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Let k be an arbitrary field, P = Pm1
k × k · · · × k Pmp

k
be a multiprojective space over k, and X ⊆ P be a 
closed subscheme of P. We provide necessary and sufficient 
conditions for the positivity of the multidegrees of X. As 
a consequence of our methods, we show that when X is 
irreducible, the support of multidegrees forms a discrete 
algebraic polymatroid. In algebraic terms, we characterize 
the positivity of the mixed multiplicities of a standard 
multigraded algebra over an Artinian local ring, and we 
apply this to the positivity of mixed multiplicities of ideals. 
Furthermore, we use our results to recover several results 
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Polymatroids
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in the literature in the context of combinatorial algebraic 
geometry.
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1. Introduction

Let k be an arbitrary field, P = Pm1
k ×k · · · ×k P

mp

k be a multiprojective space over k, 
and X ⊆ P be a closed subscheme of P. The multidegrees of X are fundamental invariants 
that describe algebraic and geometric properties of X. For each n = (n1, . . . , np) ∈ Np

with n1+· · ·+np = dim(X) one can define the multidegree of X of type n with respect to P, 
denoted by degn

P(X), in different ways (see Definition 2.7, Remark 2.8 and Remark 2.9). In 
classical geometrical terms, when k is algebraically closed, degn

P(X) equals the number of 
points (counting multiplicity) in the intersection of X with the product L1×k· · ·×kLp ⊂ P, 
where Li ⊂ Pmi

k is a general linear subspace of dimension mi − ni for each 1 ! i ! p.
The study of multidegrees goes back to pioneering work by van der Waerden [60]. 

From a more algebraic point of view, multidegrees receive the name of mixed multiplici-
ties (see Definition 2.7). More recent papers where the notion of multidegree (or mixed 
multiplicity) is studied are, e.g., [1,9,11,23,33,36,41,42,57].

The main goal of this paper is to answer the following fundamental question considered 
by Trung [57] and by Huh [25] in the case p = 2.

• For n ∈ Np with n1 + · · · + np = dim(X), when do we have that degn
P(X) > 0?

Our main result says that the positivity of degn
P(X) is determined by the dimensions of 

the images of the natural projections from P restricted to the irreducible components 
of X. First, we set a basic notation: for each J = {j1, . . . , jk} ⊆ {1, . . . , p}, let ΠJ be the 
natural projection

ΠJ : P = Pm1
k ×k · · · ×k P

mp

k → P
mj1
k ×k · · · ×k P

mjk

k .

The following is the main theorem of this article. Here, we give necessary and sufficient 
conditions for the positivity of multidegrees.

Theorem A (Theorem 3.12, Corollary 3.13). Let k be an arbitrary field, P = Pm1
k ×k

· · · ×k P
mp

k be a multiprojective space over k, and X ⊆ P be a closed subscheme of P. 
Let n = (n1, . . . , np) ∈ Np be such that n1 + · · · + np = dim(X). Then, degn

P(X) > 0 if 
and only if there is an irreducible component Y ⊆ X of X that satisfies the following two 
conditions:

(a) dim(Y) = dim(X).
(b) For each J = {j1, . . . , jk} ⊆ {1, . . . , p} the inequality

nj1 + · · · + njk ! dim
!
ΠJ(Y)

"
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holds.

When k is the field of complex numbers Theorem A is essentially covered by the 
geometric results in [34, Theorems 2.14, 2.19],2 however their methods do not extend 
to arbitrary fields. Here we follow an algebraic approach that allows us to prove the 
result for all fields, and hence a general version for algebras over Artinian local rings 
(see Theorem B). The main idea in the proof of Theorem A is the study of the dimen-
sions of the images of the natural projections after cutting by a general hyperplane (see 
Theorem 3.7).

We note that if p = 2 and X is arithmetically Cohen-Macaulay, the conclusion of 
Theorem A in the irreducible case also holds for X (see [57, Corollary 2.8]). In Example 5.2
we show that this is not necessarily true for p > 2.

If X is irreducible, then the function r : 2{1,...,p} → Z defined by r(J) := dim
!
ΠJ(Y)

"

is a submodular function, i.e., r(J1 ∩ J2) + r(J1 ∪ J2) ! r(J1) + r(J2) for any two 
subsets J1, J2 ⊆ {1, . . . , p}, as proved in Proposition 5.1 (see also Definition 2.16). By 
the Submodular Theorem (see, e.g., [7, Theorem 3.11] or [44, Appendix B]) and the 
inequalities of Theorem A, the points n ∈ Np for which degn

P(X) > 0 are the lattice points 
of a generalized permutohedron. Defined by A. Postnikov in [48] generalized permutohedra 
are polytopes obtained by deforming usual permutohedra. In recent years this family of 
polytopes has been studied in relation to other fields such as probability, combinatorics, 
and representation theory (see [44,45,49]).

In a more algebraic flavor, we state the translation of Theorem A to the mixed 
multiplicities of a standard multigraded algebra over an Artinian local ring (see Def-
inition 2.13).

Theorem B (Corollary 3.14). Let A be an Artinian local ring and R be a finitely generated 
standard Np-graded A-algebra. For each 1 ! j ! p, let mj ⊂ R be the ideal generated 
by the elements of degree ej, where ej ∈ Np denotes the j-th elementary vector. Let 
N = m1 ∩ · · · ∩ mp ⊂ R. Let n = (n1, . . . , np) ∈ Np be such that n1 + · · · + np =

dim (R/ (0 :R N∞)) − p. Then, e(n; R) > 0 if and only if there is a minimal prime ideal 
P ∈ Min (0 :R N∞) of (0 :R N∞) that satisfies the following two conditions:

(a) dim (R/P) = dim (R/ (0 :R N∞)).
(b) For each J = {j1, . . . , jk} ⊆ {1, . . . , p} the inequality

nj1 + · · · + njk ! dim
#

R

P +
"

j/∈Jmj

$

− k

holds.

2 In Remark 3.15 we briefly discuss how (over the complex numbers) Theorem A can be obtained by using 
the results in [34, §2.2].
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For a given finite set of ideals in a Noetherian local ring, such that one of them is zero-
dimensional, we can define their mixed multiplicities by considering a certain associated 
standard multigraded algebra (see [58] for more information). These multiplicities have a 
long history of interconnecting problems from commutative algebra, algebraic geometry, 
and combinatorics, with applications to the topics of Milnor numbers, mixed volumes, 
and integral dependence (see, e.g., [25,27,55,58]). As a direct consequence of Theorem B
we are able to give a characterization for the positivity of mixed multiplicities of ideals 
(see Corollary 4.3). In another related result, we focus on homogeneous ideals generated 
in one degree; this case is of particular importance due to its relation with rational maps 
between projective varieties. In this setting, we provide more explicit conditions for 
positivity in terms of the analytic spread of products of these ideals (see Theorem 4.4).

Going back to the setting of Theorem A, we switch our attention to the following 
discrete set

MSuppP(X) =
#
n ∈ Np | degn

P(X) > 0
$
,

which we call the support of X with respect to P. When X is irreducible, we show that 
MSuppP(X) is a (discrete) polymatroid (see §2.3, Proposition 5.1). The latter result 
was included in an earlier version of this paper when k is algebraically closed, and an 
alternative proof is given by Brändén and Huh in [3, Corollary 4.7] using the theory 
of Lorentzian polynomials. An advantage of our approach is that we can describe the 
corresponding rank submodular functions of the polymatroids, a fact that we exploit in 
the applications of Section 6. Additionally, our results are valid when X is just irreducible 
and not necessarily geometrically irreducible over k (i.e., we do not need to assume that 
X ×k k is irreducible for an algebraic closure k of k); it should be noticed that this 
generality is not covered by the statements in [3] and [34].

Discrete polymatroids [24] have also been studied under the name of M-convex sets 
[46]. Polymatroids can also be described as the integer points in a generalized permuto-
hedron [48], so they are closely related to submodular functions, which are well studied 
in optimization, see [38] and [52, Part IV] for comprehensive surveys on submodular 
functions, their applications, and their history. There are two distinguishable types of 
polymatroids, linear and algebraic polymatroids, whose main properties are inherited by 
their representation in terms of other algebraic structures. Theorem A allows us to define 
another type of polymatroids, that we call Chow polymatroids, and which interestingly 
lies in between the other two. In the following theorem we summarize our main results 
in this direction.

Theorem C (Theorem 5.5). Over an arbitrary field k, we have the following inclusions 
of families of polymatroids
%
Linear polymatroids

&
⊆
%
Chow polymatroids

&
⊆
%
Algebraic polymatroids

&
.

Moreover, when k is a field of characteristic zero, the three families coincide.
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If k has positive characteristic, then these types of polymatroids do not agree. In 
fact, there exist examples of polymatroids which are algebraic over any field of positive 
characteristic but never linear (see Remark 5.7).

Theorem A can be applied to particular examples of varieties coming from combina-
torial algebraic geometry. In §6.1 we do so to matrix Schubert varieties; in this case the 
multidegrees are the coefficients of Schubert polynomials, thus our results allow us to 
give an alternative proof to a recent conjecture regarding the support of these polyno-
mials (see Theorem 6.3). In §6.2 and §6.3 we study certain embeddings of flag varieties 
and of the moduli space M0,p+3, respectively (see Proposition 6.7 and Proposition 6.8). 
In §6.4 we recover a well-known characterization for the positivity of mixed volumes of 
convex bodies (see Theorem 6.9).

We now outline the contents of the article. In Section 2 we set up the notation used 
throughout the document. We also include key preliminary definitions and results, paying 
special attention to the connection between mixed multiplicities of standard multigraded 
graded algebras and multidegrees of their corresponding schemes. Section 3 is devoted to 
the proof of Theorem A and Theorem B. Our results for mixed multiplicities of ideals are 
included in Section 4. In Section 5 we relate our results to the theory of polymatroids. In 
particular, we show the proof of Theorem C. We finish the paper with Section 6 where 
the applications to combinatorial algebraic geometry are presented.

We conclude the Introduction with an illustrative example. The following example is 
constructed following the same ideas in Proposition 5.4.

Example 1.1. Consider the polynomial ring S = k[v1, v2, v3][w1, w2, w3] with the N3-
grading deg(vi) = (0, 0, 0), deg(wi) = ei for 1 ! i ! 3. Let T be the N3-graded polyno-
mial ring T = k [x0, . . . , x3] [y0, . . . ,y3] [z0, . . . , z3] where deg(xi) = e1, deg(yi) = e2 and 
deg(zi) = e3. Consider the N3-graded k-algebra homomorphism

ϕ = T → S,
x0 (→ w1, x1 (→ v1w1, x2 (→ v1w1, x3 (→ v1w1,
y0 (→ w2, y1 (→ v1w2, y2 (→ v2w2, y3 (→ (v1 + v2)w2,
z0 (→ w3, z1 (→ v1w3, z2 (→ v2w3, z3 (→ v3w3.

