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Abstract

We consider the sample complexity of learning
with adversarial robustness. Most prior theoretical
results for this problem have considered a setting
where different classes in the data are close to-
gether or overlapping. We consider, in contrast,
the well-separated case where there exists a clas-
sifier with perfect accuracy and robustness, and
show that the sample complexity narrates an en-
tirely different story. Specifically, for linear clas-
sifiers, we show a large class of well-separated
distributions where the expected robust loss of any
algorithm is at least Q(%), whereas the max mar-
gin algorithm has expected standard loss O(2).
This shows a gap in the standard and robust losses
that cannot be obtained via prior techniques. Ad-
ditionally, we present an algorithm that, given
an instance where the robustness radius is much
smaller than the gap between the classes, gives a
solution with expected robust loss is O(L). This
shows that for very well-separated data, conver-
gence rates of O(%) are achievable, which is not
the case otherwise. Our results apply to robust-
ness measured in any £, norm with p > 1 (includ-

ing p = 00).

1. Introduction

Motivated by the use of machine learning in safety-critical
settings, adversarially robust classification has been of much
recent interest. Formally, the problem is as follows. A
learner is given training data drawn from an underlying
distribution D, a hypothesis class #, a robustness metric d,
and aradius r. The learner’s goal is to find a classifier h € ‘H
which has the lowest robust loss at radius r. The robust loss
of a classifier is the expected fraction of examples where
either f(z) # y or where there exists an z’ at distance
d(xz,2") < rsuchthat f(x) # f(«’). Robust classification
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thus aims to find a classifier that maximizes accuracy on
examples that are distance r or more from the decision
boundary, where distances are measured according to the
metric d.

In this work, we ask: how many samples are needed to learn
a classifier with low robust loss when 7 is the class of linear
classifiers, and d is an £,-metric? Prior work has provided
both upper (Yin et al., 2019; Dan et al., 2020) as well as
lower bounds (Schmidt et al., 2018; Dan et al., 2020) on
the sample complexity of the problem. However, almost
all look at settings where the data distribution itself is not
separated — data from different classes overlap or are close
together in space. In this case, the classifier that minimizes
robust loss is quite different from the one that minimizes
error, which often leads to strong sample complexity gaps.
Many real tasks where robust solutions are desired however
tend to involve well-separated data (Yang et al., 2020), and
hence it is instructive to look at what happens in these cases.

With this motivation, we consider in this work robust clas-
sification of data that is linearly r-separable. Specifically,
there exists a linear classifier which has zero robust loss
at robustness radius r. This case is thus the analog of the
realizable case for robust classification, and we consider
both upper and lower bounds in this setting.

For lower bounds, prior work (Cullina et al., 2018) shows
that both standard and robust linear classification have VC-
dimension O(d), and consequently have similar bounds on
the expected loss in the worst case. However, these results
do not apply to this setting since we are specifically consid-
ering well-separated data, which greatly restricts the set of
possible worst-case distributions. For our lower bound, we
provide a family of distributions that are linearly r-separable
and where the maximum margin classifier, given n indepen-
dent samples, has error O(1/n). In contrast, any algorithm
for finding the minimum robust loss classifier has robust
loss at least Q(d/n), where d is the data dimension. These
bounds hold for all £,-norms provided p > 1, including
p = 2 and p = oo. Unlike prior work, our bounds do not
rely on the difference in loss between the solutions with op-
timal robust loss and error, and hence cannot be obtained by
prior techniques. Instead, we introduce a new geometric con-
struction that exploits the fact that learning a classifier with
low robust loss when data is linearly r-separated requires
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seeing a certain number of samples close to the margin.

For upper bounds, prior work (Yin et al., 2019) provides
a bound on the Rademacher complexity of adversarially
robust learning, and show that it can be worse than the
standard Rademacher complexity by a factor of d'/9 for Ly-
norm robustness where 1/p+ 1/q = 1. Thus, an interesting
question is whether dimension-independent bounds, such as
those for the accuracy under large margin classification, can
be obtained for robust classification as well. Perhaps sur-
prisingly, we show that when data is really well-separated,
the answer is yes. Specifically, if the data distribution is
linearly r + ~y-separable, then there exists an algorithm that
will find a classifier with robust loss O(A? /42n) at radius
r where A is the diameter of the instance space. Observe
that much like the usual sample complexity results on SVM
and perceptron, this upper bound is independent of the data
dimension and depends only on the excess margin (over
r). This establishes that when data is really well-separated,
finding robust linear classifiers does not require a very large
number of samples.

