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1. Introduction

Let k be an arbitrary field, P = P Xg - -+ Xg [P[an be a multiprojective space over k,
and X C P be a closed subscheme of P. The multidegrees of X are fundamental invariants
that describe algebraic and geometric properties of X. For each n = (ny,...,n,) € NP
with ni+---4n, = dim(X) one can define the multidegree of X of type n with respect to P,
denoted by degp (X), in different ways (see Definition 2.7, Remark 2.8 and Remark 2.9). In
classical geometrical terms, when k is algebraically closed, degp(X) equals the number of
points (counting multiplicity) in the intersection of X with the product Ly xy- - -xxL, C P,
where L; C IP[Ln ' is a general linear subspace of dimension m; —n; for each 1 <1i < p.

The study of multidegrees goes back to pioneering work by van der Waerden [60].
From a more algebraic point of view, multidegrees receive the name of mixzed multiplici-
ties (see Definition 2.7). More recent papers where the notion of multidegree (or mixed
multiplicity) is studied are, e.g., [1,9,11,23,33,36,41,42,57].

The main goal of this paper is to answer the following fundamental question considered
by Trung [57] and by Huh [25] in the case p = 2.

e Form e NP withm; +--- +n, = dim(X), when do we have that degp(X) > 07

Our main result says that the positivity of degp(X) is determined by the dimensions of
the images of the natural projections from P restricted to the irreducible components
of X. First, we set a basic notation: for each J = {j1,...,jx} C {1,...,p}, let TT3 be the
natural projection

P — M1 myp My My
ﬂ:j.[P—[P[k ><[|<--~X[;<|P[k —>[P[|< X[k"'x[k[P[k .

The following is the main theorem of this article. Here, we give necessary and sufficient
conditions for the positivity of multidegrees.

Theorem A (Theorem 5.12, Corollary 5.13). Let k be an arbitrary field, P = P x

- Xk [P[Ln‘D be a multiprojective space over k, and X C P be a closed subscheme of P.
Letn = (ny,...,np) € NP be such that ny + - - +np, = dim(X). Then, degp(X) > 0 if
and only if there is an irreducible component Y C X of X that satisfies the following two
conditions:

(a) dim(Y) = dim(X).
(b) For each J ={j1,...,jx} C{1,...,p} the inequality

ny, +-- 1y, < dim (ﬂg(Y))
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holds.

When k is the field of complex numbers Theorem A is essentially covered by the
geometric results in [34, Theorems 2.14, 2.19],° however their methods do not extend
to arbitrary fields. Here we follow an algebraic approach that allows us to prove the
result for all fields, and hence a general version for algebras over Artinian local rings
(see Theorem B). The main idea in the proof of Theorem A is the study of the dimen-
sions of the images of the natural projections after cutting by a general hyperplane (see
Theorem 3.7).

We note that if p = 2 and X is arithmetically Cohen-Macaulay, the conclusion of
Theorem A in the irreducible case also holds for X (see [57, Corollary 2.8]). In Example 5.2
we show that this is not necessarily true for p > 2.

If X is irreducible, then the function r : 2t1P} — 7 defined by 7(J) := dim (ﬂg(Y))
is a submodular function, i.e., r(J1 N J2) + 7(J1 U J2) < 1(J1) + r(J2) for any two
subsets J1,J2 C {1,...,p}, as proved in Proposition 5.1 (see also Definition 2.16). By
the Submodular Theorem (see, e.g., [7, Theorem 3.11] or [44, Appendix B]) and the
inequalities of Theorem A, the points n € NP for which degp(X) > 0 are the lattice points
of a generalized permutohedron. Defined by A. Postnikov in [48] generalized permutohedra
are polytopes obtained by deforming usual permutohedra. In recent years this family of
polytopes has been studied in relation to other fields such as probability, combinatorics,
and representation theory (see [44,45,49]).

In a more algebraic flavor, we state the translation of Theorem A to the mixed
multiplicities of a standard multigraded algebra over an Artinian local ring (see Def-
inition 2.13).

Theorem B (Corollary 3.1/). Let A be an Artinian local ring and R be a finitely generated
standard NP -graded A-algebra. For each 1 < j < p, let my C R be the ideal generated
by the elements of degree e;, where e; € NP denotes the j-th elementary vector. Let
N=myN---Nmp CR. Letn = (ny,...,n,) € NP be such that ny +--- +n, =
dim (R/ (0 :g M*>°)) —p. Then, e(n;R) > 0 if and only if there is a minimal prime ideal
P € Min (0 :g M) of (0 :x M) that satisfies the following two conditions:

(a) dim (R/P) = dim (R/ (0 :g 2°°)).

(b) For each J ={j1,..-,jx} € {1,...,p} the inequality

R
n, 4+ +n;, <dim| —=—w=———]—-k%k
" o (‘»B+Zj¢3mi>

holds.

2 In Remark 3.15 we briefly discuss how (over the complex numbers) Theorem A can be obtained by using
the results in [34, §2.2].
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For a given finite set of ideals in a Noetherian local ring, such that one of them is zero-
dimensional, we can define their mixed multiplicities by considering a certain associated
standard multigraded algebra (see [58] for more information). These multiplicities have a
long history of interconnecting problems from commutative algebra, algebraic geometry,
and combinatorics, with applications to the topics of Milnor numbers, mixed volumes,
and integral dependence (see, e.g., [25,27,55,58]). As a direct consequence of Theorem B
we are able to give a characterization for the positivity of mixed multiplicities of ideals
(see Corollary 4.3). In another related result, we focus on homogeneous ideals generated
in one degree; this case is of particular importance due to its relation with rational maps
between projective varieties. In this setting, we provide more explicit conditions for
positivity in terms of the analytic spread of products of these ideals (see Theorem 4.4).

Going back to the setting of Theorem A, we switch our attention to the following
discrete set

MSuppp(X) = {n e NP | degp(X) > O},

which we call the support of X with respect to P. When X is irreducible, we show that
MSuppp(X) is a (discrete) polymatroid (see §2.3, Proposition 5.1). The latter result
was included in an earlier version of this paper when k is algebraically closed, and an
alternative proof is given by Brandén and Huh in [3, Corollary 4.7] using the theory
of Lorentzian polynomials. An advantage of our approach is that we can describe the
corresponding rank submodular functions of the polymatroids, a fact that we exploit in
the applications of Section 6. Additionally, our results are valid when X is just irreducible
and not necessarily geometrically irreducible over k (i.e., we do not need to assume that
X xy k is irreducible for an algebraic closure k of k); it should be noticed that this
generality is not covered by the statements in [3] and [34].

Discrete polymatroids [24] have also been studied under the name of M-convex sets
[46]. Polymatroids can also be described as the integer points in a generalized permuto-
hedron [48], so they are closely related to submodular functions, which are well studied
in optimization, see [38] and [52, Part IV] for comprehensive surveys on submodular
functions, their applications, and their history. There are two distinguishable types of
polymatroids, linear and algebraic polymatroids, whose main properties are inherited by
their representation in terms of other algebraic structures. Theorem A allows us to define
another type of polymatroids, that we call Chow polymatroids, and which interestingly
lies in between the other two. In the following theorem we summarize our main results
in this direction.

Theorem C (Theorem 5.5). Over an arbitrary field k, we have the following inclusions
of families of polymatroids

(L'L'nea,'r polymatroids) - <Chow polymatroids) - (Al,geb'r‘a'z}c pol,ymat'r'o'z',ds).

Moreover, when k is a field of characteristic zero, the three families coincide.
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If k has positive characteristic, then these types of polymatroids do not agree. In
fact, there exist examples of polymatroids which are algebraic over any field of positive
characteristic but never linear (see Remark 5.7).

Theorem A can be applied to particular examples of varieties coming from combina-
torial algebraic geometry. In §6.1 we do so to matrix Schubert varieties; in this case the
multidegrees are the coefficients of Schubert polynomials, thus our results allow us to
give an alternative proof to a recent conjecture regarding the support of these polyno-
mials (see Theorem 6.3). In §6.2 and §6.3 we study certain embeddings of flag varieties
and of the moduli space Mo,p%, respectively (see Proposition 6.7 and Proposition 6.8).
In §6.4 we recover a well-known characterization for the positivity of mixed volumes of
convex bodies (see Theorem 6.9).

We now outline the contents of the article. In Section 2 we set up the notation used
throughout the document. We also include key preliminary definitions and results, paying
special attention to the connection between mixed multiplicities of standard multigraded
graded algebras and multidegrees of their corresponding schemes. Section 3 is devoted to
the proof of Theorem A and Theorem B. Our results for mixed multiplicities of ideals are
included in Section 4. In Section 5 we relate our results to the theory of polymatroids. In
particular, we show the proof of Theorem C. We finish the paper with Section 6 where
the applications to combinatorial algebraic geometry are presented.

We conclude the Introduction with an illustrative example. The following example is
constructed following the same ideas in Proposition 5.4.

Example 1.1. Consider the polynomial ring S = k[vi,va,v3][wy, Wa, W3] with the N3-
grading deg(vi) = (0,0,0), deg(w;) = e; for 1 <i < 3. Let T be the N3-graded polyno-
mial ring T = k[xo, ..., %3] [yo,--.,ysl [zo,-..,z3] where deg(xi) = e1, deg(yi) = ez and
deg(zi) = e3. Consider the N3-graded k-algebra, homomorphism

Xg /= W1, X1k ViW1, X2 = VWi, X3+ ViWg,
=TS8, Yo — Wa, Y1 > ViWa, Yo > VoW, Yz — (V1 + Vo )wo,
Zo — W3, Z1 — V1Wsg, Zo > VW3, Z3 > V3Ws.