Note that P = Ker(ϕ) ⊂ T is an N3-graded prime ideal. Let Y ⊂ P = P3
k ×k P3

k ×k P3
k

be the closed subscheme corresponding to P. In this case, one can easily compute the 
dimension of the projections ΠJ(Y) for each J ⊆ {1, 2, 3}, and so Theorem A implies that 
MSuppP(Y) is given by all n = (n1, . . . , n3) ∈ N3 satisfying the following conditions:

n1 + n2 + n3 = 3 = dim(Y),

n1 + n2 ! 2 = dim
!
Π{1,2} (Y)

"
, n1 + n3 ! 3 = dim

!
Π{1,3} (Y)

"
,

n2 + n3 ! 3 = dim
!
Π{2,3} (Y)

"
,

n1 ! 1 = dim
!
Π{1} (Y)

"
, n2 ! 2 = dim

!
Π{2} (Y)

"
, n3 ! 3 = dim

!
Π{3} (Y)

"
.
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Hence MSuppP(Y) = {(0, 0, 3), (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1)} ⊂ N3. This set can also 
be represented graphically as follows:

Additionally, by using Macaulay2 [21] we can compute that its multidegree polynomial
(see Definition 2.10) is equal to:

degP(Y; t1, t2, t3) = t31t
3
2 + t31t

2
2t3 + t31t2t

2
3 + t21t

3
2t3 + t21t

2
2t

2
3.

We note that here we are following the convention that MSuppP(Y) is given by the 
complementary degrees of the polynomial degP(Y; t1, t2, t3); for instance, the term t31t

3
2

corresponds to the point (3, 3, 3) − (3, 3, 0) = (0, 0, 3) ∈ MSuppP(Y).

2. Notation and preliminaries

In this section, we set up the notation that is used throughout the paper. We also 
present some preliminary results needed in the proofs of our main theorems.

Let p " 1 be a positive integer. If n = (n1, . . . , np), m = (m1, . . . , mp) ∈ Zp are two 
multi-indexes, we write n " m whenever ni " mi for all 1 ! i ! p, and n > m whenever 
nj > mj for all 1 ! j ! p. For each 1 ! i ! p, let ei ∈ Np be the i-th elementary 
vector ei = (0, . . . , 1, . . . , 0). Let 0 ∈ Np and 1 ∈ Np be the vectors 0 = (0, . . . , 0) and 
1 = (1, . . . , 1) of p copies of 0 and 1, respectively. For any n = (n1, . . . , np) ∈ Zp, we 
define its weight as |n| := n1 + · · · + np. Let [p] denote the set [p] := {1, . . . , p}.

For clarity of exposition we first introduce the main concepts in the theory of multide-
grees over an arbitrary field. Later, we also work over Artinian local rings; we highlight 
important details in this more general setting in §2.2.

2.1. The case over a field

We begin by introducing a general setup for Theorem A and its preparatory results.

Setup 2.1. Let k be an arbitrary field. Let R be a finitely generated standard Np-graded 
algebra over k, that is, [R]0 = k and R is finitely generated over k by elements of degree 
ei with 1 ! i ! p. For each subset J = {j1, . . . , jk} ⊆ [p] = {1, . . . , p}denote by R(J) the 
standard Nk-graded k-algebra given by
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R(J) :=
'

i1!0,...,ip!0
ij= 0 if j/∈J

[R](i1,...,ip);

for instance, for each 1 ! j ! p, R(j) denotes the standard N-graded k-algebra R(j) :=(
k!0 [R]k·ej . For each 1 ! j ! p, let mj ⊂ R be the ideal mj :=

!
[R]ej

"
. Let N ⊂ R be 

the multigraded irrelevant ideal N := m1 ∩ · · · ∩ mp. For each J ⊆ [p], let NJ ⊂ R(J)

be the corresponding multigraded irrelevant ideal NJ :=
%)

j∈Jmj

&
∩ R(J). Let X be 

the multiprojective scheme X := MultiProj(R) (see Definition 2.2 below) and XJ be 
the multiprojective scheme XJ := MultiProj(R(J)) for each J ⊆ [p]. To avoid trivial 
situations, we always assume that X ̸= ∅.

Definition 2.2. The multiprojective scheme MultiProj(R) is given by MultiProj(R) :=#
P ∈ Spec(R) | P is Np-graded and P ! N

$
, and its scheme structure is obtained by 

using multi-homogeneous localizations (see, e.g., [28, §1]).

The inclusion R(J) ↪→ R induces the natural projection

ΠJ : X→ XJ, P ∈ X (→ P ∩ R(J) ∈ XJ.

We embed X as a closed subscheme of a multiprojective space P := Pm1
k ×k · · · ×k P

mp

k . 
Then, for each J = {j1, . . . , jk} ⊆ [p], ΠJ : X → XJ corresponds with the restriction to X
and to XJ of the natural projection

ΠJ : P → P
mj1
k ×k · · · ×k P

mjk

k ,

and XJ becomes a closed subscheme of Pmj1
k ×k · · · ×k P

mjk

k .
For any multi-homogeneous element x ∈ R, the closed subscheme MultiProj(R/xR) ⊆

X is denoted by X ∩ V(x).

Notation 2.3. From now on, J = {j1, . . . , jk}denotes a subset of [p]. Set r := dim(X) and 
r(J) := dim (ΠJ(X)) for each J ⊆ [p]. For a singleton set {i} ⊆ [p], r({i}) and Π{i} are 
simply denoted by r(i) and Πi, respectively.

Note that the image of ΠJ : X → XJ can be described by the following isomorphism

ΠJ(X) ∼= MultiProj
*

R(J)
R(J) ∩ (0 :R N∞)

+
. (1)

Remark 2.4. Since R = R(J) ⊕
%"

j/∈Jmj

&
, we obtain a natural isomorphism R(J) ∼=

R"
j/∈Jmj

of Nk-graded k-algebras where k = |J|.

We now provide some preparatory results.
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Lemma 2.5. Under Setup 2.1, the following statements hold:

(i) r = dim(X) = dim (R/ (0 :R N∞)) − p.
(ii) There is an isomorphism

ΠJ(X) ∼= MultiProj

⎛

⎝R/
%

(0 :R N∞) +
%

j/∈J

mj

&
⎞

⎠ . (2)

(iii) If (0 :R N∞) = 0, then ΠJ(X) ∼= MultiProj(R(J)) = XJ.
(iv) If (0 :R N∞) = 0, then 

%
0 :R(J)

N∞
J

&
= 0.

Proof. (i) This formula follows from [28, Lemma 1.2] (also, see [10, Corollary 3.5]).
(ii) From the natural maps R(J) ↪→ R # R/ (0 :R N∞), we obtain a natural isomor-

phism

R(J)/
!
R(J) ∩ (0 :R N∞)

" ∼=−→
!
R/ (0 :R N∞)

"
(J)

.

By using Remark 2.4 it follows that 
!
R/ (0 :R N∞)

"
(J)

∼= R/ 
%
(0 :R N∞) +

"
j/∈Jmj

&
. 

Therefore, the claimed isomorphism is obtained from (1).
(iii) It follows directly from part (ii) and Remark 2.4.
(iv) This part is clear. !

Let PR(t) = PR(t1, . . . , tp) ∈ Q[t] = Q[t1, . . . , tp] be the Hilbert polynomial of R (see, 
e.g., [23, Theorem 4.1], [9, Theorem 3.4]). Then, the degree of PR is equal to r and

PR(ν) = dimk ([R]ν)

for all ν ∈ Np such that ν ≫ 0. Furthermore, if we write

PR(t) =
%

n1,...,np!0
e(n1, . . . ,np)

*
t1 + n1

n1

+
· · ·
*

tp + np

np

+
, (3)

then 0 ! e(n1, . . . , nr) ∈ Z for all n1 + · · · + np = r.

Remark 2.6. The following are basic properties of Hilbert polynomials.

(i) Since Nk(0 :R N∞) = 0 for k ≫ 0 we have dimk ([R]ν) = dimk ([R/(0 :R N∞)]ν) for 
ν ≫ 0. Thus,

PR(t) = PR/(0:RN∞)(t).
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(ii) Let L be a field extension of k. Then, R ⊗k L is a finitely generated standard Np-
graded L-algebra and dimL ([R⊗k L]ν) = dimk ([R]ν) for all ν ∈ Np. Thus,

PR⊗kL(t) = PR(t).

In particular, one can always assume k is an infinite field (for instance, we can 
substitute k by a purely transcendental field extension k(ξ)).

Under the notation of (3) we define the following invariants.

Definition 2.7. Let n = (n1, . . . , np) ∈ Np with |n| = r. Then:

(i) e(n, R) := e(n1, . . . , np) is the mixed multiplicity of R of type n.
(ii) degn

P(X) := e(n1, . . . , np) is the multidegree of X = MultiProj(R) of type n with 
respect to P.

As stated in the Introduction, in classical geometrical terms, when k is algebraically 
closed, degn

P(X) is also equal to the number of points (counting multiplicity) in the 
intersection of X with the product L1 ×k · · · ×k Lp ⊂ P, where Li ⊆ Pmi

k is a general 
linear subspace of dimension mi − ni for each 1 ! i ! p (see [60], [9, Theorem 4.7]).

The multidegrees of X can be defined easily in terms of Chow rings and in terms of 
Hilbert series.

Remark 2.8. The Chow ring of P = Pm1
k ×k · · · ×k P

mp

k is given by

A∗(P) =
Z[H1, . . . ,Hp]%

Hm1+1
1 , . . . ,Hmp+1

p

&

where Hi represents the class of the inverse image of a hyperplane of Pmi

k under the 
natural projection Πi : P → Pmi

k . Then, the class of the cycle associated to X coincides 
with

[X] =
%

0"ni"mi
|n|= r

degn
P (X) Hm1−n1

1 · · · Hmp−np
p ∈ A∗(P).