While the main focus of this work is on linear classifiers,
we also show how to generalize our upper bounds to Kernel
Classification, where we find a similar dynamic with the
loss being governed by the excess margin in the embedded
kernel space. However, we defer a thorough investigation
of robust kernel classification as an avenue for future work.

Our results imply that while adversarially robust classifi-
cation may be more challenging than simply accurate clas-
sification when the classes overlap, the story is different
when data is well-separated. Specifically, when data is
linearly (exactly) r-separable, finding an r-separated solu-
tion to robust loss € may require §2(d/¢) samples for some
distribution families where finding an accurate solution is
easier. Thus in this case, there is a gap between the sample
complexities of robust and simply accurate solutions, and
this is true regardless of the £, norm in which robustness
is measured. In contrast, if data is even more separated —
linearly r + y-separable — then we can obtain a dimension-
independent upper bound on the sample complexity, much
like the sample complexity of SVMs and perceptron. Thus,
how separable the data is matters for adversarially robust
classification, and future works in the area should consider
separability while discussing the sample complexity

1.1. Related Work

There is a large body of work (Carlini & Wagner, 2017; Liu
et al., 2017; Papernot et al., 2017; 2016a; Szegedy et al.,
2014; Hein & Andriushchenko, 2017; Katz et al., 2017;
Papernot et al., 2016b; Raghunathan et al., 2018; Sinha et al.,
2018) empirically studying adversarial examples primarily
in the context of neural networks. Several works (Schmidt
et al., 2018; Raghunathan et al., 2020; Tsipras et al., 2019)

have empirically investigated trade-offs between robust and
standard classification.

On the theoretical side, this phenomenon has been studied
in both the parametric and non-parametric settings. On the
parametric side, several works (Khim & Loh, 2018; Attias
etal., 2019; Montasser et al., 2019; Yin et al., 2019; Ashtiani
et al., 2020) have focused on finding distribution agnostic
bounds of the sample complexity for robust classification.
In (Montasser et al., 2019), Srebro et. al. showed through
an example that the VC dimension of robust learning may
be much larger than standard or accurate learning indicating
that the sample complexity bounds may be higher. However,
their example did not apply to linear classifiers.

(Diakonikolas et al., 2020) considers learning linear clas-
sifiers robustly, but is primarily focused on computational
complexity as opposed to sample complexity.

In (Yin et al., 2019), Bartlett et. al. investigated the
Rademacher complexity of robustly learning linear clas-
sifiers as well as neural networks. They showed that in both
cases, the robust Rademacher complexity can be bounded
in terms of the dimension of the input space — thus indicat-
ing a possible gap between standard and robust learning.
However, as with the works considering VC dimension, this
work is fundamentally focused on upper bounds — they do
not show true lower bounds on data requirements.

Because of it’s simplicity and elegance, the case where the
data distribution is a mixture of Gaussians has been par-
ticularly well-studied. The first such work was (Schmidt
et al., 2018), in which Schmidt et. al. showed an Q(\/&)
gap between the standard and robust sample complexity for
a mixture of two Gaussians using the ¢, norm. This was
subsequently expanded upon in (Bhagoji et al., 2019), (Do-
briban et al., 2020) and (Dan et al., 2020). (Bhagoji et al.,
2019) introduces a notion of “optimal transport,” which
they subsequently apply to the Gaussian case, deriving a
closed form expression for the optimally robust linear clas-
sifier. Their results apply to any £, norm. (Dobriban et al.,
2020) applies expands upon (Schmidt et al., 2018) by con-
sider mixtures of three Gaussians in both the /5 and /.,
norms. Finally, (Dan et al., 2020) fully generalizes the re-
sults of (Schmidt et al., 2018) providing tight upper and
lower bounds on the standard and robust sample complexi-
ties of a mixture of two Gaussians, in any norm (including ¢,,
for p € [1, 00]). (Schmidt et al., 2018) and (Dan et al., 2020)
bear the most relevance with our work, and we consequently
carefully compare our results in section 3.1.

