances are observed in the forecasts. This is because of the kernel functions in GPR models 

which are able to capture differences locally based on the distance metrics. Thus the GPR model 

provides more details about the long-term dynamics in the networks. The proposed GPR model 

with the considerations of both spatial and temporal correlations between nodes captures the 

information dependency between nodes.  

When all 8 nodes in the network are fully connected, the simulation and forecast results of 

the 8-node-56-edge example are shown in Figure 11. Because each node is connected with all 

other nodes, very strong correlations exist in the fully connected network. It is seen that the 

prediction probabilities of all nodes are synchronously fluctuating with the same values after a 

short period. The GPR model also predicts the synchronized fluctuations with error bounds.  

 
 Figure 9. The simulated prediction probabilities and forecast by the GPR model in the 3-node-3-
edge example, with (a) the worst-case fusion rule (MSE=0.03203), and (b) the best-case fusion 
rule (MSE=0.03795). 
 

(c) (b) (a) 
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 Figure 10. The simulated prediction probabilities and forecast by the GPR model in the 8-node-
10-edge example, with (a) the worst-case fusion rule (MSE=0.03924), and (b) the best-case fusion 
rule (MSE=0.05461). 

 

 
 Figure 11. The simulated prediction probabilities and forecasts by the GPR model in the 8-node-
56-edge example, with (a) the worst-case fusion rule (MSE=0.06174), and (b) the best-case fusion 
rule (MSE=0.08055). 

 

5 Concluding Remarks 

The analyses of the systems level behavior of CPSS networks enable us to design better 

systems. How to design a system of CPSS which promotes effective information sharing or 

(b) (a) 

(b) (a) 
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prevents misinformation propagation is one of the major aspects of design. Therefore, we need 

models that can characterize and predict the effects of information sharing and system behaviors.   

In this paper, three information dynamics models are proposed to predict the information 

propagation within a CPSS network. Based on a recently developed mesoscale probabilistic graph 

model, the dynamics models are introduced to capture the mutual influences between nodes during 

their reasoning processes. The representation of prediction correlations between nodes is the 

central theme in both types of models. The results show that the topological information of 

networks can improve the efficiency in constructing the time series models. The network topology 

also has influences on the prediction capabilities of CPSS. Compared to other information 

diffusion models for CPSS, the proposed two types of models focus on the effects of information 

propagation on reasoning and prediction, instead of only on the diffusion speed and patterns in the 

network as in other models such as the epidemic model.  

The first type of models represent the interdependency between nodes for their prediction 

capabilities explicitly as linear functions. It is demonstrated that the VAR linear model and latent 

variable VAR model can predict the general trend and the error bounds well. By introducing prior 

knowledge of network topology, the proposed topology-informed VAR models can significantly 

improve the training efficiency by reducing the number of effective coefficients or model 

parameters. The results show that the information correlations between nodes can be reasonably 

assumed to be directly related to the network connectivity. The adjacency information is useful to 

make the VAR models more compact and efficient. This is particularly important for large-scale 

networks where the number of nodes increases. If the connections remain sparse, the constrained 

VAR models are scalable. Training efficiency with reduced amount of training data is also 

important for dynamically evolving networks. 

The proposed two-dimensional GPR model captures the correlated time series patterns, 

where a new kernel function is developed to consider both the temporal and spatial correlations of 

the data collected by CPSS nodes. The composite kernel function models the discrete spatial 

correlation with the topological adjacency relationship between nodes, in addition to temporal 

correlation. The GPR model has shown the advantage of revealing longer-term nonlinear dynamics 

in comparison with the linear models. The extent of local fluctuations can be predicted by the GPR 

model. This is because GPR models predict based on the similarity between inputs which is 

quantified with the kernel functions.  
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The prediction accuracy from the data-driven models sensitively relies on the training 

datasets. In general, larger datasets are always better for model training and calibration. The 

training effectiveness of parameters or hyperparameters also depends on the optimization 

algorithms applied in the training. For GPR models, the optimization of hyperparameters can affect 

the accuracy of model predictions. For situations where there is a lack of training data, the proposed 

modeling approach will not be feasible. Alternative modeling approaches that are based more on 

the detailed knowledge about the systems will be needed. Another limitation of the data-driven 

models is that the determination of model-form parameters such as lag orders and number of laten 

variables relies on empirical sensitivity studies. The choice of the best model form remains 

problem-specific and requires additional efforts. Nevertheless, it is seen that the physical 

knowledge of interdependency between nodes can enhance the data-driven approaches in 

modeling correlations, as demonstrated with the topology-informed VAR models and GPR model. 

The spatial correlation captured by the adjacency relationships between nodes deserve further 