Note that 3 = Ker(¢@) C T is an N3-graded prime ideal. Let Y C P = P? xy P§ x P}
be the closed subscheme corresponding to 3. In this case, one can easily compute the

dimension of the projections IT5(Y) for each J C {1, 2, 3}, and so Theorem A implies that
MSuppp(Y) is given by all n = (ny,...,n3) € N3 satisfying the following conditions:

n; +ns +ng =3 =dim(Y),
(
(

n<1l= dim (ﬂ{l}(Y)) , Mo < 2 = dim (ﬂ{g}(Y)) , N3 < 3 = dim (ﬂ{g,}(Y)) .

ny 4+ ng <2 =dim (M19)(Y)), ni+nz <3 =dim (M 3(Y)),
Ny +n3 < 3 =dim ﬂ{g’g}(Y))

bl
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Hence MSuppp(Y) = {(0,0,3),(0,1,2),(0,2,1),(1,0,2), (1,1,1)} € N3. This set can also
be represented graphically as follows:

(3,0,0)

(0,0,3) (0,3,0)

Additionally, by using Macaulay?2 [21] we can compute that its multidegree polynomial
(see Definition 2.10) is equal to:

degp(Y;ty, to, t3) = t513 + t5t3ts + t3tpt2 + t3t3ts + 232,

We note that here we are following the convention that MSuppp(Y) is given by the
complementary degrees of the polynomial degp(Y;ty,ts,t3); for instance, the term t3t3
corresponds to the point (3,3,3) — (3,3,0) = (0,0,3) € MSuppp(Y).

2. Notation and preliminaries

In this section, we set up the notation that is used throughout the paper. We also
present some preliminary results needed in the proofs of our main theorems.

Let p > 1 be a positive integer. If n = (ny,...,np),m = (my,...,mp) € ZP are two
multi-indexes, we write n > m whenever ny > m; for all 1 <1i < p, and n > m whenever
n; > my for all 1 < j < p. For each 1 <1 < p, let e € NP be the i-th elementary
vector e; = (0,...,1,...,0). Let 0 € NP and 1 € NP be the vectors 0 = (0,...,0) and
1 =(1,...,1) of p copies of 0 and 1, respectively. For any n = (ny,...,n,) € ZP, we
define its weight as [n| :=n; 4 --- +n,. Let [p] denote the set [p] :=={1,...,p}.

For clarity of exposition we first introduce the main concepts in the theory of multide-
grees over an arbitrary field. Later, we also work over Artinian local rings; we highlight
important details in this more general setting in §2.2.

2.1. The case over a field

We begin by introducing a general setup for Theorem A and its preparatory results.

Setup 2.1. Let k be an arbitrary field. Let R be a finitely generated standard NP-graded
algebra over k, that is, [R], = k and R is finitely generated over k by elements of degree
e; with 1 <1 < p. For each subset J = {j1,...,jx} C [p] ={1,...,p} denote by R(3) the
standard N¥*-graded k-algebra given by
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Ray = P Rl

1120,...,ip >0

1=0if j¢J
for instance, for each 1 < j < p, R(j) denotes the standard N-graded k-algebra Rj) :=
EBk>0 [R]k.ej. For each 1 <j < p, let mj C R be the ideal m; := ([R]ej). Let 91 C R be
the multigraded irrelevant ideal 91 := m; N --- N m,. For each J C [p], let Ny C R(y)
be the corresponding multigraded irrelevant ideal 9y := <ﬂ] €3 mj> N R(z). Let X be
the multiprojective scheme X := MultiProj(R) (see Definition 2.2 below) and X3 be
the multiprojective scheme Xz := MultiProj(R5)) for each J C [p]. To avoid trivial
situations, we always assume that X # ().

Definition 2.2. The multiprojective scheme MultiProj(R) is given by MultiProj(R) :=
{‘,B € Spec(R) | P is NP-graded and P 2 ‘ﬁ}, and its scheme structure is obtained by
using multi-homogeneous localizations (see, e.g., [28, §1]).

The inclusion R(3) < R induces the natural projection
My: X=X, PeX=PNRyG) €Xj.

We embed X as a closed subscheme of a multiprojective space P := P/ X -+ - Xy [P[an.
Then, for each J ={j1,...,jx} C [pl, TT5 : X — X3 corresponds with the restriction to X
and to X3 of the natural projection
ﬂﬁi[P — [P[Lnjl X[k“-X[k[P[:ljk,
Mjy LS
and X3 becomes a closed subscheme of Py 7" xp -+ xg P 7%,

For any multi-homogeneous element x € R, the closed subscheme MultiProj(R/xR) C
X is denoted by X N V(x).

Notation 2.3. From now on, J = {j1,...,jx} denotes a subset of [p]. Set r:= dim(X) and
T(J) == dim (TT3(X)) for each J C [p]. For a singleton set {i} C [p], r({i}) and TTj, are
simply denoted by r(i) and TTy, respectively.

Note that the image of TT5 : X — X5 can be described by the following isomorphism

R~
TMy(X) = MultiProj (Rmﬂ(g?R moo)). (1)
3 :

Remark 2.4. Since R = R(3) @ (Ziéﬁ mj), we obtain a natural isomorphism R(z) =

R k L
Y ea ™ of N*-graded k-algebras where k = |J|.

We now provide some preparatory results.
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Lemma 2.5. Under Setup 2.1, the following statements hold:

(i) r =dim(X) = dim (R/ (0 :gx M) — p.
(ii) There is an isomorphism

M5(X) = MultiProj R/((o R m°°)+ij) . (2)
jgJ

(111) If (0 ‘R ‘JI‘X’) = 0, then ﬂ3 (X) = MultiPI‘Oj(R(:‘)) = Xs.
(i) IF (03 M%) =0, then (03¢, M) =0,
Proof. (i) This formula follows from [28, Lemma 1.2] (also, see [10, Corollary 3.5]).
(ii) From the natural maps Ry <+ R — R/ (0 :x :¢>), we obtain a natural isomor-

phism

R(ﬁ)/ (Rw) N (O ‘R ’ﬁoo)) i) (R/ (0 ‘R ’ﬁoo))m.

By using Remark 2.4 it follows that (R/ (0 :x moo))(ﬁ) ~ R/ ((0 R M)+ 3 a5 mj).
Therefore, the claimed isomorphism is obtained from (1).
(iii) It follows directly from part (ii) and Remark 2.4.

(iv) This part is clear. O

Let Pr(t) = Pr(t1,...,tp) € Qt] = Q[t1,...,tp,] be the Hilbert polynomial of R (see,
e.g., [23, Theorem 4.1], [9, Theorem 3.4]). Then, the degree of Pg is equal to T and

PR(V) = dimy, ([R]v)

for all v.€ NP such that v > 0. Furthermore, if we write

Pr(t) = Z e(mi,...,nyp) (tl :;Ll) (tpi‘np)’ (3)
P

then 0 <e(ny,...,n.)eZforallm; +---4+n, =1.
Remark 2.6. The following are basic properties of Hilbert polynomials.

(i) Since 9T%(0 :x M®) = 0 for k > 0 we have dimy, ([R]y) = dimy ([R/(0 :x M*®)]) for
v > 0. Thus,

Pr(t) = Pry(0:gm=)(t).
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(ii) Let L be a field extension of k. Then, R ® L is a finitely generated standard NP-
graded [-algebra and dim; ([R ® L]y ) = dimy ([R]+) for all v € NP. Thus,

Pra,(t) = Pr(t).

In particular, one can always assume k is an infinite field (for instance, we can
substitute k by a purely transcendental field extension k(&)).

Under the notation of (3) we define the following invariants.

Definition 2.7. Let n = (ny,...,n,) € NP with [n| = r. Then:

(i) e(n,R):=e(ny,...,ny) is the mized multiplicity of R of type n.
(i) degp(X) = e(ny,...,ny) is the multidegree of X = MultiProj(R) of type n with
respect to P.

As stated in the Introduction, in classical geometrical terms, when k is algebraically
closed, degp(X) is also equal to the number of points (counting multiplicity) in the
intersection of X with the product Ly xy --- xx L, C P, where L; C [P[E1 ' is a general
linear subspace of dimension mi —n; for each 1 <1 < p (see [60], [9, Theorem 4.7]).

The multidegrees of X can be defined easily in terms of Chow rings and in terms of
Hilbert series.

