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Abstract

During the Great Recession, Democrats in the United States argued that government spending could
e utilized to “grease the wheels” of the economy in order to create wealth and to increase employment;
epublicans, on the other hand, contended that government spending is wasteful and discourages

nvestment, thereby increasing unemployment. This past year we have found ourselves in the midst
f another crisis where government spending and fiscal stimulus is again being considered as a solution.
n the present paper, we address this question by formulating an optimal control problem generalizing
he model of Radner and Shepp (1996). The model allows for the company to borrow continuously
rom the government. We prove that there exists an optimal strategy; rigorous verification proofs for
ts optimality are provided. We proceed to prove that government loans increase the expected value of

company. We also examine the consequences of different profit-taking behaviors among firms who
eceive fiscal stimulus.
c 2021 Elsevier B.V. All rights reserved.

SC: primary 60H10; 60J60; secondary 60G15
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1. Introduction

The purpose of this paper is to mathematically model optimal fiscal policy with the hopes
f contributing to the ongoing debate between United States’ Democrats and Republicans on
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hat government measures should be taken to stimulate the economy. The model was originally
eveloped by the second named and the third named authors in 2010, shortly after the Great
ecession and the U.S. government’s subsequent bailout of large banks. In the midst of another
ajor recession from the COVID-19 pandemic, this work offers a timely addition to the third

amed author’s seminal contributions to mathematical finance and optimal control.2

The key macroeconomic question considered in this paper is how much – if at all – should
the government inject into the private sector to improve aggregate wealth of the economy? To
this end, we assume that a company can be characterized by four parameters, (x, µ, σ, r ):
he present cash reserve, x > 0, the profit rate, µ > 0, the riskiness, σ > 0, and the
revailing interest rate, r ≥ 0. Let (Ω ,F , {Ft }t≥0,P) be a filtered probability space, where
t represents the market information available at time t . Let W (t) be a Wiener process w.r.t.
Ft }t≥0, representing uncertainty, and Z (t) be the total dividends subtracted from the fortune
p until time t . The cash reserve of the company at time t , denoted by X (t), evolves according
o the dynamics

X (t) = x + µt + σW (t) − Z (t), t ≥ 0, (1)

here W (0) = 0 and Z (0) ≥ 0.
To model fiscal policies that can “grease the wheels” of the private sector, we assume

that the government may choose to provide a loan to the firm in order to increase the firm’s
expected profit rate from µ to µ∗, where it is assumed that µ∗

≥ µ > 0. This loan is to
be repaid at the interest rate r . It is assumed that the firm may borrow continuously at a
limited rate from the government.3 The above considerations lead us to write the process Z (t)
as Z (t) = Z+(t) − Z−(t) where Z+(t) and Z−(t), respectively, represent the total dividends
(which may be taxed) paid up to time t and the total loans taken up to time t . Hence, we
require Z±(t) ≥ 0 for any t and rewrite Eq. (1) as

X (t) = x + µt + σW (t) + Z−(t) − Z+(t). (2)

Let A be the collection of admissible controls (Z+, Z−) which satisfy assumptions (A1)–(A3)
below:

(A1) Z+(t) is a nondecreasing and càdlàg process adapted to {Ft }t≥0.
(A2) Z+(0) ∈ [0, x], and ∆Z+(t) = Z+(t) − Z+(t−) ≤ X (t−) for every t > 0.
(A3) Z−(t) is a nondecreasing and differentiable process adapted to {Ft }t≥0 with Z−(0) = 0

and d Z−(t)/dt ≤ µ∗
− µ for some µ∗

≥ µ.

Condition (A2) implies that the company cannot make a lump-sum dividend payment greater
than its current fortune. Condition (A3) means that the company may be supplied any amount
less than or equal to (µ∗

− µ)dt in each interval dt . It is worth noting that the restriction we
put on Z−(t) is different from the usual setup of dividend problems where singular controls are
used to represent instantaneous large-scale capital injections. We require that the government
loan is paid back at interest rate r , and the objective of the firm is to maximize its expected net
value (to be defined) by choosing the policy (Z+, Z−) optimally. Mathematically, this means

2 This paper has been written for the special issue in memory of the third author, Larry Shepp, who passed away
on April 23rd, 2013. During his later years, one of Shepp’s key research interests concerned stochastic modeling
in finance and economics.

3 It has been shown in the economics literature that government loans and subsidies to firms can be an effective
means of fiscal stimulus [21].
2
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e want to compute the value function defined as4

V (x) = V (x;µ,µ∗) = sup
(Z+,Z−)∈A

Ex

∫ τ0

0−

e−r t [d Z+(t) − d Z−(t)], (3)

where τ0 = inf{t : X (t) ≤ 0} is the time that the company goes bankrupt and the notation∫ τ
0−

d Z (t) should be understood as Z (0) +
∫ τ

0 d Z (t). The definition implies that V (0) = 0.
Further, V (x) ≥ x for any x since one strategy for taking profit is to take the fortune
immediately; bankruptcy occurs at time τ0 = 0.

If we replace A with a smaller admissible class A′
= {(Z+, Z−) ∈ A : Z−(t) ≡ 0} and

define the corresponding value function by

V̄ (x) = sup
(Z+,Z−)∈A′

Ex

∫ τ0

0−

e−r t d Z+(t), (4)

the problem then reduces to that considered in the seminal paper of Radner and Shepp [24].
But this is equivalent to considering the function V (x;µ,µ), which corresponds to the case
where the maximum loan rate is zero. Since A′

⊂ A, we have

V (x;µ,µ∗) ≥ V (x;µ,µ) = V̄ (x). (5)

The question is as follows: if µ∗ > µ, whether Z−(t) = 0 is strictly suboptimal, i.e., whether
we have V (x) > V̄ (x)? It turns out that we do indeed have strict inequality, which implies that
the expected additional dividend payouts from having the government funds are strictly greater
than the loan cost (until bankruptcy), provided that the company takes profits in an optimal
way to maximize its presumed objective. More generally, we have V (x;µ,µ∗) > V (x;µ,µ′)
for any µ∗ > µ′

≥ µ; that is, the more the fiscal stimulus offered by the government, the larger
net value of the company (see Section 3.)

