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ABSTRACT

We consider the problem of decentralized optimization

where a collection of agents, each having access to a local cost

function, communicate over a time-varying directed network

and aim to minimize the sum of those functions. In practice,

the amount of information that can be exchanged between

the agents is limited due to communication constraints. We

propose a communication-efficient algorithm for decentral-

ized convex optimization that rely on sparsification of local

updates exchanged between neighboring agents in the network.

In directed networks, message sparsification alters column-

stochasticity – a property that plays an important role in es-

tablishing convergence of decentralized learning tasks. We

propose a decentralized optimization scheme that relies on lo-

cal modification of mixing matrices, and show that it achieves

O( lnT√
T
) convergence rate in the considered settings. Experi-

ments validate theoretical results and demonstrate efficacy of

the proposed algorithm.

Index Terms— decentralized optimization, convex pro-

gramming

1. INTRODUCTION

In recent years, decentralized optimization has attracted con-

siderable interest from the machine learning, signal processing,

and control communities [1, 2, 3, 4]. We consider the setting

where a collection of agents attempts to minimize an objective

that consists of functions distributed among the agents; each

agent evaluates one of the functions on its local data. Formally,

this optimization task can be stated as

min
x∈Rd

[

f(x) :=
1

n

n
∑

i=1

fi(x)

]

, (1)

where n is the number of agents and fi : R
d → R is the

function assigned to the ith node, i ∈ [n] := {1, ..., n}. The

agents collaborate by exchanging information over a network

modeled by a time-varying directed graph G(t) = (|n|, E(t)),
where E(t) denotes the set of edges at time t; agent i can send

This work was supported in part by NSF grant 1809327.

a message to agent j at time t if there exist an edge from i to j
at t, i.e., if {i, j} ∈ E(t).

The described setting has been a subject of extensive stud-

ies over the last decade, leading to a number of seminal results

[5, 6, 7, 8, 9, 10, 11]. Majority of prior work assumes sym-

metry in the agents’ communication capabilities, i.e., models

the problem using undirected graphs. However, the assump-

tion of symmetry is often violated and the graph that captures

properties of the communication network should be directed.

Providing provably convergent decentralized convex optimiza-

tion schemes over directed graphs is challenging; technically,

this stems from the fact that unlike in undirected graphs, the

so-called mixing matrix of a directed graph is not doubly

stochastic. The existing prior work in the directed graph set-

tings includes the grad-push algorithm [12, 3], which compen-

sates for the imbalance in a column-stochastic mixing matrix

by relying on local normalization scalars, and the directed

distributed gradient descent (D-DGD) scheme [13] which care-

fully tracks link changes over time and their impact on the

mixing matrices. Assuming convex local function, both of

these methods achieve O( lnT√
T
) convergence rate.

In practice, communication bandwidth is often limited

and thus the amount of information that can be exchanged

between the agents is restricted. This motivates design of de-

centralized optimization schemes capable of operating under

communication constraints; none of the aforementioned meth-

ods considers such settings. Recently, techniques that address

communication constraints in decentralized optimization by

quantizing or sparsifying messages exchanged between par-

ticipating agents have been proposed in literature [14, 15, 10].

Such schemes have been deployed in the context of decen-

tralized convex optimization over undirected networks [11] as

well as in fixed directed networks [16]. However, there has

been no prior work on communication-constrained decentral-

ized learning over time-varying directed networks.

In this paper we propose, to our knowledge the first,

communication-sparsifying scheme for decentralized convex

optimization over directed networks, and provide formal

guarantees of its convergence; in particular, we show that

the proposed method achieves O( lnT√
T
) convergence rate.

Experiments demonstrate efficacy of the proposed scheme.
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2. PROBLEM SETTING

Assume that a collection of agents aims to collaboratively find

the unique solution to decentralized convex optimization (1);

let us denote this solution by x∗ and assume, for simplicity,

that X = R
d. The agents, represented by nodes of a directed

time-varying graph, are allowed to exchange sparsified mes-

sages. In the following, we do not assume smoothness or

strong convexity of the objective; however, our analysis can

be extended to such settings.

