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Abstract

We describe a new method for approximating an implicit surface F by a piecewise-flat triangulated surface whose triangles

are as close as possible to equilateral. The main advantage is improved mesh quality which is guaranteed for smooth surfaces.
The GradNormal algorithm generates a triangular mesh that gives a piecewise-differentiable approximation of F, with angles
between 35.2 and 101.5 degrees. As the mesh size approaches 0, the mesh converges to F through surfaces that are isotopic to

F.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computational Geometry and Object Modeling]: Curve,

surface, solid, and object representations—

surface, it is desirable to have a high quality mesh representing the

1. Introduction

We study the problem of approximating a surface in R> by a mesh
that has optimal angle properties. In computations based on mesh
descriptions of a surface, it is often essential to avoid “slivers’, or
triangles with angles close to zero. A random process for selecting
vertices on a surface gives a triangulation with expected minimum
angle approaching zero as the number of points increases [BEY91],
implying that slivers are hard to avoid when creating meshes from
points sampled on a surface.

Badly shaped triangles can cause mesh-based algorithms to
break down for numerical reasons. Avoiding poor quality triangles
is important for a wide variety of applications, including computer
graphics, shape comparison, finite elements, finding numerical
solutions of PDEs, and geometric modeling. In one important area
of applications, a function f: R* — R measures the absorption at
each point of an X-ray or imaging machine, or the density of a solid
object, where a level set F = f!(c) represents the surface of a
scanned object, such as an organ, bone, brain cortex or protein. For
purposes of visualization, geometric processing, surface
comparison, surface classification, or modeling of properties of the
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surface.

We note that it is possible to construct a sequence of surfaces
converging to F pointwise and consisting entirely of flat
equilateral triangles, but with the tangent planes of the triangles
not converging to those of the surface. The search for a regular
mesh whose triangles approximate the tangent spaces of a given
surface leads to two conflicting goals. One goal is to make the
triangles as close to equilateral as possible, and the second is to
have the mesh conform differentiably to the surface, so that its
tangent planes approximate those of the surface.

In this paper we introduce the GradNormal Algorithm, which
produces a mesh whose tangent planes converge to those of a
differentiable implicit surface F € R3, and whose triangles have
angles in the interval [35.2°,101.5°]. These angle bounds are the
best rigorously established. We prove that the GradNormal meshes
are 2-dimensional manifolds that converge to F as the mesh size
approaches zero, and that the convergence is piecewise-smooth, as
explained later.

Example meshes produced by GradNormal for implicit surfaces,
defined as level sets of explicitly given mathematical functions, are
shown in Figure 1 and Figure 2. These are obtained by tiling the
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unit cube with 869,652 tetrahedra and displayed using MeshLab
[CCC+08]. See Table 1 for data on how these angles improve as the
tiling becomes finer.

GradNormal meshes can also be produced by inputting
nonsmooth surfaces, described as a union of polygonal faces. This
al-
lows us to use GradNormal to improve a mesh with poor angle
quality. A mesh produced from the Stanford Bunny [TL94, Bun] is
shown in Figure 3, obtained using GradNormal with a tiling of the
cube with 6,748,416 tetrahedra. A signed-distance-function can be
obtained from the original Stanford Bunny Mesh, after filling in
holes. This defines an implicit surface, computed using
TriMesh [DH20]. The code used to produce these images is
available on GitLab [HT19].

(@)
(b)

Figure 1: The mesh of the sphere has 25,092 triangular faces with
angles in the interval [35.4°,102.7°). The torus has 35,838

triangular faces with angles in the interval (32.87,104.7°] 4

(a) (b)

Figure 2: These meshes have (a) 10,346 (genus 2) and (b) 55,122

sufficiently fine scales all angles lie in the interval [35.2°,101.5°].

(genus 5) triangular faces. They have angles in the intervals
[22.1°,129.0°] (genus 2) and[29.2°.113.4%] (genus 5).

In Figure 4 we see the range of mesh angles produced by the
GradNormal algorithm at two resolutions and the angles in the
original Stanford Bunny mesh. Note that the original mesh has
holes and isolated vertices. The holes were filled in prior to
remeshing with the GradNormal algorithm. When applied to a non-
smooth surface that has sharp corners at vertices and folds along
edges, the angle bounds that GradNormal guarantees for smooth
surfaces do not apply, even in the limit. Nonetheless Figure 4
shows that the angles are more clustered around 60° than in the
original mesh. To compare the distribution of angles in one chart,
the counts have been normalized by dividing by three times the
number of triangular faces, or 348,162 for the GradNormal mesh
with 6,748,416 tetrahedra and 1,400,310 for the GradNormal mesh
with 52,931,340 tetrahedra. The two GradNormal meshes have
very similar distributions, with most angles between 40° and 80°,
while the original Stanford mesh had many angles near 30° and 90°.