Remark 2.9. By considering the Hilbert series HilbR(t1, . . . , tp) :=
"
ν∈Np dimk ([R]ν) tν1

1
· · · tνpp of R, one can analogously define the notions of mixed multiplicities and 
multidegrees (see [43, §8.5], [9, Theorem A]). Here we quickly derive this analo-
gous definition because we shall use it in §6.1. Let S = k[x1,0, x1,1, . . . , x1,m1 ] ⊗k

· · · ⊗k k[xp,0, xp,1, . . . , xp,mp ] be the multigraded polynomial ring corresponding with 
P = Pm1

k ×k · · · ×k P
mp

k , that is P = MultiProj(S). By considering an S-free resolution of 
R, we can write



10 F. Castillo et al. / Advances in Mathematics 374 (2020) 107382

HilbR(t) = K(R; t)/(1 − t)m+1 = K(R; t1, . . . , tp)/
p&

i= 1
(1 − ti)

mi+1,

where K(R; t) is called the K-polynomial of R (see [43, Definition 8.21]). Let C(R; t) ∈
Z[t1, . . . , tp] be the sum of all the terms in K(R; 1 − t) of total degree equal to dim(S) −
dim(R) (see [43, Definition 8.45]). Then, if (0 :R N∞) = 0, we obtain the equality

C(R; t) =
%

0"ni"mi
|n|= r

degn
P (X) tm1−n1

1 · · · tmp−np
p .

Proof. From [9, Theorem A(I)] we have HilbR(t) =
"
|k|= dim(R)Qk(t)/(1 − t)k where 

Qk(t) ∈ Z[t]. The assumption (0 :R N∞) = 0 gives that dim(R) = r +p (see Lemma 2.5(i)). 
Hence, by using [9, Theorem A(II,III)] we obtain that degn

P (X) = e(n; R) = Qn+1(1) for 
all |n| = r. Also, the assumption (0 :R N∞) = 0 and [9, Theorem 2.8(ii)] imply that 
Qk(1) = 0 when |k| = dim(R) and ki = 0 for some 1 ! i ! p.

After writing HilbR(t) =
"
|k|= dim(R)Qk(t)(1 − t)m+1−k/(1 − t)m+1, we obtain the 

equality

K(R; t) =
%

|k|= dim(R)
Qk(t)(1 − t)m+1−k.

Making the substitution ti (→ (1 − ti) and choosing the terms of total degree 
dim(S) − dim(R) =

"p
i= 1 mi − r, it follows that C(R; t) =

"
|k|= dim(R)Qk(1)tm+1−k ="

|n|= r Qn+1(1)tm−n. So, the result is clear. !

Although in the proofs of Theorem A and Theorem B we do not exploit the fact 
that multidegrees can be defined as in Remark 2.8, we do encode the multidegrees in a 
homogeneous polynomial that mimics the cycle associated to X in the Chow ring A∗(P). 
The following objects are the main focus of this paper.

Definition 2.10. Let X ⊆ P = Pm1
k ×k · · · ×k P

mp

k be a closed subscheme with r =

dim(X). We denote the multidegree polynomial of X with respect to P as the homogeneous 
polynomial

degP(X; t1, . . . , tp) :=
%

0"ni"mi
|n|= r

degn
P (X) tm1−n1

1 · · · tmp−np
p ∈ N[t1, . . . , tp]

of degree m1 + · · · + mp − r. We say that the support of X with respect to P is given by

MSuppP(X) :=
#
n ∈ Np | degn

P(X) > 0
$
.

Remark 2.11. Note that under the assumption (0 :R N∞) = 0 we obtain the equality 
degP(X; t) = C(R; t).
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2.2. The case over an Artinian local ring

In this subsection, we show how the mixed multiplicities are defined for a standard 
multigraded algebra over an Artinian local ring.

Setup 2.12. Keep the notations and assumptions introduced in Setup 2.1 and now sub-
stitute the field k by an Artinian local ring A.

In this setting, the notion of mixed multiplicities is defined essentially in the same 
way as in Definition 2.7.

Definition 2.13. Let PR(t) = PR(t1, . . . , tp) ∈ Q[t] = Q[t1, . . . , tp] be the Hilbert polyno-
mial of R (see, e.g., [23, Theorem 4.1], [9, Theorem 3.4]). Then, as before, the degree of 
PR is equal to dim (R/ (0 :R N∞)) − p and

PR(ν) = lengthA ([R]ν)

for all ν ∈ Np such that ν ≫ 0. If we write PR(t) =
"

n1,...,np!0 e(n1, . . . , np)
!
t1+n1

n1

"
· · ·!

tp+np

np

"
, then 0 ! e(n1, . . . , nr) ∈ Z for all n1 + · · · + np = dim (R/ (0 :R N∞)) − p. For 

each n = (n1, . . . , np) ∈ Np with |n| = dim (R/ (0 :R N∞)) − p, we set that e(n, R) :=
e(n1, . . . , np) is the mixed multiplicity of R of type n.

2.3. Polymatroids

In this subsection we include some relevant information about polymatroids.

Definition 2.14. Let E be a finite set and r a function r : 2E → Z!0 satisfying the following 
two properties: (i) it is non-decreasing, i.e., r(T1) ! r(T2) if T1 ⊆ T2 ⊆ E, and (ii) it is 
submodular, i.e., r(T1 ∩ T2) + r(T1 ∪ T2) ! r(T1) + r(T2) if T1, T2 ⊆ E. The function r
is called a rank function on E. We usually let E = [p].

A (discrete) polymatroid P on [p] with rank function r is a collection of points in Np

of the following form

P =

⎧
⎨

⎩x = (x1, . . . , xp) ∈ Np |
%

j∈J
xj ! r(J), ∀J " [p],

%

i∈[p]

xi = r([p])

⎫
⎬

⎭.

By definition, a polymatroid consists of the integer points of a polytope (the convex hull 
of P), we call that polytope a base polymatroid polytope. We note that a polymatroid is 
completely determined by its rank function.

Remark 2.15. If the rank function of P satisfies r({i}) ! 1 for every i ∈ [p], then P is 
called a matroid. In other words, matroids are discrete polymatroids where every integer 
point is an element of {0, 1}p. A general reference for matroids is [47].



12 F. Castillo et al. / Advances in Mathematics 374 (2020) 107382

In the following definition we consider the standard notions of linear and algebraic 
matroids (see [47, Chapter 6]) and adapt them to the polymatroid case.

Definition 2.16. Let P be a polymatroid.

• We say P is linear over a field k if there exists a k-vector space V and subspaces Vi, i ∈
[p] such that for every J ⊆ [p] we have r(J) = dimk

%"
j∈J Vj

&
[47, Proposition 

1.1.1]. The vector space V together with the subspaces Vi for 1 ! i ! p, are a linear 
representation of P.

• We say P is algebraic over a field k if there exists a field extension k ↪→ L and 
intermediate field extensions Li, i ∈ [p] such that for every J ⊆ [p] we have r(J) =
trdegk

%0
j∈J Lj

&
, where 

0
j∈J Lj is the compositum of the subfields, i.e., the smallest 

subfield in L containing all of them [47, Theorem 6.7.1]. The field L together with 
the subfields Li for 1 ! i ! p, are an algebraic representation of P.

3. A characterization for the positivity of multidegrees

In this section, we focus on characterizing the positivity of multidegrees and our main 
goal is to prove Theorem A and Theorem B. Throughout this section we continue using 
the same notations and assumptions of Section 2.

We begin with the following result that relates the Hilbert polynomial PR(t) ∈ Q[t] of 
R with the dimensions r(J) = dim (ΠJ(X)) of the schemes ΠJ(X). It extends [57, Theorem 
1.7] to a multigraded setting.

Proposition 3.1. Assume Setup 2.1. For each J = {j1, . . . , jk} ⊆ [p], let deg(PR; J) be the 
degree of the Hilbert polynomial PR in the variables tj1 , . . . , tjk . Then, for every such 
J = {j1, . . . , jk}we have that

deg(PR; J) = r(J).

Proof. We may assume that (0 :R N∞) = 0 and k is an infinite field by Remark 2.6. 
Fix J = {j1, . . . , jk} ⊆ [p] and let w ∈ N be such that dimk([R]n) = PR(n) for every 
n = (n1, . . . , np) " w1. Let (d1, . . . .dk) be such that δ := deg(PR; J) = d1 + · · · + dk

and td1
j1

· · · tdk
jk

divides a term of PR.
Let q be a polynomial in the variables {ti | i /∈ J} such that PR − q · td1

j1
· · · tdk

jk
has 

no term divisible by td1
j1

· · · tdk
jk

. Let s = (si | i /∈ J) ∈ Np−|J| be a vector of integers 
such that s " w1 and q(s) ̸= 0. Thus, if one evaluates ti = si in PR for every i /∈ J

one obtains a polynomial Q on the variables tj1 , · · · , tjk of degree δ. On the other hand, 
by [9, Theorem 3.4], for nj1 , · · · , njk " w this polynomial Q coincides with the Hilbert 
polynomial of the R(J)-module generated by [R]s′ , where s ′i = si if i /∈ J and s ′i = 0
otherwise. Call this module M.
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Since (0 :R N∞) = 0, for every 1 ! i ! p we have grade(mi) " 1, and then there 
exist elements yi ∈ [R]ei which are non-zero-divisors (see, e.g., [6, Lemma 1.5.12]). 
From the fact that y

s′1
1 · · · ys′p

p ∈ M, it follows that AnnR(J)
(M) = 0. Therefore, 

δ = dim
!
Supp(M) ∩ X(J)

"
= r(J), by [9, Theorem 3.4], finishing the proof. !

In the following remark we gather some basic relations for the radicals of certain 
ideals.

Remark 3.2. (i) Let I, J, K ⊂ R be ideals. If J ⊂
√

K, then I + J ⊂
√

I + K. In particular, 
if 
√

J =
√

K, then 
√

I + J =
√

I + K.
(ii) For any element x ∈ m1, since (x :R m∞1 )mk

1 ⊂ (x) for some k > 0, it follows that 1
(x) =

1
(x :R m∞1 )mk

1 =
1

(x :R m∞1 ) ∩m1.

If k is an infinite field, then for each 1 ! i ! p we say that a property P is satisfied 
by a general element in the k-vector space [R]ei , if there exists a dense open subset U of 
[R]ei with the Zariski topology such that every element in U satisfies the property P.

The following three technical lemmas are important steps for the proof of Theorem 3.7.

Lemma 3.3. Assume Setup 2.1 with k being an infinite field. Suppose that R is a domain. 
Let x ∈ [R]e1 be a general element. Then, we have the equality 

1
(x :R N∞) =

1
(x :R m∞1 ).

Proof. Since (0 :R N∞) = 0, we have that ht(mj) " 1 for every 1 ! j ! p. Consider the 
following finite set of prime ideals

S =
#
P ∈ Spec(R) | P ∈ Min(mj) for some 2 ! j ! p and P ! m1

$
.