Let W t
in (row-stochastic) and W t

out (column-stochastic)

denote the in-neighbor and out-neighbor connectivity matrix

at time t, respectively. Moreover, let N t
in,i be the set of nodes

that can send information to node i (including i), and N t
out,j

the set of nodes that can receive information from node j
(including j) at time t. We assume that both N t

in,i and N t
out,i

are known to node i. A simple policy for designing W t
in and

W t
out is to set

[W t
in]ij = 1/|N t

in,i|, [W t
out]ij = 1/|N t

out,j |. (2)

We assume that the constructed mixing matrices have non-zero

spectral gaps; this is readily satisfied in a variety of settings

including when the union graph is jointly-connected. Matrices

W t
in and W t

out can be used to synthesize the mixing matrix, as

formally stated in Section 3 (see Definition 1).

To reduce the size of the messages exchanged between

agents in a network, we perform sparsification. In particular,

each node uniformly at random selects and communicates k
out of d entries of a d-dimensional message. To formalize this,

we introduce a sparsification operator Q : Rd → R
d. The

operator Q is biased, i.e., E[Q(x)] 6= x, and has variance that

depends on the norm of its argument, E[‖Q(x)−x‖2] ∝ ‖x‖2.

Biased compression operators have previously been considered

in the context of time-invariant networks [10, 11, 17, 16] but

are not encountered in time-varying network settings.

3. COMPRESSED TIME-VARYING

DECENTRALIZED OPTIMIZATION

A common strategy to solving decentralized optimization prob-

lems is to orchestrate exchange of messages between agents

such that each message consists of a combination of com-

pressed messages from neighboring nodes and a gradient noise

term. The gradient term is rendered vanishing by adopting a

decreasing stepsize scheme; this ensures that the agents in the

network reach a consensus state which is the optimal solution

to the optimization problem.

To meet communication constraints, messages may be spar-

sified; however, simplistic introduction of sparsification to the

existing methods, e.g., [12, 18, 19, 3], may have adverse effect

on their convergence – indeed, modified schemes may only

converge to a neighborhood of the optimal solution or even end

up diverging. This is caused by the non-vanishing error due to

the bias and variance of the sparsification operator. We note

that the impact of sparsification on the entries of a state vector

in the network can be interpreted as that of link failures; this

motivates us to account for it in the structure of the connectivity

matrices. Specifically, we split the vector-valued decentral-

ized problem into d individual scalar-valued sub-problems

with the coordinate in-neighbor and out-neighbor connectivity

matrices, {W t
in,m}dm=1 and {W t

out,m}dm=1, specified for each

time t. If an entry is sparsified at time t (i.e., set to zero and

not communicated), the corresponding coordinate connectiv-

ity matrices are no longer stochastic. To handle this issue,

we re-normalize the connectivity matrices {W t
in,m}dm=1 and

{W t
out,m}dm=1, ensuring their row stochasticity and column

stochasticity, respectively; node i performs re-normalization of

the ith row of {W t
in,m}dm=1 and ith column of {W t

out,m}dm=1

locally. We denote by {At
m}dm=1 and {Bt

m}dm=1 the weight

matrices resulting from the re-normalization of {W t
in,m}dm=1

and {W t
out,m}dm=1, respectively.

Following the work of [18] on average consensus, we

introduce an auxiliary vector yi ∈ R
d for each node. Referred

to as the surplus vector, yi ∈ R
d records variations of the

state vectors over time and is used to help ensure the state

vectors approach the consensus state. At time step t, node

i compresses xt
i and yt

i and sends both to the current out-

neighbors. To allow succinct expression of the update rule, we

introduce zti ∈ R
d defined as

zti =

{

xt
i, i ∈ {1, ..., n}

yt
i−n, i ∈ {n+ 1, ..., 2n} . (3)

The sparsification operator Q(·) is applied to zti, resulting in

Q(zti); we denote the mth entry of the sparsified vector by

[Q(zti)]m. The aforementioned weight matrix At
m is formed

as

[At
m]ij =







[W t
in,m]ij∑

j∈St
m(i,j)[W

t
in,m

]ij
if j ∈ St

m(i, j)

0 otherwise,
(4)

where St
m(i, j) := {j|j ∈ N t

in,i, [Q(ztj)]m 6= 0} ∪ {i}. Like-

wise, Bt
m is defined as

[Bt
m]ij =







[W t
out,m]ij∑

i∈T t
m(i,j)[W

t
out,m]ij

if i ∈ T t
m(i, j)

0 otherwise,
(5)

where T t
m(i, j) := {i|i ∈ N t

out,j , [Q(zti)]m 6= 0} ∪ {j}.

