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ABSTRACT

We consider the problem of decentralized optimization
where a collection of agents, each having access to a local cost
function, communicate over a time-varying directed network
and aim to minimize the sum of those functions. In practice,
the amount of information that can be exchanged between
the agents is limited due to communication constraints. We
propose a communication-efficient algorithm for decentral-
ized convex optimization that rely on sparsification of local
updates exchanged between neighboring agents in the network.
In directed networks, message sparsification alters column-
stochasticity — a property that plays an important role in es-
tablishing convergence of decentralized learning tasks. We
propose a decentralized optimization scheme that relies on lo-
cal modification of mixing matrices, and show that it achieves
(9(1“\/—%) convergence rate in the considered settings. Experi-
ments validate theoretical results and demonstrate efficacy of
the proposed algorithm.

Index Terms— decentralized optimization, convex pro-
gramming

1. INTRODUCTION

In recent years, decentralized optimization has attracted con-
siderable interest from the machine learning, signal processing,
and control communities [1, 2, 3, 4]. We consider the setting
where a collection of agents attempts to minimize an objective
that consists of functions distributed among the agents; each
agent evaluates one of the functions on its local data. Formally,
this optimization task can be stated as

min [f(x) = iZfi(X)l ; (H

x€ER?

where n is the number of agents and f; : R — R is the
function assigned to the i™ node, i € [n] := {1,...,n}. The
agents collaborate by exchanging information over a network
modeled by a time-varying directed graph G(¢) = (|n|,£(t)),
where £(t) denotes the set of edges at time ¢; agent ¢ can send
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a message to agent j at time ¢ if there exist an edge from i to j
att, i.e., if {i,j} € £(¢).

The described setting has been a subject of extensive stud-
ies over the last decade, leading to a number of seminal results
[5,6,7,8,9, 10, 11]. Majority of prior work assumes sym-
metry in the agents’ communication capabilities, i.e., models
the problem using undirected graphs. However, the assump-
tion of symmetry is often violated and the graph that captures
properties of the communication network should be directed.
Providing provably convergent decentralized convex optimiza-
tion schemes over directed graphs is challenging; technically,
this stems from the fact that unlike in undirected graphs, the
so-called mixing matrix of a directed graph is not doubly
stochastic. The existing prior work in the directed graph set-
tings includes the grad-push algorithm [12, 3], which compen-
sates for the imbalance in a column-stochastic mixing matrix
by relying on local normalization scalars, and the directed
distributed gradient descent (D-DGD) scheme [13] which care-
fully tracks link changes over time and their impact on the
mixing matrices. Assuming convex local function, both of

these methods achieve O(ln\/—%) convergence rate.

In practice, communication bandwidth is often limited
and thus the amount of information that can be exchanged
between the agents is restricted. This motivates design of de-
centralized optimization schemes capable of operating under
communication constraints; none of the aforementioned meth-
ods considers such settings. Recently, techniques that address
communication constraints in decentralized optimization by
quantizing or sparsifying messages exchanged between par-
ticipating agents have been proposed in literature [14, 15, 10].
Such schemes have been deployed in the context of decen-
tralized convex optimization over undirected networks [11] as
well as in fixed directed networks [16]. However, there has
been no prior work on communication-constrained decentral-
ized learning over time-varying directed networks.

In this paper we propose, to our knowledge the first,
communication-sparsifying scheme for decentralized convex
optimization over directed networks, and provide formal
guarantees of its convergence; in particular, we show that
the proposed method achieves O(I“\/—%) convergence rate.
Experiments demonstrate efficacy of the proposed scheme.
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2. PROBLEM SETTING

Assume that a collection of agents aims to collaboratively find
the unique solution to decentralized convex optimization (1);
let us denote this solution by x* and assume, for simplicity,
that ¥ = R?. The agents, represented by nodes of a directed
time-varying graph, are allowed to exchange sparsified mes-
sages. In the following, we do not assume smoothness or
strong convexity of the objective; however, our analysis can
be extended to such settings.

Let W} (row-stochastic) and W/, (column-stochastic)
denote the in-neighbor and out-neighbor connectivity matrix
at time ¢, respectively. Moreover, let N/}, ; be the set of nodes
that can send information to node 4 (including ), and N Otun j
the set of nodes that can receive information from node j
(including j) at time ¢. We assume that both N, ; and NV7,,; ;
are known to node 4. A simple policy for designing W/, and
W, is to set

(Winlis = 1/INinil,

in,i

[Wgut]ij = 1/‘N£ut7j| (2)

We assume that the constructed mixing matrices have non-zero
spectral gaps; this is readily satisfied in a variety of settings
including when the union graph is jointly-connected. Matrices
W}, and W, can be used to synthesize the mixing matrix, as
formally stated in Section 3 (see Definition 1).