studies.  
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	Abstract
	Cyber-physical-social systems (CPSS) are physical devices that are embedded in human society and possess highly integrated functionalities of sensing, computing, communication, and control. CPSS rely on their intense collaboration and information sharing through networks to be functioning. In this paper, topology-informed network information dynamics models are proposed to characterize the evolution of information processing capabilities of CPSS nodes in networks. The models are based on a mesoscale probabilistic graph model, where the sensing and computing capabilities of the nodes are captured as the probabilities of correct predictions. A topology-informed vector autoregression model and a latent variable vector autoregression model are proposed to model the correlations between prediction capabilities of nodes as linear functional relationships. A hybrid Gaussian process regression model is also developed to capture both the nonlinear spatial and temporal correlations between nodes. The new information dynamics models are demonstrated and tested with a simulator of CPSS networks. The results show that the topological information of networks can improve the efficiency in constructing the time series models. The network topology also has influences on the prediction capabilities of CPSS. 
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	1 Introduction
	Cyber-physical-social systems (CPSS) are physical devices that are embedded in the human society and possess highly integrated functionalities of sensing, computing, communication, and actuation. They are the essential elements for smart home, smart office, smart manufacturing, personalized medicine, autonomous transportation, and many other applications. Although human is regarded as a component of the complex sociotechnical systems at large, our focus of discourse is engineering design of physical systems that interface with human beings.  
	In CPSS networks, decision makings are done at the individual node level and enhanced by intensive information sharing, as more high-quality information leads to better decisions. The quality of information can be measured by accuracy, consistency, completeness, timeliness, precision, and interpretability [1]. CPSS nodes also interact with and change the surrounding environment via their control function, which in turn affects their neighboring nodes. As a result, the level of interdependencies among CPSS nodes for their collected information is very high.  There is a strong need to understand the deep information dependency between CPSS devices in a network. The knowledge about the behaviors of CPSS networks can help us to design more reliable and dependable systems.
	Existing research on information diffusion focused on traditional computer networks and social networks. There is a lack of studies of information dynamics in CPSS networks which have unique characteristics. First, the topology of a CPSS network is complex with numerous weak and dynamically changing connections due to its ad hoc nature, e.g., in vehicle networks and manufacturing plants. Second, the nodes are heterogeneous CPSS devices with various functions. In particular, they have the sensing and control capabilities which do not exist in traditional computer networks. Information sharing is intensive and decisions of what and when to share are made locally by individual nodes. Thus strong correlations can exist in the shared information. Third, the types of information generated and shared among CPSS nodes can vary greatly. In contrast, existing studies of information diffusion in traditional computer networks and social networks focus on the passive propagation or simple forwarding of specific information, such as virus, keywords, and new concepts. To properly design the architecture of CPSS networks with good adaptability and scalability, it is important to understand the evolution of information in CPSS networks as a system of systems, as well as the sensitivity of the system and device behaviors with respect to the information propagation. 
	In a dynamically evolving CPSS network, the effects of information generation and sharing need to be quantified and analyzed so that the long-term behaviors of the network can be predicted, which is useful in systems design. To model the effects of information exchange, recently a data-driven information dynamics modeling approach [2] was proposed to analyze the information interdependency among CPSS nodes and subnetworks. The model keeps track of the probability that each node detects and predicts the true state of its environment along time with its sensing, computing, and communication functions. The interdependency between the probabilities of different nodes was explicitly modeled with copulas and vector autoregression (VAR) models. The proposed linear models provide the insight of how nodes have an influence on each other on the prediction capabilities when information is exchanged and how the behavior of networks evolves dynamically. This dynamics analysis is useful for the design of an open system with good adaptability, where the topology of ad hoc networks changes with nodes continuously added or removed. These models predict the global trend of information dynamics well. Nevertheless, the black-box approaches for model fitting require a large amount of training data as the number of nodes and thus the number of model parameters increase. Furthermore, nonlinear relationships between state variables associated with the nodes need to be captured with more complex models. In this paper, a gray-box modeling approach is taken. A topology-informed VAR model is proposed so that the prior knowledge of correlation between the predictions as a result of direct connections between nodes can be applied. This simplifies the modeling process such that the number of coefficients or model parameters to be fitted is reduced. The amount of training data can be reduced. The reduction is significant when the network connection is sparse. To further capture the correlation among the nodes’ prediction capabilities, a latent variable VAR model is proposed where hidden state variables are introduced. The observed changes in prediction capabilities are caused by the interactions among hidden state variables. In addition, a topology-informed Gaussian process regression (GPR) modeling approach is developed to predict the time series of information dynamics, where nonlinear temporal and spatial correlations are captured. A hybrid kernel function is developed with continuous time and discrete node labels as the inputs. The node labels are specifically designed based on network topology such that the adjacency information is applied to infer the similarity of information sources between nodes to improve the accuracy of the kernel function.
	The proposed information dynamics modeling approaches are based on a generic probabilistic graph model of networks ([4], [5]), where information exchange and processing at nodes are modeled at the mesoscale. In the probabilistic graph model, the sensing and computing capabilities of each node are characterized by a prediction probability, whereas the communication capabilities between nodes are characterized by pairwise reliance probabilities. The prediction probability measures how well a node can gather information and make sound judgment. The reliance probabilities capture the extent of influences for one node to another via information exchange. In the proposed information dynamics models, the dynamics is modeled based on the evolution of prediction probabilities as a result of information exchange, instead of explicitly modeling the information that is being exchanged as in other information diffusion models. The evolution of prediction capabilities of nodes is captured in the time series models, where the prediction accuracies of nodes are influenced by each other, given that the decision of each node is made based on the information gathered from itself as well as its neighboring nodes. To train the model parameters, simulations are performed based on the probabilistic graph model for demonstration. 
	In the remainder of this paper, the background of CPSS design, existing models of information diffusion in networks, and the probabilistic graph model are introduced in Section 2. The proposed information dynamics models are described in Section 3. The models are demonstrated and tested with a CPSS simulator in Section 4.
	2 Background
	2.1 CPSS System-of-Systems Level Design
	2.2 Information Diffusion in CPSS Networks
	2.3 Probabilistic graph model