To obtain the update rule for the optimization algorithm,

we first need to define the mixing matrix of a directed network

with sparsified messages.

Definition 1. At time t, the mth mixing matrix of a time-

varying directed network deploying sparsified messages,

M̄ t
m ∈ R

2n×2n, is a matrix with eigenvalues 1 = |λ1(M̄
t
m)| =

|λ2(M̄
t
m)| ≥ |λ3(M̄

t
m)| ≥ · · · |λ2n(M̄

t
m)| that is constructed

from the current network topology as

M̄ t
m =

[

At
m 0

I −At
m Bt

m

]

, (6)
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Algorithm 1 Communication-Sparsifying Jointly-Connected

Gradient Descent

1: Input: T , ε, x0, y0 = 0,

2: set z0 = [x0;y0]
3: for each t ∈ [0, 1, ..., T ] do

4: generate non-negative matrices W t
in, W t

out

5: for each m ∈ [1, ..., d] do

6: construct a row-stochastic At
m and a column-

stochastic Bt
m according to (4) and (5)

7: construct M̄ t
m according to (6)

8: for each i ∈ {1, ..., 2n} do

9: Update zt+1
im according to (7)

10: end for

11: end for

12: end for

where At
m and Bt

m represent the mth normalized in-neighbor

and out-neighbor connectivity matrices at time t, respectively.

With zti and M̄ t
m defined in (3) and (6), respectively, node

i updates the mth component of its message according to

zt+1
im =

2n
∑

j=1

[M̄ t
m]ij [Q(ztj)]m + 1{t mod B=B−1}ε[F ]ijz

Bbt/Bc
jm

− 1{t mod B=B−1}αbt/Bcg
Bbt/Bc
im ,

(7)

where gtim denotes the mth entry of the gradient vector gt
i

constructed as

gt
i =

{

∇fi(x
t
i), i ∈ {1, ..., n}

0, i ∈ {n+ 1, ..., 2n} . (8)

Moreover, F =

[

0 I
0 −I

]

, and αt is the stepsize at time t.

In (7), the update of vectors zti consists of a mixture of

the compressed state vectors and surplus vectors, and includes

a vanishing gradient computed from history. The mixture

of compressed messages can be interpreted as obtained by

sparsification and multiplication with the mixing matrix from

the previous time steps, except for the times when

t mod B = B − 1. (9)

When t satisfies (9), the update of zti incorporates stored vec-

tors z
Bbt/Bc
i . Note that z

Bbt/Bc
i is multiplied by εF , where the

perturbation parameter ε determines the extent F affects the

update. One can show that εF , in combination with the mixing

matrix M̄ t
m, guarantees non-zero spectral gap of the product

matrix over B consecutive time steps starting from t = kB.

Similarly, gradient term αbt/Bcg
Bbt/Bc
im , computed using state

vectors x
t−(B−1)
i , participates in the update when (9) holds.

We formalize the proposed procedure as Algorithm 1.

Remark. It is worth pointing out that in Algorithm 1

each node needs to store local messages of size 4d (four d-

dimensional vectors: the current state and surplus vectors, past

surplus vector, and local gradient vector). Only the two current

vectors may be communicated to the neighboring nodes while

the other two vectors are used locally when (9) holds. Note

that M̄ t
m has column sum equal to one but it is not column-

stochastic due to having negative entries. Finally, note that

when B = 1, the network is strongly connected at all times.

3.1. Convergence Analysis

Let M̄m(T : s) = M̄T
mM̄T−1

m · · · M̄s
m denote the product of

a sequence of consecutive mixing matrices from time s to

T , with the superscript indicating the time and the subscript

indicating the entry position. The perturbed product, Mm((k+
1)B − 1 : kB), is obtained from adding the perturbation term

εF to the product of mixing matrices as

Mm((k+1)B−1 : kB) = M̄m((k+1)B−1 : kB)+εF. (10)

To proceed, we require the following assumptions.

Assumption 1. The mixing matrices, stepsizes, and the local

objectives satisfy:

(i) ∀k ≥ 0, 1 ≤ m ≤ d, there exists some 0 < ε0 < 1 such

that the perturbed product, Mm((k+1)B − 1 : kB) has

a non-zero spectral gap ∀ε such that 0 < ε < ε0.

