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ABSTRACT

When an Al system interacts with multiple users, it frequently
needs to make allocation decisions. For instance, a virtual agent
decides whom to pay attention to in a group setting, or a factory
robot selects a worker to deliver a part. Demonstrating fairness
in decision making is essential for such systems to be broadly ac-
cepted. We introduce a Multi-Armed Bandit algorithm with fairness
constraints, where fairness is defined as a minimum rate that a task
or a resource is assigned to a user. The proposed algorithm uses
contextual information about the users and the task and makes no
assumptions on how the losses capturing the performance of differ-
ent users are generated. We view this as an exciting step towards
including fairness constraints in resource allocation decisions.
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1 INTRODUCTION

We focus on the problem of an Al system assigning tasks or distribut-
ing resources to multiple humans, one at a time, while maximizing
a given performance metric. For instance, a virtual agent decides
whom to pay attention to in a group setting, or a factory robot
selects a worker to deliver a part.

If there is clearly a user who outperforms everyone else, the
solution to this optimization problem would result in the agent
constantly selecting that user. This approach, however, fails to
account that this may be perceived as unfair by others, which in
turn may affect their acceptance of the system.

How can we integrate fairness in the agent’s decisions? The aim
of our work is to address this question. Recent works [5-7] have
proposed multi-armed bandit algorithms for fair task allocation,
where fairness is defined as a constraint on the minimum rate of
arm selection. A user study on an online Tetris game, where the
computer (player) selects users (arms) based on their score, has

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9-13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Alex Cuellar
University of Southern California
Los Angeles, CA
alexcuel@mit.edu

Heramb Nemlekar
University of Southern California
Los Angeles, CA
nemlekar@usc.edu

1810

Haipeng Luo
University of Southern California
Los Angeles, CA
haipengl@usc.edu

Stefanos Nikolaidis
University of Southern California
Los Angeles, CA
nikolaid@usc.edu

shown that users’ trust is significantly improved when a fairness
constraint is satisfied [5].

These works, however, have assumed that the performance of
each user, observed in the form of a loss vector by the agent, follows
a fixed distribution that is specific to that particular user. It thus
fails to account that people may have different task-related skills.
For instance, when making a pin, one worker may be specialized in
cutting the wire, while another worker in measuring it. It also fails
to account for cases where we can not make statistical assumptions
about the generation of losses, for instance in an adversarial domain.

We generalize this work by proposing a fair multi-armed bandit
algorithm that accounts for different contexts in task allocation.
The algorithm also does not make any assumption on how the loss
vector is generated, allowing for applications in non-stationary and
even adversarial settings.

We provide theoretical guarantees on performance that show
that the algorithm achieves regret equivalent to classic Follow The
Regularized Leader (FTRL) algorithms [1].

2 PROBLEM DEFINITION

We study the online learning problem of contextual bandits (CB)
with fairness constraints. We assume M possible contexts and K
available actions (arms), and use the notation [M] and [K] to denote
the set {1,...,M} and {1,...,K}. For each time stept = 1,..., T:

(1) The environment first decides the context j; € [M] and the
loss vector I; € [0, 1]X.

(2) The learner observes the context j; € [M] and selects the
action i; € [K].

(3) The learner suffers the loss [;(iy).

We assume that the contexts ji, .. ., jT are i.i.d. samples of a fixed
distribution ¢ € Ap; which is known to the learner. However,
we make no assumption on how the loss vectors Iy, ..., I are
generated, and in general [; could depend on the entire history
before round t, which is a key difference compared to previous
work [5].

Let Ak be the set of distributions over K arms. Given the history
up to the beginning of round t and that context j; is j, we let
p; € Ak be the conditional distributions of the player’s selected
arm iz, forj =1, ..., M. We require the following fairness constraint
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parameterized by v € (0, 1/K):
M

D qlipi) = v, Vi, i,

Jj=1

1

that is, the marginal probability of each arm being pulled is at least
v for each time.