Small angles may be created in the mesh produced by GradNor-
mal when it is applied to a non-smooth or piecewise-flat surface,
such as the Bunny mesh. These can occur near points where ad-
jacent faces in the non-smooth surface meet with sharp dihedral
angles.
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Figure 3: The original Stanford Bunny Mesh (with several holes
and isolated points) gave angles in the interval [0.49°,177.6°]. The
mesh of the Stanford Bunny shown here, produced by GradNormal
using a 6,748,416 tetrahedra tiling of the cube, gives angles in the
interval |104°,150.47]
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Figure 4: Angle distributions for the original Stanford Bunny mesh
and for GradNormal meshes of the Stanford Bumny at two
resolutions.

The GradNormal algorithm proceeds in three steps. The first
step produces a mesh with acute triangles that we call a MidNormal
mesh. While having very good angle properties, and giving a
2dimensional manifold that lies close to the implicit surface, its
normal vectors do not align with those of F. The second step
involves a projection of the MidNormal mesh vertices to the
implicit surface, so that normal vectors align with those of the
surface. This is followed by a single remeshing operation involving
vertices of valence four. A careful analysis of the distortion of
angles under this step establishes the properties claimed for the
GradNormal mesh.

The first step is similar to the Marching Tetrahedra algorithm,
but with important differences. The underlying idea behind both
algorithms appears in the theory of normal surfaces, a powerful
tool used to study surfaces in 3-dimensional manifolds that goes
back to work of Kneser in 1929 [Kne29]. The GradNormal
algorithm begins by tiling space with tetrahedra of a fixed shape. It
uses a tetrahedral tiling chosen to optimize the angles appearing in
the final mesh. Intersecting a surface F' with these tetrahedra tiles
generates an approximation of F' by triangles and quadrilaterals, as
in Figure 5.

A normal surface with respect to a 3-dimensional triangulation t
is an embedded surface S © M whose intersection with any
tetrahedron in T has the simplest possible form, cutting across each
tetrahedron in the same way as a flat plane. The surface intersects
a single tetrahedron in one of two types of elementary disk. An
elementary disk is either a single flat triangle or two flat triangles
meeting along a common edge and forming a quadrilateral. The
vertices of each triangle of an elementary disk are located at the
midpoints of different edges of the tetrahedron, as in Figure 5. The
MidNormal mesh consists of such elementary disks.

Given an implicit surface F, the GradNormal algorithm first
produces a MidNormal mesh. It then projects the mesh vertices to
the closest point on the surface F, and finishes with a single
remeshing step that removes valence four vertices.

i

Figure 5: Elementary disks forming part of a normal surface. A
triangle separates one vertex from the other three. A quadrilateral
that separates pairs of vertices is split into two triangles by adding
a diagonal. There are four possible types of triangle and three
possible types of quadrilaterals in each tetrahedron.
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The quadrilaterals of a normal surface are divided along a
diagonal to produce a mesh. The mesh consists of flat triangles that
separate the vertices of a tetrahedron in the same way as F. The
MidNormal mesh locates the vertices of the triangles on the
midpoints of the tetrahedron edges. In contrast Marching
Tetrahedra interpolates these vertex positions along the edges of
the tetrahedron. This interpolation results in angles that can be
arbitrarily close to zero [NH91], so that Marching Tetrahedra is
often combined with further algorithms that improve mesh quality
[CDS12].

The tiling of R? that we use is obtained by optimizing angles
among a family of tetrahedra discovered by Goldberg [Gol74]. A
particular Goldberg tiling is determined, up to isometry, by a pair
of positive constants a,e that determine a tetrahedron 4., as in
Figure 6. Isometric copies of T4 fill R* with no gaps, with pairs of
tetrahedra matching along faces. In our setting e is a scale
parameter that determines the size of the tetrahedron, and we fix

a

to have the value a = e 2/4. This choice gives the optimal angles
for our method. It turns out that this choice of tetrahedral shape
coincides with the tetrahedra in a tiling described by Sommerville
[Som23]. A straightforward computation then shows that the
MidNormal mesh has angles in the interval [45°,90°].

(b)

Figure 6: (a) A tetrahedron tae, one of a family that tiles R®. The
scale independent parameter a € (0,00) determines the shape. (b)
These tetrahedra stack to tile a vertical column over an equilateral
triangle of length e (center). (c) A surface in R® divides the vertices
of these tetrahedra, leading to a triangular mesh. Part of a normal
surface is also shown.

The MidNormal mesh gives a continuous approximation to the
surface F. A differentiable approximation is achieved in the second
part of the GradNormal Algorithm. It starts with a MidNormal
mesh and then projects each of the vertices to the closest point on
the surface F. We will see that all angles are then as claimed, with
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the exception of a collection of valence-four vertices. These can
have arbitrarily small angles, and are removed in a remeshing step
which deletes four triangles adjacent to a common valence four
vertex and triangulates the resulting quadrilateral by adding a
diagonal. Properties of the resulting mesh M'(f.e) are given in the
following theorem, proven in Section 4.