Remark 2.8. The Chow ring of P = P;™™ Xy - -+ X [Pn](np is given by

Z[My,. .. Hy]
(H‘f““, L H{,“P“)

A*(P) =

where Hj represents the class of the inverse image of a hyperplane of P"* under the
natural projection IT; : P — P;"*. Then, the class of the cycle associated to X coincides
with

X] = > degp (X) HM™ ™. HJ ™ € A%(P).

o<n;<m
n|=T1

Remark 2.9. By considering the Hilbert series Hilbg (t1, ..., tp) := ), cpp dimg ([R]y) t7"
o ~t;" of R, one can analogously define the notions of mixed multiplicities and
multidegrees (see [43, §8.5], [9, Theorem A]). Here we quickly derive this analo-
gous definition because we shall use it in §6.1. Let S = klxi0,%1,1,...,X1,m,] O«
- @ k[xp,0,Xp,15- -+ s Xp,m,] be the multigraded polynomial ring corresponding with
P=P " X Xg [PEP, that is P = MultiProj(S). By considering an S-free resolution of
R, we can write
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P
Hlle(t) ::K(R t)/(] )m+1 :K:(R;tl,...,tp)/H(l_ti)mi+1,

i=1

where K(R;t) is called the K-polynomial of R (see [43, Definition 8.21]). Let C(R;t) €
Z[t1,...,tp] be the sum of all the terms in K(R;1 —t) of total degree equal to dim(S) —
dim(R) (see [43, Definition 8.45]). Then, if (0 :g 9°°) = 0, we obtain the equality

CRit) = ) degh (X) t™ ™. P T,

o< <my
[n|=r

Proof. From [9, Theorem A(I)] we have Hilbr(t) = 3 _qim(r) Qx(t)/(1 — ) where
Qx(t) € Z[t]. The assumption (0 :g 91*°) = 0 gives that dim(R) = T+p (see Lemma 2.5(i)).
Hence, by using [9, Theorem A(IL,III)] we obtain that degp (X) = e(n;R) = Qu41(1) for
all |n| = r. Also, the assumption (0 :x M) = 0 and [9, Theorem 2.8(ii)] imply that
Qx(1) =0 when k| = dim(R) and k; = 0 for some 1 <1< p.

After writing Hilbgr(t) = 3 _qim(r) Qx(t)(1 — )™k /(1 — )™, we obtain the
equality

KRit)= Y Qult)r—t)"

k|=dim (R)

Making the substitution t; +— (1 — t;) and choosing the terms of total degree
dim(S) — dim(R) = > P, my —r, it follows that C(R;t) Zlkl dim(R Qr(1)tmHik =
2 jnj—r Quea(1)t™70 So, the result is clear. O

Although in the proofs of Theorem A and Theorem B we do not exploit the fact
that multidegrees can be defined as in Remark 2.8, we do encode the multidegrees in a
homogeneous polynomial that mimics the cycle associated to X in the Chow ring A*(P).
The following objects are the main focus of this paper.

Definition 2.10. Let X C P = UD[E” Xk * + Xk [P[:l" be a closed subscheme with r =
dim(X). We denote the multidegree polynomial of X with respect to P as the homogeneous

polynomial
degp (X;ty, ..., tp) = Z degl (X) tT" ™™ - )PP € Nlty, ..., tp]
o< i<m;y
n|=1

of degree my + - -+ my, — 1. We say that the support of X with respect to P is given by
MSuppp (X) = {n e NP | degp(X) > O}.

Remark 2.11. Note that under the assumption (0 :g 91*°) = 0 we obtain the equality
degp(X;t) = C(R;t).
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2.2. The case over an Artinian local ring

In this subsection, we show how the mixed multiplicities are defined for a standard
multigraded algebra over an Artinian local ring.

Setup 2.12. Keep the notations and assumptions introduced in Setup 2.1 and now sub-
stitute the field k by an Artinian local ring A.

In this setting, the notion of mixed multiplicities is defined essentially in the same
way as in Definition 2.7.

Definition 2.13. Let Pgr(t) = Pr(ti,...,tp) € Qlt] = Q[ty,...,tp] be the Hilbert polyno-
mial of R (see, e.g., [23, Theorem 4.1], [9, Theorem 3.4]). Then, as before, the degree of
Pr is equal to dim (R/ (0 :g ?Mt*°)) —p and

Pr(v) =length, ([R]y)

for all v € NP such that v > 0. If we write Pr(t) = 3., . soe(n,...,np) (" ")

(tp:;f’), then 0 < e(ny,...,n.) € Zforall ny +---+n, =dim (R/ (0 g 91°)) — p. For
each n = (ng,...,ny) € NP with [n| = dim (R/ (0 :r M*°)) — p, we set that e(n,R) :=
e(ni,...,ny) is the mized multiplicity of R of type n.

2.3. Polymatroids

In this subsection we include some relevant information about polymatroids.

Definition 2.14. Let E be a finite set and r a function r : 28 — 7 satisfying the following
two properties: (i) it is non-decreasing, i.e., v(T1) < v(Tz) if T3 C Ty C E, and (ii) it is
submodular, i.e., 7(T1 N Ta) +7(T1 UT3) < 1(T1) + 7(F2) if ¥1,%5 C E. The function r
is called a rank function on E. We usually let E = [p].

A (discrete) polymatroid P on [p] with rank function r is a collection of points in NP
of the following form

P={x=(x1,....%) ENP | Y} % <7(J), ¥
jed ielp]

!
N
=)

X
x
[
=
=

By definition, a polymatroid consists of the integer points of a polytope (the convex hull
of P), we call that polytope a base polymatroid polytope. We note that a polymatroid is
completely determined by its rank function.

Remark 2.15. If the rank function of P satisfies r({i}) < 1 for every 1 € [p], then P is
called a matroid. In other words, matroids are discrete polymatroids where every integer
point is an element of {0, 1}P. A general reference for matroids is [47].
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In the following definition we consider the standard notions of linear and algebraic
matroids (see [47, Chapter 6]) and adapt them to the polymatroid case.

Definition 2.16. Let P be a polymatroid.

e Wesay P is linear over a field k if there exists a k-vector space V and subspaces Vj, 1 €
[p] such that for every J C [p] we have r(J) = dimy <Zj€3 V]-> [47, Proposition
1.1.1]. The vector space V together with the subspaces V; for 1 < 1i < p, are a linear
representation of P.

e We say P is algebraic over a field k if there exists a field extension k — L and
intermediate field extensions [ i,1 € [p] such that for every J C [p] we have r(J) =
trdeg, (/\) e I]_j), where /\jes L; is the compositum of the subfields, i.e., the smallest
subfield in L containing all of them [47, Theorem 6.7.1]. The field L together with
the subfields L; for 1 <1 < p, are an algebraic representation of P.

3. A characterization for the positivity of multidegrees

In this section, we focus on characterizing the positivity of multidegrees and our main
goal is to prove Theorem A and Theorem B. Throughout this section we continue using
the same notations and assumptions of Section 2.

We begin with the following result that relates the Hilbert polynomial Pg(t) € Q[t] of
R with the dimensions r(J) = dim (TT5(X)) of the schemes TT5(X). It extends [57, Theorem
1.7] to a multigraded setting.

Proposition 3.1. Assume Setup 2.1. For each J ={j1,...,jx} C [pl, let deg(Pr;J) be the
degree of the Hilbert polynomial Pr in the variables t; ,...,t;,. Then, for every such
J=41,--.,jx} we have that

deg(Pg;J) = 7(J).

Proof. We may assume that (0 :x 91°) = 0 and k is an infinite field by Remark 2.6.
Fix J = {j1,.--,jx} € Ip] and let w € N be such that dimy([R],) = Pr(n) for every
n = (ny,...,np) > wl Let (di,....dx) be such that 6 := deg(Pg;J) = d1 +--- + di
and t]-dl1 e t).kk divides a term of Pg.

Let g be a polynomial in the variables {t; | 1 ¢ J} such that P —q - tjdl1 o -t]fikk has
no term divisible by tlfill . --tjdkk. Let s = (si | i ¢ J) € NP~RI be a vector of integers
such that s > wl and q(s) # 0. Thus, if one evaluates t; = s; in Pr for every i € J
one obtains a polynomial Q on the variables t; ,--- ,t;, of degree 6. On the other hand,
by [9, Theorem 3.4], for nj,,--- ,n;j, > w this polynomial Q coincides with the Hilbert
polynomial of the R(z)-module generated by [R]s/, where s; = s; if i ¢ J and s] =0

otherwise. Call this module M.
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Since (0 :xg M) = 0, for every 1 < 1 < p we have grade(m;) > 1, and then there

exist elements y; € [R], which are non-zero-divisors (see, e.g., [6, Lemma 1.5.12]).

€i

From the fact that ysli ---y;‘/’ € M, it follows that Anng (M) = 0. Therefore,
5 = dim (Supp(M) N X(3)) =1(J), by [9, Theorem 3.4], finishing the proof. O

In the following remark we gather some basic relations for the radicals of certain
ideals.

Remark 3.2. (i) Let I,],K C R be ideals. If ] € v/X, then I + ] ¢ /I + K. In particular,
if /J = VK, then vI+] =+I+K.
(i) For any element x € my, since (x :;x m®)m¥ C (x) for some k > 0, it follows that

V(X)) =V (x g mP)mk = /(x ;g m$) Nmy.

If k is an infinite field, then for each 1 <1 < p we say that a property P is satisfied
by a general element in the k-vector space [R]e,, if there exists a dense open subset U of
[R],. with the Zariski topology such that every element in U satisfies the property P.

e
The following three technical lemmas are important steps for the proof of Theorem 3.7.

Lemma 3.3. Assume Setup 2.1 with k being an infinite field. Suppose that R is a domain.
Let x € [Rle, be a general element. Then, we have the equality \/(x R NP = \/(x 'R MP°).

Proof. Since (0 :x 91°) = 0, we have that ht(m;) > 1 for every 1 <j < p. Consider the
following finite set of prime ideals

S = {B € Spec(R) | P € Min(m;) for some 2 <j <p and P 2 my }.