	In this section, an overview of relevant work on CPSS design at the system-of-systems level is given. The models of information diffusion in networks are reviewed. The background of the probabilistic graph model which the proposed information dynamics models are based on is also provided.
	The design of CPSS architecture at the system-of-systems level needs to incorporate several factors. First, given the evolution nature of cyber and physical technologies, adaptability that enables the capabilities of self-learning, self-organization, and context awareness is important to design open systems that can evolve along technology advancement [6][7]. Using new technologies as the augmentation to existing products can effectively enhance adaptability [8]. Second, the complexity of the CPSS has significantly increased from traditional products and devices. The CPSS products are connected through Internet of Things and heavily rely on data exchange from each other to realize their functions. Communication between devices plays a major role. Therefore, how to design systems of CPSS which have dependable communication is important. Reliable large-scale networked systems that do not fail are impossible to achieve. Resilient systems that can recover automatically from partial failures are more likely to be realized [4][5]. Third, the high-dimensional design space of CPSS includes not only the cyber and physical subspaces, but also the social subspace. Examples of the emerging research issues are how to design the modalities for human-system interaction [9], how to enable context awareness and personalized communication between CPSS and humans [10], and how to quantify trustworthy strategic relationships for information sharing [11]-[15]. 
	Network connectivity is essential for CPSS. A standalone CPSS device cannot perform the functions which it is designed for. Compared to traditional products, the design of CPSS devices requires engineers to have better understanding of the system level behaviors, as well as the new methodology for the optimization at the network scale. Systems level modeling methods and tools have been developed for CPSS design and analysis, such as hybrid discrete-event and continuous simulations [16]-[18], inductive constraint logic programming [19] abductive reasoning [20], hybrid timed automaton [21], ontologies [22], information schema [23], UML [24], and SysML [25]. 
	The information flow in computer networks and social networks has been studied by researchers. The propagation of information can be modeled in different ways. The most used approach is the epidemic model of networks, where transmission probabilities of virus between nodes are mainly used to model the speed of infection and the dynamics of outbreak and decay is captured with ordinary differential equations [26][27].  The epidemic model has been widely applied to study the propagation of keywords or phrases among blogs [28] and within social networks [29]. In the linear influence model [30], the propagation of information is modeled and parameterized by the influences of individual nodes in the network. In the event-driven modeling approaches, the adoption of new information by nodes is characterized by discrete Poisson processes [31][32] or continuous hazard function [33].  
	Very limited work has been done in studying information diffusion in CPSS networks. Yagan et al. [34] studied the information transmission in the coupled social and physical networks according to the epidemic model. Lu et al. [35] investigated how to maximize the information diffusion in CPSS networks when nodes are connected probabilistically. Wang et al. [36] used a game theoretic approach in combination with the epidemic model at the system level to study the effects when nodes make local decisions of forwarding information to others. Yi et al. [37] defined the states of each node in both physical and social spaces for the epidemic model so that the mutual influence between social behavior spread and multimedia data transmission can be revealed. Wang [2][3] developed statistical approaches where copula and VAR models were used to model the information correlations among CPSS nodes.
	Given that CPSS nodes possess local functions of sensing, computing, and decision making, we need to study not only how information propagates but more importantly how the information propagation directly affects these functions. In the proposed models, the propagation of information elements is not modeled directly. Rather, the dynamic effect of information diffusion, which is the change of the sensing and computing capabilities of CPSS nodes, is used to quantify the information dynamics. That is, the dynamic changes of those capabilities along time are directly captured in the proposed information dynamics models. The sensing and computing capabilities of CPSS are quantified based on a probabilistic graph model, as introduced in the next section.
	A recently developed probabilistic graph model [5] for CPSS networks is the foundation of the proposed information dynamics models. In the probabilistic graph model, each node has its own sensing, reasoning, and communication units. As illustrated in Figure 1, there are probabilities associated with information gathering and exchange between nodes. For each node, there is a prediction probability indicating the capabilities of information gathering and reasoning. For each directed edge indicating information exchange, there are reliance probabilities associated with it. The two types of probabilities are defined as follows.
	/
	Figure 1. Probabilistic graph model of CPSS systems
	The prediction probability that the k-th node detects the true state of world 𝜃 is
	 ℙ𝑥𝑘=𝜃=𝑝𝑘  (1)
	where 𝑥𝑘 is the state variable. For convenience, we denote 𝑞𝑘=1−𝑝𝑘. The information dependency between nodes i and j is modeled with P-reliance probability
	 ℙ𝑥𝑗=𝜃𝑥𝑖=𝜃=𝑝𝑖𝑗  (2)
	which is the probability that the j-th node predicts the true state of world given that the i-th node predicts correctly. Similarly, we also have Q-reliance probability
	 ℙ𝑥𝑗=𝜃𝑥𝑖≠𝜃=𝑞𝑖𝑗  (3)
	because nodes could be negatively correlated, or miscommunication between nodes could exist. The reliance probability can be used to model reliability of communication between nodes, e.g. in moving vehicles’ ad hoc wireless networks, data packet loss is not uncommon.
	Therefore, different from the adjacency matrix in traditional graph model with binary “yes-or-no” edge connection topology, there are reliance probabilities associated with each pair of nodes in the new probabilistic graph model. If the communication channel from node i and node j is disrupted, both 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are zeros. 
	The random state variables with binary values ( =𝜃 or ≠𝜃) can be extended to multiple values or continuous. For instance, one sensor measures a value (e.g. temperature or flow speed) which follows some distribution, as in prediction probability.  If there are a finite set of possible values 𝜃1,…,𝜃𝑁 for state variables. The prediction probability ℙ𝑥𝑘=𝜃𝑛 and reliance probability ℙ𝑥𝑗=𝜃𝑛𝑥𝑖=𝜃𝑚, where 1≤𝑚,𝑛≤𝑁, can be enumerated similarly. As a simplification without loss of generality, in this paper we assume that the state variables take binary values. 
