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Abstract

During the Great Recession, Democrats in the United States argued that government spending could
be utilized to “grease the wheels” of the economy in order to create wealth and to increase employment;
Republicans, on the other hand, contended that government spending is wasteful and discourages
investment, thereby increasing unemployment. This past year we have found ourselves in the midst
of another crisis where government spending and fiscal stimulus is again being considered as a solution.
In the present paper, we address this question by formulating an optimal control problem generalizing
the model of Radner and Shepp (1996). The model allows for the company to borrow continuously
from the government. We prove that there exists an optimal strategy; rigorous verification proofs for
its optimality are provided. We proceed to prove that government loans increase the expected value of
a company. We also examine the consequences of different profit-taking behaviors among firms who
receive fiscal stimulus.
© 2021 Elsevier B.V. Allrights reserved.
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1. Introduction

The purpose of this paper is to mathematically model optimal fiscal policy with the hopes
of contributing to the ongoing debate between United States’ Democrats and Republicans on
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what government measures should be taken to stimulate the economy. The model was originally
developed by the second named and the third named authors in 2010, shortly after the Great
Recession and the U.S. government’s subsequent bailout of large banks. In the midst of another
major recession from the COVID-19 pandemic, this work offers a timely addition to the third
named author’s seminal contributions to mathematical finance and optimal control.”

The key macroeconomic question considered in this paper is how much — if at all — should
the government inject into the private sector to improve aggregate wealth of the economy? To
this end, we assume that a company can be characterized by four parameters, (x, u, o, r):
the present cash reserve, x > 0, the profit rate, © > 0, the riskiness, ¢ > 0, and the
prevailing interest rate, r > 0. Let (£2, F, {F;};>0, P) be a filtered probability space, where
F; represents the market information available at time ¢. Let W(¢) be a Wiener process w.r.t.
{F:}:>0, representing uncertainty, and Z(¢) be the total dividends subtracted from the fortune
up until time 7. The cash reserve of the company at time ¢, denoted by X(¢), evolves according
to the dynamics

Xt)=x+ut+oW(i)—2(@@), t=>0, (1)

where W(0) =0 and Z(0) > 0.

To model fiscal policies that can “grease the wheels” of the private sector, we assume
that the government may choose to provide a loan to the firm in order to increase the firm’s
expected profit rate from u to p*, where it is assumed that u* > w > 0. This loan is to
be repaid at the interest rate r. It is assumed that the firm may borrow continuously at a
limited rate from the government.’ The above considerations lead us to write the process Z(t)
as Z(t) = Z,(t) — Z_(t) where Z,.(t) and Z_(t), respectively, represent the total dividends
(which may be taxed) paid up to time ¢ and the total loans taken up to time 7. Hence, we
require Z4(t) > 0 for any ¢ and rewrite Eq. (1) as

X(t) = x4+ ut +oW(t)+ Z_(t) — Z.(t). 2)

Let A be the collection of admissible controls (Z,, Z_) which satisfy assumptions (A1)—(A3)
below:

(A1) Z4(¢) is a nondecreasing and cadlag process adapted to {F;};>0.

(A2) Z,(0) € [0,x], and AZ,(t) = Z,(t) — Z(t—) < X(¢t—) for every t > 0.

(A3) Z_(t) is a nondecreasing and differentiable process adapted to {F;};>0 with Z_(0) =0
and dZ_(t)/dt < u* — u for some pu* > u.

Condition (A2) implies that the company cannot make a lump-sum dividend payment greater
than its current fortune. Condition (A3) means that the company may be supplied any amount
less than or equal to (u* — w)dt in each interval dt. It is worth noting that the restriction we
put on Z_(¢) is different from the usual setup of dividend problems where singular controls are
used to represent instantaneous large-scale capital injections. We require that the government
loan is paid back at interest rate r, and the objective of the firm is to maximize its expected net
value (to be defined) by choosing the policy (Z, Z_) optimally. Mathematically, this means

2 This paper has been written for the special issue in memory of the third author, Larry Shepp, who passed away
on April 23rd, 2013. During his later years, one of Shepp’s key research interests concerned stochastic modeling
in finance and economics.

3 1t has been shown in the economics literature that government loans and subsidies to firms can be an effective
means of fiscal stimulus [21].
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we want to compute the value function defined as*

)
Ve = Vo= sip E f e dZ4 (1) — dZ-(0), 3
(Z4,Z-)eA -
where 1y = inf{r : X(¢t) < 0} is the time that the company goes bankrupt and the notation
for_ dZ(t) should be understood as Z(0) + fof dZ(t). The definition implies that V(0) = 0.
Further, V(x) > x for any x since one strategy for taking profit is to take the fortune
immediately; bankruptcy occurs at time 79 = 0.
If we replace A with a smaller admissible class A" = {(Zy, Z_) € A: Z_(t) = 0} and
define the corresponding value function by
_ T
Vx)= sup E; e "dZ (1), 4)
(Z4,Z_)eA! 0-
the problem then reduces to that considered in the seminal paper of Radner and Shepp [24].
But this is equivalent to considering the function V(x; w, i), which corresponds to the case
where the maximum loan rate is zero. Since A’ C A, we have