Now, what if the company, after borrowing from the government, chooses a “greedy” policy
that maximizes its own dividend payouts without caring to repay the loans? In Section 5.2, we
will show that such a strategy is socially undesirable in that the expected net value of the
company could be smaller than that with no government loans and, moreover, the expected
dividend payouts may not even cover the loan cost. This represents an interesting caveat to the
results of our model: in order to ensure that the mathematically optimal and socially optimal
solution is achieved, the government must play some role in enforcing how the firms who take
government money operate.

The paper is organized as follows. In Section 2 we review the related literature and, in
particular, the results of the seminal work of Radner and Shepp [24], which can be viewed as
a baseline model where the government does not offer any loans to companies. In Section 3
we derive the corresponding free-boundary problem for the value function given in Eq. (3)
and prove the existence of the solution. Further optimal control results for our problem are
provided in Section 4, including how the optimal dividend payout policy changes with the
model parameters. In Section 5, we discuss the economic implications of different dividend
payout policies. Section 6 concludes the paper with the requisite technical proofs.

4 Throughout this paper, we will frequently use notations such as V (x;µ,µ∗) to indicate that the value function
epends on the drift parameters. But parameters σ and r are always omitted since they are not of direct interest
nd can be treated as fixed.
3
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. Preliminaries

.1. Solution to the Radner–Shepp model

Consider the problem with µ∗
= µ and the value function V̄ (x) defined in Eq. (4), which

e shall refer to as the Radner–Shepp model [24]. The solution was found by Dutta and Radner
11], Jeanblanc-Picqué and Shiryaev [15] and Asmussen and Taksar [4], and Dutta and Radner

[11] further showed that the company that follows the optimal policy will go bankrupt in a
finite time with probability 1. The optimal policy is to pay out dividends at a reflection barrier
¯ : if X (t) ≤ ā, no payment is made; otherwise, an instantaneous payment is made so that X (t)
rops to ā. By solving the Hamilton–Jacobi–Bellman equation

max{Lv(x), 1 − v′(x)} = 0, L = −r + µ
∂

∂x
+
σ 2

2
∂2

∂x2 ,

ith the initial condition v(0) = 0, we obtain the solution

V̄ (x) =

⎧⎪⎨⎪⎩
eγ+x

− eγ−x

γ+eγ+ā − γ−eγ−ā
, 0 ≤ x ≤ ā,

V̄ (ā) + (x − ā), ā < x < ∞,

(6)

here γ+, γ− are the roots of the indicial equation, γ± = (−µ ±
√
µ2 + 2rσ 2)/σ 2. The

nknown optimal threshold ā can be most easily determined by the smooth-fit heuristic,
V̄ ′′(ā) = 0, which yields

ā =
2

γ+ − γ−

log
⏐⏐⏐⏐γ−

γ+

⏐⏐⏐⏐, (7)

iven µ ≥ 0. If µ < 0, then one can show ā = 0 and V̄ (x) = x ; that is, it is always optimal
to “take the money and run”. Without loss of generality, henceforth we assume µ > 0, which
means the company is profitable. Interestingly, the threshold ā goes to zero either as µ ↓ 0 or
s µ ↑ ∞. We also point out for further reference that

V̄ (ā) =
eγ+ā

− eγ−ā

γ+eγ+ā − γ−eγ−ā
=
γ+ + γ−

γ+γ−

=
µ

r
. (8)

To study the optimal payout policy, we introduce the notation Ma(t;µ), which denotes the
nique solution to the Skorokhod reflection problem of the process x + µt + σW (t) reflected
t the barrier a > 0 [31,32]. That is,

Ma(t;µ) = sup
0≤s≤t

(x + µs + σW (s) − a)+, (9)

here w+
= w ∨ 0 denotes the positive part of w. The supremum in Eq. (4) is attained at

Z+(t) = Mā(t;µ) [24].
For an arbitrary barrier payout policy with level a, we define the expected time-discounted

otal dividend payouts as5

Da(x) = Da(x;µ) = Ex

[
Ma(0;µ) +

∫ τ0(a,µ)

0
e−r t d Ma(t;µ)

]
. (10)

5 We write τ = τ (a, µ) to indicate that the bankruptcy time depends on µ and a.
0 0

4
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s shown in [28], the formula in Eq. (6) is still applicable with ā replaced by a, from which
e obtain

Da(x;µ) =

⎧⎪⎪⎨⎪⎪⎩
eγ+x

− eγ−x

γ+eγ+a − γ−eγ−a
, x ∈ [0, a],

Da(a;µ) + (x − a), x > a.

(11)

In general, Da does not satisfy the smooth-fit condition at the boundary a. For any x ≥ 0, the
mapping a ↦→ Da(x;µ) is maximized at the optimal policy a = ā and Dā(x;µ) = V̄ (x).

2.2. Literature review

Both Dutta and Radner [11] and Radner and Shepp [24] allow a (µ, σ )-pair among {(µi , σi ) :

= 1, 2, . . . , n} to be part of the control, and Radner and Shepp [24] found which pair to use
at any given value of X (t). The solution gave rise to some surprising results, for example that
if the company is nearly bankrupt then it should be very conservative and use the (µi , σi )-pair
with the smallest σi which seems to be paradoxical to many economists; see the work of Sheth
et al. [27]. For simplicity, in discussing the present question we will limit the company to only
one corporate direction, i.e., n = 1.

Many variants of the Radner–Shepp model have been proposed in the literature [1,5,29].
Décamps and Villeneuve [10] extended the Radner–Shepp model to include a singular control
process representing an investment, and recently, De Angelis and Ekström [9] found the optimal
policy for the finite horizon case. For optimal dividend distribution problems with general
diffusion models, see [22,23]. It should be noted that for insurance companies, this dividend
distribution problem also involves finding an optimal reinsurance policy, which gives rise to
another control component that can affect both the profit rate (drift) and the riskiness (volatility)
of the underlying fortune process; see, for example, [3,7,12,14,30].