	The edges in the probabilistic graph are directional. The neighbors of each node can be further differentiated as source nodes or destination nodes, as illustrated in Figure 2. For one node, its source nodes are those sending information to this node, whereas the destination nodes are those receiving information from it. When receiving different cues from source nodes, a CPSS node can update its prediction probability to reflect its perception of the world. The aggregation of prediction probabilities sensitively depends on the rules of information fusion during the prediction update. 
	/
	Figure 2. Source and destination nodes with respect to node j
	If 𝑃𝑥𝑘 and 𝑃(𝑥𝑘𝐶) denote the probabilities of a positive and a negative prediction from node k respectively, we define the best-case fusion rule as
	 𝑃′𝑥𝑘=1−1−𝑃𝑥𝑘𝑖=1𝑀𝑃𝑃(𝑥𝑖)1−𝑃(𝑥𝑘|𝑥𝑖)𝑗=1𝑀𝑁𝑃(𝑥𝑗𝐶)1−𝑃(𝑥𝑘|𝑥𝑗𝐶)  (4)
	where node k updates its prediction based on its own current prediction and those cues from its 𝑀𝑃+𝑀𝑁 source nodes, out of which 𝑀𝑃 of the source nodes provide positive predictions whereas 𝑀𝑁 of them provide negative predictions, 𝑃(𝑥𝑘|𝑥𝑖) indicates the probability that a positive message from node i leads to a positive prediction of node k, and 𝑃(𝑥𝑘|𝑥𝑗𝐶) is the probability that a negative message from node j leads to a positive prediction of node k. Therefore, if any of the cues from the source nodes is positive, the prediction of the node is positive. Some variations of this fusion rules exist. For instance, the previous prediction from itself can be either included or excluded during the update. 
	Similarly, the worst-case fusion rule can be defined as
	 𝑃′𝑥𝑘=𝑃𝑥𝑘𝑖=1𝑀𝑃𝑃(𝑥𝑖)𝑃(𝑥𝑘|𝑥𝑖)𝑗=1𝑀𝑁𝑃(𝑥𝑗𝐶)𝑃(𝑥𝑘|𝑥𝑗𝐶)  (5)
	That is, if any of the cues from the source nodes is negative, the prediction of the node is negative. The Bayesian fusion rule is defined as
	 𝑃′𝑥𝑘=𝑃(𝑥𝑘)maxP𝑃(𝑥𝑘)𝑟1−𝑃𝑥𝑘𝑆−𝑟𝑃(𝑥𝑘)𝑟1−𝑃𝑥𝑘𝑆−𝑟𝑑𝑃   (6)
	where the prediction of the node is updated to 𝑃′ from prior prediction 𝑃, and out of S cues that the neighboring nodes provide, r of them provide are positive, if the maximum likelihood principle is taken.
	The probabilistic graph model provides a system level abstraction and a mesoscale description of CPSS networks, where information exchange and aggregation are captured with the overall probabilistic measures instead of the detailed level of information elements. More details about the probabilistic graph model can be found in Ref.[5].
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	The information dynamics models are to characterize and predict how information is consumed and affects the decision making of individual nodes in a networked CPSS environment. In CPSS networks, each node produces information by sensing and processing. Information is exchanged between nodes. When a node receives some information from others, the received information is combined and digested, which is then used to update the prediction of the node. Thus the prediction probabilities of CPSS nodes are dynamically updated with the mutual influence from each other. As a result, strong dependencies exist among the prediction probabilities from different nodes. 
	As an extension of previous work [2][3], the dynamic changes of network topology are considered in the proposed VAR models, where the connections between nodes can vary instead of being static. The proposed data-driven models can be updated periodically. When the network topology is changed, the VAR models can be re-parameterized with the new training dataset. Furthermore, a new latent variable VAR model is proposed so that the hidden correlations can be parameterized with latent variables. This enables the linear VAR models to capture more complex dependency relations. 
	In our information dynamics models, the effects of information diffusion are quantified by the prediction probabilities associated with nodes. The influences and interdependency among information producers and consumers are captured as functions of these probabilities. Generally speaking, the dynamics of prediction probabilities can be modelled by 
	 𝑑𝑃𝑥1,𝑡𝑑𝑡=𝑔1𝑃𝑥1,𝑡,…,𝑃𝑥𝑛,𝑡+𝜖1⋮𝑑𝑃𝑥𝑛,𝑡𝑑𝑡=𝑔𝑛𝑃𝑥1,𝑡,…,𝑃𝑥𝑛,𝑡+𝜖𝑛  (7)
	where 𝑔1, …, 𝑔𝑛 can be linear or nonlinear functions to capture the interdependency between prediction probabilities 𝑃𝑥𝑘’s in the probabilistic graph model as introduced in Section 2.3. The high correlation between nodes is incorporated in modeling the dynamics, where the evolution of the prediction probability for each node is characterized. With the data-driven approach, the dynamics model can be simplified as time series in
	 𝒑𝒙,𝑡=𝒇(𝒙,𝑡)+𝝐(𝒙)  (8)
	where 𝒙=(𝑥1,…,𝑥𝑛) denotes the vector of state variables for all nodes, 𝒑(𝒙,𝑡)=(𝑃(𝑥1,𝑡),…,𝑃(𝑥𝑛,𝑡)) is the vector of all prediction probabilities, and 𝝐=(𝜖1,…,𝜖𝑛) characterizes the uncertainty.
	Three information dynamics models are introduced here to capture the information diffusion in CPSS networks based on the prediction probabilities that the nodes produce meaningful information. The first model is the latent variable VAR where hidden state variables are introduced. The second one is the topology-informed VAR model where the dynamic network topology is applied for more flexible and efficient model training. The third one is the topology-informed GPR model where the connectivity provides additional information about the similarity between nodes. In the VAR modeling approach, the interactions of the individual prediction probabilities are directly modeled with the parameters in VAR models. The parameters or coefficients of the linear models capture the coupling explicitly as functional relationships. That is, the prediction probability of one node is a function of the probabilities from its neighbors. The prior knowledge of network topology provides us a more compact VAR model. In the GPR modeling approach, the time series with inputs of time and node labels is developed based on both spatial and temporal correlations. The correlations are captured implicitly with the covariance or kernel functions in the model.
	The effects of information accumulation are manifested by how well CPSS nodes make sound decisions. The accuracy and effectiveness of decisions are quantified by the probabilistic measures of their prediction capabilities, i.e. prediction probabilities. Based on new information, the CPSS nodes update their prediction probabilities as their perceptions of the world based on certain information fusion rules. The information dynamics models, discretized as time series models, elucidate how the prediction probabilities of nodes in the network are correlated. The understanding of correlation helps us to answer design questions, such as how to design network topology to control variability or fluctuation of prediction capabilities, how to assign key influencers in the network to improve the effectiveness of information propagation, and others. 
	To train the proposed data-driven models, training data are generated from simulations of information propagation in the probabilistic graph model. The coefficients in the VAR models and hyperparameters in the GPR models are first trained based on the simulation data before they can be applied for future prediction. During simulations, predictions about the state of the world are randomly generated based on the prediction probability for each node. The information exchanged between nodes is also generated based on the reliance probabilities. Based on information fusion rules introduced in Section 2.3, the prediction of each node is then updated. The new predictions are recorded and the statistics are used to update the prediction probability. The above simulation procedures are repeated iteratively for each time epoch, and the evolutions of the prediction probabilities are simulated. 