Vs, 1) = Vixs p, p) = V). &)

The question is as follows: if u* > w, whether Z_(¢) = 0 is strictly suboptimal, i.e., whether
we have V(x) > V(x)? It turns out that we do indeed have strict inequality, which implies that
the expected additional dividend payouts from having the government funds are strictly greater
than the loan cost (until bankruptcy), provided that the company takes profits in an optimal
way to maximize its presumed objective. More generally, we have V(x; u, u*) > V(x; u, u')
for any u* > ' > u; that is, the more the fiscal stimulus offered by the government, the larger
net value of the company (see Section 3.)

Now, what if the company, after borrowing from the government, chooses a “greedy” policy
that maximizes its own dividend payouts without caring to repay the loans? In Section 5.2, we
will show that such a strategy is socially undesirable in that the expected net value of the
company could be smaller than that with no government loans and, moreover, the expected
dividend payouts may not even cover the loan cost. This represents an interesting caveat to the
results of our model: in order to ensure that the mathematically optimal and socially optimal
solution is achieved, the government must play some role in enforcing how the firms who take
government money operate.

The paper is organized as follows. In Section 2 we review the related literature and, in
particular, the results of the seminal work of Radner and Shepp [24], which can be viewed as
a baseline model where the government does not offer any loans to companies. In Section 3
we derive the corresponding free-boundary problem for the value function given in Eq. (3)
and prove the existence of the solution. Further optimal control results for our problem are
provided in Section 4, including how the optimal dividend payout policy changes with the
model parameters. In Section 5, we discuss the economic implications of different dividend
payout policies. Section 6 concludes the paper with the requisite technical proofs.

4 Throughout this paper, we will frequently use notations such as V(x; u, ©*) to indicate that the value function
depends on the drift parameters. But parameters o and r are always omitted since they are not of direct interest
and can be treated as fixed.
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2. Preliminaries

2.1. Solution to the Radner—Shepp model

Consider the problem with u* = u and the value function V(x) defined in Eq. (4), which
we shall refer to as the Radner—Shepp model [24]. The solution was found by Dutta and Radner
[11], Jeanblanc-Picqué and Shiryaev [15] and Asmussen and Taksar [4], and Dutta and Radner
[11] further showed that the company that follows the optimal policy will go bankrupt in a
finite time with probability 1. The optimal policy is to pay out dividends at a reflection barrier
a: if X(t) < a, no payment is made; otherwise, an instantaneous payment is made so that X (¢)
drops to a. By solving the Hamilton—Jacobi—Bellman equation

, d o? 9?
max{Lv(x),1 —v'(x)} =0, L=—-r+ ,uax + > 952’
with the initial condition v(0) = 0, we obtain the solution
vy _ pV—x
- ) 0 S X S &,
V(x)={ y+erte —y-ere (6)

V(a)+ (x — a), a<x < oo,
where y,,y_ are the roots of the indicial equation, y» = (—u % /u? + 2ro?)/o?. The

unknown optimal threshold a can be most easily determined by the smooth-fit heuristic,
V”(a) = 0, which yields

Q1
I
—_
o
oUQ

, (N

given p > 0. If < 0, then one can show a = 0 and V(x) = x; that is, it is always optimal
to “take the money and run”. Without loss of generality, henceforth we assume p > 0, which
means the company is profitable. Interestingly, the threshold a goes to zero either as u | 0 or
as i 1 oco. We also point out for further reference that

et et yity. _p
yrev+t —y_er-t  yyy.
To study the optimal payout policy, we introduce the notation M,(¢; u), which denotes the

unique solution to the Skorokhod reflection problem of the process x + ut + o W(¢) reflected
at the barrier a > 0 [31,32]. That is,

V(a) = ®)

M,(t; p) = sup (x +us +oW(s) —a)", &)

0<s<t

where wt = w Vv 0 denotes the positive part of w. The supremum in Eq. (4) is attained at
Z(1) = Ma(t; p) [24].

For an arbitrary barrier payout policy with level a, we define the expected time-discounted
total dividend payouts as’

T0(a, i)
Da(x) = Da(x: ) = Es [Mu(O; W+ / " et m] (10)
0

5 We write 79 = T9(a, ) to indicate that the bankruptcy time depends on p and a.

4
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As shown in [28], the formula in Eq. (6) is still applicable with a replaced by a, from which
we obtain

er+X — eV—*
S va v oy’ x €1[0,al,
Dy(x; )= { ¥+ T Ve (11)

D(a; p)+(x —a), x>a.

In general, D, does not satisfy the smooth-fit condition at the boundary a. For any x > 0, the
mapping a — D,(x; 1) is maximized at the optimal policy a = a and Dz(x; u) = V(x).