By using the Prime Avoidance Lemma and the fact that k is infinite, for a general element
x € [Rle, we have that x ¢ Upeg PB- If P € Min (x :r m{°), then ht(3) < 1 by Krull’s
Principal Ideal Theorem, and so we would have that 8 € & whenever f 2 m; and
B O my for some 2 < j < p. Therefore, for any P € Spec(R) and a general element
x € [Rle,, if P € Min (x :;g m$°) we get P O (x ;g N®) = (x g (M NmaN---NmMy)>); s0,
\/(x ;R N®) = \/(x RMP). O

The lemma below is necessary for some reduction arguments in Theorem 3.7.

Lemma 3.4. Assume Setup 2.1 with k being an infinite field. Suppose that R is a domain.
Let x € [Rle, be a general element and set Z = X N V(x) = MultiProj(R/xR). Then, for
each J ={1,jo2,...,jx} C Ipl, the following statements hold:

(i) dim (TT3(Z)) = dim (X3 N V(x)), where X5 N V(x) = MultiProj (R(;j)/me).
(ii)) dim(TTe(Z)) = dim (IT}’:(X;j N V(x))), where £ = J\ {1} and TI; denotes the natural

Sy /. pMa My, My Mjy My
projection TTg : P X P 7 X oo X P 7% — P72 Xge- - X P 7%
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Proof. For notational purposes, let by :==m; N R3.
(i) From (2) we have that TT3(Z) = MultiProj(R/((x :z :M*°) + 2 g3 m;)). Since we
are assuming 1 € J, from Remark 2.4 we obtain the natural isomorphism

Ri3)/ (x Ris) b%") = R/((x 'R M9°) —|—Zm]—);

JES

indeed, for £ > 0 and y € R(3), one notices that b% -y € xR(3) if and only if m{ -y € xR.
By Lemma 3.3 and Remark 3.2(i) we have \/(x RMP) 4 D 5y my

\/(x ‘R ‘ﬁoo)—l—zjﬁmj, and by applying Lemma 3.3 to the ring Rz we obtain
\/(x Ry, ) = \/(x Ry, NT). It follows that

R / ,/(X:Rm ‘ﬂ%") = R/ \/(X:R ‘II°°)+ij, (4)

JEI

which gives the result.
(ii) By using (2) we obtain that TTg(Z) = MultiProj (R/((X ‘R N°) + nggg m; + ml))

and that TTq (X3 N V(x)) = MultiProj (R(J)/ ((x Reyy N) + b;,)). Since the isomor-

phism in (4) can be extended to

Rm/ ( (xR, mgO)erg) = R/ \/(X:R N<)+ Y mj+my |,

J€3
the result follows from Remark 3.2(i). O

We continue with the next auxiliary lemma that allows us to simplify the proof of
Theorem 3.7.

Lemma 3.5. Assume Setup 2.1 with k being an infinite field. Suppose that R is a domain
and (1) > 1. Let x € [Rle, be a general element and set Z = XNV(x) = MultiProj(R/xR).
Then, the following statements hold:

(i) If 1 € 3 C [pl, then dim (TT5(Z)) = r(J) — 1; in particular, dim(Z) = — 1.
(ii) If 1 ¢ J and v(R) > r(J), where K ={1} U J C [p], then dim (TT5(Z)) =r(J).

Proof. (i) First, from Lemma 3.4(i) it suffices to compute dim (X3 N V(x)), where X5 N
V(x) = MultiProj (R(g)/xR(;,)). For J ={1,j2,...,jx} C [pl, note that TT;(X) = TT{ (X3),
where TT{ denotes the natural projection TT{ : P/ Xy [PE1j2 X - X [P[Tknjk — P
Therefore, neither the assumption nor the conclusion changes if we substitute R by Rz
and X by X3, and we do so.
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From the short exact sequence
0 — R(—e1) = R — R/xR — 0,
we obtain Pg /xgr(t) = Pr(t)—Pr(t—e;). By using Proposition 3.1, deg(Pgr;t1) =7(1) > 1
and so P is non-constant as a univariate polynomial in the variable t;. Thus, Pg /xr(t) #

0 which implies that (x :g 91°°) is a proper ideal. So, Krull’s Principal Ideal Theorem
yields that ht(x :g 91°) = 1 and that

dim(Z) = dim(R/(x ;g M*)) —p=dim(R) —1—p=(r+p)—1—p=r—1.

(ii) By using Lemma 3.4(ii), we can substitute R by R(g) and X by Xg, and we do so.
So, we may assume that & = [p] and J ={2,...,p}. From (2) we get the isomorphism

M5(Z) = MultiProj (R/ ((x g M=) +my) ) (5)

The equality

\/(XIR ‘Jtoo)-l—ml:\/(x:R m?o)-le (6)
follows from Lemma 3.3 and Remark 3.2(i). The assumption yields that
ht(m;) = dim (R) —dim (Riz)) = (r+p) — (rQ) +p—1) > 2,

then as a consequence Krull’s Principal Ideal Theorem it follows that \/(77) =
V/(x :r m$); therefore, Remark 3.2(i) implies that \/(x :x m®) + m; = \/m;. By sum-
ming up, we obtain the equalities dim (R/ ((x g M) +my) ) =dim(R/my) =7(J)+p—1,
and so the result follows. O

The next important theorem computes the dimension of the image of the projections
Ty after cutting with a general hyperplane under certain conditions. For the proof of
this result, we need the following version of Grothendieck’s Connectedness Theorem. For
that, we recall the definitions

¢(R) := min { dim(R/a) | a C R is an ideal and Spec(R) \ V(a) is disconnected},
sdim(R) := min { dim(R/B) | P € Min(R)} and

ara(a) := min{n | \/(ai,...,an) = Vva and a; € R}

for any ideal a C R.

Lemma 3.6 (/5, Proposition 2.1], [57, Lemma 2.6]). For two proper homogeneous ideals
a,b C R, if min{dim(R/a),dim(R/b)} > dim(R/(a + b)), then

dim(R/(a+ b)) > min{c(R), sdim(R) — 1} —ara(anNb).
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We are now ready to present the following theorem.

Theorem 3.7. Assume Setup 2.1 with k being an infinite field. Suppose that R is a domain
and (1) > 1. Let x € [Rle, be a general element and set Z = XNV (x) = MultiProj(R/xR).
Then, for each J C [p] we have that

dim(TT5(Z)) = min {r(s), r(3ul)) — 1}.

Proof. For each J = {j1,...,jx} € K = {hy,..., ¢} C [p] we have that TT5(Z) =
M5 (Mg(Z)) where TT; denotes the natural projection TT : [PDT(nhl X X [P[the —
[PE1j1 XK+ XKk [P[Lnj“. So, from Lemma 3.5(i) it follows that the inequality “<” holds
in the desired equality.

Due to Lemma 3.5, in order to show the reversed inequality “>”, it suffices to show
that dim(TT5(Z)) > r(J) — 1 when 1 ¢ J and r(R) = r(J), where R = {1} U J C [p].
By using Lemma 3.4(ii), we assume may that 8 = [p] and J ={2,...,p}. From (5) and
(6), the proof would be complete if we prove the inequality dim (R/ ((x:g m§°) +my) ) >
(r3—)+p—1=r+p—2.

By using Lemma 3.3 and Lemma 3.5(i) we obtain that

dim (R/(x ;g my°)) = dim (R/(x ;g M*)) = (r—1) +p=1+p—1,
and since 1(J) =T, we have

dim(R/m;) =dim(Rz)) =r(@)+(p—-1)=r+(p—1)=r+p—1.
Moreover, (6) and Lemma 3.5(i) yield that
dim (R/ ((x :r m®) +my) ) =dim (R/ ((x :r N®) +my) ) < (r =1+ (p—1) =1+p—2,

Since x € my, Remark 3.2(ii) gives that ara ((x :;x m§®) Nmy) = ara((x)) = 1. As Ris a
domain, ¢(R) = sdim(R) = r + p. Therefore, from Lemma 3.6 we obtain that

dim (R/((x ;R M§°) +m1)) >min{r+p,(r+p)—1}—1=r+p—2.
So, the proof is complete. O

Notation 3.8. Let {xo,...,xs} be a basis of the k-vector space [R]e,. Consider a purely
transcendental field extension L := k(zg,...,zs) of k, and set Ry := R® L and X :=
X@L = MultiProj (Ry) € Pyl = P™ xq - - -X[LI]DE”’ . We say that z := zgxg+- - -+zsXs €
[Ri]e, is the generic element of [Ryl,, .

In the following remark we explain that field extensions as in Notation 3.8 preserve
the domain assumption.
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Remark 3.9. Suppose that R is a domain and consider a purely transcendental field
extension k(§). Then, R ®y k(&) is also a domain; indeed, one can see that R @y k(&) is
a subring of the field of fractions Quot(R[€]) of the polynomial ring R[]. So, when R is
a domain one can extend k to an infinite field without losing the assumption of R being
a domain.

The lemma below shows that the Hilbert function modulo a generic element coincides
with the one module a general element.

Lemma 3.10. Assume Notation 5.8 with k being an infinite field. Let x € [R], be a general
element, then

dimk ( [R/XR]V ) = dil’nu_ ( [RI]_/ZRI]_]V )
for all v € NP.