By using the Prime Avoidance Lemma and the fact that k is infinite, for a general element 
x ∈ [R]e1 we have that x /∈

2
P∈SP. If P ∈ Min (x :R m∞1 ), then ht(P) ! 1 by Krull’s 

Principal Ideal Theorem, and so we would have that P ∈ S whenever P ! m1 and 
P ⊇ mj for some 2 ! j ! p. Therefore, for any P ∈ Spec(R) and a general element 
x ∈ [R]e1 , if P ∈ Min (x :R m∞1 ) we get P ⊇ (x :R N∞) = (x :R (m1 ∩m2 ∩ · · · ∩mp)∞); so, 1

(x :R N∞) =
1

(x :R m∞1 ). !

The lemma below is necessary for some reduction arguments in Theorem 3.7.

Lemma 3.4. Assume Setup 2.1 with k being an infinite field. Suppose that R is a domain. 
Let x ∈ [R]e1 be a general element and set Z = X ∩ V(x) = MultiProj(R/xR). Then, for 
each J = {1, j2, . . . , jk} ⊆ [p], the following statements hold:

(i) dim (ΠJ(Z)) = dim (XJ ∩ V(x)), where XJ ∩ V(x) = MultiProj
!
R(J)/xR(J)

"
.

(ii) dim(ΠL(Z)) = dim
!
Π ′L(XJ ∩ V(x))

"
, where L = J \ {1}and Π ′L denotes the natural 

projection Π ′L : Pm1
k ×k P

mj2
k ×k · · · ×k P

mjk

k → P
mj2
k ×k · · · ×k P

mjk

k .
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Proof. For notational purposes, let bJ := m1 ∩ R(J).
(i) From (2) we have that ΠJ(Z) ∼= MultiProj

!
R/
!
(x :R N∞) +

"
j/∈Jmj

""
. Since we 

are assuming 1 ∈ J, from Remark 2.4 we obtain the natural isomorphism

R(J)/
%
x :R(J)

b∞J

&
∼=−→ R/

%
(x :R m∞1 ) +

%

j/∈J

mj

&
;

indeed, for ℓ " 0 and y ∈ R(J), one notices that bℓJ · y ∈ xR(J) if and only if mℓ1 · y ∈ xR.
By Lemma 3.3 and Remark 3.2(i) we have 

3
(x :R m∞1 ) +

"
j/∈Jmj =

3
(x :R N∞) +

"
j/∈Jmj, and by applying Lemma 3.3 to the ring R(J) we obtain 

3
(x :R(J)

b∞J ) =
3

(x :R(J)
N∞
J ). It follows that

R(J)
4 3

(x :R(J)
N∞
J ) ∼= R

4 5
(x :R N∞) +

%

j/∈J

mj, (4)

which gives the result.
(ii) By using (2) we obtain that ΠL(Z) ∼= MultiProj

!
R/
!
(x :R N∞) +

"
j/∈Jmj + m1

""

and that Π ′L (XJ ∩ V(x)) ∼= MultiProj
%
R(J)/

%
(x :R(J)

N∞
J ) + bJ

&&
. Since the isomor-

phism in (4) can be extended to

R(J)

6 %3
(x :R(J)

N∞
J ) + bJ

&
∼= R

6
⎛

⎝
5

(x :R N∞) +
%

j/∈J

mj + m1

⎞

⎠ ,

the result follows from Remark 3.2(i). !

We continue with the next auxiliary lemma that allows us to simplify the proof of 
Theorem 3.7.

Lemma 3.5. Assume Setup 2.1 with k being an infinite field. Suppose that R is a domain 
and r(1) " 1. Let x ∈ [R]e1 be a general element and set Z = X ∩V(x) = MultiProj(R/xR). 
Then, the following statements hold:

(i) If 1 ∈ J ⊆ [p], then dim (ΠJ(Z)) = r(J) − 1; in particular, dim(Z) = r − 1.
(ii) If 1 /∈ J and r(K) > r(J), where K = {1} ∪ J ⊆ [p], then dim (ΠJ(Z)) = r(J).

Proof. (i) First, from Lemma 3.4(i) it suffices to compute dim (XJ ∩ V(x)), where XJ ∩
V(x) = MultiProj

!
R(J)/xR(J)

"
. For J = {1, j2, . . . , jk} ⊆ [p], note that Π1(X) ∼= Π ′1(XJ), 

where Π ′1 denotes the natural projection Π ′1 : Pm1
k ×k P

mj2
k ×k · · · ×k P

mjk

k → Pm1
k . 

Therefore, neither the assumption nor the conclusion changes if we substitute R by R(J)
and X by XJ, and we do so.
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From the short exact sequence

0→ R(−e1)
x−→ R→ R/xR→ 0,

we obtain PR/xR(t) = PR(t) −PR(t −e1). By using Proposition 3.1, deg(PR; t1) = r(1) " 1
and so PR is non-constant as a univariate polynomial in the variable t1. Thus, PR/xR(t) ̸=
0 which implies that (x :R N∞) is a proper ideal. So, Krull’s Principal Ideal Theorem 
yields that ht(x :R N∞) = 1 and that

dim(Z) = dim(R/(x :R N∞)) − p = dim(R) − 1 − p = (r + p) − 1 − p = r − 1.

(ii) By using Lemma 3.4(ii), we can substitute R by R(K) and X by XK, and we do so. 
So, we may assume that K = [p] and J = {2, . . . , p}. From (2) we get the isomorphism

ΠJ(Z) ∼= MultiProj
%
R/ ((x :R N∞) + m1)

&
. (5)

The equality
1

(x :R N∞) + m1 =
1

(x :R m∞1 ) + m1 (6)

follows from Lemma 3.3 and Remark 3.2(i). The assumption yields that

ht(m1) = dim (R) − dim
!
R(J)

"
= (r + p) − (r(J) + p − 1) " 2,

then as a consequence Krull’s Principal Ideal Theorem it follows that 
1

(x) =1
(x :R m∞1 ); therefore, Remark 3.2(i) implies that 

1
(x :R m∞1 ) + m1 =

√
m1. By sum-

ming up, we obtain the equalities dim
!
R/ ((x :R N∞) + m1)

"
= dim(R/m1) = r(J) +p −1, 

and so the result follows. !

The next important theorem computes the dimension of the image of the projections 
ΠJ after cutting with a general hyperplane under certain conditions. For the proof of 
this result, we need the following version of Grothendieck’s Connectedness Theorem. For 
that, we recall the definitions

c(R) := min
#

dim(R/a) | a ⊂ R is an ideal and Spec(R) \ V(a) is disconnected
$
,

sdim(R) := min
#

dim(R/P) | P ∈ Min(R)
$

and
ara(a) := min{n |

1
(a1, . . . ,an) =

√
a and ai ∈ R}

for any ideal a ⊂ R.

Lemma 3.6 ([5, Proposition 2.1], [57 , Lemma 2.6]). For two proper homogeneous ideals 
a, b ⊂ R, if min{dim(R/a), dim(R/b)} > dim(R/(a + b)), then

dim(R/(a + b)) " min{c(R), sdim(R) − 1}− ara(a ∩ b).
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We are now ready to present the following theorem.

Theorem 3.7. Assume Setup 2.1 with k being an infinite field. Suppose that R is a domain 
and r(1) " 1. Let x ∈ [R]e1 be a general element and set Z = X ∩V(x) = MultiProj(R/xR). 
Then, for each J ⊆ [p] we have that

dim(ΠJ(Z)) = min
-

r(J), r
!
J ∪ {1}

"
− 1
.

.

Proof. For each J = {j1, . . . , jk} ⊆ K = {h1, . . . , hℓ} ⊆ [p] we have that ΠJ(Z) =

Π′J(ΠK(Z)) where Π′J denotes the natural projection Π′J : P
mh1
k ×k · · · ×k P

mhℓ

k →
P

mj1
k ×k · · · ×k P

mjk

k . So, from Lemma 3.5(i) it follows that the inequality “!” holds 
in the desired equality.

Due to Lemma 3.5, in order to show the reversed inequality “"”, it suffices to show 
that dim(ΠJ(Z)) " r(J) − 1 when 1 /∈ J and r(K) = r(J), where K = {1} ∪ J ⊆ [p]. 
By using Lemma 3.4(ii), we assume may that K = [p] and J = {2, . . . , p}. From (5) and 
(6), the proof would be complete if we prove the inequality dim

!
R/ ((x :R m∞1 ) + m1)

"
"

(rJ − 1) + (p − 1) = r + p − 2.
By using Lemma 3.3 and Lemma 3.5(i) we obtain that

dim (R/(x :R m∞1 )) = dim (R/(x :R N∞)) = (r − 1) + p = r + p − 1,

and since r(J) = r, we have

dim(R/m1) = dim(R(J)) = r(J) + (p − 1) = r + (p − 1) = r + p − 1.

Moreover, (6) and Lemma 3.5(i) yield that

dim
!
R/ ((x :R m∞1 ) + m1)

"
= dim

!
R/ ((x :R N∞) + m1)

"
! (r− 1) + (p− 1) = r + p− 2.

Since x ∈ m1, Remark 3.2(ii) gives that ara ((x :R m∞1 ) ∩m1) = ara ((x)) = 1. As R is a 
domain, c(R) = sdim(R) = r + p. Therefore, from Lemma 3.6 we obtain that

dim
!
R/ ((x :R m∞1 ) + m1)

"
" min{r + p, (r + p) − 1}− 1 = r + p − 2.

So, the proof is complete. !

Notation 3.8. Let {x0, . . . , xs} be a basis of the k-vector space [R]e1 . Consider a purely 
transcendental field extension L := k(z0, . . . , zs) of k, and set RL := R ⊗k L and XL :=

X ⊗kL = MultiProj (RL) ⊆ P ⊗kL = Pm1
L ×L· · ·×LP

mp

L . We say that z := z0x0+· · ·+zsxs ∈
[RL]e1 is the generic element of [RL]e1 .

In the following remark we explain that field extensions as in Notation 3.8 preserve 
the domain assumption.
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Remark 3.9. Suppose that R is a domain and consider a purely transcendental field 
extension k(ξ). Then, R ⊗k k(ξ) is also a domain; indeed, one can see that R ⊗k k(ξ) is 
a subring of the field of fractions Quot(R[ξ]) of the polynomial ring R[ξ]. So, when R is 
a domain one can extend k to an infinite field without losing the assumption of R being 
a domain.

The lemma below shows that the Hilbert function modulo a generic element coincides 
with the one module a general element.