2.2. Literature review

Both Dutta and Radner [11] and Radner and Shepp [24] allow a (u, o)-pair among {(u;, 0;) :
i=1,2,...,n} to be part of the control, and Radner and Shepp [24] found which pair to use
at any given value of X(¢). The solution gave rise to some surprising results, for example that
if the company is nearly bankrupt then it should be very conservative and use the (u;, 0;)-pair
with the smallest o; which seems to be paradoxical to many economists; see the work of Sheth
et al. [27]. For simplicity, in discussing the present question we will limit the company to only
one corporate direction, i.e., n = 1.

Many variants of the Radner—Shepp model have been proposed in the literature [1,5,29].
Décamps and Villeneuve [10] extended the Radner—Shepp model to include a singular control
process representing an investment, and recently, De Angelis and Ekstrom [9] found the optimal
policy for the finite horizon case. For optimal dividend distribution problems with general
diffusion models, see [22,23]. It should be noted that for insurance companies, this dividend
distribution problem also involves finding an optimal reinsurance policy, which gives rise to
another control component that can affect both the profit rate (drift) and the riskiness (volatility)
of the underlying fortune process; see, for example, [3,7,12,14,30].

Another important generalization of the dividend problem is to incorporate capital injections,
which may be in the form of equity issuance. There is a vast literature on this topic; see, among
others, [6,13,17,19,20,25,26,33-35]. For a recent advance in the general theory, see [2]. The
model we will propose in the present paper allows fiscal stimulus in the form of a loan from
the government. However, in all the above references, the capital injection process is allowed to
be singular and, in particular, be of barrier type; in the present paper, we restrict the maximum
rate of government loans (and thus require that the capital injection process be continuous.)

3. Calculation of the value function V(x; u, u*)

We now state the main result of this paper. For our value function defined in Eq. (3), under
the optimal control, the dividend payout process is still of barrier type, though the threshold
is different from that of Radner—Shepp model, and the company continuously borrows at the
maximum possible rate, c = u* — w.

Theorem 1 (Verification). Consider the free-boundary problem
L*v(x) = c, x € [0, al,

v(0) = 0,
Vx) =1, x € [a, 00),
vV/(x) =0, x € [a, 00),
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where both a and v are unknown, ¢ = u* — pu > 0 and
a o2 92
o —_
TRt e
Let V € C? and & > 0 be the solution to this problem. Thgn \A/A(x) = V(x; u, u*), the value
function defined in Eq. (3). The associated optimal policy (Z,,Z_) is

Z.(t) = Ma(t; w*) = sup (x + u's + o W(s) —a)t, Z_(1) = ct.
0<s<t
Proof. The proof is given in Section 6.1. [J

Next, we show that the solution to the free-boundary problem given in Theorem | always
exists. We first notice that £*v = c is just a second-order linear equation with constant
coefficients. Hence, standard differential equation results yield that for x € [0, a], V(x) is
of the form

C * *
——+ A"+ A",
,

where constants y}, y* are obtained by solving a2y R+ py —r =0,

. —MTEV ()4 2ro?
Ve = .
Using boundary conditions V(@) =1 and V"(4) = 0, we find that

%k ,—via * —)/ a
yre _ vie

Ay = e A= T
vy —v2) v2vi—vD

Since V is linear on [a, 0o), the solution can be written as

V(x) = A e’ + A_e”™  —(c/r), x €][0,4l, (12)

Vx)= V@) + (x — a), x € [a, 00). (13)
Finally, the boundary condition \7(0) = 0 implies that a must satisfy
ok e—yj;a * e—yfa

f@@) =0, where f(a;p, u*) = (* r-) + i) - < (14)

O —vH  yi-vH or
We denote the solution to the equation f(a; u, u*) = 0 by a = a(u, u*) to emphasize its
dependence on p and w*. In Proposition 1, we prove that such a solution always exists and
is unique given that 4 > 0 and pu* > w. Hence, by solving f(a) = 0 we obtain the optimal
reflection barrier 4, but, unlike in the Radner—Shepp model, it does not have a closed-form
expression. The only exception is the special case u* = u, where we have a(u, u) = a, the
latter of which is as defined in Eq. (7).

Proposition 1. Assume p > 0 and p* > p. The free-boundary problem in Theorem 1 has a
unique solution (V a) such that VeC?anda > 0.

Proof. It suffices to show that f(a; u, u*) = 0 has only one solution and it is positive, and
then the rest follows from (12) and (13). Using (14), it is straightforward to verify that f is
monotone decreasing, f(0) = u/r > 0, and f(co) = —oo. So there is one and only one root
on (0,00). O
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From (5), we already know that by borrowing money from the government, the company
has an expected net value at least as large as in the Radner—Shepp model without government
loans. Now we prove another key result of this work: as long as the optimal policy is used,
the net value of the company is strictly larger; furthermore, the more money a company can
borrow from the government, the larger net value it has.

Theorem 2. Consider x > 0 and two pairs of parameters (j11, 07) and (fL2, (13).