Proof. Let T be the polynomial ring T = k[z, ..., zs] and consider the finitely generated
T-algebra given by S = (R®y T) /W (R ® T) where w = zgxg + -+ - +zsXs € R®y T. From
the Grothendieck’s Generic Freeness Lemma (see, e.g., [39, Theorem 24.1], [13, Theorem
14.4]) there exists an element 0 # a € T such that S, is a free To-module. Hence, for any
p € Spec(T) inside the dense open subset D(a) C Spec(T), if k(p) denotes the residue
field k(p) = T,/pT, of T,, one has that

dimy(p) ([Sa @1, k(p)],, ) = dimquet(t) ([Sa @7, Quot(T)], ) = dimg ([Re/zRe],)

for all v € NP. Note that for any p = (Bo,...,Bs) € k™! with pg = (zo — Bo,--.,2s —
Bs) € D(a) one has the isomorphisms
R®u T

k = = R R.
Sa ®Ta (pfi) (ZOXO+"'+ZSXS,ZO_BO;---,ZS_Bs) /(BOXO‘i‘ +Bsxs)

So, the result follows. O
We now obtain Theorem A when X is an irreducible scheme.

Remark 3.11. We first provide a couple of general words regarding the proof of Theo-
rem 3.12 below and where the irreducibility assumption comes into play. The proof is
achieved by iteratively cutting with generic hyperplanes (following Notation 3.8) to ar-
rive to a zero-dimensional situation, and the main constraint is to control the dimension
of the image of all the possible projections after cutting with a general hyperplane (see
(7)). Our main tool to control those dimensions is Theorem 3.7, where it is needed to
assume that R is a domain. When X is irreducible, by just taking the reduced scheme
structure X,eq = MultiProj(R/v/0) we can easily reduce to the case where R is a do-
main. To maintain the irreducibility assumption during the inductive process, we use a
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“generic” version of Bertini’s Theorem as presented in [16, Proposition 1.5.10]. It should
be noted that the usual versions of Bertini’s Theorem for irreducibility require X to be
geometrically irreducible and that the dimension of the image of certain morphism is
bigger or equal than two (see [32, Theoreme 6.10, Corollaire 6.11}). Finally, Lemma 3.10
is used to relate the process of cutting with a generic hyperplane with the one of cutting
with a general hyperplane.

Theorem 3.12. Assume Setup 2.1. Suppose that X is irreducible. Let n = (ny,...,ny) €
NP such that n| =r. Then, degp(X) > 0 if and only if for each J ={j1,...,jx} C [p] the
inequality ny, +--- +mn5, < 7(J) holds.

Proof. From Proposition 3.1 it is clear that the inequalities nj, + --- +mn;, < 1(J) are
a necessary condition for degp(X) = e(n;R) > 0. Therefore, it suffices to show that they
are also sufficient.

Assume that nj, +---4+ny, < 1(J) for every J = {j1,...,jix} C [p]. We may also assume
that (0 :gx 91°) = 0 by Remark 2.6(i). Hence, the condition of X being irreducible implies
that v/O C R is a prime ideal. Since the associativity formula for mixed multiplicities
(see, e.g., [9, Lemma 2.7]) yields that

e(m; R) = lengthy _ (R,5) -e (mR/V0),

we can assume that R is a domain, and we do so. In addition, by Remark 2.6(ii), Propo-
sition 3.1, and Remark 3.9 we may also assume that k is an infinite field.

We proceed by induction on 1. If r = 0, then [9, Theorem 3.10] implies e(0; R) > 0.

Suppose now that v > 1. Without any loss of generality, perhaps after changing the
grading, we can assume that n; > 1. Let L, R, Xp and z be defined as in Notation 3.8.
Let x € [Rle, be a general element. Set S = R/xR, Z = X N V(x) = MultiProj(S),
T=Ry/zR, W =X NV(z) = MultiProj(T) and n” = n—e;. Then, [9, Lemma 3.9] and
Lemma 3.10 yield that e(n;R) = e(n’;S) = e(n’; T). From [16, Proposition 1.5.10] we
obtain that W is also an irreducible scheme. By the assumed inequalities and because
n; > 1 we have that for each J = {j1,...,jx} C [p] the following inequality holds

nf, 4oy, <min (@), r@U) -1}, (7)

and the latter is equal to dim(TT3(Z)) by Theorem 3.7. Moreover, by Lemma 3.10 and
Proposition 3.1, we also have dim(IT3(W)) = dim(TT5(Z)); here, by an abuse of notation
IT5(W) denotes the image of the natural projection MMy : P @y L — IPEH1 X X [P?Lnjk
restricted to W.

Finally, by using the inductive hypothesis applied to the irreducible scheme W, we
obtain that e(n;R) = e(n’;T) > 0, and so the result follows. O

Now we are ready to show the general version of Theorem A.
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Corollary 3.13. Assume Setup 2.1. Let n = (ny,...,n,) € NP such that n| = dim(X).
Then, degp(X) > 0 if and only if there is an irreducible component Y C X of X that
satisfies the following two conditions:

(a) dim(Y) = dim(X).
(b) For each J ={j1,...,jx} C [p] the inequality nj, +--- +n;, < dim (ﬂ3 (Y)) holds.

Proof. We may assume that (0 :g 91°) = 0 by Remark 2.6(i). By the associativity
formula for mixed multiplicities (see, e.g., [9, Lemma 2.7]) we get the equation

degh(X) = e(mR) = 3 lengthy, (Ry) - e(n;R/P).
PEMin(R)
dim(R/B)=r+p

Thus, e(n;R) > 0 if and only if e(n;R/B) > 0 for some minimal prime P € Min(R) of
maximal dimension. So, the result is clear from Theorem 3.12. O

Below we have a proof for Theorem B.

Corollary 3.14. Assume Setup 2.12. Let n = (ni,...,np) € NP such that dim(R/
(0:r ’ﬁ(’o)) —p = [n|. Then, e(n;R) > 0 if and only if there is a minimal prime ideal
P € Min (0 :g M) of (0 :x M) that satisfies the following two conditions:

(a) dim (R/) = dim (R/ (0 g 91*°)).
(b) fOZdeach J=1{1,...,jx} C [p] the inequality nj, 4 ---+n;, < dim <m> —k
olds.

Proof. As in Corollary 3.13, after assuming that (0 :x 91*°) = 0 and using the as-
sociativity formula for mixed multiplicities, we obtain that e(n;R) > 0 if and only if
e(n;R/P) > 0 for some minimal prime P € Min(R) of maximal dimension. Note that,
for each B € Min(R), R/B is naturally a finitely generated standard NP-graded algebra
over a field. So, the result follows by using Theorem 3.12. O

Finally, for the sake of completeness, we provide a brief discussion on how Theo-
rem 3.12 can be recovered (over the complex number) from the related results of [34,
§2.2].

Remark 3.15. Assume k = C. For the closed subscheme X C P = IPULnl X+ X IPHTP,

let L; be the pullback of O ™ (1) to X. Take E; to be |L;|. Following the notation in [34,
§2.2], for each () # J C [p], denote by

Q3 : X = P(EY)
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the Kodaira map corresponding with the linear system Ej. Let T3 be the dimension of
the closure of the image of @5 ([34, Definition 2.12]). Consequently, it is easy to check
that dim (TT3(X)) = 7t53. Thus, [34, Theorems 2.14, 2.19] translate into the following
statement: dim (TT3(X)) > [J] if and only if for general hyperplanes H; € |”;<O[P[L“i (1)]
(G €3), XN (Mjez Hj) # 0. The latter is equivalent to the condition [X] - [T;c5[H;] # 0
on intersection of classes. Theorem 3.12 (over the complex numbers) eventually follows
from applying this statement finitely many times to relevant index subsets J.

4. Positivity of the mixed multiplicities of ideals

In this section, we characterize the positivity of the mixed multiplicities of ideals. The
results obtained here are a consequence of applying Theorem B to a certain multigraded
algebra. For the particular case of ideals generated in one degree in graded domains we
obtain a neat characterization in Theorem 4.4.

Throughout this section we use the following setup.

Setup 4.1. Let R be a Noetherian local ring with maximal ideal m C R (or a finitely
generated standard graded algebra over a field k with graded irrelevant ideal m C R).

Let Jo C R be an m-primary ideal and Ji,...,J, C R be arbitrary ideals (homogeneous
in the graded case). The multi-Rees algebra of the ideals Jo, J1,..., ], is given by

R(Jo,- -, Jp) = Rloto,-.., Jptp] = €D Ji---Jyth -t C Rltg,..., 1],

1020,...,ip =0

where to, ..., t, are new variables. Note that R(Jo,...,]Jp) is naturally a standard NI
graded algebra and that, for 0 < k < p, the ideal my generated by elements of degree ey
is given by

myg = ]ktk:R(IOw'-yI'p) C R(]Q,...,Ip).

Let M := mgN---Nmy be the corresponding multigraded irrelevant ideal. Since Jo is
m-primary, we obtain that

TJo [T, )p) == R(Jos---,Jp)®rR/Jo = @ bo if---]}f/]é““ b, ;p

100,11 >0...,i, 20

is a finitely generated standard NP*!-graded algebra over the Artinian local ring R/J.
For simplicity of notation, throughout this section we fix R := R(Jo,...,Jp) and T :=
T(Jo I J1,---,Jp). Let v be the integer T := dim (MultiProj (T)), which coincides with the
degree of the Hilbert polynomial P, (uy,...,up;1) of the NP*1-graded R/Jo-algebra T.
From [58, Theorem 1.2(a)] we have the equality r = dim (R/(0 :x (J1---Jp)®)) — 1.
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Definition 4.2. Under the above notations, for each n € NP*! with |n| = r, we say that

ea(JolJi,---\Jp) = e(m;T)
is the mized multiplicity of Jo,J1,...,Jp of type n.