	In the remainder of this section, the VAR modeling approach is introduced in Section 3.1, where the latent variable VAR model and the topology-informed VAR model are introduced.  In Section 3.2, the new spatial-temporal GPR model is described, where the correlation along time for each node and correlation between nodes are captured based on a new kernel function. 
	VAR models provide a direct approach to represent time-dependency and mutual influences between variables in time series problems. In traditional VAR models, it is assumed that all variables are linearly dependent on each other for each intermediate step. Here, a latent variable VAR and a topology-informed VAR model are proposed. The prior knowledge of network topology is incorporated in model training, and functional dependency between nodes is directly modeled with the adjacency information. That is, two prediction probabilities are functionally related to each other at two immediate time steps only if there is a direct connection between the two nodes. This approach can reduce the number of parameters to be trained and improve the training efficiency.
	The traditional VAR time series model is 
	 𝑷𝑠=𝑨0+𝑙=1𝐿𝐀𝑙𝑷𝑠−𝑙+𝝐  (9)
	where the values of prediction probabilities for all 𝑛 nodes at the s-th time step form the column vector 𝑷𝑠=(𝑃1𝑠,…,𝑃𝑛(𝑠)). The prediction probabilities at the s-th time step are dependent on the values of 𝑷𝑠−1, …𝑷𝑠−𝐿 at all the previous L steps. 𝑨0∈ℝ𝑛 is the column vector of intercepts that indicate the bias. The noise 𝝐~𝒩(𝟎,𝚺𝜖) is modeled as the multi-variant normal random variable, and the 𝑛×𝑛 coefficient matrices 𝐀𝑙’s capture the interdependency between prediction probabilities. The VAR model in Eq. (9) captures the time and location dependencies of nodes simultaneously as the linear relationships. The time series model captures the memory effect where the data sharing history in the previous L steps affects the current values. It also implicitly captures the potential effect of possible delays in communication, where data arriving at a node could be sent by other nodes several time steps before. The positive or negative signs of the elements in 𝐀𝑙’s indicate the positive or negative correlations of the pairs. The correlations will cause fluctuations of the 𝑷 values between 0 and 1. 
	One issue of VAR for network modeling is that the number of parameters increases quadratically as the number of nodes increases. In the topology-informed VAR model, not all parameters in Eq. (9) are equally important. If one node is connected with and shares information directly to another node, the information dependency is more evident than those that are not directly connected. Therefore, the topology of the network provides indications of dependency. This prior knowledge can be applied to the VAR model as the constraints to reduce the effective coefficients and simplify the model training process.  In a sparsely connected network, dependency between nodes is loose, and the number of effective coefficients becomes small. This will improve the efficiency of the training process where the required training data size can be reduced accordingly. 
	The topology-informed VAR model is defined as
	 𝑷𝑠=𝑨0+𝑙=1𝐿(𝐃𝑇∘𝐀𝑙)𝑷𝑠−𝑙+𝝐  (10)
	where 𝐃=𝑑𝑖𝑗𝑛×𝑛 is the adjacency matrix of the network with n nodes. Its elements are 𝑑𝑖𝑗=1 if a directed edge exists from node i to node j, and 𝑑𝑖𝑗=0 otherwise. The diagonal elements 𝑑𝑖𝑖=1 for all i’s. In addition, 𝑇 is the matrix transpose operator, and ∘ is the element-wise product or Hadamard product between two matrices. 
	In the original VAR model in Eq. (9), the number of parameters or coefficients that need to be calibrated through training is 𝑛+𝑛2𝐿. When the topology is considered as the constraint, the number of parameters is reduced to 𝑛+𝑒𝐿 where 𝑒 is the number of directed edges in the graph. The reduction is significant if the nodes are sparsely connected. With a smaller number of parameters, the training or data fitting process can be more efficient where the required number of training data points for good fitting is also reduced. Note that the topology-informed VAR is reduced to the original VAR when the network is fully connected.  
	The training of topology-informed VAR model in Eq. (10) can be implemented as a constrained optimization problem, where the loss or error of model prediction is minimized subject to constraint
	 𝑙=1𝐿(𝚷−𝐃𝑇)∘𝐀𝑙=𝟎  (11)
	where 𝚷 is a matrix with the same size of 𝐃 and all elements are 1’s. ⋅ is the matrix norm which quantifies the distance to the origin and can be calculated with L2 norm. Constrained nonlinear optimization algorithms can be applied to solve this training problem. Because the elements in coefficient matrices 𝐀𝑙’s contain the physical meanings of adjacency between nodes, they are also related to the reliance probabilities as described in Section  2.3. Therefore, the coefficients can also be treated as probabilities. The values of the coefficients can be further constrained to between 0 and 1.
	Notice that all coefficients and parameters of the VAR models can be time-dependent. When the network topology dynamically changes, the model parameters need to be re-calibrated to reflect the changes. One advantage of data-driven modeling is that the model parameters can be updated frequently once new datasets are available. The proposed VAR models can be readily applied to the dynamic CPSS networks where the topology is not fixed and evolves along time.
	More complex models can be applied to capture the functional interdependency between prediction probabilities. Here, latent variables or hidden state variables are introduced to capture the inherent correlations between prediction capabilities. The latent variable VAR model is defined as
	 𝑷𝑠=𝐁𝒀𝑠+𝜼  (12)
	 𝒀𝑠=𝑙=1𝐿𝐓𝑙𝒀𝑠−𝑙+𝜺  (13)
	where Eq. (12) captures the relation between observable 𝑷∈ℝ𝑛 and hidden state or latent variables 𝒀∈ℝ𝐾, and the evolution of hidden state variables as state transition is modeled in Eq.(13). Here, 𝐓𝑙∈ℝ𝐾×𝐾 (𝑙=1,…,𝐿) is the coefficient matrix that captures the dependency between the hidden state variables, and 𝐁∈ℝ𝑛×𝐾 is the observation matrix. Notice that the dimension of state vector 𝒀 is not necessarily the same as the dimension of observable vector 𝑷. The number of hidden state variables is typically less than that of the observable in a correlated system, i.e. 𝐾≤𝑛.  𝜼~𝒩(𝟎,𝚺𝜂) and  𝜺~𝒩(𝟎,𝚺𝜀) are associated with the noises of observation and state transition, respectively, and modeled as multi-variate normal variables. In the hidden state model, the interdependency among nodes is captured through the hidden state variables. The direct correlations between state variables cause the inherent correlations between the observables so that more complex dependency relations are captured.  