() If w1 = po = pand puj > p3 > w, then V(x; u, uy) > V(x; u, u3).
(i) If uy = p5 = p* and py < py < p, then V(x; 1, u*) > V(x; pa, u*).

Proof. The proof for part (i) relies on the verification techniques used for proving Theorem 1
and requires the result of Proposition 2. Hence, the proof for this part is relegated to Section 6.2.

To prove part (ii), let a, = da(u,, u*) be the solution to f(a; uz, u*) = 0. Using the
definition of the barrier payout process given in (9), the optimal control for a company
characterized by the five-tuple (x, 2, u*, 0, 7) can be denoted by (Mg, (t; n*), (u* — u2)t).
For another company characterized by (x, w1, u*, o, r), the policy (Mg, (t; u*), (U* — p1)t) is
admissible, which means to make dividend payments at reflection barrier @, but borrow money
at rate u* — u; < u* — wo. Hence,

70 70
Vix; uy, ¥ > Ex [/ e "d Mg, (15 1*) —/ (" — ul)er’dt]
- 0

)
= V(x; pa, u*) + Ex [/ (ny — uz)e”dt] .
0

Given any x > 0, we have 7y > 0 and thus part (ii) of the theorem follows from the assumption
p1 > po. O

4. Choice of the dividend payout barrier

We compare a = a(u, u*) with two suboptimal choices:

a=au, p), a* =a(u*, u").

The threshold a is the same as that defined in Eq. (7), which is the optimal threshold for the
Radner—Shepp model where borrowing is not allowed. The threshold a* represents the greedy
strategy of a firm that has original profit rate p and borrows at rate ¢ = p* — w; the firm
does not care about repaying the loan and thus chooses to use a* to maximize the expected
total dividend payouts (of course, a* is also the optimal threshold for the Radner—Shepp model
where the profit rate of the firm is u*.)

We first prove that a is always less than the Radner—Shepp threshold a. An immediate

consequence is that since a € (0,a), d can be computed numerically using a standard
one-dimensional optimization algorithm.

Proposition 2. Assume u* > u > 0. Then a = a(u, u*) < a(u, ) = a where a is the
optimal threshold of the Radner—Shepp model. Further, for any u} > pi > u, we have the
strict inequality a(u, i) < a(p, 13).

Proof. Recall that in (8) we showed that V(a(u, u); u, ) = p/r. This is actually a special
case of the identity

. 0
Vi, ;1) = —, for u* > p,
7



PA. Ernst, M.B. Imerman, L. Shepp et al. Stochastic Processes and their Applications xxx (xxxx) xxx

which can be straightforwardly verified using the boundary conditions in Theorem 1. By (5),
Vix; w, u*) = V(x; u, u) for every x. Further, both V(x; i, n) and V(x; u, u*) are monotone
increasing in x. Hence, V(a; u, u) = V(a; u, u*) = u/r implies that a < a.

To prove the strict inequality, consider the function f defined in (14) and the mapping
w* = f'(a; u, u*) where f’ denotes the derivative with respect to a. Routine but heavy
calculation gives

3f'(a; ., 1) ro’e v ) Sy
ows [(u)?+2r02P {110+ 200 1
where h(u*) = ao~2,/(u*)? + 2ro2. By computing the first two derivatives, one can verify that
h = 14+h+e?'(h—1) is always positive on (0, c0). Hence, for any a > 0, u* — f’(a; u, u*)
is monotone decreasing. Combining this with the facts that f(0; u, u*) = p/r > 0 and
f(a; u, u*) < 0 for any a > 0, we conclude that u* +— a(u, u*) is also strictly monotone
decreasing. [

We prove in Proposition 3 that g is also smaller than the greedy threshold a* given u* > u.
Hence, in the absence of being held accountable, the firm taking the loan will pay out dividends
later, which might be surprising.

Proposition 3. Assume u* > w > 0. Then a = a(u, u*) < a(u*, u*) = a* where a* is
the optimal threshold of the Radner—Shepp model with profit rate *. More generally, for any
W >y > po, we have a(uy, u*) > a(us, u*).

Proof. We only need to prove the general claim since a* = a(u*, n*) is a special case. Recall
that, for any u < u*, a(u, u*) is the solution to f(a; i, u*) = 0 where f is as defined in (14),
and f(a; u, 1*) is monotone decreasing in a. Observe that in the expression for f, only the last
term ¢ = u* — p depends on . Since w only changes the vertical shift, but not the shape, of
the function f(a; u, u*), we conclude that a(uy, u*) > a(uy, u*) as u* — g < w* —wp. O

To gain further insights into the problem, here we give an alternative proof for the inequality
a < a*. For our model, the net value of a company is the difference between the total dividend
payouts and the total loan cost (both time-discounted). We use (M,(t; u*), ct) to denote a
policy that always borrows money at the maximum rate ¢ and pays out whatever amount that
exceeds a threshold a > 0. For such a policy, the expected net value can be written as