Another approach for lower and upper bounds on sample
complexities for linear classifiers can be found in (Cullina
et al., 2018), which examines the robust VC dimension of
learning linear classifiers. They show that the VC dimension
is d+1, just as it is in the standard case. This implies that the
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bounds in the robust case match the bounds in the standard
case and in particular shows a lower bound of Q(d/n) on
the expected loss of learning a robust linear classifier from
n samples.

While this result appears to match our lower bound, there
is a crucial distinction between the bounds. Our bound
implies that there exists some distribution with a large ¢
margin for which the expected robust loss must be Q(d/n).
On the other hand, standard results about learning linear
classifiers on large margin data implies that the expected
standard loss will be O(1/n) (when running the max-margin
algorithm). For this reason, our paper provides a case in the
well-separated setting in which learning linear classifiers is
provably more difficult (in terms of sample complexity) in
the robust setting than in the standard setting. By contrast,
(Cullina et al., 2018) does not show this. Their paper only
implies (through standard VC constructions) the existence
of some distribution that is difficult to learn, and the standard
PAC bounds cannot ensure that such a distribution also has
a large /5 margin.

In the non-parametric setting, there are several works which
contrast standard learning with robust learning. (Wang et al.,
2018) considers the nearest neighbors algorithm, and shows
how to adapt it for converging towards a robust classifier.
In (Yang et al., 2019), Yang et. al. propose the r-optimal
classifier, which is the robust analog of the Bayes optimal
classifier. Through several examples they show that it is
often a fundamentally different classifier - which can lead
to different convergence behavior in the standard and ro-
bust settings. (Bhattacharjee & Chaudhuri, 2020) unified
these approaches by specifying conditions under which non-
parametric algorithms can be adapted to converge towards
the r-optimal classifier, thus introducing r-consistency, the
robust analog of consistency.

2. Preliminaries

We consider binary classification over R? x {£1}. Our
metric of choice is the £, norm, where p > 1 (including
p = oo) is arbitrary. For x € R?, we will use ||z, to denote
the £, norm of z, and consequently will use ||z — y||, to
denote the /,, distance between x and y. We will also let £,
denote the dual norm to ¢, - that is, % + 1% =1.

We use B,(x,r) to denote the closed £, ball with center x
and radius r. For any S C R?, we let diam,(S) denote its
diameter: that is, diam,,(S) = sup, ,es || — yllp-

2.1. Standard and Robust Loss

In classical statistical learning, the goal is to learn an accu-
rate classifier, which is defined as follows:

Definition 1. Let D be a distribution over R x {+1}, and

let f € {£1Y*" be a classifier. Then the standard loss
of f over D, denoted L(f, D), is the fraction of examples
(z,y) ~ D for which f is not accurate. Thus

L(f,D) = Play)~olf(x) # yl.

Next, we define robustness, and the corresponding robust
loss.

Definition 2. A classifier f € {£1}*" is said to be robust
at x with radius v if f(x) = f(2') forall ' € By(z,r).
Definition 3. The robust loss of f over D, denoted
L.(f, D), is the fraction of examples (x,y) ~ D for which
f is either inaccurate at (x,y), or [ is not robust at (x,y)
with radius r. Observe that this occurs if and only if there
is some x' € By (x,r) such that f(z') # y. Thus

ﬁr(fa D) = P(;c,y)NDElx/ € B;D(xa 7“) S.1. f(.’t/) 7é y}

2.2. Expected Loss and Sample Complexity

The most common way to characterize the performance of
a learning algorithm is through an (¢, §) guarantee, which
computes €,, d,, such that an algorithm trained over n sam-
ples has loss at most ¢,, with probability at least 1 — §,,.

In this work, we use the simpler notion of expected loss,
which is defined as follows:

Definition 4. Let A be a learning algorithm and let D be
a distribution over R? x {£1}. For any S ~ D", we let
Ag denote the classifier learned by A from training data
S. Then the expected standard loss of A with respect to
D, denoted EL™ (A, D) where n is the number of training
samples, is defined as

EE“(A, D) =5 ]ESN'D" E(AS, D)

Similarly, we define the expected robust loss of A with re-
spect to D as

EL?(A,D) = Egupn L, (As, D).