The main focus in this section is to characterize when e, (Jo | J1,...,Jp) > 0. As a
direct consequence of Theorem B we get the following general criterion for the positivity

en(]O | Il?"'?]}?)'

Corollary 4.3. Assume Setup /4.1 and the notations above. Let n = (ng,mnq,...,MNp) €
NP+ such that In| = r. Then, ex (Jo | J1,--.,Jp) > 0 if and only if there is a minimal
prime ideal P € Min (0 :1 ) of (0 :1 M) that satisfies the following two conditions:

(a) dim (T/B) = dim (T/ (0 :7 2M*)).
(b) ForeachJ ={ji,...,jx} C{0}Ulp] the inequality, nj, +- - -+n;,_ < dim (m)
—k holds.
We now focus on the case where R is a graded k-domain and each ideal J; is
generated in one degree. In this case, our characterization depends on the analytic

spread of certain ideals; recall that the analytic spread of an ideal I C R is given by

{(1) := dim (R(I)/mﬂ%(l)).

Theorem 4.4. Let R be a finitely generated standard graded domain over a field k with
graded irrelevant ideal m C R. Let Jo C R be an m-primary ideal and Ji,...,], C R
be arbitrary ideals. Suppose that, for each 0 < 1 < p, Ji is generated by homogeneous
elements of the same degree di > 0. Let n = (ng,nq,...,n,) € NP such that [n| =
dim(R) — 1. Then, ey (Jo | J1,.-.,Jp) > 0 if and only if for each J ={j1,...,jx} C [p] the
inequality

Ny, + -+ Ny, < e(Iil"']jk) —1
holds.

Proof. First, note that r = dim(R) — 1.

Since J is m-primary, the kernel of the canonical map T — T’ := R®grR/m is nilpotent.
Therefore, the conditions (a), (b) in Corollary 4.3 are satisfied for T if and only if they
are satisfied for T’.

Consider the NP*!-graded domain given by

TF = @ [ iOL . []Hildl [ iPL . thoth ...t < R

1020,...,ip >0 0 Lt
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Since U(i)o]iodo[ ill]ild1 o ;P]ip a, ~ ('1)0 ill .. .]};’ ®gr R/m, we have the isomorphism T’ =
F and so T’ is a domain.

For any 8 = {hy,...,hs} C {0} U [p], since we have the natural isomorphism
fR/ Zhgﬁ mn = :R(Jhl, cey ]hs) = R[Ihlthl, cey Ihsths]7 it fOHOWS that

dim (T’/ Y mnT') = dim (R(Jn,,- .-, Jn,) ®r R/m).
hgR

After using the Segre embedding we get the isomorphism MultiProj (fR(]hl, ooy Jh,) ®R
R/m) = Proj(R(Jn, - - Jn,) ®r R/m) and, accordingly, from Lemma 2.5(i) we have

dim (R(Jn,,-- - Jn, )@rR/m) = dim (R(Jn, -~ Jn,)@rRR/m) +5—1 = (], - -~ Jn, ) +s—1,

(also, see [2, Corollary 3.10]).

So, en(Jo ! J1,-.-,Jp) > 0 if and only if for each & = {hy,...,hs} € 0U [p] the
inequality np, +---+np, < dim(T’/ Zhgﬁ mpT’)—s = ﬁ(]hl ce Ihs) — 1 holds.

For any 8 ={0,hs,...,hs} C {0} U [pl, as Jo is m-primary, from [27, Theorem 5.1.4,
Proposition 5.1.6] we obtain

dim (T’/ Y mnT’) =dim (R(Jo, Jh: - - > Jn.) @& R/Jo)
h¢ R

= dim (gr}owh2 ’’’’ oy ROnss s Ihs))>

Therefore, we only need check the inequalities corresponding to the subsets J C [p], and
so the result follows. O

Remark 4.5. Note that in Theorem 4.4 the conditions for the positivity of ey(Jo |
Ji,...,Jp) do not involve the m-primary ideal Jo (see [58, Corollary 1.8(a)]).

Remark 4.6. We note that if in Theorem 4.4 we have {(]J;) = dim(R) for every 1 <1i < p,
then by [29, Lemma 4.7] for each J = {ji,...,jx} C [p] we also have {(J;, -+ J;,) =
dim(R). Therefore, by Theorem 4.4 it follows that e, (Jo | Ji,...,]Jp) > 0 for every n €
NP+! such that [n| = dim(R) — 1.

5. Polymatroids

We recall that Theorem A implies that MSuppp(X) (see Definition 2.10) is the set of
integer points in a polytope when X is irreducible. In this section we explore properties
of these discrete sets.

Following standard notations, we say that X is a wvariety over k if X is a reduced
and irreducible separated scheme of finite type over k (see, e.g., [Tag 020C, 56]). In the
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following two results we connect the theory of polymatroids (see §2.3) with MSuppp (X)
when X is a variety.

Proposition 5.1. Let X C P = P xg - -+ Xg IPEP be a multiprojective variety over an
arbitrary field k. Then MSuppp(X) is a discrete algebraic polymatroid over k.

Proof. We consider the associated NP-graded k-domain R. Let & be the generic point of
X and set L := Ox,¢. For each J C [p], let X3 = TT3(X) = MultiProj (R(3)) and &; be the
generic point of X3, and notice that

OXa,Ea = {f/g | fvg € R(J)v g 7é 07 deg(f) - deg(g)} C L.

For 1 <i<p, let Li := Ox, ¢, Then, for each J C [p], we have that Ox;,e, = Ajcy Ly
and that dim (X3) = trdegy, (Ox, &, ) (see, e.g., [20, Theorem 5.22], [22, Exercise I1.3.20]).
Finally, the result follows from Theorem A. O

In [57, Corollary 2.8] it is shown that the conclusion of Theorem 3.12 holds if p = 2
and X is arithmetically Cohen-Macaulay. The following example shows that this result
does not always hold for p > 2.

Example 5.2. Let S = k[xy,...,X12,Y1,...,Y12) be a polynomial rings with an N!2-
grading induced by deg(xi) = deg(yi) = e; for 1 < i < 12. Let A be the simplicial
complex given by the boundary of the icosahedron. We note that A is a Cohen-Macaulay
complex (because it is a triangulation of the sphere 52 [53, Corollary I1.4.4]), but it is not
a (poly)matroid (see Remark 2.15) since not every restriction is pure [53, Proposition
I11.3.1].

Let Ja = {(xi; +yi,) -+ (xip +Yi) [ {11, .., 1} € A} and Xa = MultiProj(S/Ja) C
P = [P[,l< X oer X [Pu1<- The definition of Ja is a modification on the definition of I, the
Stanley-Reisner ideal of A with monomials in the variables {x1,...,x12} [43, Chapter 1],
[53, Chapter II]. It can be easily verified that 1 is the initial ideal of Jo with respect
to any elimination order with {x1,...,%12} > {y1,...,y12}. Since the ideal JA is obtained
from Io by a linear change of variables, we have a similar primary decomposition as
[43, Theorem 1.7], so no component is supported on any coordinate subspace and thus
Ja is saturated with respect to the irrelevant ideal of S. By [24, Corollary 3.3.5], Xa
is arithmetically Cohen-Macaulay. Moreover, since Hilbert functions are preserved by
Grobner degenerations, the multidegree of XA coincides with C(S/Ia;t) (see Remark 2.9).
Thus, MSuppp(Xa) consists of all the incidence vectors of the facets of A [43, Theorem
1.7] and then it is not a polymatroid.

With Proposition 5.1 in hand, we can introduce the following class of polymatroids.

Definition 5.3. A polymatroid P is Chow over a field k if there exists a variety X C P =
Pt Xp -+ X H:EH? such that MSuppp(X) = P.
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The following statement follows as an easy corollary of the main result in [37], when
k is an infinite field. Here we give a simple direct argument for an arbitrary field k.

Proposition 5.4. A linear polymatroid over an arbitrary field k is Chow over the same

field.

Proof. Let V be a k-vector space and Vi,...,V, be arbitrary subspaces. Let S be the
polynomial ring § = Sym(V) = k[xy,...,xq], where q = dimy (V). By using the isomor-
phism [S]; = V, we identify each V; with a k-subspace U; of [S];. For each 1 <1 < p, let
{Xi1,%1,2,--.,Xir ) C [S]1 be a basis of the k-vector space U;. Let T be the D\lp graded
polynomial ring

T=klyi; [1<i<p, 0<j <1y, deglyij) =eil.