Lemma 3.10. Assume Notation 3.8 with k being an infinite field. Let x ∈ [R]e1 be a general 
element, then

dimk
!
[R/xR]ν

"
= dimL

!
[RL/zRL]ν

"

for all ν ∈ Np.

Proof. Let T be the polynomial ring T = k[z0, . . . , zs] and consider the finitely generated 
T -algebra given by S = (R⊗k T) /w (R⊗k T) where w = z0x0 + · · ·+zsxs ∈ R ⊗k T . From 
the Grothendieck’s Generic Freeness Lemma (see, e.g., [39, Theorem 24.1], [13, Theorem 
14.4]) there exists an element 0 ̸= a ∈ T such that Sa is a free Ta-module. Hence, for any 
p ∈ Spec(T) inside the dense open subset D(a) ⊂ Spec(T), if k(p) denotes the residue 
field k(p) = Tp/pTp of Tp, one has that

dimk(p)

!
[Sa ⊗Ta k(p)]ν

"
= dimQuot(T)

!
[Sa ⊗Ta Quot(T)]ν

"
= dimL

!
[RL/zRL]ν

"

for all ν ∈ Np. Note that for any β = (β0, . . . , βs) ∈ ks+1 with pβ = (z0 − β0, . . . , zs −

βs) ∈ D(a) one has the isomorphisms

Sa ⊗Ta k(pβ) ∼=
R⊗k T

(z0x0 + · · · + zsxs, z0 − β0, . . . , zs − βs)
∼= R/ (β0x0 + · · · + βsxs)R.

So, the result follows. !

We now obtain Theorem A when X is an irreducible scheme.

Remark 3.11. We first provide a couple of general words regarding the proof of Theo-
rem 3.12 below and where the irreducibility assumption comes into play. The proof is 
achieved by iteratively cutting with generic hyperplanes (following Notation 3.8) to ar-
rive to a zero-dimensional situation, and the main constraint is to control the dimension 
of the image of all the possible projections after cutting with a general hyperplane (see 
(7)). Our main tool to control those dimensions is Theorem 3.7, where it is needed to 
assume that R is a domain. When X is irreducible, by just taking the reduced scheme 
structure Xred = MultiProj(R/

√
0) we can easily reduce to the case where R is a do-

main. To maintain the irreducibility assumption during the inductive process, we use a 
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“generic” version of Bertini’s Theorem as presented in [16, Proposition 1.5.10]. It should 
be noted that the usual versions of Bertini’s Theorem for irreducibility require X to be 
geometrically irreducible and that the dimension of the image of certain morphism is 
bigger or equal than two (see [32, Theoreme 6.10, Corollaire 6.11]). Finally, Lemma 3.10
is used to relate the process of cutting with a generic hyperplane with the one of cutting 
with a general hyperplane.

Theorem 3.12. Assume Setup 2.1. Suppose that X is irreducible. Let n = (n1, . . . , np) ∈
Np such that |n| = r. Then, degn

P(X) > 0 if and only if for each J = {j1, . . . , jk} ⊆ [p] the 
inequality nj1 + · · · + njk ! r(J) holds.

Proof. From Proposition 3.1 it is clear that the inequalities nj1 + · · · + njk ! r(J) are 
a necessary condition for degn

P(X) = e(n; R) > 0. Therefore, it suffices to show that they 
are also sufficient.

Assume that nj1 +· · ·+njk ! r(J) for every J = {j1, . . . , jk} ⊆ [p]. We may also assume 
that (0 :R N∞) = 0 by Remark 2.6(i). Hence, the condition of X being irreducible implies 
that 

√
0 ⊂ R is a prime ideal. Since the associativity formula for mixed multiplicities 

(see, e.g., [9, Lemma 2.7]) yields that

e(n; R) = lengthR√
0

!
R√0

"
· e
%
n; R/

√
0
&

,

we can assume that R is a domain, and we do so. In addition, by Remark 2.6(ii), Propo-
sition 3.1, and Remark 3.9 we may also assume that k is an infinite field.

We proceed by induction on r. If r = 0, then [9, Theorem 3.10] implies e(0; R) > 0.
Suppose now that r " 1. Without any loss of generality, perhaps after changing the 

grading, we can assume that n1 " 1. Let L, RL, XL and z be defined as in Notation 3.8. 
Let x ∈ [R]e1 be a general element. Set S = R/xR, Z = X ∩ V(x) = MultiProj(S), 
T = RL/zRL, W = XL ∩V(z) = MultiProj(T) and n ′ = n− e1. Then, [9, Lemma 3.9] and 
Lemma 3.10 yield that e(n; R) = e(n ′; S) = e(n ′; T). From [16, Proposition 1.5.10] we 
obtain that W is also an irreducible scheme. By the assumed inequalities and because 
n1 " 1 we have that for each J = {j1, . . . , jk} ⊆ [p] the following inequality holds

n ′j1 + · · · + n ′jk ! min
-

r(J), r
!
J ∪ {1}

"
− 1
.

, (7)

and the latter is equal to dim(ΠJ(Z)) by Theorem 3.7. Moreover, by Lemma 3.10 and 
Proposition 3.1, we also have dim(ΠJ(W)) = dim(ΠJ(Z)); here, by an abuse of notation 
ΠJ(W) denotes the image of the natural projection ΠJ : P ⊗k L → P

mj1
L ×L · · · ×L P

mjk
L

restricted to W.
Finally, by using the inductive hypothesis applied to the irreducible scheme W, we 

obtain that e(n; R) = e(n ′; T) > 0, and so the result follows. !

Now we are ready to show the general version of Theorem A.
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Corollary 3.13. Assume Setup 2.1. Let n = (n1, . . . , np) ∈ Np such that |n| = dim(X). 
Then, degn

P(X) > 0 if and only if there is an irreducible component Y ⊆ X of X that 
satisfies the following two conditions:

(a) dim(Y) = dim(X).
(b) For each J = {j1, . . . , jk} ⊆ [p] the inequality nj1 + · · · + njk ! dim

!
ΠJ(Y)

"
holds.

Proof. We may assume that (0 :R N∞) = 0 by Remark 2.6(i). By the associativity 
formula for mixed multiplicities (see, e.g., [9, Lemma 2.7]) we get the equation

degn
P(X) = e(n; R) =

%

P∈Min(R)
dim(R/P)= r+p

lengthRP
(RP) · e(n; R/P).

Thus, e(n; R) > 0 if and only if e(n; R/P) > 0 for some minimal prime P ∈ Min(R) of 
maximal dimension. So, the result is clear from Theorem 3.12. !

Below we have a proof for Theorem B.

Corollary 3.14. Assume Setup 2.12. Let n = (n1, . . . , np) ∈ Np such that dim
!
R/

(0 :R N∞)
"
− p = |n|. Then, e(n; R) > 0 if and only if there is a minimal prime ideal 

P ∈ Min (0 :R N∞) of (0 :R N∞) that satisfies the following two conditions:

(a) dim (R/P) = dim (R/ (0 :R N∞)).
(b) For each J = {j1, . . . , jk} ⊆ [p] the inequality nj1 + · · · + njk ! dim

%
R

P+
"
j/∈Jmj

&
− k

holds.

Proof. As in Corollary 3.13, after assuming that (0 :R N∞) = 0 and using the as-
sociativity formula for mixed multiplicities, we obtain that e(n; R) > 0 if and only if 
e(n; R/P) > 0 for some minimal prime P ∈ Min(R) of maximal dimension. Note that, 
for each P ∈ Min(R), R/P is naturally a finitely generated standard Np-graded algebra 
over a field. So, the result follows by using Theorem 3.12. !

Finally, for the sake of completeness, we provide a brief discussion on how Theo-
rem 3.12 can be recovered (over the complex number) from the related results of [34, 
§2.2].

Remark 3.15. Assume k = C. For the closed subscheme X ⊂ P = Pm1
k ×k · · · ×k P

mp

k , 
let Li be the pullback of OP

mi
k

(1) to X. Take Ei to be |Li|. Following the notation in [34, 
§2.2], for each ∅ ̸= J ⊆ [p], denote by

ΦJ : X→ P
!
E∨
J

"
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the Kodaira map corresponding with the linear system EJ. Let τJ be the dimension of 
the closure of the image of ΦJ ([34, Definition 2.12]). Consequently, it is easy to check 
that dim (ΠJ(X)) = τJ. Thus, [34, Theorems 2.14, 2.19] translate into the following 
statement: dim (ΠJ(X)) " |J| if and only if for general hyperplanes Hj ∈ |Π∗jOP

mi
k

(1)|

(j ∈ J), X ∩ (
)

j∈JHj) ̸= ∅. The latter is equivalent to the condition [X] ·
/

j∈J[Hj] ̸= 0
on intersection of classes. Theorem 3.12 (over the complex numbers) eventually follows 
from applying this statement finitely many times to relevant index subsets J.

4. Positivity of the mixed multiplicities of ideals

In this section, we characterize the positivity of the mixed multiplicities of ideals. The 
results obtained here are a consequence of applying Theorem B to a certain multigraded 
algebra. For the particular case of ideals generated in one degree in graded domains we 
obtain a neat characterization in Theorem 4.4.

Throughout this section we use the following setup.

Setup 4.1. Let R be a Noetherian local ring with maximal ideal m ⊂ R (or a finitely 
generated standard graded algebra over a field k with graded irrelevant ideal m ⊂ R).

Let J0 ⊂ R be an m-primary ideal and J1, . . . , Jp ⊂ R be arbitrary ideals (homogeneous 
in the graded case). The multi-Rees algebra of the ideals J0, J1, . . . , Jp is given by

R(J0, . . . , Jp) := R[J0t0, . . . , Jptp] =
'

i0!0,...,ip!0
Ji0
0 · · · Jip

p ti0
0 · · · tip

p ⊂ R[t0, . . . , tp],

where t0, . . . , tp are new variables. Note that R(J0, . . . , Jp) is naturally a standard Np+1-
graded algebra and that, for 0 ! k ! p, the ideal mk generated by elements of degree ek

is given by

mk := JktkR(J0, . . . , Jp) ⊂ R(J0, . . . , Jp).

Let N := m0 ∩ · · · ∩ mp be the corresponding multigraded irrelevant ideal. Since J0 is 
m-primary, we obtain that

T(J0 | J1, . . . , Jp) := R(J0, . . . , Jp)⊗RR/J0 =
'

i0!0,i1!0...,ip!0
Ji0
0 Ji1

1 · · · Jip
p

4
Ji0+1
0 Ji1

1 · · · Jip
p

is a finitely generated standard Np+1-graded algebra over the Artinian local ring R/J0. 
For simplicity of notation, throughout this section we fix R := R(J0, . . . , Jp) and T :=

T(J0 | J1, . . . , Jp). Let r be the integer r := dim (MultiProj (T)), which coincides with the 
degree of the Hilbert polynomial PT (u1, . . . , up+1) of the Np+1-graded R/J0-algebra T . 
From [58, Theorem 1.2(a)] we have the equality r = dim (R/(0 :R (J1 · · · Jp)∞)) − 1.
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Definition 4.2. Under the above notations, for each n ∈ Np+1 with |n| = r, we say that

en (J0 | J1, . . . , Jp) := e (n; T)

is the mixed multiplicity of J0, J1, . . . , Jp of type n.