Our main motivation for using this criteria is simplicity. Our
primary goal is to compare and contrast the performances of
algorithms in the standard and robust cases, and this contrast
clearest when the performances are summarized as a single
number (namely the expected loss) rather than an (e, §) pair.

Next, we address the notion of sample complexity. As above,
sample complexity is typically defined as the minimum
number of samples needed to guarantee (e, d) performance.
In this work, we will instead define it solely with respect to
€, the expected loss.

Definition 5. Let D be a distribution over R% x {£1} and
A be a learning algorithm. Then the standard sample com-
plexity of A with respect to D, denoted m®(A, D), is the
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minimum number of training samples needed such that A
has expected standard loss at most €. Formally,

m (A, D) = min({n: EL"(A, D) < €}).
Similarly, we can define the robust sample complexity as

ms(A, D) =min({n: EL"(A, D) < e}).

2.3. Linear classifiers

In this work, we consider linear classifiers, formally defined
as follows:

Definition 6. Let w € RY be a vector. Then the linear
classifier with parameters w € R and b € R over R% x +1,
denoted fy,, is defined as ,

fun(z) = {—i—l (w,z) > b

-1 (w,z)<b

Learning linear classifiers is well understood in the stan-
dard classification setting. We now consider the linearly
separable case, in which some linear classifier has perfect
accuracy. We will later define linear r-separability as the
robust analog of separability.

Definition 7. A distribution D over R? x Y is linearly

separable if its support can be partitioned into sets ST and
S~ such that:

1. S* and S~ correspond to the positively and negatively
labeled subsets of R%. In particular, Py, ,~plz € SY] = 1.

2. There exists a linear classifier, f 1, that has perfect
accuracy. That is, L( fup, D) = 0.

The standard sample complexity for linearly separable dis-
tributions can be characterized through their margin, which
is defined as follows.

Definition 8. Ler D be a linearly separable distribution
over R x {41}. Let St and S~ be as above. Then D
has margin ~ if v is the largest real number such that there
exists a linear classifier f,, , with the following properties:

1. fwp has perfect accuracy. That is, L(fyp, D) = 0.

2. Let Hyp, = {z : (z,w) = b} denote the decision
boundary of fup. Then for all x € (ST US™), z has (s
distance at least vy from H,, ;. That is,

inf - > .
zeSﬂJé‘I},zeHw,b ||x ZH2 =7

We let (D) denote the margin of D.

Observe that although we use a general norm, £,,, to measure
robustness, the margin is always measured in ¢5. This is

because the /5 norm plays a fundamental role in bounding
the number of samples needed to learn a linear classifier.

The basic idea is that when the ¢, margin is large relative
to the /5 diameter of the distribution, the max margin al-
gorithm requires fewer samples needed to learn a linear
classifier. In particular, the ratio between the ¢ margin and
the {5 diameter fully characterizes the standard sample com-
plexity of the max margin algorithm. To further simplify
our notation, we define this ratio as the aspect ratio.

Definition 9. Let D be a linearly separable distribution
over R x {£1}. Then the aspect ratio of D, p(D) is defined
as,

iama(STUS™
R

where diams(S™ U S™) denotes its diameter in the {5 norm.

We now have the following well-known result, which char-
acterizes the expected standard loss with the aspect ratio.
Theorem 10. (Chapter 10 in (Vapnik, 1998)) Let M de-
note the hard margin SVM algorithm. If D is a distribution
with aspect ratio p = p(D), then for any n > 0 we have
EgpnL(Mg,D) < O(%), where Mg denotes the classi-
fier learned by M from training data S.

We can also express this result in terms of standard sample
complexity.

Corollary 11. Ler M denote the hard margin SVM algo-
rithm. If D is a distribution with aspect ratio p = p(D),
then for any € > 0 we have m®(Mg, D) < O(é), where

Mg denotes the classifier learned by M from training data
S.

Theorem 10 and Corollary 11 will serve as a benchmark for
comparison with the robust sample complexity.

2.4. Linear r-separability

Finally, we introduce linear r-separability, which is the key
characteristic of distributions considered in this paper. This
can be thought of as the robust analog of linear separability.

Definition 12. For any r > 0, a distribution D over
Re x {£1} is linearly r-separable if there exists a linear
classifier fu, 1, such that L,.(fup, D) = 0.