To reduce the size of the messages exchanged between
agents in a network, we perform sparsification. In particular,
each node uniformly at random selects and communicates k
out of d entries of a d-dimensional message. To formalize this,
we introduce a sparsification operator @ : R? — R?. The
operator () is biased, i.e., E[Q(x)] # x, and has variance that
depends on the norm of its argument, E[||Q(x) —x||?] o ||x||2.
Biased compression operators have previously been considered
in the context of time-invariant networks [10, 11, 17, 16] but
are not encountered in time-varying network settings.

3. COMPRESSED TIME-VARYING
DECENTRALIZED OPTIMIZATION

A common strategy to solving decentralized optimization prob-
lems is to orchestrate exchange of messages between agents
such that each message consists of a combination of com-
pressed messages from neighboring nodes and a gradient noise
term. The gradient term is rendered vanishing by adopting a
decreasing stepsize scheme; this ensures that the agents in the
network reach a consensus state which is the optimal solution
to the optimization problem.

To meet communication constraints, messages may be spar-
sified; however, simplistic introduction of sparsification to the
existing methods, e.g., [12, 18, 19, 3], may have adverse effect
on their convergence — indeed, modified schemes may only
converge to a neighborhood of the optimal solution or even end
up diverging. This is caused by the non-vanishing error due to
the bias and variance of the sparsification operator. We note

that the impact of sparsification on the entries of a state vector
in the network can be interpreted as that of link failures; this
motivates us to account for it in the structure of the connectivity
matrices. Specifically, we split the vector-valued decentral-
ized problem into d individual scalar-valued sub-problems
with the coordinate in-neighbor and out-neighbor connectivity
matrices, {W}, . & _, and {W/,, . }¢ _,, specified for each
time t. If an eritry is sparsified at time ¢ (i.e., set to zero and
not communicated), the corresponding coordinate connectiv-
ity matrices are no longer stochastic. To handle this issue,
we re-normalize the connectivity matrices {W}, ,, d_, and
{W/,i.m}%—1. ensuring their row stochasticity and column
stochasticity, respectively; node ¢ performs re-normalization of
the i row of {W, .. }4 _, and i column of {W¢,,  }d _,

locally. We denote by {A% }2 _, and {B!,}4,_, the weight

m
. . . . t d
matrices resulting from the re-normalization of {W}, .., }7,_1

and {W},; ,, }%,_,, respectively.

Following the work of [18] on average consensus, we
introduce an auxiliary vector y; € R? for each node. Referred
to as the surplus vector, y; € R? records variations of the
state vectors over time and is used to help ensure the state
vectors approach the consensus state. At time step ¢, node
i compresses x! and y! and sends both to the current out-
neighbors. To allow succinct expression of the update rule, we
introduce z! € R? defined as

1
zl = *i
t

yifn)

The sparsification operator Q)(-) is applied to z!, resulting in
Q(z!); we denote the m™ entry of the sparsified vector by
[Q(z!)] . The aforementioned weight matrix A’ is formed
as

ie{l,..,n}

ie{n+1,..,2n}. ®)

(Wi mlig

in,m s . t ..
2jest, .0 Win,mlis i) € i) “)

0 otherwise,

in,s? [Q(Z_t,)]m 7& 0} U {’L} Like-

[A})i; =

where S, (i, 7) := {jlj € MV}
wise, B, is defined as

Wout.mlii iy (s s
L fie ,
[BL.)ij = { ZiemhnWourmlis ifi € 7m0, J) (5)

0 otherwise,

where Ty, (i, ) := {ili € Ny 5 [Q(2)]m # 0} U {j}-

To obtain the update rule for the optimization algorithm,
we first need to define the mixing matrix of a directed network
with sparsified messages.