The main focus in this section is to characterize when en (J0 | J1, . . . , Jp) > 0. As a 
direct consequence of Theorem B we get the following general criterion for the positivity 
en (J0 | J1, . . . , Jp).

Corollary 4.3. Assume Setup 4.1 and the notations above. Let n = (n0, n1, . . . , np) ∈
Np+1 such that |n| = r. Then, en (J0 | J1, . . . , Jp) > 0 if and only if there is a minimal 
prime ideal P ∈ Min (0 :T N∞) of (0 :T N∞) that satisfies the following two conditions:

(a) dim (T/P) = dim (T/ (0 :T N∞)).
(b) For each J = {j1, . . . , jk} ⊆ {0} ∪[p] the inequality, nj1+· · ·+njk ! dim

%
T

P+
"
j/∈JmjT

&

− k holds.

We now focus on the case where R is a graded k-domain and each ideal Ji is 
generated in one degree. In this case, our characterization depends on the analytic 
spread of certain ideals; recall that the analytic spread of an ideal I ⊂ R is given by 
ℓ(I) := dim

%
R(I)/mR(I)

&
.

Theorem 4.4. Let R be a finitely generated standard graded domain over a field k with 
graded irrelevant ideal m ⊂ R. Let J0 ⊂ R be an m-primary ideal and J1, . . . , Jp ⊂ R

be arbitrary ideals. Suppose that, for each 0 ! i ! p, Ji is generated by homogeneous 
elements of the same degree di > 0. Let n = (n0, n1, . . . , np) ∈ Np+1 such that |n| =
dim(R) − 1. Then, en (J0 | J1, . . . , Jp) > 0 if and only if for each J = {j1, . . . , jk} ⊆ [p] the 
inequality

nj1 + · · · + njk ! ℓ
!
Jj1 · · · Jjk

"
− 1

holds.

Proof. First, note that r = dim(R) − 1.
Since J0 is m-primary, the kernel of the canonical map T # T ′ := R ⊗RR/m is nilpotent. 

Therefore, the conditions (a), (b) in Corollary 4.3 are satisfied for T if and only if they 
are satisfied for T ′.

Consider the Np+1-graded domain given by

F :=
'

i0!0,...,ip!0

7
Ji0
0

8

i0d0

7
Ji1
1

8

i1d1
· · ·
7
J
ip
p

8

ipdp
ti0
0 ti1

1 · · · tip
p ⊂ R.
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Since [Ji0
0 ]i0d0

[Ji1
1 ]i1d1

· · · [Jip
p ]ipdp

∼= Ji0
0 Ji1

1 · · · Jip
p ⊗R R/m, we have the isomorphism T ′ ∼=

F and so T ′ is a domain.
For any K = {h1, . . . , hs} ⊆ {0} ∪ [p], since we have the natural isomorphism 

R
4"

h/∈Kmh
∼= R(Jh1 , . . . , Jhs) = R[Jh1th1 , . . . , Jhsths ], it follows that

dim
!
T ′
4%

h/∈K

mhT ′
"

= dim
!
R(Jh1 , . . . , Jhs)⊗R R/m

"
.

After using the Segre embedding we get the isomorphism MultiProj
!
R(Jh1 , . . . , Jhs) ⊗R

R/m
"
∼= Proj

!
R(Jh1 · · · Jhs) ⊗R R/m

"
and, accordingly, from Lemma 2.5(i) we have

dim
!
R(Jh1 , . . . , Jhs)⊗RR/m

"
= dim

!
R(Jh1 · · · Jhs)⊗RR/m

"
+s−1 = ℓ(Jh1 · · · Jhs)+s−1,

(also, see [2, Corollary 3.10]).
So, en (J0 | J1, . . . , Jp) > 0 if and only if for each K = {h1, . . . , hs} ⊆ 0 ∪ [p] the 

inequality nh1 + · · · + nhs ! dim(T ′/ 
"

h/∈KmhT ′) − s = ℓ(Jh1 · · · Jhs) − 1 holds.
For any K = {0, h2, . . . , hs} ⊆ {0} ∪ [p], as J0 is m-primary, from [27, Theorem 5.1.4, 

Proposition 5.1.6] we obtain

dim
!
T ′
4%

h/∈K

mhT ′
"

= dim
!
R(J0, Jh2 , . . . , Jhs)⊗R R/J0

"

= dim
%
gr

J0R(Jh2 ,...,Jhs)

!
R(Jh2 , . . . , Jhs)

"&

= dim(R) + s − 1.

Therefore, we only need check the inequalities corresponding to the subsets J ⊆ [p], and 
so the result follows. !

Remark 4.5. Note that in Theorem 4.4 the conditions for the positivity of en(J0 |

J1, . . . , Jp) do not involve the m-primary ideal J0 (see [58, Corollary 1.8(a)]).

Remark 4.6. We note that if in Theorem 4.4 we have ℓ(Ji) = dim(R) for every 1 ! i ! p, 
then by [29, Lemma 4.7] for each J = {j1, . . . , jk} ⊆ [p] we also have ℓ

!
Jj1 · · · Jjk

"
=

dim(R). Therefore, by Theorem 4.4 it follows that en (J0 | J1, . . . , Jp) > 0 for every n ∈
Np+1 such that |n| = dim(R) − 1.

5. Polymatroids

We recall that Theorem A implies that MSuppP(X) (see Definition 2.10) is the set of 
integer points in a polytope when X is irreducible. In this section we explore properties 
of these discrete sets.

Following standard notations, we say that X is a variety over k if X is a reduced 
and irreducible separated scheme of finite type over k (see, e.g., [Tag 020C, 56]). In the 
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following two results we connect the theory of polymatroids (see §2.3) with MSuppP(X)

when X is a variety.

Proposition 5.1. Let X ⊆ P = Pm1
k ×k · · · ×k P

mp

k be a multiprojective variety over an 
arbitrary field k. Then MSuppP(X) is a discrete algebraic polymatroid over k.

Proof. We consider the associated Np-graded k-domain R. Let ξ be the generic point of 
X and set L := OX,ξ. For each J ⊆ [p], let XJ = ΠJ(X) = MultiProj

!
R(J)

"
and ξJ be the 

generic point of XJ, and notice that

OXJ,ξJ =
#
f/g | f, g ∈ R(J), g ̸= 0, deg(f) = deg(g)

$
⊆ L.

For 1 ! i ! p, let Li := OXi,ξi . Then, for each J ⊆ [p], we have that OXJ,ξJ =
0

j∈J Lj

and that dim (XJ) = trdegk

!
OXJ,ξJ

"
(see, e.g., [20, Theorem 5.22], [22, Exercise II.3.20]). 

Finally, the result follows from Theorem A. !

In [57, Corollary 2.8] it is shown that the conclusion of Theorem 3.12 holds if p = 2
and X is arithmetically Cohen-Macaulay. The following example shows that this result 
does not always hold for p > 2.

Example 5.2. Let S = k[x1, . . . , x12, y1, . . . , y12] be a polynomial rings with an N12-
grading induced by deg(xi) = deg(yi) = ei for 1 ! i ! 12. Let ∆ be the simplicial 
complex given by the boundary of the icosahedron. We note that ∆ is a Cohen-Macaulay 
complex (because it is a triangulation of the sphere S2 [53, Corollary II.4.4]), but it is not 
a (poly)matroid (see Remark 2.15) since not every restriction is pure [53, Proposition 
III.3.1].

Let J∆ = {(xi1 + yi1) · · · (xik + yik) | {i1, . . . , ik} /∈ ∆} and X∆ = MultiProj(S/J∆) ⊂
P = P1

k × · · · × P1
k. The definition of J∆ is a modification on the definition of I∆, the 

Stanley-Reisner ideal of ∆ with monomials in the variables {x1, . . . , x12} [43, Chapter 1], 
[53, Chapter II]. It can be easily verified that I∆ is the initial ideal of J∆ with respect 
to any elimination order with {x1, . . . , x12} " {y1, . . . , y12}. Since the ideal J∆ is obtained 
from I∆ by a linear change of variables, we have a similar primary decomposition as 
[43, Theorem 1.7], so no component is supported on any coordinate subspace and thus 
J∆ is saturated with respect to the irrelevant ideal of S. By [24, Corollary 3.3.5], X∆
is arithmetically Cohen-Macaulay. Moreover, since Hilbert functions are preserved by 
Gröbner degenerations, the multidegree of X∆ coincides with C(S/I∆; t) (see Remark 2.9). 
Thus, MSuppP(X∆) consists of all the incidence vectors of the facets of ∆ [43, Theorem 
1.7] and then it is not a polymatroid.

With Proposition 5.1 in hand, we can introduce the following class of polymatroids.

Definition 5.3. A polymatroid P is Chow over a field k if there exists a variety X ⊆ P =
Pm1

k ×k · · · ×k P
mp

k such that MSuppP(X) = P.
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The following statement follows as an easy corollary of the main result in [37], when 
k is an infinite field. Here we give a simple direct argument for an arbitrary field k.

Proposition 5.4. A linear polymatroid over an arbitrary field k is Chow over the same 
field.

Proof. Let V be a k-vector space and V1, . . . , Vp be arbitrary subspaces. Let S be the 
polynomial ring S = Sym(V) = k[x1, . . . , xq], where q = dimk(V). By using the isomor-
phism [S]1 ∼= V, we identify each Vi with a k-subspace Ui of [S]1. For each 1 ! i ! p, let 
{xi,1, xi,2, . . . , xi,ri} ⊂ [S]1 be a basis of the k-vector space Ui. Let T be the Np-graded 
polynomial ring

T := k [yi,j | 1 ! i ! p, 0 ! j ! ri, deg(yi,j) = ei] .

Induce an Np-grading on S[t1, . . . , tp] given by deg(ti) = ei and deg(xj) = 0. Consider 
the Np-graded k-algebra homomorphism

ϕ = T → S[t1, . . . , tp], yi,0 (→ ti for 1 ! i ! p

yi,j (→ xi,jti for 1 ! i ! p, 1 ! j ! ri.