	In the VAR model in Eq. (9), the parameters to be calibrated are vector 𝑨0, matrices 𝐀𝑙’s, and covariance matrix 𝚺𝜖. For the latent variable VAR model in Eqs. (12) and (13), the parameters to be calibrated or trained include 𝐓𝑙’s, 𝐁, as well as 𝚺𝜂 and 𝚺𝜀. The  Expectation-Maximization (EM) algorithm [38] can be applied to train the model with a large number of parameters. The EM algorithm consists iterations of two alternating steps. In the E-step, the expectation of the log-likelihood for hidden state variables and the available training dataset conditional on the parameters 𝛬={𝐓𝑙,𝐁,𝚺𝜂,𝚺𝜀} is calculated. The available training dataset 𝒫 is the time series of prediction probabilities 𝑷’s. The hidden state variables 𝒱 include all 𝒀’s. The expectation of the log-likelihood at the 𝑘-th iteration is calculated as 𝔼log𝑓𝒫,𝒱𝛬′|𝛬𝑘−1. In the M-step, the parameters are updated by solving the maximization problem 𝛬𝑘=argmax𝛬′𝔼log𝑓𝒫,𝒱𝛬′|𝛬𝑘−1. The E-step and M-step are applied iteratively until the parameters converge. 
	When the number of latent variables 𝐾 is the same as the number of the observable 𝑛, the latent variables can be interpreted as the state variables associated with the individual nodes. The coefficients 𝐓𝑙’s then can be regarded as the associations between nodes in information exchange, similar to the topology-informed VAR model in Section 3.1.1. Similarly, the network topology can be applied as constraints to simplify the model training process. In the topology-informed latent variable VAR model, the state transition in Eq.(13) is replaced by 
	 𝒀𝑠=𝑙=1𝐿(𝐃𝑇∘𝐓𝑙)𝒀𝑠−𝑙+𝜺  (14)
	where 𝐃 is similarly the adjacency matrix of the network. The training of the constrained latent variable VAR model can be done with constrained nonlinear optimization methods. 
	Different from the VAR models where the linear response relationships between variables are assumed, GPR is a more generic regression method that can capture the nonlinearity. GPR also provides uncertainty predictions of responses in addition to the mean values locally at different locations in the input space. In the information dynamics model, the function in Eq.(8) is now a Gaussian process, with the noise level 𝜖~𝒩(0,𝜎02). 
	In the GPR model 𝑦𝑥~𝒢𝒫(𝜇(𝑥),𝑘(𝑥,𝑥′)) with mean function 𝜇(𝑥) and covariance or kernel function 𝑘(𝑥,𝑥′), given 𝑀 samples 𝒙=(𝑥1,…,𝑥𝑀) and the functional values 𝒚(𝒙)=(𝑦(𝑥1),…,𝑦(𝑥𝑀)) as the training dataset, the joint distribution between the training data set and test data set 𝒚(𝒙∗) follows Gaussian distribution 
	 𝒚(𝒙)𝒚(𝒙∗)~𝒩𝟎,𝐊(𝒙,𝒙)𝐊(𝒙,𝒙∗)𝐊𝑇(𝒙,𝒙∗)𝐊(𝒙∗,𝒙∗)  (15)
	where 𝐊(𝒙,𝒙) is the covariance matrix of training data points, 𝐊(𝒙,𝒙∗) is the covariance matrix between the training data and test data. The posterior predictions for new samples 𝒙∗ given the existing ones from 𝒙 is 𝑝(𝒚∗|𝒚)~𝒩(𝝁∗,𝚺∗), where
	 𝝁∗=𝐊𝑇𝒙,𝒙∗(𝐊𝒙,𝒙+𝜎0𝟐𝐈)−1𝒚  (16)
	 𝚺∗=𝐊𝒙∗,𝒙∗−𝐊𝑇𝒙,𝒙∗𝐊𝒙,𝒙+𝜎0𝟐𝐈−1𝐊𝒙,𝒙∗+𝜎0𝟐𝐈  (17)
	with identity matrix 𝐈. GPR models predict not only mean values but also uncertainty associated with the predictions locally. This provides more flexibility than traditional regression models.
	 Here a new GPR model is proposed to explicitly capture the information correlation between nodes as a nonlinear time series model. If the time series of prediction probability for each node is modeled by the traditional GPR model with time as the input, the correlations between different time series cannot be explicitly captured. The proposed GPR model uses two dimensions of inputs, which are time and node label. The node label indicates which time series or which node the output is associated with. With discretized time index 𝑠 and node label 𝑚, the GPR model is
	  𝒚(𝑠,𝑚)𝑦(𝑠∗,𝑚∗)~𝒩𝟎,𝐊𝑠,𝑚,(𝑠′,𝑚′)𝑲𝑠,𝑚,(𝑠∗,𝑚∗)𝑲𝑇𝑠,𝑚,(𝑠∗,𝑚∗)𝑘𝑠∗,𝑚∗,(𝑠∗,𝑚∗)  (18)
	where 𝐊𝑠,𝑚,(𝑠′,𝑚′) is the covariance matrix of existing observations, 𝑲𝑠,𝑚,(𝑠∗,𝑚∗) is the column vector of covariance between existing observations and the new prediction (𝑠∗,𝑚∗). The core idea of this GPR model is the new kernel function with hybrid inputs of continuous time and discrete node label, defined as 
	  𝑘𝑠,𝑚,(𝑠′,𝑚′)=𝑘1𝑠,𝑠′𝑘2(𝑚,𝑚′)  (19)
	which is composed with kernel functions 𝑘1𝑠,𝑠′ for the time dimension and 𝑘2(𝑚,𝑚′) for the spatial dimension indicated by node labels. Kernel function  𝑘1𝑠,𝑠′ needs to capture the temporal correlation which causes fluctuations of prediction probabilities. That is, one node’s prediction probability is not static and it fluctuates between 0 and 1. The fluctuation is a result of positive or negative influence from other nodes as well as the potential time delay factor. In GPR modeling, the fluctuation pattern is usually quantified with a periodic kernel function. Therefore, the periodic kernel here is defined as
	   𝑘1𝑠,𝑠′=exp−2sin2(𝜋𝑑𝐸(𝑠,𝑠′)/𝑝)/𝑙2  (20)
	with hyperparameters of period 𝑝 and length scale 𝑙, and Euclidean distance function 𝑑𝐸(⋅,⋅). 
	Kernel function 𝑘2(𝑚,𝑚′) needs to be designed properly to capture the spatial correlation between nodes. The kernel needs to incorporate the similarity or difference between input variable values, which is quantified as the distance between them. A properly defined distance function allows the kernel to distinguish different input values, which in turn helps build an accurate surrogate. In this work, the input variables for 𝑘2(𝑚,𝑚′) are node labels. Node labels need to include enough information so that the distance or difference between two nodes can be intuitively calculated.  We propose to use 
	   𝑘2𝑚,𝑚′=exp−0.5𝑑𝐻(𝑚,𝑚′)/𝑧2  (21)
	with the hyperparameter of length scale 𝑧, and Hamming distance 𝑑𝐻(⋅,⋅) between node labels. The node labels are based on the adjacency information of the nodes, because two directly connected nodes have stronger interdependency or correlation with information sharing. If two nodes have similar connectivity in the neighbourhood, i.e. they have similar information sources, then the values of their prediction probabilities should be similar. Thus the labels of the nodes need to reflect the topology of the network. In combination with the Hamming distance, the node labels are encoded as binary strings.  For a network with n nodes, the node label is an n-bit binary number, where each bit corresponds to a node. In the label of node i, if node j is directly connected to node i, the bit corresponding to node j is “1” in the label of node i. Otherwise, it is “0”. For example, the labels for a four-node network are four-bit strings as “𝑏3𝑏2𝑏1𝑏0”, where 𝑏3, 𝑏2, 𝑏1, 𝑏0 correspond to nodes 3, 2, 1, and 0, respectively. If node 0 is connected to nodes 1 and 3, and node 1 is also connected to node 2, the labels for nodes 3, 2, 1, and 0 will be “1001”, “0110”, “0111”, and “1011”, respectively. The bit for the node itself is always set to be “1”.  The difference between two node labels measured by the Hamming distance indicates to some extent how strong the correlation is between the two nodes. A small difference indicates that the two nodes are connected to similar neighbours and have similar information sources. For instance, in the above four-node example, the distance between node 3 and node 2 is 𝑑𝐻𝑚3,𝑚2=4. Similarly, 𝑑𝐻𝑚3,𝑚1=3, 𝑑𝐻𝑚3,𝑚0=1. The prediction of node 3 is more similar to the one of node 0 than the other two nodes, given that node 3 is directly connected to node 0. The Hamming distance based on the labels can provide some estimations of differences that are meaningful for the GPR surrogate model. Therefore, correlations of information between nodes can be quantified based on the labels. 
	4 Demonstrative Examples
	4.1 Demonstration of VAR Models
	4.2 Demonstration of Latent Variable VAR Model
	4.3 Demonstration of Spatial-Temporal GPR Model