Definition 1. At time t, the m'™ mixing matrix of a time-
varying directed network deploying sparsified messages,
M}, € R*™2n js a matrix with eigenvalues 1 = |\ (M},)| =
Ao(ME)| > [As(ME)| > -+ |Aan (ML)| that is constructed
from the current network topology as

- Al 0
t m
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Algorithm 1 Communication-Sparsifying Jointly-Connected
Gradient Descent

1: Input: T, €, x9, y0 =0,
2: setz° = [x%; 0]
3: foreacht € [0,1,...,7T] do

4. generate non-negative matrices W}, , W/ ,
5. foreachm € [1,...,d] do
6: construct a row-stochastic A’ and a column-
stochastic B!, according to (4) and (5)
7: construct M according to (6)
8: foreachi € {1,...,2n} do
9: Update 2! according to (7)
10: end for
11:  end for
12: end for
where At and B, represent the m™ normalized in-neighbor

and out-neighbor connectivity matrices at time t, respectively.

With z}? and ]\7[72T defined in (3) and (6), respectively, node
i updates the m™ component of its message according to

2n
zf;;l = Z[an]z‘j [Q(Zﬁ)]m + 1t mod B:B—l}E[F]ijzﬁg/BJ
j=1

_ ]l{t mod B:B,l}au/lﬂgﬂt/lﬂ,

@)
where ¢!, denotes the m™ entry of the gradient vector g!
constructed as

P Vii(xt), ie{l,..,n} ®)

& = 0, ie{n+1,..2n}.

0

0 —I
In (7), the update of vectors z§ consists of a mixture of

the compressed state vectors and surplus vectors, and includes

a vanishing gradient computed from history. The mixture

of compressed messages can be interpreted as obtained by

sparsification and multiplication with the mixing matrix from

the previous time steps, except for the times when

Moreover, F' = [ ] , and o is the stepsize at time ¢.

t mod B=B-1. 9

When ¢ satisfies (9), the update of z! incorporates stored vec-

tors Z?W 5] Note that sz Blis multiplied by e, where the

perturbation parameter € determines the extent F' affects the
update. One can show that e ", in combination with the mixing
matrix M!,, guarantees non-zero spectral gap of the product
matrix over B consecutive time sLte/sz starting from ¢t = kB.
B|t/B

Similarly, gradient term o |4/5)9;,, '~ » computed using state

vectors xf_(B_l), participates in the update when (9) holds.

We formalize the proposed procedure as Algorithm 1.

Remark. It is worth pointing out that in Algorithm 1
each node needs to store local messages of size 4d (four d-
dimensional vectors: the current state and surplus vectors, past
surplus vector, and local gradient vector). Only the two current
vectors may be communicated to the neighboring nodes while
the other two vectors are used locally when (9) holds. Note
that M, has column sum equal to one but it is not column-
stochastic due to having negative entries. Finally, note that
when B = 1, the network is strongly connected at all times.

3.1. Convergence Analysis

Let M, (T : s) = MLME=1... M3 denote the product of
a sequence of consecutive mixing matrices from time s to
T, with the superscript indicating the time and the subscript
indicating the entry position. The perturbed product, M,, ((k+
1)B — 1 : kB), is obtained from adding the perturbation term
eF' to the product of mixing matrices as

M ((k4+1)B—1: kB) = My, ((k+1)B—1 : kB)+€F. (10)
To proceed, we require the following assumptions.

Assumption 1. The mixing matrices, stepsizes, and the local
objectives satisfy:

(i) Yk > 0,1 < m < d, there exists some 0 < €y < 1 such
that the perturbed product, M, ((k+1)B — 1 : kB) has
a non-zero spectral gap Ve such that 0 < € < €.

(ii) For a fixed € € (0,1), the set of all possible mixing
matrices { M} } is a finite set.

(iii) The sequence of stepsizes, {;}, is non-negative and
satisfies Y oo g = 00, > po aF < 0.

(iv) V1 <i<n,1 <m <d,t >0, there exists some D > 0
such that |gt,,,| < D.

Given the weight matrices scheme in (2), assumptions (i)
and (ii) hold for a variety of network structures. Assumptions
(iii) and (iv) are common in decentralized optimization [5,
3, 13]) and help guide nodes in the network to a consensus
that approaches the global optimal solution. We formalize
our main theoretical results in Theorem 1, which establishes
convergence of Algorithm 1 to the optimal solution. Proof of
the theorem is omitted for brevity (please see [20] for details).

Theorem 1. Suppose Assumption 1 holds. Let x* be the
unique optimal solution and f* = f(x*). Then

(oo}
f*) <nllz° — x| +nD? ) af
k=0

2 Z ax(f(2") -
k=0

DS S - 2,

i=1 k=0
(11

where D' = VdD andzt = L Y"1 xt+ 15" yi
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Fig. 1. Linear regression on a jointly connected network with B = 1,3, ¢ = 0.05, see (a), (b); logistic regression on a jointly

connected network with B = 1,5, ¢ = 0.01, see (¢), (d).