Note that P := Ker(ϕ) is an Np-graded prime ideal. Set R := T/P and X := MultiProj(R). 
By construction, for each J ⊆ [p], we obtain the isomorphism

R(J) ∼= k [xi,jti | i ∈ J, 1 ! j ! ri] [ti | i ∈ J] ⊂ S[t1, . . . , tp];

thus, it is clear that

dim
!
R(J)

"
= trdegk

!
k [xi,jti | i ∈ J, 1 ! j ! ri] [ti | i ∈ J]

"

= trdegk

!
k [xi,j | i ∈ J, 1 ! j ! ri] [ti | i ∈ J]

"

= dimk

#
%

i∈J
Ui

$

+ |J| = dimk

#
%

i∈J
Vi

$

+ |J|.

Therefore, Lemma 2.5 yields that dim (ΠJ(X)) = dimk
!"

i∈J Vi

"
, and so the result 

follows from Theorem A. !

The following is the main theorem of this section. Here we summarize the results 
presented above to show that the class of Chow polymatroids lies in between the ones 
introduced in Definition 2.16.

Theorem 5.5. Over an arbitrary field k, we have the following inclusions of families of 
polymatroids
%
Linear polymatroids

&
⊆
%
Chow polymatroids

&
⊆
%
Algebraic polymatroids

&
.
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Moreover, when k is a field of characteristic zero, the three families coincide.

Proof. The first inclusion follows from Proposition 5.4; the second from Proposition 5.1. 
In the characteristic zero case linear and algebraic polymatroids coincide by [30, Corol-
lary, Page 166] (also, see Remark 5.6). !

Remark 5.6. The result mentioned above from [30] is stated for matroids but the argu-
ments go unchanged for polymatroids.

Remark 5.7. Over finite fields there are algebraic matroids that are not linear. An exam-
ple is the Non-Pappus matroid described in [47, Page 517], it is algebraic over any field 
of positive characteristic but not linear over any field.

Classifying linear polymatroid rank functions is a difficult problem. For linear ma-
troids over a field of characteristic zero, the poetically titled “The missing axiom of 
matroid theory is lost forever” [59] together with a recent addition [40] shows that there 
is no finite list of axioms that characterize which rank functions are linear. For fields of 
positive characteristic, Rota conjectured in 1971 that for each field there is a list of finite 
restrictions. A proof of Rota’s conjecture has been announced by Geelen, Gerards, and 
Whittle, but expected to be several hundred of pages long. Little is known about the 
algebraic case. In [31] there is an example of a matroid that is not algebraic over any 
field: the Vamos matroid V8 [47, Page 511]. For these reasons we do not expect further
characterizations of Chow polymatroids.

We finish this section with the following question.

Question 5.8. Are all algebraic polymatroids Chow?

6. Applications

In this section we relate our results to several objects from combinatorial algebraic 
geometry.

6.1. Schubert polynomials

Let Sp be the symmetric group on the set [p]. For every i ∈ [p − 1] we have the 
transposition si := (i, i + 1) ∈ Sp. Recall that the set S = ⟨si, 1 ! i < p⟩ generates 
Sp. The length l(π) of a permutation π is the least amount of elements in S needed 
to obtain π. Alternatively, the length is equal to the number of inversions, i.e., l(π) =
{(i, j) ∈ [p] × [p] : i < j, π(i) > π(j)}. The permutation π0 = (p, p − 1, · · · , 2, 1) (in one 
line notation) is the longest permutation, it has length p(p−1)

2 .
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Definition 6.1. The Schubert polynomials Sπ ∈ Z[t1, . . . , tp] are defined recursively in 
the following way. First we define Sπ0 :=

/
i tp−i

i , and for any permutation π and 
transposition si with l(siπ) < l(π) we let

Ssiπ =
Sπ − siSπ

ti − ti+1
,

where Sp acts on Z[t1, . . . , tp] by permutation of variables. For more information see 
[18, Chapter 10].

Next we define matrix Schubert varieties following [43, Chapter 15]. Let k be an 
algebraic closed field and Mp(k) be the k-vector space of p × p matrices with entries in 
k. As an affine variety we define its coordinate ring as Rp := k[xij : (i, j) ∈ [p] × [p]]. 
Furthermore we consider an Np-grading on Rp by letting deg(xij) = ei.

Definition 6.2. Let π be a permutation matrix. The matrix Schubert variety Xπ ⊂Mp(k)
is the subvariety

Xπ = {Z ∈Mp(k) | rank(Zm× n) ! rank(πm× n) for all m, n},

where Zm× n is the restriction to the first m rows and n columns. This is an irreducible 
variety and the prime ideal I 

!
Xπ
"

is multihomogeneous [43, Theorem 15.31]. By [43, 
Theorem 15.40], the Schubert polynomial Sπ equals the multidegree polynomial of the 
variety corresponding to the ideal I 

!
Xπ
"

(see Definition 2.10).

Following [45] we say a polynomial f =
"

n cntn ∈ Z[t1, · · · , tp] have the Satu-
rated Newton Polytope property (SNP for short) if supp(f) := {n ∈ Np | cn > 0} =
ConvexHull{n ∈ Np | cn > 0} ∩ Np, in other words, if the support of f consists of the 
integer points of a polytope. In [45, Conjecture 5.5] it was conjectured that the Schubert 
polynomials have SNP property and they even conjectured a set of defining inequalities 
for the Newton polytope in [45, Conjecture 5.13]. A. Fink, K. Mézáros, and A. St. Dizier 
confirmed the full conjecture in [15]. As noted by the authors of [26] the combination 
of Proposition 5.1 (they use the equivalent [3, Corollary 10.2]) and [43, Theorem 15.40]
(which is also included in [26, Theorem 6]) is enough to give an alternative proof to [45, 
Conjecture 5.5].

Theorem 6.3. For any permutation π, the Schubert polynomial Sπ has SNP and its 
Newton polytope is a polymatroid polytope.

The Newton polytope of a polynomial f is by definition the convex hull of the expo-
nents in the support of f, however in by our convention in Definition 2.10 MSupp consists 
of the complementary exponents. This does not change the conclusion that the resulting 
polytope is a polymatroid polytope.
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Fig. 1. Example of a diagram in [5] × [5].

Codimensions of projections. We now use Theorem A to give a combinatorial inter-
pretation for the codimensions of the natural projections of matrix Schubert varieties. 
First we need some terminology.

A diagram D is a subset of a p × p grid whose boxes are indexed by the set [p] × [p]. 
The authors of [45] define a function θD : 2[p] (→ Z as follows: for a subset J ⊆ [p] and 
c ∈ [p], we construct a word Wc

D(J) by reading the column c of [p] × [p] from top to 
bottom and recording

• ( if (r, c) /∈ D and r ∈ J,
• ) if (r, c) ∈ D and r /∈ J,
• ⋆ if (r, c) ∈ D and r ∈ J;

let θc
D(J) = # paired “()” in Wc

D(J) + # ⋆ in Wc
D(J), and finally θD(J) =

"p
i= 1 θ

i
D(J).

Example 6.4. For example, let D be the diagram depicted in Fig. 1 and J = {2, 3}, then 
θD(J) = 3.

For any π ∈ Sp we can define its Rothe diagram as

Dπ := {(i, j) | 1 ! i, j ! n,π(i) > j and π−1(j) > i}⊂ [p]× [p].

For example when π = 42531 then Dπ is the diagram of Fig. 1.

Theorem 6.5. Let π ∈ Sp, then for any J ⊆ [p] the projection ΠJ
!
Xπ
"
onto the rows 

indexed by J has codimension θDπ ([p]) − θDπ (J ′), where J ′ = [p]\J is the complement 
of J.

Proof. In [15, Theorem 10] the authors give a proof of [45, Conjecture 5.13], which in 
our setup (recall the indexing in Definition 2.10) states that MSupp(Xπ) is equal to
⎧
⎨

⎩n ∈ Np |
%

j∈J
((p − 1) − nj) ! θDπ (J), ∀J " [p],

%

j∈[p]

((p − 1) − nj) = θDπ ([p])

⎫
⎬

⎭.

The first inequalities can be rewritten as (p − 1)|J| − θDπ (J) !"j∈J nj, and combining 
them with (p − 1)p − θDπ ([p]) =

"
j∈[p] ni we obtain
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%

j∈J′

nj ! (p − 1)|J ′|−

*
θDπ ([p]) − θDπ (J)

+
.

By Theorem A we must have that codim
!
ΠJ
!
Xπ
""

= θDπ ([p]) − θDπ (J ′) for every 
J ⊆ [p], as we wanted to show. !

Remark 6.6. Notice that θDπ ([p]) counts the total number of boxes in Dπ, which is equal 
to the length of π (see [43, Definition 15.13]). So the case J = [p] of Theorem 6.5 above 
is equivalent to the well-known fact that the codimension of a matrix Schubert variety 
is equal to the length of the permutation (see [43, Theorem 15.31]).

6.2. Flag varieties

We now focus on a multiprojective embedding of flag varieties. We first review some 
terminology. For more information the reader is referred to [18] or [4].

In this subsection we work over an algebraically closed field k. Consider the complete 
flag variety Fl(V) of a k-vector space V of dimension p + 1. This variety parametrizes 
complete flags, i.e., sequences V• := (V0, · · · , Vp+1) such that {0} = V0 ⊂ V1 ⊂ V2 ⊂
· · · ⊂ Vp ⊂ Vp+1 = V, and each Vi is a linear subspace of V of dimension i. One can 
embed this variety in a product of Grassmannians Fl(V) ↪→ Gr(1, V) ×Gr(2, V) × · · · ×
Gr(p, V) as the subvariety cut out by incidence relations.

Furthermore, each Grassmannian can be embedded in a projective space via the 
Plücker embedding ιi : Gr(i, V) → Pmi

k for 1 ! i ! p. By considering the product 
of these maps, we obtain a multiprojective embedding of ι : Fl(V) ↪→ Pm1

k ×k · · ·×k P
mp

k . 
For convenience we also call ι the Plücker embedding. The proposition below computes 
the corresponding multidegree support.