This definition is the fundamental property considered in
this paper. Our goal is to understand the sample complexity
required for learning robust linear classifiers on linearly r-
separable distributions, and compare it with the standard
sample complexity given in Theorem 10.

3. Lower Bounds

In this section, we consider r-separated distributions whose
aspect ratio is constant. By Theorem 10, the standard sample
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complexity for learning them is independent of d. We will
show that in contrast, the robust sample complexity has
a linear dependence on d, and consequently establish a
substantial gap between the standard and robust cases.

We begin by defining the family of such distributions.

Definition 13. For any p,r, the set F, , is defined as the
set of all distributions D over R? x {41} such that D is
r-separated and has aspect ratio at most p.

‘We now state our main result.

Theorem 14. Let r > 0 and p > 20. Then the following
hold.

1. For every learning algorithm A, and any n > 0, there
exists D € F, , such that the expected robust loss
when A is trained on a sample of size n from D is at
least Q(%) Formally, there exists a constant ¢ > 0
such that Bgpn [L,(Ag, D)] > <.

— n

2. In contrast, by Theorem 10, for any D € F, p, the
max margin algorithm has expected standard loss

2

P

O(Z-), when trained on a sample of size n from D.

Formally, there exists a constant ¢ > 0 such that
’ 2
Egpn[L(As,D)] < cﬁ .

The condition p > 20 is required to rule out degenerate
cases. This is because for small values of p, the {5 diameter
of D is not much larger than the {5 margin of D. This forces
D to be mostly clustered around a line which leads to more
complicated behavior.

Observe that when p is a constant independent of d, the
expected standard loss is O(%) while the expected robust
loss is Q(%) Thus, the ratio between the expected robust
loss and the expected standard loss is €(d), leading to a
dimensional dependent gap between the robust and standard

cases.

We also note that these bounds hold regardless of which
¢, (p € (1,00]) norm is being used. This is because our
construction of D € F,. , for which the lower bound holds
is given in terms of the norm p. More generally, the family
Fr,p is implicitly defined with respect to p.

Furthermore, our lower bound differs from the lower bound
of Q(%) shown in prior work (Cullina et al., 2018) because
it specifically holds for F;. ,, a linearly r-separated family
of distributions with constant aspect ratio. Thus, while
(Cullina et al., 2018) has shown the existence of distributions
satisfying the first condition of Theorem 14, our result is the
first to exhibit a distribution satisfying both conditions.

Finally, we note that Theorem 14 can also be expressed
in terms of sample complexities. We include this in the
following corollary.

Corollary 15. Let r > 0 and p > 20. Then the following
hold.

1. For every learning algorithm A, and any € > 0, there
exists D € F,. , such that the robust sample complexity of
A with respect to D is at least QU(2). Formally, there exists
a constant ¢ > 0 such that m&.(A, D) > <4

2. In contrast, by Theorem 10, for any D € F, p, the
max margin algorithm has standard sample complexity

2
O(Z). Formally, there exists a constant ¢ > 0 such that
/2
me(A,D) < £,

3.1. Comparison with (Dan et al., 2020) and (Schmidt
et al., 2018)

The first work to provide a robust sample complexity lower
bound that applied to linear classifiers is (Schmidt et al.,
2018); they showed a gap of Q(v/d) between the robust
and accuracy loss for a specific mixture of two Gaussians.
This was later generalized to mixtures of any two Gaussians
by (Dan et al., 2020), who also established more general
lower bounds for any £, norm. Since (Dan et al., 2020) is
a strict generalization of (Schmidt et al., 2018), we next
explain how our lower bounds differ from (Dan et al., 2020),
and why their techniques do not lead to our results. We
begin by summarizing their results.

Summary of (Dan et al., 2020) (Dan et al., 2020) consid-
ers data distributions D that are parametrized by . € R and
Y e R¥Xd % w . D,, 5 is the mixture of two Gaussians,
N(u, 2) and N'(—p, ), with equal mass, where instances
drawn from N (p, X) are labeled as +, and instances drawn
from N (—p, X) are labeled as —. They consider robust-
ness measured in any normed metric in R?, including the
¢, norm for p € (1,00]. Although their bounds apply to
any classifier, this effectively deals with linear classifiers
since it can be shown that the optimally robust and accurate
classifiers are both linear.