(ii) For a fixed ε ∈ (0, 1), the set of all possible mixing

matrices {M̄ t
m} is a finite set.

(iii) The sequence of stepsizes, {αt}, is non-negative and

satisfies
∑∞

t=0 αt = ∞,
∑∞

t=0 α
2
t < ∞.

(iv) ∀1 ≤ i ≤ n, 1 ≤ m ≤ d, t ≥ 0, there exists some D > 0
such that |gtim| < D.

Given the weight matrices scheme in (2), assumptions (i)

and (ii) hold for a variety of network structures. Assumptions

(iii) and (iv) are common in decentralized optimization [5,

3, 13]) and help guide nodes in the network to a consensus

that approaches the global optimal solution. We formalize

our main theoretical results in Theorem 1, which establishes

convergence of Algorithm 1 to the optimal solution. Proof of

the theorem is omitted for brevity (please see [20] for details).

Theorem 1. Suppose Assumption 1 holds. Let x∗ be the

unique optimal solution and f∗ = f(x∗). Then

2

∞
∑

k=0

αk(f(z̄
kB)− f∗) ≤ n‖z̄0 − x∗‖+ nD′2

∞
∑

k=0

α2
k

+
4D′

n

n
∑

i=1

∞
∑

k=0

αk‖zkBi − z̄kB‖,

(11)

where D′ =
√
dD and z̄t = 1

n

∑n
i=1 x

t
i +

1
n

∑n
i=1 y

t
i .
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Fig. 1. Linear regression on a jointly connected network with B = 1, 3, ε = 0.05, see (a), (b); logistic regression on a jointly

connected network with B = 1, 5, ε = 0.01, see (c), (d).

Note that since
∑∞

t=0 αt = ∞, it is straightforward to see

that Theorem 1 implies limt→∞ f(zti) = f∗ for every agent i,
thereby establishing convergence of Algorithm 1 to the global

minimum of (1). Additionally, for the stepsize αt = O(1/
√
t),

Algorithm 1 attains the convergence rate O( lnT√
T
).

4. NUMERICAL SIMULATIONS

We test Algorithm 1 in applications to linear and logistic re-

gression, and compare the results to Q-Grad-Push, obtained

by applying simple quantization to the push-sum scheme [3],

and Q-De-DGD [16]. Neither of these two schemes was devel-

oped with communication-constrained optimization over time-

varying directed networks in mind – the former was originally

proposed for unconstrainted communication, while the latter

is concerned with static networks. However, since there is no

prior work on decentralized optimization over time-varying

directed networks under communication constraints, we adopt

them for the purpose of benchmarking.

We use Erdős–Rényi model to generate strongly connected

instances of a graph with 10 nodes and edge appearance prob-

ability 0.9. Two uni-directional edges are dropped randomly

from each such graph while still preserving strong connectivity.

We then remove in-going and out-going edges of randomly

selected nodes to create a scenario where an almost-surely

strongly connected network is formed only after taking a union

of graphs over B time instances (see Assumption 1). Finally,

recall that q denotes the fraction of entries that nodes commu-

nicate to their neighbors (small q implies high compression).

Decentralized linear regression. First, consider the opti-

mization problem minx
1
n

∑n
i=1 ‖yi −Dixi‖2, where Di ∈

R
200×128 is a local data matrix with 200 data points of size

d = 128 at node i, and yi ∈ R
200 represents the local measure-

ment vector at node i. We generate x∗ from a normal distribu-

tion, and set up the measurement model as yi = Mix
∗ + ηi,

where Mi is randomly generated from the standard normal

distribution; finally, the rows of the data matrix are normal-

ized to sum to one. The local additive noise ηi is generated

from a zero-mean Gaussian distribution with variance 0.01.

In Algorithm 1 and Q-Grad-Push, local vectors are initialized

randomly to x0
i ; Q-De-DGD is initialized with an all-zero vec-

tor. The quantization level of the benchmarking algorithms is

selected to ensure that the number of bits those algorithms com-

municate is equal to that of Algorithm 1 when q = 0.09. All

algorithms are run with stepsize αt =
0.2
t . The performance

of different schemes is quantified by the residuals
‖xt−x̄‖
‖x0−x̄‖ .

The results are shown in Fig.1 (a), (b). As shown in the sub-

plots, for all the considered sparsification rates Algorithm 1

converges with rate proportional to q, while the benchmarking

algorithms do not converge to the optimal solution.