Proposition 6.7. Let V be a k-vector space of dimension p + 1 and let X be the image of 
the Plücker embedding ι : Fl(V) ↪→ P = Pm1

k ×k · · · ×k P
mp

k , then

MSuppP(X) =

⎧
⎨

⎩n ∈ Np | 1 ! nk !
k%

j= 1
(−j) −

k−1%

i= 1
ni, ∀k ∈ [p],

p%

j= 1
nj =

*
p + 1

2

+⎫⎬

⎭;

(8)

Proof. We need to compute the dimension of ΠJ(X)) for each J = {j1, . . . , jk} ⊆ [p]. 
The key observation is that ΠJ(X) is isomorphic to the partial flag variety FlJ(V): it 
parametrizes flags W• := {0} = V0 ⊂ V2 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ Vk+1 = V, where 
dim Vk = jk. Hence

dim (ΠJ(X)) = dim (FlJ(V)) =
%

1"i<j"k+1
didj = S(J);
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here, for each J = {j1, . . . , jk} ⊆ [p], we set S(J) :=
"

1"i<j"k+1 didj, where di := ji−ji−1
and by convention j0 := 0, jk+1 := p + 1. For a proof of the second equality see [4, §1.2]. 
From Theorem A it follows that

MSuppP(X) =

⎧
⎨

⎩n ∈ Np |
%

j∈J
nj ! S(J), ∀J ⊆ [p],

p%

j= 1
nj =

*
p + 1

2

+⎫⎬

⎭. (9)

It can be checked that the description in (9) coincides with the one in (8). !

The pullbacks of the classes Hi from Pm1
k ×k · · · ×k P

mp

k to Fl(V) are called the 
Schubert divisors, so Proposition 6.7 amounts to a criterion for which powers of these 
classes intersect. These intersections are called Grassmannian Schubert problems in [50]. 
In [50, Theorem 1.2] K. Purbhoo and F. Sottile give a stronger statement by providing 
an explicit combinatorial formula using filtered tableau to compute the exact intersection 
numbers.

6.3. A multiprojective embedding of M0,p+3

The moduli space M0,p+3 parametrizes rational stable curves with p + 3 marked 
points. Here we apply our methods to an embedding considered in [8]. The starting 
point is the closed embedding Ψp : M0,p+3 −→M0,p+2×kP

p
k constructed by S. Keel and 

J. Tevelev in [35, Corollary 2.7]. By iterating this construction we obtain an embedding 
M0,p+3 ↪→ P1

k×kP2
k×k · · ·×kP

p
k (see [8, Corollary 3.2]). In [8], R. Cavalieri, M. Gillespie, 

and L. Monin computed the corresponding multidegree which turns out to be related 
to parking functions. As an easy consequence of our Theorem A, we can compute its 
support.

Proposition 6.8. Let X be the image of M0,p+3 ↪→ P = P1
k ×k P2

k ×k · · · ×k P
p
k , then

MSuppP(X) =

0

n ∈ Np |

k%

i= 1
ni ! k, ∀1 ! k ! p − 1,

p%

i= 1
ni = p

1

. (10)

Proof. First, as explained in [8, §3] we have dim
!
Π[p](X)

"
= dim

!
Π{p} (X)

"
= p. Also, by 

construction Π[p−1](X) ∼= M0,p+2, and thus dim
!
Π[i−1](X)

"
= i − 1 for every 2 ! i ! p. 

So, by induction one gets dim
!
Π{i} (X)

"
= i for all 1 ! i ! p.

To use Theorem A, we must compute dim (ΠJ(X)) for all J ⊆ [p]. Let m := max{j |
j ∈ J}, then as explained above we have dim

!
Π[m](X)

"
= dim

!
Π{m} (X)

"
= m and so we 

must have dim (ΠJ(X)) = m. By Theorem A we obtain that MSuppP(X) is equal to

{n ∈ Np |
%

i∈J
ni ! max{j | j ∈ J}, ∀J ⊆ [p],

p%

i= 1
ni = p},
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but it is straightforward to check that the inequalities in (10) are enough to describe the 
same set. !

The cardinality of MSuppP(X) is equal to the Catalan number Cn (see [54, Exercise 
86]). For a comprehensible survey on Catalan numbers see [54].

6.4. Mixed volumes

In this subsection we assume k is an algebraically closed field. We begin by reviewing 
the definition of mixed volumes of convex bodies, as a general reference see [14, Chapter 
IV]. Let K = (K1, . . . , Kp) be a p-tuple of convex bodies in Rd. The volume polynomial 
v(K) ∈ Z[w1, . . . , wp] is defined as

v(K1, . . . ,Kp) := Vold(w1K1 + · · · + wpKp).

This is a homogeneous polynomial of degree d. If the coefficients of v(K) are written as !
d
n
"
V(K; n)wn, then the numbers V(K; n) are called the mixed volumes of K. A natural 

question to ask is: when are mixed volumes positive? The relation between mixed volumes 
and toric varieties (see (11) below) together with Theorem A allows us to give another 
proof of a classical theorem formulated on the non-vanishing of mixed volumes [51, 
Theorem 5.1.8].

Theorem 6.9. Let K = (K1, . . . , Kp) be a p-tuple of convex bodies in Rd. Then, V(K; n) >
0 if and only if 

"p
i= 1 ni = d and 

"
i∈J ni ! dim

!"
i∈J Ki

"
for every subset J ⊆ [p].

We first indicate how to reduce to the case of polytopes. The basic idea is that convex 
bodies can be approximated by polytopes in the Hausdorff metric [51, Section 1.8]. 
However, the condition for positivity as stated in Theorem 6.9 is a priori not stable 
under limits. To fix this we invoke an equivalent condition more suitable for the limiting 
argument.

Lemma 6.10. It suffices to show Theorem 6.9 for polytopes.

Proof. This follows from two facts. The first is that mixed volumes V(K; n) are continu-
ous [51, Theorem 5.1.7] and monotonous [51, Equation 5.25] on each entry. The second 
fact is that for a given sequence K = (K1, . . . , Kp) ⊂

!
Rd
"p of convex bodies, by [51, 

Lemma 5.1.9] the following conditions are equivalent:

(1)
"p

i= 1 ni = d and 
"

i∈J ni ! dim
!"

i∈J Ki

"
for every subset J ⊆ [p].

(2) There exist line segments Si,1, Si,2, . . . , Si,ni ⊆ Ki, for every i, such that
{Si,j}1"i"p,1"j"ni has segments in d linearly independent directions.
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We now assume the statement of Theorem 6.9 is true when each Ki is a polytope and 
show that it follows in the case where each Ki is an arbitrary convex body.

If V(K; n) > 0 then by continuity we can find polytopes P = (P1, · · · , Pp) with 
V(P; n > 0 and Pi ⊆ Ki for each i ∈ [p]. By assumption, the sequence P satisfies 
condition (2) above and hence so does the sequence K.

Conversely, suppose condition (2) holds for K, then by continuity we can find polytopes 
P = (P1, . . . , Pp) with Pi ⊆ Ki arbitrarily close so that (2) holds for P too. Due to the 
assumption, we have V(P; n) > 0 and thus V(K; n) " V(P; n) > 0 by monotonicity. !

To finish the proof of Theorem 6.9 we need some preliminary results about toric 
varieties and lattice polytopes. As an initial step we recall some facts about basepoint 
free divisors; a general reference is [12, Section 6]. Let Σ be a fan and let P be a lattice 
polytope whose normal fan coarsens Σ. Then, P induces a basepoint free divisor DP in 
the toric variety YΣ [12, Proposition 6.2.5]. Here, being basepoint free means that the 
complete linear series |DP | induces a morphism φP : YΣ → Pmi

k for some mi ∈ N such 
that φ∗(H) = DP ∈ A∗(YΣ), where H is the class of a hyperplane in the projective 
space Pmi

k .

Lemma 6.11. Let K1, . . . , Kp be lattice polytopes and let K := K1 + · · · + Kp be their 
Minkowski sum. Let Y be the toric variety associated to Σ, the normal fan of K, then for 
each J ⊆ [p] we have a map φJ : Y →

/
j∈J P

mj

k such that dim (φJ(Y)) = dim
!"

i∈J Ki

"
.

Proof. The fan Σ is the common refinement of the normal fans of K1, . . . , Kp [61, Propo-
sition 7.12], so each Ki induces a basepoint free divisor Di on Y = YΣ and thus also a map 
φi : Y → Pmi

k . By the universal property of fiber products these maps induce a canonical 
map φJ : Y →

/
j∈J P

mj

k for each J ⊆ [p]. It remains to compute the dimensions of the 
images of these maps.

By composing with the Segre embedding ϕJ :
/

j∈J P
mj

k → Pm
k we obtain a map 

ϕJ ◦ φJ : Y → Pm
k . Let H be the class of a hyperplane in A∗(Pm

k ), we have that 
ϕ∗J(H) =

"
i∈JHi ∈ A∗

%/
j∈J P

mj

k

&
where each Hi is the pullback of a hyperplane in 

the i-th factor (see, e.g., [22, Exercise 5.11]). Then (ϕJ ◦ φJ)∗(H) =
"

i∈JDi ∈ A∗(Y). 
This means that the morphism ϕJ ◦ φJ corresponds to the complete linear series |DKJ |

where KJ =
"

j∈J Ki, hence the image has dimension dim(KJ) = dim(
"

j∈J Ki) [12, 
Theorem 6.1.22]. !

Lemma 6.12. In the setup of Lemma 6.11, if J = [p] then after scaling each polytope if 
necessary, φ = φJ is an embedding.

Proof. By construction the normal fan of K[p] =
"p

i= 1 Ki is Σ, so the corresponding 
divisor is ample [12, Theorem 6.1.14]. By replacing the list of polytopes by large enough 
scalings we obtain a very ample divisor, hence an embedding. !
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Proof of Theorem 6.9. By using Lemma 6.10, we can assume that each Ki is a polytope. 
Additionally, we can reduce to the case where each Ki is a lattice polytope since any 
polytope can be approximated by lattice polytopes (see [17, Page 120]). Let K = K1 +

· · · + Kp and let Y be the toric projective variety associated to the normal fan of K. 
Each lattice polytope Ki induces a basepoint free divisor Di on Y. As explained in [17, 
Eq. (2), Page 116], the fundamental connection between mixed volumes and intersection 
products is given by the following equation

V(K; n) =
!
Dn1

1 · · · Dnp
p

"
/d!, (11)

where the numerator is the intersection product of the divisors in Y. Notice that positivity 
of mixed volumes is unchanged by scaling so whenever needed we can scale each polytope.

By Lemma 6.12 we have an embedding φ : Y →
/p

i= 1 P
mi

k such that the pullback of 
each Hi ∈ A∗

!/p
i= 1 P

mi

k

"
is Di. By using the projection formula [19, Proposition 2.5(c)], 

we can consider the product 
!
Hn1

1 · · · Hnp
p

"
/d! instead of the one in (11). From the fact 

that Y is irreducible we are now in the Setup 2.1. So, the result follows by Remark 2.8, 
Theorem A, and Lemma 6.11. !
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