Va(xs i, %) = Da(x; ™) — Calxs po, ™) (15)

where D, (the total dividend payouts) is as defined in (10) and can be computed by (11), and
the total loan cost is given by

To(a, ™)
Ca(x) = Colxs o, u*) = Ex/ ce”"dt.
0

Note that since the company borrows at the maximum rate, both D, and 7y (the bankruptcy
time) do not depend on the original profit rate . Since a is the optimal barrier for the value
function in Eq. (3), we have
D(x; w*) — Calxs p, w*) = Va(x) = Vir(x) = Dgx(x; 1) — Cor (x5 i, ).
On the other hand, a — D, (x; u*) is maximized at a = a* since a* is optimal for the Radner—
Shepp model with profit rate u*. Thus, D;(x; u*) < Dgx(x; u*), which further implies that
8
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Fig. 1. Our model with & = 0.1, r = 0.05 and o = 0.3. In the left panel, we fix x = 0.5, let u* range
from 0.1 to 0.3, and plot a = a(u, u*), Vix) = V(x; (1), D(x) = Ds(x; u*), Clx) = Ca(x; , u*). Note that
a=a(u, u) = 1.200. In the right, we fix u* = 0.15, x = 1, let barrier a range from 0 to 3, and plot the expected
net value V,(x) = V,(x; p, u*), the expected dividend payouts D,(x) = D,(x; ©*), and the expected loan cost
Cy(x) = Cyq(x; , u*). Note that V, is maximized at a = 1.099 and D, is maximized at a* = 1.257.

Ci(x) < Cux(x). For fixed wu, u*, the mapping a +— C,(x) is monotone increasing since a
larger value of the barrier would imply a longer expected “lifetime” of the company. Hence,
we conclude that a < a*.

To compute the function C,, note that

Calri o w) = {1l = gawi )}, where gy(x: p) = E, [0 (16)

As shown in [28], for x € [0, a], g,(x) is the solution to the differential equation L*g = 0
with boundary conditions g’(a) = 0 and g(0) = 1 (cf. [8,18]). Straightforward calculation then
yields that

L yrevieD _yreyia)
galx; p*) = -

p—" e x € [0, al.
y_e "+t —yie

For x > a, we have g,(x; u*) = gq(a; u*) due to the initial dividend payment that forces
X(0) = a. Hence, for each a > 0, we can explicitly compute the value of V, defined in (15),
and the mapping a — V(x) must be maximized at a = a(u, u*).

5. Discussion

5.1. Analysis of the optimal payout policy

We present a numerical example in Fig. 1 illustrating the theoretical results proved in the
previous section. By Theorem 2, when the “socially optimal” barrier a = a(u, u*) is used,
the firm’s expected net value increases monotonically as the size of the loan increases. The
left panel of Fig. 1 shows the growth curve for a firm with original profit rate © = 0.1, as u*
increases from 0.1 (no government loan) to 0.3. The dividend payouts increase at a slightly

9
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faster rate than the cost of the loan, and thus the firm is able to add value by taking on the
government loan, when cost is taken into account.

By Proposition 2, as the firm takes on an increasing amount of government loans, holding
everything else constant, the barrier a actually decreases; see the gray line in the left panel of
Fig. 1. In particular, we have a > a, where a = a(u, p) is the optimal barrier when no money
can be borrowed. From an economic perspective, this says that the firm will choose to pay
dividends sooner if it receives more government funds. In the right panel of Fig. 1, u* is fixed
at 0.15 and we examine the three functions given in (15), V,, D, and C,, for different barrier
levels. The expected net value V, is maximized when the firm selects a, which incorporates
repayment of the loan. The function D, is maximized at a*, the optimal barrier of a firm with
profit rate u* but without access to government loans. As shown in Proposition 3, we always
have a < a*.

The observation that a is less than either a or a* reveals what economists have known for
years about perverse financial incentives but resulting from a purely mathematical perspective
within the constructs of our optimal control problem. When a firm is given money without
oversight, or knows it will be bailed out, it may act more selfishly and recklessly (economists
refer to this “moral hazard”). This also justifies why, in reality, the government often requires,
as a condition attached to stimulus packages or bailouts, that their loans must be paid back
before companies can pay dividends to shareholders. The fiscal stimulus from the government
in the form of a loan does boost the economy, but with the caveat that there are some greedy
incentives at work and therefore requires oversight.

Nevertheless, we point out that @ < a does not mean that the firms may go bankruptcy faster
when borrowing money. Actually, according to our numerical results (not shown here), we
conjecture that for any given i > r and 0 < x < a(u, p), the mapping p* — gacu, un(x; ©*) =
£(u*) is monotone decreasing on [, 00), where g is as given in (16). Since g(u*) = E, [e”’o]
where 1 is the bankruptcy time of the firm using the barrier 4@, this conjecture implies that the
more money a firm can borrow, the longer lifetime it tends to have. Hence, government loans
do improve the financial stability of firms in the sense that bankruptcy can be delayed.