For notational convenience, we denote a collection of M distri-
butions over arms by P = (p', ..., pM) and the feasible set of these
collections in terms of the above constraint by:

pl,...pM e Ak and )
SM g ()= v vie k] [ @

which is clearly a convex set and is non-empty since the uniform
distribution (for all contexts) is always in the set.

The learner’s goal is to minimize her regret, defined as the differ-
ence between her total loss and the loss of the best fixed distribution
satisfying the fairness constraint:

-t

t=1

Q= {P =(p',...pM)

Reg = max E
P.eQ

Achieving sublinear regret Reg = o(T) thus implies that in the long
run the average performance of the learner is arbitrarily close to
the best fixed distribution in hindsight.

3 ALGORITHM

Without the fairness constraint, there is no connection among the
contexts and the optimal algorithm is just to run M instances of any
standard MAB algorithm separately for each possible context. For
example, classic FTRL algorithm would compute for each context
j e [M]:

Pi = arg min Z

PEAK  sij=j

K
(p.s) + = > 9o )
i3
at the beginning of round ¢, where ¢ : [0,1] — R is some regu-
larizer, n > 0 is some learning rate, and [ is the standard unbiased
importance-weighted estimator with:
Is(i) = I?ﬂws =i}, Vi € [K].
s ()

Upon observing the actual context j; for round ¢, the algorithm then
samples i; from pi’. Standard results [3] show that the j-th instance
of FTRL suffers regret O(y/|{t : j; = j}|K), and thus the total regret
is Zinl O(WI{t : jr = j}IK) = O(NTMK) via the Cauchy-Schwarz
inequality.

With the fairness constraint, however, we can no longer treat
each context separately. A natural idea is to optimize jointly over
the feasible set Q defined in Eq. (2), that is, to find P; = (p} S ,pfw)
at round ¢t such that:

=1 LMK )
P; = argminz <p]S,ls> + - Z Z v’ (i)).
PeQ =i 7= =

It is clear that when v = 0 (that is, no fairness constraint), the feasi-
ble set Q simply becomes Ag X - - - X Ag and the joint optimization
above decomposes over j so that the algorithm degenerates to that
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Algorithm 1 Fair CB with Known Context Distribution

1: Input: learning rate n > 0, fairness constraint parameter v
2 Define: ¥(P) = zjf‘i K v/ (i) where y(p) = plnp
3: fort=1,...,T do

4 Compute P; = argminp.q Zi;% <pj3, Zs> + ¥(P)

5: Observe j; and play iy ~ p{’

1:(i)
' (i)

6: Construct loss estimator l}(i) = 1{i; = i}, Vi € [K]

7: end for

described in Eq. (3). When v # 0, the algorithm satisfies the fairness
constraint automatically and can be seen as an instance of FTRL
over a more complicated decision set Q.

We deploy the standard entropy regularizer ¥/(p) = pInp, used
in the classic Exp3 algorithm [2] for MAB. See Algorithm 1 for the
complete pseudocode. We remark that even though unlike Exp3,
there is no closed form for computing P;, one can apply any stan-
dard convex optimization toolbox to find P; when implementing
the algorithm.

We prove the following regret guarantee of our algorithm, which
is essentially the same as the aforementioned bound for v = 0. The
proof of the algorithm

THEOREM 3.1. With learning rate n = ‘IMTIII‘(K, Algorithm 1
achieves

RegzO(\/m).

The proof follows standard techniques (such as [1]) once we
rewrite our algorithm as FTRL in the space of RMK, We provide
the proof, as well as empirical results and user studies that show
the effectiveness of the proposed algorithm, in an extended arxived
version of this work [4].

4 DISCUSSION

Theoretically, we show how the classic FTRL framework can be
naturally generalized to ensure fairness and we rigorously ana-
lyze the performance of the proposed algorithm in terms of regret
guarantees. Designing Al systems that ensure and demonstrate
fairness when interacting with people is critical to their acceptance.
Beyond the theoretical results, we are excited to establish experi-
mental foundations for fair decision making systems, which is still
an under-served aspect in Human-Al Interaction.
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