Induce an NP-grading on S[ty,...,t,] given by deg(ti) = e; and deg(x;) = 0. Consider
the NP-graded k-algebra homomorphism

Yio — b for 1<i<yp

=T — S[ty,...,ts], i )
¢ [t ! Yij = Xt for 1<i<p, 1<j <y

Note that P := Ker(¢) is an NP-graded prime ideal. Set R := T/3 and X := MultiProj(R).
By construction, for each J C [p], we obtain the isomorphism

Ro) = kixiti i€, 1<j<rdltilied] C Shty,...,tpl;
thus, it is clear that

dim (R(3)) = trdegy (kxijti [i€J, 1 <j<ridlti[1€])

= trdegy (klxij [1€J, 1<j<rdlti|ie])

= dimy (Z Ui> + 3| = dimy ( > +I3l.
i€y i€y

Therefore, Lemma 2.5 yields that dim (TT5( dlm[k(
follows from Theorem A. O

ie3 ), and so the result

The following is the main theorem of this section. Here we summarize the results
presented above to show that the class of Chow polymatroids lies in between the ones
introduced in Definition 2.16.

Theorem 5.5. Over an arbitrary field k, we have the following inclusions of families of
polymatroids

(L'L'nea'r polymatroids) - (Chow polymatroids) - (Al,gebra,'ic poZymatroids).



F. Castillo et al. / Advances in Mathematics 374 (2020) 107382 25

Moreover, when k is a field of characteristic zero, the three families coincide.

Proof. The first inclusion follows from Proposition 5.4; the second from Proposition 5.1.
In the characteristic zero case linear and algebraic polymatroids coincide by [30, Corol-
lary, Page 166] (also, see Remark 5.6). O

Remark 5.6. The result mentioned above from [30] is stated for matroids but the argu-
ments go unchanged for polymatroids.

Remark 5.7. Over finite fields there are algebraic matroids that are not linear. An exam-
ple is the Non-Pappus matroid described in [47, Page 517], it is algebraic over any field
of positive characteristic but not linear over any field.

Classifying linear polymatroid rank functions is a difficult problem. For linear ma-
troids over a field of characteristic zero, the poetically titled “The missing axiom of
matroid theory is lost forever” [59] together with a recent addition [40] shows that there
is no finite list of axioms that characterize which rank functions are linear. For fields of
positive characteristic, Rota conjectured in 1971 that for each field there is a list of finite
restrictions. A proof of Rota’s conjecture has been announced by Geelen, Gerards, and
Whittle, but expected to be several hundred of pages long. Little is known about the
algebraic case. In [31] there is an example of a matroid that is not algebraic over any
field: the Vamos matroid Vg [47, Page 511]. For these reasons we do not expect further
characterizations of Chow polymatroids.

We finish this section with the following question.

Question 5.8. Are all algebraic polymatroids Chow?
6. Applications

In this section we relate our results to several objects from combinatorial algebraic
geometry.

6.1. Schubert polynomials

Let &, be the symmetric group on the set [p]. For every i € [p — 1] we have the
transposition s; := (i,1+ 1) € &,. Recall that the set S = (si,1 < i < p) generates
Sp. The length 1(m) of a permutation 7t is the least amount of elements in S needed
to obtain 7t. Alternatively, the length is equal to the number of inversions, i.e., () =
{(i,j) € [p] x [p] : 1 <j, (i) > 7(j)}. The permutation 7y = (p,p —1,---,2,1) (in one

line notation) is the longest permutation, it has length %.
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Definition 6.1. The Schubert polynomials & € Z[ti,...,t,] are defined recursively in
the following way. First we define &, = [];t} ", and for any permutation 7 and
transposition s; with 1(si7t) < (7)) we let

S ti—tigr
where &, acts on Z[ti,...,t,] by permutation of variables. For more information see

[18, Chapter 10].

Next we define matriz Schubert varieties following [43, Chapter 15]. Let k be an
algebraic closed field and My, (k) be the k-vector space of p x p matrices with entries in
k. As an affine variety we define its coordinate ring as R, = klxij : (i,j) € [p] x [pll.
Furthermore we consider an NP-grading on R, by letting deg(xi;) = e;.

Definition 6.2. Let 7t be a permutation matrix. The matrix Schubert variety X, C M, (k)
is the subvariety

X.={Z¢€ M, (k) | rank(Zmxn) < rank(mtmxn) for all m,n},

where Z,, «n is the restriction to the first m rows and n columns. This is an irreducible
variety and the prime ideal I(X_W) is multihomogeneous [43, Theorem 15.31]. By [43,
Theorem 15.40], the Schubert polynomial &, equals the multidegree polynomial of the
variety corresponding to the ideal I (X_ﬁ) (see Definition 2.10).

Following [45] we say a polynomial f = )  c,t® € Z[t;,---,tp] have the Satu-
rated Newton Polytope property (SNP for short) if supp(f) :={n € NP | ¢, > 0} =
ConvexHull{n € NP | ¢, > 0} N NP, in other words, if the support of f consists of the
integer points of a polytope. In [45, Conjecture 5.5] it was conjectured that the Schubert
polynomials have SNP property and they even conjectured a set of defining inequalities
for the Newton polytope in [45, Conjecture 5.13]. A. Fink, K. Mézaros, and A. St. Dizier
confirmed the full conjecture in [15]. As noted by the authors of [26] the combination
of Proposition 5.1 (they use the equivalent [3, Corollary 10.2]) and [43, Theorem 15.40]
(which is also included in [26, Theorem 6]) is enough to give an alternative proof to [45,
Conjecture 5.5].

Theorem 6.3. For any permutation T, the Schubert polynomial S, has SNP and its
Newton polytope is a polymatroid polytope.

The Newton polytope of a polynomial f is by definition the convex hull of the expo-
nents in the support of f, however in by our convention in Definition 2.10 MSupp consists
of the complementary exponents. This does not change the conclusion that the resulting
polytope is a polymatroid polytope.
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Fig. 1. Example of a diagram in [5] x [5].

Codimensions of projections. We now use Theorem A to give a combinatorial inter-
pretation for the codimensions of the natural projections of matrix Schubert varieties.
First we need some terminology.

A diagram D is a subset of a p x p grid whose boxes are indexed by the set [p] x [p].
The authors of [45] define a function Op : 2P} Z as follows: for a subset J C [p] and
¢ € [p], we construct a word W§ (J) by reading the column c of [p] x [p] from top to
bottom and recording

e (if(r,c)¢Dandrey,
° )if(T,C)EDandTgﬁa
e xif (r,c) € D and r € J;

let 0% (J) = # paired “()” in WE (J) + # * in W§ (J), and finally 0p(J) = 3P, 65 (J).

Example 6.4. For example, let D be the diagram depicted in Fig. 1 and J = {2, 3}, then
Op (J) = 3.

For any 7 € &, we can define its Rothe diagram as
Dr={(1,j) [ 1 <i,j <m,7(i) >j and ' (j) > i} C [p] x [p].
For example when 7t = 42531 then D, is the diagram of Fig. 1.

Theorem 6.5. Let m € &, then for any J C [p] the projection Tl (X_ﬂ) onto the rows
indexed by J has codimension 0p _([p]) —0p_ (J'), where J" = [p]\J is the complement
of J.

Proof. In [15, Theorem 10] the authors give a proof of [45, Conjecture 5.13], which in
our setup (recall the indexing in Definition 2.10) states that MSupp(Xy) is equal to

nel? | > ((p—1)—ny) <6p,(3), VIS Ipl, ) ((p—1)—ny) =0p,([p)
IS jelp]

The first inequalities can be rewritten as (p — 1)|J| —0p . (J) < X
them with (p —1)p —0p ([p]) = Zje[p} 1 we obtain

jeg Ny, and combining
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d n<p-DRI- (eD,, (Ip)) = GDN(J)).

jeJ’

By Theorem A we must have that codim (ﬂ3 (X_ﬂ)) = O0p_([p]) — Op_.(J') for every
J C [pl, as we wanted to show. O

Remark 6.6. Notice that Op _ ([p]) counts the total number of boxes in D, which is equal
to the length of 7t (see [43, Definition 15.13]). So the case J = [p] of Theorem 6.5 above
is equivalent to the well-known fact that the codimension of a matrix Schubert variety
is equal to the length of the permutation (see [43, Theorem 15.31]).

6.2. Flag varieties

We now focus on a multiprojective embedding of flag varieties. We first review some
terminology. For more information the reader is referred to [18] or [4].

In this subsection we work over an algebraically closed field k. Consider the complete
flag variety FL(V) of a k-vector space V of dimension p + 1. This variety parametrizes
complete flags, i.e., sequences Vo := (Vo,---,Vpy1) such that {0} = Vo C Vi C Vo C
~++ CVp C Vpy1 =V, and each V; is a linear subspace of V of dimension i. One can
embed this variety in a product of Grassmannians FL(V) < Gr(1,V) x Gr(2,V) x --- X
Gr(p, V) as the subvariety cut out by incidence relations.

Furthermore, each Grassmannian can be embedded in a projective space via the
Pliicker embedding  : Gr(i,V) — P for 1 < i < p. By considering the product
of these maps, we obtain a multiprojective embedding of ¢ : FL(V) < P Xy - - - X [P[:lp.
For convenience we also call 1 the Pliicker embedding. The proposition below computes
the corresponding multidegree support.