5.2. Analysis of the greedy payout policy

If a company can borrow money at rate u* — w but does not care about repaying the loan,
it would use the greedy threshold a* since it maximizes the expected total dividend payouts.
Numerical experiments were performed to investigate the consequences of such greedy policies,
from which we have made two interesting observations.

First, the expected net value of a greedy company that does take the loan, V,+(x; i, u*),
could be smaller than the value of a company that does not take the loan, V(x; wu, n). That
is, for a greedy company, the additional profit gained by borrowing money may not be able
to even cover the loan cost! In Fig. 2, we give a numerical example of two companies. We
fix x = 1, r = 0.05, with an original profit rate & = 0.08 for Company 1 and p = 0.06 for
Company 2. For Company 1 (solid line), V,«(x; u, u*) keeps increasing as u* increases, which
means that the more money it borrows, an even larger increase in value can be obtained by
using the greedy payout barrier a*. However, for Company 2 (dashed line), when government
loan is not allowed, it has V(1; u, u) = 1.24. But if u* = 0.16, which means to borrow at
rate 0.1, V,«(1; p, u*) drops to 1.17. Therefore, for Company 2, its greedy payout policy is
socially undesirable.

10
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Fig. 2. Behavior of two “greedy” companies with r = 0.05 and x = 1. We plot V= (x; u, u*) (the net value of a
greedy policy) against the parameter u*. The first company has original profit rate © = 0.08 and the second has
1 = 0.06. Both have volatility o = 0.3.

We also find that D,+(x; u*) is not necessarily greater than or equal to Cu+(x; u, u*); that
is, it could be dangerous of the government to lend money to some firms since they may
not even be able to repay the loan (in expectation), though this happens rarely according to
our numerics (only when both p and x are very small). For example, let © = 0.005, u* =
0.055,0 = 0.1, = 0.05 and x = 0.05. One can compute that a* = 0.416 and a = 0.098.
Numerics show that as long as the payout barrier a > 0.34, the net value, V,(x; u, u*), would
be negative.

The above observations also lend support to our claim that government intervention may
be needed in restricting the activities of the firms that receive stimulus until the loans are paid
back. One way to incorporate the government intervention in our mathematical model is to
require that the payout barrier has to be within some pre-specified range, say [@min, @max]- The
parameters amin and amax should be calculated for each individual company separately in order
to guarantee that the company is able to repay the loan. We note that a similar problem was
considered by Paulsen [22] assuming no capital injections or fiscal stimulus.

5.3. Extensions of our model

We may interpret r in our model as an exogenous parameter that is charged by the
government directly, as the government loans may not be funneled through the banking system
and can come in the form of a direct subsidy. One may also consider a more general formulation
of our problem with the value function (cf. [20])

70

Vi, mu*, 8= sup E, e "MdZ, (t) — BdZ_(1)],
(Z4.Z_)eA 0—

where § > 1 represents the proportional cost of borrowing money from the government. When
B =1, there is no additional cost and the value function reduces to the one defined in Eq. (3).

11
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However, one can check that our argument cannot be straightforwardly extended to the case of
B > 1, though it can be used for the case of 8 < 1, the case where we have some proportional
cost of taking the dividends (see Section 6.3.) We leave the case of 8 > 1 to future study.

6. Proofs

6.1. Proof for Theorem 1

The verification consists of two steps. First, we need to check that V(x) is mdeed the
expected net value of the firm when we apply the candidate optimal control function (Z+, Z_).
Second, we need to prove that no other policy can do better. The latter requires the following
lemma.

Lemma 1. The solution V given in (12) and (13) satisfies \7/(x) > 1 and /.:*\A/(x) < c for
any x > 0. Consequently, the following Hamilton—Jacobi—Bellman equation holds:
max{L*V(x)—c, 1 — V'(x)} =0, Vx >0.

Proof. We first show that V" (x) < 0 for any x > (. By the expression of 1% given in (12) and
(13), this is equivalent to proving that, for any x € [0, a],

Ay < AL (). (17
Since by definition y} > 0 and y* < 0, we only need show (17) holds true for x = a. But we
already know that V”(a) = 0 and thus A4 (y})%e?+772% = —A_(y*)%. Hence we conclude
V"(x) < 0.

Since V'(x) = 1 for any x > 4, the non-positivity of V" implies that V'(x) > 1 for any
x > 0. To prove L*V(x) < ¢, notice that V(x) > V(a), V'(x) = V'(a), V"(x) = V"(a) for
any x > a. The claim then follows from the condition that £*V(a) = c. O

Remark 1. The smooth-fit condition, ‘7//(&) = 0, is critical in the above proof. Assume all
the other conditions in Theorem 1 are satisfied. Since V'(x) = 1 for all x > 4, V"(4+) = 0.
If V'(G—) > 0, then V'(G@ — €) < 1 for some € > 0 since V'(a) = 1. If V"(4—) < 0, one can
show that £*V (G+) > c, since there is a jump increase in V'(x)atx =& and £*V(G—) = c.
Therefore, the smooth-fit condition is necessary for the Hamilton—Jacobi—Bellman equation to
hold true.