Another important generalization of the dividend problem is to incorporate capital injections,
which may be in the form of equity issuance. There is a vast literature on this topic; see, among
others, [6,13,17,19,20,25,26,33–35]. For a recent advance in the general theory, see [2]. The
model we will propose in the present paper allows fiscal stimulus in the form of a loan from
the government. However, in all the above references, the capital injection process is allowed to
be singular and, in particular, be of barrier type; in the present paper, we restrict the maximum
rate of government loans (and thus require that the capital injection process be continuous.)

3. Calculation of the value function V (x; µ, µ∗)

We now state the main result of this paper. For our value function defined in Eq. (3), under
the optimal control, the dividend payout process is still of barrier type, though the threshold
is different from that of Radner–Shepp model, and the company continuously borrows at the
maximum possible rate, c = µ∗

− µ.

heorem 1 (Verification). Consider the free-boundary problem⎧⎪⎪⎨⎪⎪⎩
L∗v(x) = c, x ∈ [0, a],
v(0) = 0,
v′(x) = 1, x ∈ [a,∞),
′′
v (x) = 0, x ∈ [a,∞),

5
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here both a and v are unknown, c = µ∗
− µ ≥ 0 and

L∗
= −r + µ∗

∂

∂x
+
σ 2

2
∂2

∂x2 .

et V̂ ∈ C2 and â ≥ 0 be the solution to this problem. Then V̂ (x) = V (x;µ,µ∗), the value
function defined in Eq. (3). The associated optimal policy (Ẑ+, Ẑ−) is

Ẑ+(t) = Mâ(t;µ∗) = sup
0≤s≤t

(x + µ∗s + σW (s) − â)+, Ẑ−(t) = ct.

Proof. The proof is given in Section 6.1. □

Next, we show that the solution to the free-boundary problem given in Theorem 1 always
exists. We first notice that L∗v = c is just a second-order linear equation with constant
coefficients. Hence, standard differential equation results yield that for x ∈ [0, â], V̂ (x) is
of the form

−
c
r

+ A+eγ
∗
+

x
+ A−eγ

∗
−

x ,

here constants γ ∗
+
, γ ∗

−
are obtained by solving σ 2γ 2/2 + µ∗γ − r = 0,

γ ∗

±
=

−µ∗
±

√
(µ∗)2 + 2rσ 2

σ 2 .

sing boundary conditions V̂ ′(â) = 1 and V̂ ′′(â) = 0, we find that

A+ =
−γ ∗

−
e−γ ∗

+
â

γ ∗
+(γ ∗

+ − γ ∗
−)
, A− =

γ ∗
+

e−γ ∗
−

â

γ ∗
−(γ ∗

+ − γ ∗
−)
.

Since V̂ is linear on [â,∞), the solution can be written as

V̂ (x) = A+eγ
∗
+

x
+ A−eγ

∗
−

x
− (c/r ), x ∈ [0, â], (12)

V̂ (x) = V̂ (â) + (x − â), x ∈ [â,∞). (13)

Finally, the boundary condition V̂ (0) = 0 implies that â must satisfy

f (â) = 0, where f (a;µ,µ∗) =
(−γ ∗

−
)e−γ ∗

+
a

(γ ∗
+)(γ ∗

+ − γ ∗
−)

+
(γ ∗

+
)e−γ ∗

−
a

γ ∗
−(γ ∗

+ − γ ∗
−)

−
c
r
. (14)

We denote the solution to the equation f (a;µ,µ∗) = 0 by â = â(µ,µ∗) to emphasize its
ependence on µ and µ∗. In Proposition 1, we prove that such a solution always exists and

is unique given that µ > 0 and µ∗
≥ µ. Hence, by solving f (a) = 0 we obtain the optimal

eflection barrier â, but, unlike in the Radner–Shepp model, it does not have a closed-form
xpression. The only exception is the special case µ∗

= µ, where we have â(µ,µ) = ā, the
latter of which is as defined in Eq. (7).

Proposition 1. Assume µ > 0 and µ∗
≥ µ. The free-boundary problem in Theorem 1 has a

unique solution (V̂ , â) such that V̂ ∈ C2 and â > 0.

Proof. It suffices to show that f (a;µ,µ∗) = 0 has only one solution and it is positive, and
then the rest follows from (12) and (13). Using (14), it is straightforward to verify that f is
monotone decreasing, f (0) = µ/r > 0, and f (∞) = −∞. So there is one and only one root
on (0,∞). □
6
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From (5), we already know that by borrowing money from the government, the company
has an expected net value at least as large as in the Radner–Shepp model without government
loans. Now we prove another key result of this work: as long as the optimal policy is used,
the net value of the company is strictly larger; furthermore, the more money a company can
borrow from the government, the larger net value it has.

Theorem 2. Consider x > 0 and two pairs of parameters (µ1, µ
∗

1) and (µ2, µ
∗

2).

(i) If µ1 = µ2 = µ and µ∗

1 > µ∗

2 ≥ µ, then V (x;µ,µ∗

1) > V (x;µ,µ∗

2).
(ii) If µ∗

1 = µ∗

2 = µ∗ and µ2 < µ1 ≤ µ∗, then V (x;µ1, µ
∗) > V (x;µ2, µ

∗).

roof. The proof for part (i) relies on the verification techniques used for proving Theorem 1
nd requires the result of Proposition 2. Hence, the proof for this part is relegated to Section 6.2.

To prove part (ii), let â2 = â(µ2, µ
∗) be the solution to f (a;µ2, µ

∗) = 0. Using the
efinition of the barrier payout process given in (9), the optimal control for a company
haracterized by the five-tuple (x, µ2, µ

∗, σ, r ) can be denoted by (Mâ2 (t;µ∗), (µ∗
− µ2)t).