For any distribution D, 5, let L,..;, denote the optimal ro-
bust loss of any classifier on D,, 5, and let L4 denote the
optimal standard loss. Then the bounds shown in (Dan et al.,
2020) can restated as follows (a detailed derivation from
(Dan et al., 2020) appears in Appendix A).

Theorem 16. (Dan et al., 2020)

1. For any learning algorithm A and any n > 0, there
exists some mixture of Gaussians, D, s such that the
expected excess robust loss is at least Q(Lmb%), when
A is trained on a sample of size n from D.

2. For any distribution D, s, it is possible to learn a
classifier with expected excess standard loss at most
d
O(Lstdﬁ>'
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3. By (1.) and (2.), the ratio between the expected ex-
cess loss and expected excess standard loss can be

expressed as ratio > éfjs ).

Observe that their bounds are given through excess losses,
which is the amount by which the loss exceeds to the optimal
loss. This is necessary because in their setting, the optimal
classifiers do not have 0 loss.

Comparison with our bounds Recall that in our work,
we are concerned with the linearly r-separated case, which
occurs precisely when the optimal robust and standard losses
both equal 0. However, from Theorem 16, we see that
although (Dan et al., 2020) proves a gap between standard
and robust sample complexity, this gap is predicated on
distributions for which the optimal robust loss, L,.; and
optimal standard loss, L4 differ. Furthermore, in the case
where they obtain a gap of Q(d), we see that this requires
% = (d) which is a substantial difference. By contrast,
our results characterize a gap exclusively in the case that
this does not occur.

Finally, in the limiting case where the Gaussians they con-
sider are sufficiently far apart, their data will begin to appear
linearly r-separated, meaning both L,.,;, and L4 are close
to 0. However, even in this case, it can be shown that the ra-
tio %js diverges towards infinity, meaning that their lower
bound characterizes a very different dynamic from ours.
Precise details on this comparison can be found in appendix
A.

3.2. Intuition behind Theorem 14

The proof idea for Theorem 14 can be summarized with
a simple example (Figure 1). In this example, we seek to
learn a linear classifier for a linearly r-separated distribution
in R?. The key idea is to contrast the necessary conditions
for learning a robust classifier, and the necessary conditions
for learning an accurate classifier.

Observe that the distribution is precisely linearly r-
separated, that is, it is not possible to achieve robustness for
radii larger than r. Because of this, there is a unique linear
classifier f,.,p that has perfect robustness. In order to learn
this classifier, we must see examples from ST U S~ that
are close to the “boundary” of ST U S~. In our figure, this
consists of points that are close to the dotted blue and red
lines. Moreover, it can be shown that the number of such
examples we must see is related to d, the dimension.

By contrast, any classifier that separates S* from S~ has
perfect accuracy (take for example fs;q shown in the fig-
ure). It is possible to exploit this by using margin based
algorithms for learning linear classifiers. In particular, we
no longer need to see points that are extremely close to the
boundary of St U S~.

Figure 1. An example of a linearly r-separated distribution, with
positively and negatively labeled examples in S™ and S~ respec-
tively. The optimally robust classifier, fro, is shown in purple,
while the (not necessarily unique) optimally accurate classifier,
fsta, is shown in green.

General Hypothesis Classes: We now briefly consider
how to extend our methods to other hypothesis classes. For
any hypothesis class H and distribution D let

Hpo={h:heH LHND) <a}
and let
Hp.o=1h:he€H,L.(h,D) < a}.

‘Hp.o can be thought of as the set of accurate classifiers
while Hp, , can be thought of as the set of astute classifiers.
By their definitions, it is clear that H, , € Hp, . However,
in the case when 7{ is the set of linear classifiers, we see
that for small «, ’HTD’a is a much “smaller” set than Hp .
By exploiting the geometric structure inherent to , we can
much more efficiently search for some h € Hp , than we
can in Hp, . This dynamic is the crux of our lower bound:
as we essentially show that there are far more critical points
(i.e. points near the decision boundary) that we must see for
learning Hp, , that aren’t required for Hp .