	In this section, several examples are used to demonstrate the proposed information dynamics models. Some simple networks are constructed with the associated prediction and reliance probabilities randomly generated. A CPSS network simulator ProbNet is developed to simulate the information update based on Monte Carlo sampling. The proposed information dynamics models were developed and compared with the Monte Carlo simulation results. Both the simulator and the information dynamics models were implemented in python programming language.  
	Monte Carlo sampling is applied to simulate the process of prediction probability updates. In each time step, random samples of observations are generated for each node based on its current prediction probability. Then the observations are shared with the neighboring nodes, and the shared information is sampled based on the reliance probabilities. When a node receives the information from its source nodes, a fusion rule (e.g. worst-case, best-case, Bayesian) is applied to update its prediction. The predictions are compared with the randomly generated ground truth state value and the correct instances are recorded. The above sampling procedure repeats many times, and the probability of correct prediction for each node is obtained and updated for this time step. The simulation clock advances, and the next iteration of update is done in the same way.
	The VAR models are first demonstrated with a four-node-four-edge example in Figure 3 (a). The simulation data are collected to train the VAR model in Eq. (9) with lag order L=2. The training is done with the simulation data from the first 50 time steps. The forecast in the next 30 time steps is generated from the VAR model. The same data are used to train the constrained VAR model in Eq. (10). The results are shown in Figure 3 (b) and (c) respectively, where the solid lines are the simulated probabilities and the dash lines indicate the predictions or forecasts from the models. The shaded regions indicate the predicted error bounds with one standard deviation (±𝜎). Here the worst-case fusion rule is applied in the simulation. It is seen that the models predict the general trend well. The predictions from the two models are similar. Similar to any other time series models, VAR models focus more on the near-term forecasts. The forecasts of the distant future are more of the average trend.  The calibrated coefficients of the two VAR models after training are compared in Table 1.  If there is no directed edge connection between nodes, the corresponding coefficients in the constrained VAR model are zeros. Notice that some fitted coefficients in the traditional VAR model have negative values, whereas the ones in the constrained VAR model are all positive with values between zero and one. Since the values of both independent and dependent variables here are probabilities, it is difficult to interpret the negative coefficients. In contrast, the fitted coefficients in the constrained VAR model are associated with the reliance probabilities. They can be interpreted as the conditional probability of positive prediction for a node given its information source. Therefore, the sparser set of parameters in the constrained VAR model provides both efficient and physically meaningful representations. To quantitatively compare the forecast accuracy, mean squared error (MSE), which is the average squared difference between the forecasts and the original data during the forecast period, is calculated. The MSE for the VAR model is 0.02083, whereas the one for the constrained VAR model is 0.02116. Although the coefficients in the constrained VAR model are much sparser and there are only 13 out of 36 coefficients are non-zero, the model still can have the similar performance as in the traditional VAR model.
	/
	Figure 3. The simulated prediction probabilities and forecast with 50 time steps of training. (a) the four-node-four-edge example; (b) result of the VAR model (MSE=0.02083); and (c) result of the constrained VAR model (MSE=0.02116). 
	Table 1. Comparison of the calibrated parameters between the VAR model and constrained VAR model in Figure 3 for the four-node-four-edge network.
	Constrained VAR
	VAR
	00.3479300.46340T
	−0.699570.86059−0.14549−0.13852T
	𝑨0
	000.344520000.500530 00.32673 000.0733500.148870.00713
	−0.309890.374121.13367−0.35650−0.18996−0.040540.672260.241230.80635−0.292931.96312−1.301830.332541.073811.376250.26925
	𝐀1
	0.1867800.422750000.2511900000000.005820.03474
	1.32495−0.519060.84116−0.311870.854810.292810.534600.09564−3.139191.63936−0.251010.05738−2.11252−0.60259−0.18614−0.05667
	𝐀2
	To further demonstrate the training efficiency, fewer training data are applied to the four-node-four-edge example. Only the first 10 steps of simulation data are used to train the VAR models. The results are shown in Figure 4. The traditional VAR model is not fully trained and the predictions become very unstable with the limited training data, whereas the constrained VAR model still predicts reasonably well. The MSEs for the VAR model and constrained VAR model are 0.16667 and 0.03118, respectively.
	/
	Figure 4. The simulated prediction probabilities and forecast with only 10 time steps of training from (a) the VAR model (MSE=0.16667) and (b) the constrained VAR model (MSE=0.03118). 
	The sensitivity of the model performance with respect to the lag order is tested. The traditional and constrained VAR models with lag orders of L = 6 and L = 12 are constructed. The results are compared in Figure 5. It is seen that higher-order models can provide more details of longer-term predictions instead of average values only. However, the number of model parameters to be fitted also increases. As seen in Figure 5 (b), the number of coefficients in the traditional VAR model with lag order L =12 has increased so much that 50 time steps of training data become not enough for model training. In contrast, the constrained VAR model has the reduced number of effective coefficients. As seen in Figure 5 (d), the model with L = 12 shows good prediction performance. 
	/
	Figure 5. The sensitivity studies of different lag orders. (a) VAR model with L = 6 (MSE=0.03522); (b) VAR model with L = 12 (MSE=0.15196); (c) constrained VAR model with L = 6 (MSE=0.02697); (d) constrained VAR model with L = 12 (MSE=0.04394). 
	A second example is to demonstrate how data-driven modeling can be applied to dynamic networks where topology changes along time. As shown in Figure 6 (a), an 8-node network with 10 edges is initially constructed. After 30 time steps, the network topology is changed to 18 edges at the second epoch. The network is further changed to 54 edges during the third epoch. The simulated and forecasted prediction probabilities with the constrained VAR model are shown in Figure 6 (b), whereas the forecasts by the traditional VAR model are shown in Figure 6 (c). For each epoch of 30 time steps, the data of the first 20 time steps are used to train the VAR models. The forecasts of the next 10 steps are compared with the simulation data. A different case is shown in Figure 6 (d), where the numbers of edges change to 43 and 10 during the next two epochs from the same initial 8-node-10-edge network as in Figure 6 (a).  The simulation and forecast results are shown in Figure 6 (e) and (f). It is seen that the constrained VAR model predicts the trends reasonably well even with the dynamic topological changes and small training datasets. Dynamically evolving networks may not allow us to collect a large amount of data for training. 
	As also seen in Figure 6, the fluctuation patterns of prediction probabilities vary when the network topology changes, because information sharing patterns are different. When there are more connections, the coupling between nodes becomes stronger. The prediction probabilities tend to fluctuate more and be more synchronized. When a node does not receive information from others, such as nodes 0, 6, and 7 during the first epoch and nodes 1 and 4 during the third epoch in Figure 6 (d), the prediction can still fluctuate as a result of pure random effects. Some levels of information sharing suppress the fluctuations. Yet fully connected network can amplify the fluctuation with synchronization. 
	/
	 Figure 6. The dynamic 8-node network with topology changes: (a) 8-node-10-edge network changes to 18 and 54 edges along time; (b) the constrained VAR model (MSE=0.05563); (c) the VAR model (MSE=0.20507); (d) 8-node-10-edge network changes to 43 and 10 edges along time; (e) the constrained VAR model (MSE=0.05997); and (f) the VAR model (MSE=0.24637).