For another company characterized by (x, µ1, µ
∗, σ, r ), the policy (Mâ2 (t;µ∗), (µ∗

−µ1)t) is
admissible, which means to make dividend payments at reflection barrier â2 but borrow money
at rate µ∗

− µ1 < µ∗
− µ2. Hence,

V (x;µ1, µ
∗) ≥ Ex

[∫ τ0

0−

e−r t d Mâ2 (t;µ∗) −

∫ τ0

0
(µ∗

− µ1)e−r t dt
]

= V (x;µ2, µ
∗) + Ex

[∫ τ0

0
(µ1 − µ2)e−r t dt

]
.

iven any x > 0, we have τ0 > 0 and thus part (ii) of the theorem follows from the assumption
1 > µ2. □

4. Choice of the dividend payout barrier

We compare â = â(µ,µ∗) with two suboptimal choices:

ā = â(µ,µ), a∗
= â(µ∗, µ∗).

The threshold ā is the same as that defined in Eq. (7), which is the optimal threshold for the
Radner–Shepp model where borrowing is not allowed. The threshold a∗ represents the greedy
strategy of a firm that has original profit rate µ and borrows at rate c = µ∗

− µ; the firm
does not care about repaying the loan and thus chooses to use a∗ to maximize the expected
total dividend payouts (of course, a∗ is also the optimal threshold for the Radner–Shepp model
where the profit rate of the firm is µ∗.)

We first prove that â is always less than the Radner–Shepp threshold ā. An immediate
consequence is that since â ∈ (0, ā), â can be computed numerically using a standard
one-dimensional optimization algorithm.

Proposition 2. Assume µ∗
≥ µ > 0. Then â = â(µ,µ∗) ≤ â(µ,µ) = ā where ā is the

optimal threshold of the Radner–Shepp model. Further, for any µ∗

1 > µ∗

2 ≥ µ, we have the
strict inequality â(µ,µ∗

1) < â(µ,µ∗

2).

Proof. Recall that in (8) we showed that V (â(µ,µ);µ,µ) = µ/r . This is actually a special
case of the identity

V (â(µ,µ∗);µ,µ∗) =
µ
, for µ∗

≥ µ,

r

7
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hich can be straightforwardly verified using the boundary conditions in Theorem 1. By (5),
V (x;µ,µ∗) ≥ V (x;µ,µ) for every x . Further, both V (x;µ,µ) and V (x;µ,µ∗) are monotone
increasing in x . Hence, V (ā;µ,µ) = V (â;µ,µ∗) = µ/r implies that â ≤ ā.

To prove the strict inequality, consider the function f defined in (14) and the mapping
µ∗

↦→ f ′(a;µ,µ∗) where f ′ denotes the derivative with respect to a. Routine but heavy
calculation gives

∂ f ′(a;µ,µ∗)
∂µ∗

= −
rσ 2e−γ ∗

+
a

[(µ∗)2 + 2rσ 2]3/2

{
1 + h(µ∗) + e2h(µ∗)(h(µ∗) − 1)

}
,

where h(µ∗) = aσ−2
√

(µ∗)2 + 2rσ 2. By computing the first two derivatives, one can verify that
h ↦→ 1+h +e2h(h −1) is always positive on (0,∞). Hence, for any a ≥ 0, µ∗

↦→ f ′(a;µ,µ∗)
is monotone decreasing. Combining this with the facts that f (0;µ,µ∗) = µ/r > 0 and
f ′(a;µ,µ∗) < 0 for any a ≥ 0, we conclude that µ∗

↦→ â(µ,µ∗) is also strictly monotone
decreasing. □

We prove in Proposition 3 that â is also smaller than the greedy threshold a∗ given µ∗ > µ.
Hence, in the absence of being held accountable, the firm taking the loan will pay out dividends
later, which might be surprising.

Proposition 3. Assume µ∗ > µ > 0. Then â = â(µ,µ∗) < â(µ∗, µ∗) = a∗ where a∗ is
the optimal threshold of the Radner–Shepp model with profit rate µ∗. More generally, for any
µ∗

≥ µ1 > µ2, we have â(µ1, µ
∗) > â(µ2, µ

∗).

Proof. We only need to prove the general claim since a∗
= â(µ∗, µ∗) is a special case. Recall

that, for any µ ≤ µ∗, â(µ,µ∗) is the solution to f (a;µ,µ∗) = 0 where f is as defined in (14),
and f (a;µ,µ∗) is monotone decreasing in a. Observe that in the expression for f , only the last
term c = µ∗

− µ depends on µ. Since µ only changes the vertical shift, but not the shape, of
the function f (a;µ,µ∗), we conclude that â(µ1, µ

∗) > â(µ2, µ
∗) as µ∗

−µ1 < µ∗
−µ2. □

To gain further insights into the problem, here we give an alternative proof for the inequality
ˆ ≤ a∗. For our model, the net value of a company is the difference between the total dividend
payouts and the total loan cost (both time-discounted). We use (Ma(t;µ∗), ct) to denote a
policy that always borrows money at the maximum rate c and pays out whatever amount that
exceeds a threshold a > 0. For such a policy, the expected net value can be written as

Va(x;µ,µ∗) = Da(x;µ∗) − Ca(x;µ,µ∗) (15)

where Da (the total dividend payouts) is as defined in (10) and can be computed by (11), and
the total loan cost is given by

Ca(x) = Ca(x;µ,µ∗) = Ex

∫ τ0(a,µ∗)

0
ce−r t dt.

Note that since the company borrows at the maximum rate, both Da and τ0 (the bankruptcy
time) do not depend on the original profit rate µ. Since â is the optimal barrier for the value
function in Eq. (3), we have

Dâ(x;µ∗) − Câ(x;µ,µ∗) = Vâ(x) ≥ Va∗ (x) = Da∗ (x;µ∗) − Ca∗ (x;µ,µ∗).