Thus, for our methods to extend to an arbitrary hypothesis
class, we would require a similar dynamic. We need two
properties to hold: (1) Hp, , must be a very strict subset
of Hp  for sufficiently small alpha. (2) We must have
some kind of exploitable geometric structure about 7{ which
allows us to exploit this gap. For the case of linear classifiers,
this was the £ measured aspect ratio, y(D).
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Algorithm 1 Adversarial-Perceptron
1: Input: S = {(xz1,v1),...,(Tn,yn)} ~ D",
2: w40
3: fort=1...ndo
4 z=argming . <, yi(w,2) {finds adv. ex.}
5 if (w,y;z) <0 {checks label} then
6.
7
8
9

w + w + y;z {perceptron update}
end if
: end for
: return fy, 0

Figure 2. An algorithm combining adversarial training with the
perceptron algorithm. For each (z;, y;), we first attack it, to get z.
If z is labeled incorrectly, we do a perceptron update using z.

Kernel Classifiers: A natural choice of a more general
hypothesis class would be Kernel Classifiers, which are
linear classifiers that operate in an embedded space, H. The
main difficulty in expanding our lower bound to this more
general setting comes from the behavior near the margin:
the effects of the robustness radius in the embedded space
are considerably less behaved than they are in the standard
linear case. Nevertheless, we leave this as an important
avenue for future work.

4. Upper Bounds

In the previous section, we showed that for any algorithm,
there is some distribution D € F,. , that is difficult (i.e. re-
quires high sample complexity) to learn robustly. A natural
follow-up question is: what about distributions for which
the margin, + is very large compared to r.

Observe that in Figure 1 the robustness radius r is very
close to the margin. In particular, we can find adversarial
examples from ST and S~ that are very close to the decision
boundary f,.,. By contrast, if v >> r, then this no longer
holds which suggests that better robust sample complexities
might be possible.

In this section, we will describe a subset of F;. , that can be
learned with expected loss O(+), thus matching the stan-
dard sample complexity up to a constant factor. To do so,
we will introduce a novel concept: the robust margin. The
basic intuition is that distributions for which the margin
greatly exceeds the robustness radius are precisely distri-
butions with a large robust margin. We use the following

notation.

Observe that if D is a linearly r-separated distribution, then
D must also be linearly separable. As earlier, let ST, 5~ C
R? denote the positively and negatively labeled examples

from D. We now define
57+ - USGS+BP(Sa T) and S; - USES*B;D(Sv T)' (D

It follows that the decision boundary of any linear classifier
with perfect robustness over D must separate S, and S, .
We now define the robust margin as a measurement of this
separation.

Definition 17. Let D be a linearly r-separable distribution
over R% x {&1}. Let St and S, be as above. Then D
has robust margin ~,. if 7y, is the largest real number such
that there exists a linear classifier f,, 1, with the following
properties:

1. fyup has perfect astuteness. That is, L(fup, D) = 0.

2. Let Hyp = {z : (z,w) = b} denote the decision
boundary of fu . Then for all z € (S;F U S;7), x has 2
distance at least -y from H,, ;. That is,
inf inf ||z —z||l2 > 7.
w€STUSy 2€Huw I e
We let +,.(D) denote the margin of D, and say that such a
distribution is r, v,-separated.

It is crucial to note that although adversarial perturbations
are measured in £, the robust margin is measured in 5. This
is because while the metric £, plays a role in constructing
B(z,r), it can be completely disregarded once the sets ST
and S, are considered, as any hyperplane separating S,
and S~ will have perfect robustness.

We now define the robust aspect ratio, which is the robust
analog of standard aspect ratio.

Definition 18. Let D be a distribution over R% x {+1}.
Then the robust aspect ratio of D, p,.(D) is defined as

diamo (ST U ST)
r D)= 5
pr(D) 7(D)

where as before, diams(S;" U S,") denotes its diameter in
the {5 norm.

We will now show that just as the aspect ratio, p(D), char-
acterized the sample complexity for standard classification,
the robust aspect ratio, p,.(D) will characterize the sam-
ple complexity for robust learning. To do so, we present a
perceptron-inspired algorithm (Algorithm 1) for learning a
robust classifier on r-separated data with robust aspect ratio

Pr

The basic idea behind Algorithm 1 is to combine the stan-
dard perceptron algorithm with adversarial training. In
particular, we iterate through the training set and do the
following on each point (refer to Algorithm 1 for precise
details).
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1. Find an adversarial example (z,y;) by attacking our
classifier, fi, 0, at (z;,y;) (line 4). This is a straightforward
convex optimization problem for linear classifiers.