Now we present our verification proof.

Step 1. We use X to denote the cash reserve process when the candidate optimal control
(Z+, Z_) is applied, and let 7y = 7;° be the time of bankruptcy. First, consider the case
x € [0, a]. The process Z+(t) = M;(t; u*) is _]ust (a multiple of) the local time of the process
X at level 4 ([16], Chap. 3.6). Define o, = 1:0 At and consider the process e~ V(X(a,)) By
1t6’s formula,

eV (X (o))

= V) + / " e LV (X(s))ds + /
0 0

ot

eV (R(s)) [odW(s) — d2+(s)] .

12
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For any s € [0, ‘L'g(], we always have X(s) € [0, 4], and thus £*V(X(s)) = ¢ and V'(X(s))
stays bounded. Hence, the integral with respect to dW is a martingale. Taking expectations on
both sides we obtain

Eve "V (k@) = V0 + E, Cenfeas—azo), 4
0

where we have also used the fact that ‘7’(&) =1, and d2+(t) =0if )A((t) # a. We now claim
that

lim E, e " V(X (a,)) = 0. (19)
—00
If bankruptcy happens, i.e., t(f( < 00, then V(X(t)) = 0 for any ¢ > rof(; if rg( = 00, \7()2(t))
always stays bounded and e™"* — 0, from which (19) follows. For the integral on the right
hand-side of (18), we have
of TO)A( c
lim E, ce ds =E, ce ds < —,
t— 00 0 0— r
[e73

X
N Kl N
lim E, e dZ, (s) = EX'/ e "dZ(s),
0 0-

—>00
by monotone convergence theorem. Hence, letting t — oo in (18), we obtain

X

Vo) =E, [ e [d2+(t) — dZ_(z)]. (20)
0—

In particular, we have established the equality (20) for x = da, which, together with the
expression of 14 given in (13), can be used to show that (20) also holds for x € (a, co).

Remark 2. The smooth-fit condition, V" (@) = 0, is not used in Step 1. One can verify that
the function V, given in (15) is the solution to the ordinary differential equation L*v(x) = ¢
for x € [0, a], with boundary conditions v(0) = 0, v'(a) = 1. Hence, the above argument also
proves that V, is indeed the expected net value of the policy (M,(t; u*), (u* — wr).

Step 2. For any admissible policy Z = (Z,, Z_), let

X

Vz(x) = E, / ® e dZo) — dZ_(1)]

be the expected net value of the firm. Note that both X and 7 now depend on (Z+,AZ_),
though this is not indicated explicitly in the notation. We need to show that Vz(x) < V(x).
By assumption, Z_ is a continuous process but Z is not necessarily so. Therefore, we let Z¢
denote the continuous part of Z. The dynamics of X is given by (2). Applying It6’s formula
to V(X,), we obtain

R it )

Vix)= —/0 oe "V (XENAW )+ L+ L — I + L, (21)

13
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where

I = f U s [V’(X(s))(—dZ_(S)+cdS)—E*V(X(S))ds]v
0
X

b= [ ervaeazio. 2)

= Y e VX6 - VX)),
Ofsf(t/\zé()

I = e "V A TY)).

From Lemma 1, we have V/(x) > 1 and L*V(x) < c¢. Moreover, since ¢ is the maximum rate
of loans, we have —dZ_(s) + cds > 0. We then obtain that

X

At tAT
I > / e " [—dZ_(s)+cds —cds] = —/ e "dZ_(s)
0 0

and
t/\l'o
I, > /(‘) e "dZ:(s).

Further, V’(x) > 1 also implies that

L<— Y eAZs),

Ofsf(t/\rg()

where we have used the fact that X(s) — X(s—) = —(Z(s) — Z;+(s—)). Taking expectations
on both sides of (21) and using the boundedness of V', we get
R it
V(x) > E, e dZi(s) —dZ ()],
0—
since clearly I, > 0. Finally, by letting + — oo, applying monotone convergence theorem and
noting that [ e "*dZ_(s) < 0o, we obtain
X

Vix)> lim E, / e " [dZo(s) — dZ_(s)]

X

—E, [ e dZo(s) — dZ_(5)] = V().
07

which completes the proof.
6.2. Proof for Theorem 2(i)

Let b = a(u, wn3). The value function V(x;u, u3) is attained by the policy, 22 =
(My(t; u3), (u5 — w)t), where money is borrowed at rate 5 — (o and dividend payments are
made at the barrier b. Clearly, this policy is also admissible to a company characterized by
(x, u, uj, o,r) since uy > p3, and we want to show that for any x > 0,

V(s e 1) > Vs, py) = Vi (65 i 1)),
14
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Note that in the above verification proof, we have already shown V(x; u, ut) > sz (x5 o, ).
Let )A(z(t) =x+ut+oW()+dMy(t; u;) — (u5 — )t denote the cash reserve process when
the sub-optimal control Z; is applied. Define

LY + uy ! + G

=—r —+ ——.