On the other hand, a ↦→ Da(x;µ∗) is maximized at a = a∗ since a∗ is optimal for the Radner–
∗ ∗

∗
∗
Shepp model with profit rate µ . Thus, Dâ(x;µ ) ≤ Da (x;µ ), which further implies that

8
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Fig. 1. Our model with µ = 0.1, r = 0.05 and σ = 0.3. In the left panel, we fix x = 0.5, let µ∗ range
rom 0.1 to 0.3, and plot â = â(µ,µ∗), V̂ (x) = V (x;µ,µ∗), D̂(x) = Dâ(x;µ∗), Ĉ(x) = Câ(x;µ,µ∗). Note that
¯ = â(µ,µ) = 1.200. In the right, we fix µ∗

= 0.15, x = 1, let barrier a range from 0 to 3, and plot the expected
et value Va(x) = Va(x;µ,µ∗), the expected dividend payouts Da(x) = Da(x;µ∗), and the expected loan cost
a(x) = Ca(x;µ,µ∗). Note that Va is maximized at â = 1.099 and Da is maximized at a∗

= 1.257.

â(x) ≤ Ca∗ (x). For fixed µ,µ∗, the mapping a ↦→ Ca(x) is monotone increasing since a
arger value of the barrier would imply a longer expected “lifetime” of the company. Hence,
e conclude that â ≤ a∗.
To compute the function Ca , note that

Ca(x;µ,µ∗) =
c
r

{
1 − ga(x;µ∗)

}
, where ga(x;µ∗) = Ex

[
e−rτ0(a,µ∗)

]
. (16)

As shown in [28], for x ∈ [0, a], ga(x) is the solution to the differential equation L∗g = 0
with boundary conditions g′(a) = 0 and g(0) = 1 (cf. [8,18]). Straightforward calculation then
yields that

ga(x;µ∗) =
γ ∗

−
e−γ ∗

+
(a−x)

− γ ∗
+

e−γ ∗
−

(a−x)

γ ∗
−e−γ ∗

+
a
− γ ∗

+e−γ ∗
−

a
, x ∈ [0, a].

or x > a, we have ga(x;µ∗) = ga(a;µ∗) due to the initial dividend payment that forces
X (0) = a. Hence, for each a ≥ 0, we can explicitly compute the value of Va defined in (15),
nd the mapping a ↦→ V ∗

a (x) must be maximized at â = â(µ,µ∗).

. Discussion

.1. Analysis of the optimal payout policy

We present a numerical example in Fig. 1 illustrating the theoretical results proved in the
revious section. By Theorem 2, when the “socially optimal” barrier â = â(µ,µ∗) is used,
he firm’s expected net value increases monotonically as the size of the loan increases. The
eft panel of Fig. 1 shows the growth curve for a firm with original profit rate µ = 0.1, as µ∗

ncreases from 0.1 (no government loan) to 0.3. The dividend payouts increase at a slightly
9
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aster rate than the cost of the loan, and thus the firm is able to add value by taking on the
overnment loan, when cost is taken into account.

By Proposition 2, as the firm takes on an increasing amount of government loans, holding
everything else constant, the barrier â actually decreases; see the gray line in the left panel of

ig. 1. In particular, we have ā > â, where ā = â(µ,µ) is the optimal barrier when no money
can be borrowed. From an economic perspective, this says that the firm will choose to pay
dividends sooner if it receives more government funds. In the right panel of Fig. 1, µ∗ is fixed
at 0.15 and we examine the three functions given in (15), Va, Da and Ca , for different barrier
levels. The expected net value Va is maximized when the firm selects â, which incorporates
repayment of the loan. The function Da is maximized at a∗, the optimal barrier of a firm with
profit rate µ∗ but without access to government loans. As shown in Proposition 3, we always
have â < a∗.

The observation that â is less than either ā or a∗ reveals what economists have known for
years about perverse financial incentives but resulting from a purely mathematical perspective
within the constructs of our optimal control problem. When a firm is given money without
oversight, or knows it will be bailed out, it may act more selfishly and recklessly (economists
refer to this “moral hazard”). This also justifies why, in reality, the government often requires,
as a condition attached to stimulus packages or bailouts, that their loans must be paid back
before companies can pay dividends to shareholders. The fiscal stimulus from the government
in the form of a loan does boost the economy, but with the caveat that there are some greedy
incentives at work and therefore requires oversight.

Nevertheless, we point out that â < ā does not mean that the firms may go bankruptcy faster
when borrowing money. Actually, according to our numerical results (not shown here), we
conjecture that for any given µ > r and 0 < x ≤ â(µ,µ), the mapping µ∗

↦→ gâ(µ,µ∗)(x;µ∗) ≡

g̃(µ∗) is monotone decreasing on [µ,∞), where g is as given in (16). Since g̃(µ∗) = Ex
[
e−rτ0

]
where τ0 is the bankruptcy time of the firm using the barrier â, this conjecture implies that the
more money a firm can borrow, the longer lifetime it tends to have. Hence, government loans
do improve the financial stability of firms in the sense that bankruptcy can be delayed.

5.2. Analysis of the greedy payout policy

If a company can borrow money at rate µ∗
− µ but does not care about repaying the loan,

it would use the greedy threshold a∗ since it maximizes the expected total dividend payouts.
Numerical experiments were performed to investigate the consequences of such greedy policies,
from which we have made two interesting observations.

First, the expected net value of a greedy company that does take the loan, Va∗ (x;µ,µ∗),
could be smaller than the value of a company that does not take the loan, V (x;µ,µ). That
is, for a greedy company, the additional profit gained by borrowing money may not be able
to even cover the loan cost! In Fig. 2, we give a numerical example of two companies. We
fix x = 1, r = 0.05, with an original profit rate µ = 0.08 for Company 1 and µ = 0.06 for
Company 2. For Company 1 (solid line), Va∗ (x;µ,µ∗) keeps increasing as µ∗ increases, which
means that the more money it borrows, an even larger increase in value can be obtained by
using the greedy payout barrier a∗. However, for Company 2 (dashed line), when government
loan is not allowed, it has V (1;µ,µ) = 1.24. But if µ∗

= 0.16, which means to borrow at
rate 0.1, Va∗ (1;µ,µ∗) drops to 1.17. Therefore, for Company 2, its greedy payout policy is

socially undesirable.