Note that since Z;’i o Q¢ = 00, it is straightforward to see
that Theorem 1 implies lim;_,, f(z!) = f* for every agent i,
thereby establishing convergence of Algorithm 1 to the global
minimum of (1). Additionally, for the stepsize iy = O(1/V/1),

Algorithm 1 attains the convergence rate O(%)

4. NUMERICAL SIMULATIONS

We test Algorithm 1 in applications to linear and logistic re-
gression, and compare the results to Q-Grad-Push, obtained
by applying simple quantization to the push-sum scheme [3],
and Q-De-DGD [16]. Neither of these two schemes was devel-
oped with communication-constrained optimization over time-
varying directed networks in mind — the former was originally
proposed for unconstrainted communication, while the latter
is concerned with static networks. However, since there is no
prior work on decentralized optimization over time-varying
directed networks under communication constraints, we adopt
them for the purpose of benchmarking.

We use Erd6s—Rényi model to generate strongly connected
instances of a graph with 10 nodes and edge appearance prob-
ability 0.9. Two uni-directional edges are dropped randomly
from each such graph while still preserving strong connectivity.
We then remove in-going and out-going edges of randomly
selected nodes to create a scenario where an almost-surely
strongly connected network is formed only after taking a union
of graphs over B time instances (see Assumption 1). Finally,
recall that ¢ denotes the fraction of entries that nodes commu-
nicate to their neighbors (small ¢ implies high compression).

Decentralized linear regression. First, consider the opti-
mization problem miny + Y77, |ly; — Dix;||?, where D; €
R200%128 jq 4 Jocal data matrix with 200 data points of size
d = 128 atnode i, and y; € R2%0 represents the local measure-
ment vector at node ¢. We generate x* from a normal distribu-
tion, and set up the measurement model as y; = M;x* + n;,
where M; is randomly generated from the standard normal
distribution; finally, the rows of the data matrix are normal-
ized to sum to one. The local additive noise 7; is generated
from a zero-mean Gaussian distribution with variance 0.01.
In Algorithm 1 and Q-Grad-Push, local vectors are initialized
randomly to x; Q-De-DGD is initialized with an all-zero vec-
tor. The quantization level of the benchmarking algorithms is

selected to ensure that the number of bits those algorithms com-
municate is equal to that of Algorithm 1 when ¢ = 0.09. All
algorithms are run with stepsize oy = %. The performance

of different schemes is quantified by the residuals H;‘;:’;H

The results are shown in Fig.1 (a), (b). As shown in the sub-
plots, for all the considered sparsification rates Algorithm 1
converges with rate proportional to g, while the benchmarking
algorithms do not converge to the optimal solution.
Decentralized logistic regression. Next, we consider
a multi-class classification task on the MNIST dataset
[21]. The logistic regression problem is formulated as

min { & x| + 37, S230, (1 + exp(—(mx)yi)) | -
The data is distributed across the network such that each
node 4 has access to N = 120 training samples (m;;, ;) €
R% x {0,---,9}, where m;; denotes a vectorized image
with size d = 64 and y;; denotes the corresponding digit
label. Performance of Algorithm 1 is again compared with
Q-Grad-Push and Q-De-DGD; all algorithms are initialized
with zero vectors. The quantization level of the benchmark-
ing algorithms is selected such that the number of bits they
communicate is equal to that of Algorithm 1 for ¢ = 0.07.
The experiment is run using the stepsize oy = %; we set
i = 1075, Fig. 1 (c), (d) show the classification correct rate
of Algorithm 1 for different sparsification and connectivity
levels. As can be seen there, all sparsified schemes achieve
the same level of the classification correct rate. The schemes
communicating fewer messages in less connected networks
converge slower, while the two benchmarking algorithms
converge only to a neighborhood of the optimal solution.

5. CONCLUSION

We considered the problem of decentralized learning over
time-varying directed graphs where, due to communication
constraints, nodes communicate sparsified messages. We
proposed a communication-efficient algorithm that achieves
(9(%) convergence rate for general decentralized convex op-
timization tasks. As part of the future work, it is of interest
to study reduction of the computational cost of the optimiza-
tion procedure by extending the results to the setting where
network agents rely on stochastic gradients.
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