	Here the latent variable VAR model is demonstrated. The model is constructed to predict the previous 4-node-4-edge network example in Figure 3 (a). Different values of factor number 𝐾 and lag order 𝐿 in Eqs. (12) and (13) are tested. The results are shown in Figure 7. The MSEs of forecasts from the latent variable VAR, topology constrained VAR, and traditional VAR are compared in Table 2. The forecasts by latent variable VAR and constrained VAR are more accurate than those by traditional VAR. Similar to other VAR models, when the lag order increases, the longer-term fluctuation can be predicted. In comparison with  Figure 5 (a) for traditional VAR model of lag order 𝐿=6, the results in Figure 7 (b), (d), and (f) with the same lag order are more stable and accurate. Therefore, introducing latent variables helps identify the intrinsic interdependency between observable variables.  
	Table 2. Comparison of forecast MSEs by the latent variable VAR, constrained VAR, and traditional VAR models
	Traditional VAR
	Constrained VAR
	Latent variable VAR
	0.04401
	0.04117
	0.04138
	𝐿 = 2
	𝐾=1
	0.05372
	0.03486
	0.04187
	𝐿 = 6
	0.02223
	0.01844
	0.01790
	𝐿 = 2
	𝐾=3
	0.05726
	0.02696
	0.02634
	𝐿 = 6
	0.03481
	0.03108
	0.03167
	𝐿 = 2
	𝐾=4
	0.03994
	0.02238
	0.02573
	𝐿 = 6
	/
	 Figure 7. The latent variable VAR model forecasts for 4-node-4-edge network with different latent variable number K and lag order L. (a) K=1, L=2; (b) K=1, L=6; (c) K=3, L=2; (d) K=3, L=6; (e) K=4, L=2; (f) K=4, L=6.
	The topology constrained latent variable VAR is further demonstrated with the 4-node-4-edge network example. With the factor number fixed as 𝐾=4, three cases with different lag orders are compared. The results of MSEs from the constrained latent variable VAR model, in comparison with the latent variable VAR, constrained VAR, and traditional VAR, are shown in Table 3. It is seen that the topology constraints can help improve the forecast accuracy for both VAR and latent variable VAR models. The accuracy levels are similar for these two constrained models. The forecasts of the latent variable VAR models with and without topology constraints are also shown in Figure 8. As the lag order increases, the number of coefficients to be trained also increases, which requires more training data. The topology constraints can effectively reduce the number of coefficients and improve the training efficiency with less training data, such as the case when 𝐿=8.
	Table 3. Comparison of forecast MSEs by constrained latent variable VAR, latent variable VAR, constrained VAR, and traditional VAR with 𝐾=4
	Traditional VAR
	Constrained VAR
	Latent variable VAR
	Constrained latent variable VAR
	0.08594
	0.07330
	0.08165
	0.06912
	𝐿 = 3
	0.06606
	0.04918
	0.07160
	0.05405
	𝐿 = 4
	0.28155
	0.04116
	0.26609
	0.04178
	𝐿 = 8
	/
	 Figure 8. The latent variable VAR model forecasts for the 4-node-4-edge network with different lag orders where K=4. (a) L=3 with constraints; (b) L=4 with constraints; (c) L=8 with constraints; (d) L=3 without constraints; (e) L=4 without constraints; (f) L=8 without constraints.
	We also implemented and tested the proposed spatial-temporal hybrid GPR time series model to predict the dynamics of prediction probabilities. The results for the 3-node-3-edge example are shown in Figure 9. Two different data fusion rules, worst-case and best-case scenarios, are applied here. The results for the 8-node-10-edge example are shown in Figure 10. Compared to the previous linear VAR models which only predict the general trend in long term, the GPR model predicts the nonlinear dynamics of probabilities better. More fluctuations for both means and variances are observed in the forecasts. This is because of the kernel functions in GPR models which are able to capture differences locally based on the distance metrics. Thus the GPR model provides more details about the long-term dynamics in the networks. The proposed GPR model with the considerations of both spatial and temporal correlations between nodes captures the information dependency between nodes. 
	When all 8 nodes in the network are fully connected, the simulation and forecast results of the 8-node-56-edge example are shown in Figure 11. Because each node is connected with all other nodes, very strong correlations exist in the fully connected network. It is seen that the prediction probabilities of all nodes are synchronously fluctuating with the same values after a short period. The GPR model also predicts the synchronized fluctuations with error bounds. 
	/
	 Figure 9. The simulated prediction probabilities and forecast by the GPR model in the 3-node-3-edge example, with (a) the worst-case fusion rule (MSE=0.03203), and (b) the best-case fusion rule (MSE=0.03795).
	/
	 Figure 10. The simulated prediction probabilities and forecast by the GPR model in the 8-node-10-edge example, with (a) the worst-case fusion rule (MSE=0.03924), and (b) the best-case fusion rule (MSE=0.05461).
	/
	 Figure 11. The simulated prediction probabilities and forecasts by the GPR model in the 8-node-56-edge example, with (a) the worst-case fusion rule (MSE=0.06174), and (b) the best-case fusion rule (MSE=0.08055).
	5 Concluding Remarks
	The analyses of the systems level behavior of CPSS networks enable us to design better systems. How to design a system of CPSS which promotes effective information sharing or prevents misinformation propagation is one of the major aspects of design. Therefore, we need models that can characterize and predict the effects of information sharing and system behaviors.  
	In this paper, three information dynamics models are proposed to predict the information propagation within a CPSS network. Based on a recently developed mesoscale probabilistic graph model, the dynamics models are introduced to capture the mutual influences between nodes during their reasoning processes. The representation of prediction correlations between nodes is the central theme in both types of models. The results show that the topological information of networks can improve the efficiency in constructing the time series models. The network topology also has influences on the prediction capabilities of CPSS. Compared to other information diffusion models for CPSS, the proposed two types of models focus on the effects of information propagation on reasoning and prediction, instead of only on the diffusion speed and patterns in the network as in other models such as the epidemic model. 
	The first type of models represent the interdependency between nodes for their prediction capabilities explicitly as linear functions. It is demonstrated that the VAR linear model and latent variable VAR model can predict the general trend and the error bounds well. By introducing prior knowledge of network topology, the proposed topology-informed VAR models can significantly improve the training efficiency by reducing the number of effective coefficients or model parameters. The results show that the information correlations between nodes can be reasonably assumed to be directly related to the network connectivity. The adjacency information is useful to make the VAR models more compact and efficient. This is particularly important for large-scale networks where the number of nodes increases. If the connections remain sparse, the constrained VAR models are scalable. Training efficiency with reduced amount of training data is also important for dynamically evolving networks.
	The proposed two-dimensional GPR model captures the correlated time series patterns, where a new kernel function is developed to consider both the temporal and spatial correlations of the data collected by CPSS nodes. The composite kernel function models the discrete spatial correlation with the topological adjacency relationship between nodes, in addition to temporal correlation. The GPR model has shown the advantage of revealing longer-term nonlinear dynamics in comparison with the linear models. The extent of local fluctuations can be predicted by the GPR model. This is because GPR models predict based on the similarity between inputs which is quantified with the kernel functions. 
	The prediction accuracy from the data-driven models sensitively relies on the training datasets. In general, larger datasets are always better for model training and calibration. The training effectiveness of parameters or hyperparameters also depends on the optimization algorithms applied in the training. For GPR models, the optimization of hyperparameters can affect the accuracy of model predictions. For situations where there is a lack of training data, the proposed modeling approach will not be feasible. Alternative modeling approaches that are based more on the detailed knowledge about the systems will be needed. Another limitation of the data-driven models is that the determination of model-form parameters such as lag orders and number of laten variables relies on empirical sensitivity studies. The choice of the best model form remains problem-specific and requires additional efforts. Nevertheless, it is seen that the physical knowledge of interdependency between nodes can enhance the data-driven approaches in modeling correlations, as demonstrated with the topology-informed VAR models and GPR model. The spatial correlation captured by the adjacency relationships between nodes deserve further studies. 
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