10
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Fig. 2. Behavior of two “greedy” companies with r = 0.05 and x = 1. We plot Va∗ (x;µ,µ∗) (the net value of a
reedy policy) against the parameter µ∗. The first company has original profit rate µ = 0.08 and the second has
= 0.06. Both have volatility σ = 0.3.

We also find that Da∗ (x;µ∗) is not necessarily greater than or equal to Ca∗ (x;µ,µ∗); that
s, it could be dangerous of the government to lend money to some firms since they may
ot even be able to repay the loan (in expectation), though this happens rarely according to
ur numerics (only when both µ and x are very small). For example, let µ = 0.005, µ∗

=

.055, σ = 0.1, r = 0.05 and x = 0.05. One can compute that a∗
= 0.416 and â = 0.098.

umerics show that as long as the payout barrier a > 0.34, the net value, Va(x;µ,µ∗), would
e negative.

The above observations also lend support to our claim that government intervention may
e needed in restricting the activities of the firms that receive stimulus until the loans are paid
ack. One way to incorporate the government intervention in our mathematical model is to
equire that the payout barrier has to be within some pre-specified range, say [amin, amax]. The
arameters amin and amax should be calculated for each individual company separately in order
o guarantee that the company is able to repay the loan. We note that a similar problem was
onsidered by Paulsen [22] assuming no capital injections or fiscal stimulus.

.3. Extensions of our model

We may interpret r in our model as an exogenous parameter that is charged by the
overnment directly, as the government loans may not be funneled through the banking system
nd can come in the form of a direct subsidy. One may also consider a more general formulation
f our problem with the value function (cf. [20])

V (x;µ,µ∗, β) = sup
(Z+,Z−)∈A

Ex

∫ τ0

0−

e−r t [d Z+(t) − βd Z−(t)],

here β ≥ 1 represents the proportional cost of borrowing money from the government. When
= 1, there is no additional cost and the value function reduces to the one defined in Eq. (3).
11
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owever, one can check that our argument cannot be straightforwardly extended to the case of
> 1, though it can be used for the case of β < 1, the case where we have some proportional

cost of taking the dividends (see Section 6.3.) We leave the case of β > 1 to future study.

6. Proofs

6.1. Proof for Theorem 1

The verification consists of two steps. First, we need to check that V̂ (x) is indeed the
xpected net value of the firm when we apply the candidate optimal control function (Ẑ+, Ẑ−).
econd, we need to prove that no other policy can do better. The latter requires the following

emma.

emma 1. The solution V̂ given in (12) and (13) satisfies V̂ ′(x) ≥ 1 and L∗V̂ (x) ≤ c for
ny x ≥ 0. Consequently, the following Hamilton–Jacobi–Bellman equation holds:

max{L∗V̂ (x) − c, 1 − V̂ ′(x)} = 0, ∀ x ≥ 0.

roof. We first show that V̂ ′′(x) ≤ 0 for any x ≥ 0. By the expression of V̂ given in (12) and
13), this is equivalent to proving that, for any x ∈ [0, â],

A+(γ ∗

+
)2e(γ ∗

+
−γ ∗

−
)x

≤ −A−(γ ∗

−
)2. (17)

ince by definition γ ∗
+
> 0 and γ ∗

−
< 0, we only need show (17) holds true for x = â. But we

lready know that V ′′(â) = 0 and thus A+(γ ∗
+

)2e(γ ∗
+

−γ ∗
−

)â
= −A−(γ ∗

−
)2. Hence we conclude

V̂ ′′(x) ≤ 0.
Since V̂ ′(x) = 1 for any x ≥ â, the non-positivity of V̂ ′′ implies that V̂ ′(x) ≥ 1 for any

x ≥ 0. To prove L∗V̂ (x) ≤ c, notice that V̂ (x) > V̂ (â), V̂ ′(x) = V̂ ′(â), V̂ ′′(x) = V̂ ′′(â) for
ny x > â. The claim then follows from the condition that L∗V̂ (â) = c. □

emark 1. The smooth-fit condition, V̂ ′′(â) = 0, is critical in the above proof. Assume all
he other conditions in Theorem 1 are satisfied. Since V̂ ′(x) = 1 for all x ≥ â, V̂ ′′(â+) = 0.
f V̂ ′′(â−) > 0, then V̂ ′(â − ϵ) < 1 for some ϵ > 0 since V̂ ′(â) = 1. If V̂ ′′(â−) < 0, one can
how that L∗V̂ (â+) > c, since there is a jump increase in V̂ ′′(x) at x = â and L∗V̂ (â−) = c.
herefore, the smooth-fit condition is necessary for the Hamilton–Jacobi–Bellman equation to
old true.

Now we present our verification proof.
Step 1. We use X̂ to denote the cash reserve process when the candidate optimal control

Ẑ+, Ẑ−) is applied, and let τ0 = τ X̂
0 be the time of bankruptcy. First, consider the case

x ∈ [0, â]. The process Ẑ+(t) = Mâ(t;µ∗) is just (a multiple of) the local time of the process
X̂ at level â ([16], Chap. 3.6). Define αt = τ X̂

0 ∧ t and consider the process e−rαt V̂ (X̂ (αt )). By
tô’s formula,

e−rαt V̂ (X̂ (αt ))

= V̂ (x) +

∫ αt

e−rsL∗V̂ (X̂ (s))ds +

∫ αt

e−rs V̂ ′(X̂ (s))
[
σdW (s) − d Ẑ+(s)

]
.