Proposition 6.7. Let V be a k-vector space of dimension p + 1 and let X be the image of
the Pliicker embedding v : FL(V) — P =P/ X -+ Xy [Pkmp , then

k k—1 P 1

MSuppp(X) =<n e NP | 1 <ny < Z(—j) — Y ny, vkepl, an _ (P ) :
j=1 i=1 j=1

(8)

Proof. We need to compute the dimension of TT5(X)) for each J = {j1,...,jx} C [pl
The key observation is that TT5(X) is isomorphic to the partial flag variety Flz(V): it
parametrizes flags W, = {0} = V; C Vo C Vo C --- C Vi C Viki1 = V, where
dim Vi = jk. Hence

dim (My(X)) =dim (Fiz(V)) = ) didj =8(J);

1<i<j<h+1
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here, for each J = {j1,...,jx} C [p], we set 8(J) := Z1<i<j<k+1 did;, where d; :=ji—ji—1
and by convention jo := 0, jx+1 :=p + 1. For a proof of the second equality see [4, §1.2].
From Theorem A it follows that

P
~ ~ +1
MSuppp(X) = {n e NP | ¥ ny <8(3), I Cpl, 3 n,~=<p2 ) )
IS j=1

It can be checked that the description in (9) coincides with the one in (8). O

The pullbacks of the classes Hi from P Xp -+ Xy [P”T]D to FL(V) are called the
Schubert divisors, so Proposition 6.7 amounts to a criterion for which powers of these
classes intersect. These intersections are called Grassmannian Schubert problems in [50].
In [50, Theorem 1.2] K. Purbhoo and F. Sottile give a stronger statement by providing
an explicit combinatorial formula using filtered tableau to compute the exact intersection
numbers.

6.3. A multiprojective embedding of MO,erg

The moduli space mo,ijg parametrizes rational stable curves with p + 3 marked
points. Here we apply our methods to an embedding considered in [8]. The starting
point is the closed embedding ¥, : m07p+3 — mom” Xk [PE constructed by S. Keel and
J. Tevelev in [35, Corollary 2.7]. By iterating this construction we obtain an embedding
Mo p+s = PLxkPE X - xi PP (see [8, Corollary 3.2]). In [8], R. Cavalieri, M. Gillespie,
and L. Monin computed the corresponding multidegree which turns out to be related
to parking functions. As an easy consequence of our Theorem A, we can compute its
support.

Proposition 6.8. Let X be the image of Mo,p% — P =Pp xx PZ X - xp PL, then

k P
MSuppﬂ;(X)z{neNp | ngk, Vlgkgp—l,Znizp}. (10)
i=1 i=1

Proof. First, as explained in [8, §3] we have dim (ﬂ[p} (X)) = dim (ﬂ{p}(X)) = p. Also, by
construction Ty, _17(X) = Mo p+2, and thus dim (”[1—1} (X)) =1i—1 for every 2 <1i < p.
So, by induction one gets dim (ﬂ{i}(X)) =iforall 1 <i<p.

To use Theorem A, we must compute dim (TT3(X)) for all J C [p]. Let m := max{j |
j € J}, then as explained above we have dim (ﬂ[m] (X)) = dim (ﬂ{m}(X)) =m and so we
must have dim (TT5(X)) = m. By Theorem A we obtain that MSuppp(X) is equal to

P
meNP | > ny<max{jljed) VICIpl, D ni=p)
iey i=1
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but it is straightforward to check that the inequalities in (10) are enough to describe the
same set. 0O

The cardinality of MSuppp(X) is equal to the Catalan number C,, (see [54, Exercise
86]). For a comprehensible survey on Catalan numbers see [54].

6.4. Mixed volumes

In this subsection we assume k is an algebraically closed field. We begin by reviewing
the definition of mixed volumes of convex bodies, as a general reference see [14, Chapter
IV]. Let K = (Ky,...,K,) be a p-tuple of convex bodies in R<. The volume polynomial
V(K) € Z[wy,...,wp] is defined as

v(Kq,... 7Kp) = Volg (w1 Ky + - - —I—Wpr).

This is a homogeneous polynomial of degree d. If the coefficients of v(K) are written as
($)V(K;n)w®, then the numbers V(K;n) are called the mized volumes of K. A natural
question to ask is: when are mixed volumes positive? The relation between mixed volumes
and toric varieties (see (11) below) together with Theorem A allows us to give another
proof of a classical theorem formulated on the non-vanishing of mixed volumes [51,
Theorem 5.1.8].

Theorem 6.9. Let K = (Ky,...,K}) be a p-tuple of convex bodies in RY. Then, V(K;n) >
0 if and only if Y ¥ i =d and 2 iey i < dim (Zie3 Ki) for every subset J C [p].

We first indicate how to reduce to the case of polytopes. The basic idea is that convex
bodies can be approximated by polytopes in the Hausdorff metric [51, Section 1.8].
However, the condition for positivity as stated in Theorem 6.9 is a priori not stable
under limits. To fix this we invoke an equivalent condition more suitable for the limiting

argument.
Lemma 6.10. It suffices to show Theorem 6.9 for polytopes.

Proof. This follows from two facts. The first is that mixed volumes V(K;n) are continu-
ous [51, Theorem 5.1.7] and monotonous [51, Equation 5.25] on each entry. The second
fact is that for a given sequence K = (Ky,...,K;) C ([Rd)p of convex bodies, by [51,
Lemma 5.1.9] the following conditions are equivalent:

(1) XP ni=dand } ;cyni <dim () ;5 K;) for every subset J C [pl.
(2) There exist line segments Sii,Si2,...,Sin, € Kj, for every i, such that
{Si,jhi<i<p,1<j<n, has segments in d linearly independent directions.
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We now assume the statement of Theorem 6.9 is true when each Kj is a polytope and
show that it follows in the case where each Kj is an arbitrary convex body.

If V(K;n) > 0 then by continuity we can find polytopes P = (Py,---,P,) with
V(P;n > 0 and Py C Kj for each i € [p]. By assumption, the sequence P satisfies
condition (2) above and hence so does the sequence K.

Conversely, suppose condition (2) holds for K, then by continuity we can find polytopes
P = (Py,...,Py) with Py C Kj arbitrarily close so that (2) holds for P too. Due to the
assumption, we have V(P;n) > 0 and thus V(K;n) > V(P;n) > 0 by monotonicity. O

To finish the proof of Theorem 6.9 we need some preliminary results about toric
varieties and lattice polytopes. As an initial step we recall some facts about basepoint
free divisors; a general reference is [12, Section 6]. Let X be a fan and let P be a lattice
polytope whose normal fan coarsens X. Then, P induces a basepoint free divisor Dp in
the toric variety Ys [12, Proposition 6.2.5]. Here, being basepoint free means that the
complete linear series |Dp| induces a morphism ¢p : Yy — [P[Lni for some m; € N such
that ¢*(H) = Dp € A*(Ys), where H is the class of a hyperplane in the projective
space P

Lemma 6.11. Let Ky,...,K,, be lattice polytopes and let K := Ky + --- + K, be their
Minkowski sum. Let Y be the toric variety associated to X, the normal fan of K, then for
each J C [p] we have a map ¢z :Y — Hj63 Py such that dim ($3(Y)) = dim (Zies Ki).
Proof. The fan I is the common refinement of the normal fans of Ky, ..., K, [61, Propo-
sition 7.12], so each K; induces a basepoint free divisor D; on Y = Y5 and thus also a map
¢i: Y — P, By the universal property of fiber products these maps induce a canonical
map ¢3:Y — Hj€3 UDI]T ' for each J C [p]. It remains to compute the dimensions of the
images of these maps.

By composing with the Segre embedding ¢y : Hjea [PElj — Pt we obtain a map
@3ody : Y — P Let H be the class of a hyperplane in A*(P[*), we have that

(piﬁj(H) = Zi@ H; € A* (Hjea' [PE”) where each Hj is the pullback of a hyperplane in

the i-th factor (see, e.g., [22, Exercise 5.11]). Then (@3 o ¢3)*(H) = } ;o4 Di € A*(Y).
This means that the morphism @3 o ¢3 corresponds to the complete linear series [Dy |
where Ky = Zjeﬁ Ki, hence the image has dimension dim(Kjz) = dim(Zie:J Ki) [12,

Theorem 6.1.22]. O

Lemma 6.12. In the setup of Lemma 6.11, if J = [p] then after scaling each polytope if
necessary, ¢ = ¢y is an embedding.

Proof. By construction the normal fan of K,) = > P [ Kiis I, so the corresponding

divisor is ample [12, Theorem 6.1.14]. By replacing the list of polytopes by large enough
scalings we obtain a very ample divisor, hence an embedding. O
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Proof of Theorem 6.9. By using Lemma 6.10, we can assume that each Kj is a polytope.
Additionally, we can reduce to the case where each Kj is a lattice polytope since any
polytope can be approximated by lattice polytopes (see [17, Page 120]). Let K = K; +
-+ K, and let Y be the toric projective variety associated to the normal fan of K.
Each lattice polytope K; induces a basepoint free divisor D; on Y. As explained in [17,
Eq. (2), Page 116], the fundamental connection between mixed volumes and intersection
products is given by the following equation

V(K;n) = (D] ---Dp?) /d!, (11)

where the numerator is the intersection product of the divisors in Y. Notice that positivity
of mixed volumes is unchanged by scaling so whenever needed we can scale each polytope.

By Lemma 6.12 we have an embedding ¢ : Y — H?Zl Pyt such that the pullback of
each Hy € A* (TTF_, Pi*') is D;i. By using the projection formula [19, Proposition 2.5(c)],
we can consider the product (H;11 e ng) /d! instead of the one in (11). From the fact
that Y is irreducible we are now in the Setup 2.1. So, the result follows by Remark 2.8,
Theorem A, and Lemma 6.11. O
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