Decentralized logistic regression. Next, we consider

a multi-class classification task on the MNIST dataset

[21]. The logistic regression problem is formulated as

minx

{

µ
2 ‖x‖2 +

∑n
i=1

∑N
j=1 ln(1 + exp(−(mT

ijxi)yij))
}

.

The data is distributed across the network such that each

node i has access to N = 120 training samples (mij , yij) ∈
R

64 × {0, · · · , 9}, where mij denotes a vectorized image

with size d = 64 and yij denotes the corresponding digit

label. Performance of Algorithm 1 is again compared with

Q-Grad-Push and Q-De-DGD; all algorithms are initialized

with zero vectors. The quantization level of the benchmark-

ing algorithms is selected such that the number of bits they

communicate is equal to that of Algorithm 1 for q = 0.07.

The experiment is run using the stepsize αt = 0.02
t ; we set

µ = 10−5. Fig. 1 (c), (d) show the classification correct rate

of Algorithm 1 for different sparsification and connectivity

levels. As can be seen there, all sparsified schemes achieve

the same level of the classification correct rate. The schemes

communicating fewer messages in less connected networks

converge slower, while the two benchmarking algorithms

converge only to a neighborhood of the optimal solution.

5. CONCLUSION

We considered the problem of decentralized learning over

time-varying directed graphs where, due to communication

constraints, nodes communicate sparsified messages. We

proposed a communication-efficient algorithm that achieves

O( lnT√
T
) convergence rate for general decentralized convex op-

timization tasks. As part of the future work, it is of interest

to study reduction of the computational cost of the optimiza-

tion procedure by extending the results to the setting where

network agents rely on stochastic gradients.
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[9] Angelia Nedić, Soomin Lee, and Maxim Raginsky, “De-

centralized online optimization with global objectives

and local communication,” in 2015 American Control

Conference. IEEE, 2015, pp. 4497–4503.

[10] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin

Jaggi, “Sparsified sgd with memory,” in Advances in

Neural Information Processing Systems, 2018, pp. 4447–

4458.

[11] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi,

“Decentralized stochastic optimization and gossip algo-

rithms with compressed communication,” in Int’l Conf.

on Machine Learning, 2019, pp. 3478–3487.

[12] David Kempe, Alin Dobra, and Johannes Gehrke,

“Gossip-based computation of aggregate information,” in

44th Annual IEEE Symposium on Foundations of Com-

puter Science, 2003. Proceedings . IEEE, 2003, pp. 482–

491.

[13] Chenguang Xi, Qiong Wu, and Usman A Khan, “On the

distributed optimization over directed networks,” Neuro-

computing, vol. 267, pp. 508–515, 2017.

[14] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan

Wang, Yiran Chen, and Hai Li, “Terngrad: Ternary

gradients to reduce communication in distributed deep

learning,” in Advances in Neural Information Processing

Systems, 2017, pp. 1509–1519.

[15] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu,

and Ce Zhang, “Zipml: Training linear models with

end-to-end low precision, and a little bit of deep learn-

ing,” in Proceedings of the 34th International Conference

on Machine Learning-Volume 70. JMLR. org, 2017, pp.

4035–4043.

[16] Hossein Taheri, Aryan Mokhtari, Hamed Hassani, and

Ramtin Pedarsani, “Quantized decentralized stochastic

learning over directed graphs,” in International Confer-

ence on Machine Learning, 2020.

[17] Anastasia Koloskova, Tao Lin, Sebastian U Stich, and

Martin Jaggi, “Decentralized deep learning with ar-

bitrary communication compression,” arXiv preprint

arXiv:1907.09356, 2019.

[18] Kai Cai and Hideaki Ishii, “Average consensus on general

strongly connected digraphs,” Automatica, vol. 48, no.

11, pp. 2750–2761, 2012.

[19] Kai Cai and Hideaki Ishii, “Average consensus on ar-

bitrary strongly connected digraphs with time-varying

topologies,” IEEE Trans. on Automatic Control, vol. 59,

no. 4, pp. 1066–1071, 2014.

[20] Yiuye Chen, Abolfazl Hashemi, and Haris Vikalo,

“Communication-efficient decentralized optimization

over time-varying directed graphs,” arXiv preprint

arXiv:2005.13189, 2020.
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