2.1If fy,0(2) # vi, we update our weight vector with (z, y;)
by using the standard perceptron update (lines 5-6).

We have the following upper bound on the expected robust
loss of our algorithm.

Theorem 19. Let D be a distribution with robust aspect
ratio p,.(D). Then for any n > 0, we have

pr(D)?

Es~pr[£,(4s, D)) < 0P

),

where Ag denotes the classifier learned by Algorithm 1 from
training data S.

Observe that this expected loss is still larger than the ex-
pected standard loss in Theorem 10 as p,. (D) > p(D) for
any D. We also note that this result is not contradictory with
our lower bound; there exist distributions D € F,. , such
that +,.(D) = 0, and these are precisely the distributions for
which our lower bounds hold.

4.1. Generalization to Kernel Classifiers

Algorithm 1 can be thought of as the robust analog to the
perceptron algorithm. We now generalize this algorithm to
obtain a robust variant of the kernel perceptron algorithm.
We first briefly review kernel classifiers. A detailed expla-
nation of our generalized algorithm along with requisite
background material can be found in Appendix D

Definition 20. Let K : R? x R — R be a kernel similarity
function, T = {(x1,y1), - -, (T, Ym)} C RY x {&1} be
a set of labeled points, and o € R™ be a vector of m real
numbers. Then the kernel classifier with similarity function
K, parameters T, o, and denoted by [ ;. is defined as

K +1 Y1 K (z,x) >0
fT,a(x) = m .
-1 > oy K(xy,x) <0

Conceptually, kernel classifiers are linear classifiers operat-
ing in embedded space. With each kernel similarity function
K, there is a map ¢ : R¢ — H (where H is some Hilbert
space) such that K (z,2') = (¢(z), ¢(x’)). Thus we can
think of kernel classifiers as having a linear decision bound-
ary in H.

We now present an analog of Algorithm 1 that we call the
Adversarial Kernel-Perceptron. The essence of this algo-
rithm has not changed. For each (x¢, ;) in our training set,
we do the following.

1. Find an adversarial example (z,y;) by attacking our
classifier, f* . at (z;, y;) (line 4).

Algorithm 2 Adversarial-Kernel-Perceptron

1: Input: S = {(x1,v1), ..., (Tn,Yn)} ~ D™, Similarity
function, K
T+0, a0
fori=1...ndo
Z = argming,_, <, Yi fF o (2) {finds adv. ex.}
if fqli, o(2) < 0{checks label} then
T =TU{(z,v;)} {kern. percep. update}
o = (1,...71)‘T‘
end if
end for
return f:,{fa

R A A R ol

,_
=4

Figure 3. A kernel version of Algorithm 1. We replace the percep-
tron update step with a kernel-perceptron update step.

2. If f{{a (z) # y;, we update our weight vector with (z, y;)
by appending (z,y;) to T (lines 5-6). This corresponds to a
kernel-perceptron update that uses (z, y;) instead of (z;,y; ).

One challenging aspect of this algorithm is minimizing
f1.o(2). For linear classifiers, this has a closed form so-
lution that utilizes the dual norm. For arbitrary Kernel
classifiers, this is a somewhat more challenging problem.
However, we note that this can be solved using standard
optimization techniques, and in some cases (when K is
particularly simple), it can be solved with basic gradient
descent.

Finally, we show that this Algorithm has similar perfor-
mance to the linear case. Instead of using the robust aspect
ratio, p, (D), to bound the performance, we will require the
robust K -aspect ratio, which is the kernel analog of this
quantity. It can be thought of as the robust aspect ratio in
the embedded space H. Details about this quantity (along
with the proof of the theorem) can be found in Appendix D.

Theorem 21. Let D be a distribution with robust K -aspect
ratio pX (D). Then for any n > 0, we have
K D 2
Es~pn[L,(As, D)] < 0(%),
where Ag denotes the classifier learned by Algorithm 2 from
training data S.

This result indicates that for small values of p¥ (D), we can
achieve a very good robust sample complexity for kernel
classifiers. However, as the size of the perturbations ap-
proach this margin, this quantity goes to infinity. This phe-
nomenon mirrors the linearly separable case, and suggests
that a similar overall dynamic holds for kernel classification.
We leave finding a full generalization (including our lower
bound) for a direction in future work.
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