0 0

12



P.A. Ernst, M.B. Imerman, L. Shepp et al. Stochastic Processes and their Applications xxx (xxxx) xxx

F

R
t
f
p

b
t
B
d
t

or any s ∈ [0, τ X̂
0 ], we always have X̂ (s) ∈ [0, â], and thus L∗V̂ (X̂ (s)) = c and V̂ ′(X̂ (s))

stays bounded. Hence, the integral with respect to dW is a martingale. Taking expectations on
both sides we obtain

Ex e−rαt V̂ (X̂ (αt )) = V̂ (x) + Ex

∫ αt

0
e−rs

[
c ds − d Ẑ+(s)

]
, (18)

where we have also used the fact that V̂ ′(â) = 1, and d Ẑ+(t) = 0 if X̂ (t) ̸= â. We now claim
that

lim
t→∞

Ex e−rαt V̂ (X̂ (αt )) = 0. (19)

If bankruptcy happens, i.e., τ X̂
0 < ∞, then V̂ (X̂ (t)) = 0 for any t ≥ τ X̂

0 ; if τ X̂
0 = ∞, V̂ (X̂ (t))

always stays bounded and e−rαt → 0, from which (19) follows. For the integral on the right
hand-side of (18), we have

lim
t→∞

Ex

∫ αt

0
ce−rsds = Ex

∫ τ X̂
0

0−

ce−rsds ≤
c
r
,

lim
t→∞

Ex

∫ αt

0
e−rsd Ẑ+(s) = Ex

∫ τ X̂
0

0−

e−rsd Ẑ+(s),

by monotone convergence theorem. Hence, letting t → ∞ in (18), we obtain

V̂ (x) = Ex

∫ τ X̂
0

0−

e−r t
[
d Ẑ+(t) − d Ẑ−(t)

]
. (20)

In particular, we have established the equality (20) for x = â, which, together with the
expression of V̂ given in (13), can be used to show that (20) also holds for x ∈ (â,∞).

emark 2. The smooth-fit condition, V̂ ′′(â) = 0, is not used in Step 1. One can verify that
he function Va given in (15) is the solution to the ordinary differential equation L∗v(x) = c
or x ∈ [0, a], with boundary conditions v(0) = 0, v′(a) = 1. Hence, the above argument also
roves that Va is indeed the expected net value of the policy (Ma(t;µ∗), (µ∗

− µ)t).

Step 2. For any admissible policy Z = (Z+, Z−), let

VZ (x) = Ex

∫ τ X
0

0−

e−r t [d Z+(t) − d Z−(t)]

e the expected net value of the firm. Note that both X and τ X
0 now depend on (Z+, Z−),

hough this is not indicated explicitly in the notation. We need to show that VZ (x) ≤ V̂ (x).
y assumption, Z− is a continuous process but Z+ is not necessarily so. Therefore, we let Z c

+

enote the continuous part of Z+. The dynamics of X is given by (2). Applying Itô’s formula
o V̂ (X t ), we obtain

V̂ (x) = −

∫ t∧τ X
0
σe−rs V̂ ′(X (s))dW (s) + I1 + I2 − I3 + I4, (21)
0

13
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I1 =

∫ t∧τ X
0

0
e−rs

[
V̂ ′(X (s))(−d Z−(s) + c ds) − L∗V̂ (X (s))ds

]
,

I2 =

∫ t∧τ X
0

0
e−rs V̂ ′(X (s))d Z c

+
(s),

I3 =

∑
0≤s≤(t∧τ X

0 )

e−rs
{

V̂ (X (s)) − V̂ (X (s−))
}
,

I4 = e−r (t∧τ X
0 )V̂ (X (t ∧ τ X

0 )).

(22)

rom Lemma 1, we have V̂ ′(x) ≥ 1 and L∗V̂ (x) ≤ c. Moreover, since c is the maximum rate
f loans, we have −d Z−(s) + c ds ≥ 0. We then obtain that

I1 ≥

∫ t∧τ X
0

0
e−rs [−d Z−(s) + c ds − c ds] = −

∫ t∧τ X
0

0
e−rsd Z−(s)

nd

I2 ≥

∫ t∧τ X
0

0
e−rsd Z c

+
(s).

urther, V̂ ′(x) ≥ 1 also implies that

I3 ≤ −

∑
0≤s≤(t∧τ X

0 )

e−rs∆Z+(s),

here we have used the fact that X (s) − X (s−) = −(Z+(s) − Z+(s−)). Taking expectations
n both sides of (21) and using the boundedness of V̂ ′, we get

V̂ (x) ≥ Ex

∫ t∧τ X
0

0−

e−rs [d Z+(s) − d Z−(s)] ,

ince clearly I4 ≥ 0. Finally, by letting t → ∞, applying monotone convergence theorem and
oting that

∫
∞

0 e−rsd Z−(s) < ∞, we obtain

V̂ (x) ≥ lim
t→∞

Ex

∫ t∧τ X
0

0−

e−rs [d Z+(s) − d Z−(s)]

= Ex

∫ τ X
0

0−

e−rs [d Z+(s) − d Z−(s)] = VZ (x),

hich completes the proof.

.2. Proof for Theorem 2(i)

Let b = â(µ,µ∗

2). The value function V (x;µ,µ∗

2) is attained by the policy, Ẑ2 =

Mb(t;µ∗

2), (µ∗

2 − µ)t), where money is borrowed at rate µ∗

2 − µ and dividend payments are
ade at the barrier b. Clearly, this policy is also admissible to a company characterized by

x, µ, µ∗

1, σ, r ) since µ∗

1 > µ∗

2, and we want to show that for any x > 0,

V (x;µ,µ∗) > V (x;µ,µ∗) = V (x;µ,µ∗).
1 2 Ẑ2 1

14
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ote that in the above verification proof, we have already shown V (x;µ,µ∗

1) ≥ VẐ2
(x;µ,µ∗

1).
Let X̂2(t) = x +µt + σW (t) + d Mb(t;µ∗

2) − (µ∗

2 −µ)t denote the cash reserve process when
he sub-optimal control Ẑ2 is applied. Define

L∗

1 = −r + µ∗

1
∂

∂x
+
σ 2

2
∂2

∂x2 .

y an argument wholly analogous to the Step 2 in Section 6.1, when Ẑ2 is applied, we have

V (x;µ,µ∗

1) ≥ Ex (I1 + I2 − I3) ,

where

I1 =

∫ t∧τ
X̂2
0

0
e−rs

[
V ′(X̂2(s);µ,µ∗

1)(µ∗

1 − µ∗

2)ds − L∗

1V (X̂2(s);µ,µ∗

1)ds
]
,

I2 − I3 ≥

∫ t∧τ
X̂2
0

0−

e−rsd Mb(s;µ∗

2).