! Hox T 2 ax2

By an argument wholly analogous to the Step 2 in Section 6.1, when 7, is applied, we have
V(X7M7MT)2EX (11+12_I3)7

where
1/\1;(2
I = f e [V’(Xz(S); Wy () — py)ds — LYV (Xa(s): MT)dS] .
0
X,

INT,
L -1 > [ e " dMy(s; u3).

To check that the above expression for /; agrees with (22), note that for Z = 22 and ¢ = puf—u,
we have

—dZ_(s) +cds = —(u} — pds + (uF — wds = (ui — ub)ds.

To show that Z, is strictly sub-optimal, we need a slightly finer argument than that used
to prove Theorem 1. Write Vi(x) = V(x; u, u}) to simplify the notation. Recall that V,(x) is
the solution to the free-boundary problem described in Theorem | and a = a(u, u¥) is strictly
smaller than b = a(u, u3) by Proposition 2. Using Lemma 1, it is then straightforward to
verify that

LiVi(x) < uf—p, Yxe(a,bl,
Vix) > 1, Vx €(0,a),
Vi) =1, Vx € [a,b].

Further, the assumption 4§ — u5 > 0 implies that for any x € (0, a) U (a, b],

Y(x) = Vi()(y — p13) = L7Vitx) + (15 — ) > 0, (23)
and ¥ (x) = 0 if x = a. For any set A C [0, c©), define

I(A) = /A e [Vikan e} = uids — £1Vi(Ras))ds |

Choose an arbitrary § > 0, and let A = [0,6 A rg(z] and A, = (§ A r(f(z, tA IOXZ]. For any
t =8, we have I, = I,([0, 1 A 7g2]) = 1,(AD) 4 I,(A}). Consider

X5
5/\1’0

SAIAZ
11(A8)+/ ’ e " (uy — wds =/ e Y (Xa(s))ds.
0

0

Since }220) is a reflected Brownian motion, given any )A(Z(O) = x > 0, we have, almost surely,
the bankruptcy time tOX 2 > 0 and the Lebesgue measure of the set {0 <t < 75 : )A(Q(t) =
a(u, n})} is zero. Recall that for a non-negative measurable function, its Lebesgue integral is

15
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zero if and only if the function is zero almost everywhere. It then follows from (23) that

8/\1’22
Ex/ ’ e_”llf(}?z(s))ds =cs(x) >0, Vx>0,
0

where cs(x) only depends on x. Using (23) again, we find that for any ¢ > &,

t/\r(f{z
Ex(Il) > cs(x) — Ex/ (37”(/1/; — wyds,
0

which further implies that

AT
V(x) > Ex(Ii + I, — 3) > ¢s(x) + Ex/ e [dMy(s; u3) — (uh — wyds] .
Letting t — oo, we conclude that

V(x; pu, 1)) = cs(x) + Vxs w, wy) > Vixs w, u3), Vx> 0.
6.3. Extensions with proportional costs

For B € (0, 1], define the value function Vg by

70
Ve(x; w, u*)= sup E; e "'dZ(t) — BdZ_(1)]. (24)
(Z4.Z_)eA 0—

Observe that
70

B Vs n )= sup E. | eBT'dZi(t) —dZ (1))
(Z4.Z-)eA 0-
Hence, the problem (24) with 8 < 1 can be interpreted as an extension of the main problem
defined in (3) where there is a proportional cost of taking the dividends. For this problem, the
optimal policy is to borrow the money at maximum rate ¢ = p* —u and make dividend payouts
at some barrier dg. Further, (Vg, dg) is the solution to the following free-boundary problem

L*v(x) = Bc, x € [0, al,

v(0) =0,
vVx)=1, x € [a, 00),
v'(x) =0, x € [a, 00).

By the argument following Theorem 1, the value function Vg can still be written in the form
of (12) and (13). To check the existence of dg, one just need to verify the following function
has a unique positive solution,

(—yDe i (ype Be
fﬂ(a) = % % * * +* N
i =y  vivi—vd r
By Proposition 1, fg is monotone decreasing to —oo and observe that fg(0) = [(1 —

B + Bul/r > 0. Hence, dg exists uniquely. Similarly to Lemma 1, one can show that
max{L*Vg(x) — Bc, 1 — Vﬁ’(x)} =0 for all x > 0.

The verification proof is almost the same as in the case of § = 1. The only step that does
not follow immediately from the proof in Section 6.1 is how to bound the term I; defined

16
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in (22). Note that since Vp’z >1> 8, L*Vg < Bcand —dZ_(s)/ds + ¢ > 0, we have

I, = / e " [Vé(X(s))(—dZ_(s) +cds) — E*Vﬁ(X(s))ds] ,
0
X

intX AT,
> / ’ e " [B(—dZ_(s)+ cds)— Bcds] = —/ e " BdZ_(s).
0 0

The rest then follows.
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