To check that the above expression for I1 agrees with (22), note that for Z = Ẑ2 and c = µ∗

1−µ,
we have

−d Z−(s) + cds = −(µ∗

2 − µ)ds + (µ∗

1 − µ)ds = (µ∗

1 − µ∗

2)ds.

To show that Ẑ2 is strictly sub-optimal, we need a slightly finer argument than that used
to prove Theorem 1. Write V1(x) = V (x;µ,µ∗

1) to simplify the notation. Recall that V1(x) is
the solution to the free-boundary problem described in Theorem 1 and â = â(µ,µ∗

1) is strictly
smaller than b = â(µ,µ∗

2) by Proposition 2. Using Lemma 1, it is then straightforward to
verify that

L∗

1V1(x) < µ∗

1 − µ, ∀ x ∈ (â, b],
V ′

1(x) > 1, ∀ x ∈ (0, â),
V ′

1(x) = 1, ∀ x ∈ [â, b].

Further, the assumption µ∗

1 − µ∗

2 > 0 implies that for any x ∈ (0, â) ∪ (â, b],

ψ(x) = V ′

1(x)(µ∗

1 − µ∗

2) − L∗

1V1(x) + (µ∗

2 − µ) > 0, (23)

and ψ(x) = 0 if x = â. For any set A ⊆ [0,∞), define

I1(A) =

∫
A

e−rs
[
V ′

1(X̂2(s))(µ∗

1 − µ∗

2)ds − L∗

1V1(X̂2(s))ds
]
.

Choose an arbitrary δ > 0, and let Aδ0 = [0, δ ∧ τ
X̂2
0 ] and At

δ = (δ ∧ τ
X̂2
0 , t ∧ τ

X̂2
0 ]. For any

t ≥ δ, we have I1 = I1([0, t ∧ τ
X̂2
0 ]) = I1(Aδ0) + I1(At

δ). Consider

I1(Aδ0) +

∫ δ∧τ
X̂2
0

0
e−rs(µ∗

2 − µ)ds =

∫ δ∧τ
X̂2
0

0
e−rsψ(X̂2(s))ds.

Since X̂2(t) is a reflected Brownian motion, given any X̂2(0) = x > 0, we have, almost surely,
the bankruptcy time τ X̂2

0 > 0 and the Lebesgue measure of the set {0 ≤ t ≤ τ0 : X̂2(t) =
∗

ˆ(µ,µ1)} is zero. Recall that for a non-negative measurable function, its Lebesgue integral is

15
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ero if and only if the function is zero almost everywhere. It then follows from (23) that

Ex

∫ δ∧τ
X̂2
0

0
e−rsψ(X̂2(s))ds = cδ(x) > 0, ∀ x > 0,

here cδ(x) only depends on x . Using (23) again, we find that for any t ≥ δ,

Ex (I1) ≥ cδ(x) − Ex

∫ t∧τ
X̂2
0

0
e−rs(µ∗

2 − µ)ds,

hich further implies that

V (x) ≥ Ex (I1 + I2 − I3) ≥ cδ(x) + Ex

∫ t∧τ0

0−

e−rs [
d Mb(s;µ∗

2) − (µ∗

2 − µ)ds
]
.

etting t → ∞, we conclude that

V (x;µ,µ∗

1) ≥ cδ(x) + V (x;µ,µ∗

2) > V (x;µ,µ∗

2), ∀ x > 0.

.3. Extensions with proportional costs

For β ∈ (0, 1], define the value function Vβ by

Vβ(x;µ,µ∗) = sup
(Z+,Z−)∈A

Ex

∫ τ0

0−

e−r t [d Z+(t) − βd Z−(t)]. (24)

bserve that

β−1 Vβ(x;µ,µ∗) = sup
(Z+,Z−)∈A

Ex

∫ τ0

0−

e−r t [β−1d Z+(t) − d Z−(t)].

ence, the problem (24) with β < 1 can be interpreted as an extension of the main problem
efined in (3) where there is a proportional cost of taking the dividends. For this problem, the
ptimal policy is to borrow the money at maximum rate c = µ∗

−µ and make dividend payouts
t some barrier âβ . Further, (Vβ, âβ) is the solution to the following free-boundary problem⎧⎪⎪⎨⎪⎪⎩

L∗v(x) = βc, x ∈ [0, a],
v(0) = 0,
v′(x) = 1, x ∈ [a,∞),
v′′(x) = 0, x ∈ [a,∞).

y the argument following Theorem 1, the value function Vβ can still be written in the form
f (12) and (13). To check the existence of âβ , one just need to verify the following function
as a unique positive solution,

fβ(a) =
(−γ ∗

−
)e−γ ∗

+
a

(γ ∗
+)(γ ∗

+ − γ ∗
−)

+
(γ ∗

+
)e−γ ∗

−
a

γ ∗
−(γ ∗

+ − γ ∗
−)

−
βc
r
.

By Proposition 1, fβ is monotone decreasing to −∞ and observe that fβ(0) = [(1 −

β)µ∗
+ βµ]/r > 0. Hence, âβ exists uniquely. Similarly to Lemma 1, one can show that

max{L∗Vβ(x) − βc, 1 − V ′

β(x)} = 0 for all x ≥ 0.
The verification proof is almost the same as in the case of β = 1. The only step that does

not follow immediately from the proof in Section 6.1 is how to bound the term I defined
1
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r
i
t
p

R

n (22). Note that since V ′

β ≥ 1 ≥ β, L∗Vβ ≤ βc and −d Z−(s)/ds + c ≥ 0, we have

I1 =

∫ t∧τ X
0

0
e−rs [

V ′

β(X (s))(−d Z−(s) + c ds) − L∗Vβ(X (s))ds
]
,

≥

∫ t∧τ X
0

0
e−rs [β(−d Z−(s) + c ds) − βc ds] = −

∫ t∧τ X
0

0
e−rsβd Z−(s).

he rest then follows.
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