Theorem 1.1 Let F = £(0) € R? be a compact level surface of a
smooth function f and let M'(fe) be the mesh produced by the
GradNormal algorithm with tetrahedra of scale e. Then as e — 0,
(1) The triangular mesh M'(f.e) is a 2-dimensional manifold
homeomorphic to F under the nearest point projection map.

(2) The surface M'(f,e) converges to F piecewise-differentiably.
(3) The mesh angles lie in the interval 135.2°,101.57],

Piecewise-differentiable convergence means that (1) as e — 0
the mesh converges pointwise to F and that (2) for any € > 0, when
e is sufficiently small the distance between a unit normal vector on
the mesh at some point and the unit normal at the nearest point on
Fis
less than €. Note that while normal vectors are not uniquely defined
at a point which is a vertex or on an edge of a mesh, this property
holds for any of the finite number of choices for a normal.

2. Related Work

A large number of algorithms has been written for representing
surfaces given by an implicit function and almost all of them
originate from Marching Cubes [LC87]. Marching cubes applied
directly does not give good angle bounds, since a plane cutting
close to an edge will intersect in a triangle containing an arbitrarily
small angle. A relatively recent survey on implicit surface meshing
techniques by Araujo [dALJ*15] gives an overview of different
approaches to isosurface meshing. The article classifies and
compares techniques for fast visualization of isosurfaces based on
different features of meshes including quality of meshes but does
not discuss provable bounds on angles. Recent results in this
direction can be found at [Wen13, CPS19]. Labelle and Shewchuk
developed an “Isosurface Stuffing” procedure that achieves
dihedral angle bounds for tetrahedra filling a 3-dimensional region,
along with angle bounds for the 2-dimensional mesh formed by the
region’s boundary [LSO07]. It achieves angles in the interval
[167.145%] for the boundary surface mesh. Liang and Zhang used
a related octree method to find meshes of regions bounded by
smooth curves in the plane that are guaranteed to have angles in
the interval

[19.47%,141.067] [LZ14]. P. Chew gave a procedure based on point
insertion and remeshing to achieve a Constrained Delaunay
triangulation for a surface in the plane or in R that gives angles
between 30°and 120°[Che93]. A recent remeshing algorithm by Hu
et. al. [HYB*17] gives experimental evidence for mesh regularity
comparable to the GradNormal algorithm.

The problem of finding meshes with good angle properties has
been extensively studied for subregions of the plane with fixed
boundary. We refer to the survey articles by Bern and Eppstein
[BE92] and Zamfirescu [Zaml13]. Some approaches create

Delaunay Triangulations for planar regions, which give various
forms of optimal regularity for a given vertex set [CDS12].
However Delaunay Triangulations can produce triangles with
small angles.

In some settings acute triangulations can be realized. Work of
Burago and Zalgaller shows that any polyhedral surface has a
subdivision that is acute [BZ60] (see also [Sar09], [HU07]). Colin
de Verdiere and A. Marin showed that any smooth Riemannian
surface admits a sequence of geodesic triangulations with vertices
on the surface and angles that, in the limit, lie in the intervals
[37/10,27/5] for the case of genus zero, [n/3,7/3] for genus one, and
[27/7,57/14] for the case of genus greater than one [dVM90]. By
Gauss-Bonnet, these bounds are optimal for smooth surfaces. Their
results use the Uniformization Theorem and constructing
triangulations on an appropriate conformal model in the Moduli
Space associated to the surface. We are not aware of algorithms
based on these approaches.

3. Dimension two

In this section we explain the idea behind the GradNormal
algorithm in the simpler setting of curves in the plane. The
3dimensional setting will be presented in the next section. The
planar algorithm takes as input an implicit curve given by a
function f: R> — R with domain containing the unit square I> =
[0,1]%[0,1] and outputs a piece-wise linear curve that approximates
the level curve F = f1(0) within the unit square.

Step 1 (lower-dimensional analog of producing the MidNormal
mesh): A neighborhood of the unit square is tiled by triangles. The
algorithm evaluates the function f on a triangle’s vertices and
checks if all function values have the same sign. If not then it takes
midpoints of two edges with endpoints of opposites signs and
connect them by a straight line segment. This becomes an edge of
the resulting polygonal curve o as in Figure 7.

-7 + —

Figure 7: In the planar version of the MidNormal mesh, a curve F
passing through three triangles is approximated by a polygonal
“normal” curve o, which passes through midpoints of triangle
edges.

Note that in contrast to Marching Tetrahedra in this dimension,
the vertices are not interpolated along the edge, but are always
taken at midpoints. See Figure 8.
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Figure 8: In the planar version of the Marching Tetrahedra mesh,
the curve F is approximated by a polygonal curve B that meets
triangle edges where the curve does.

Step 2 (lower-dimensional analog of the projection step of
GradNormal): Each vertex v € a is projected to the closest point on
the isocurve F to give a polygonal curve approximating F that has
vertices on F. For differentiable functions f, GradNormal computes
the gradient Vf of the function f'at vertices of the polygonal curve
v and uses a first order method to estimate the closest point. This
takes a vertex v to v = v— flv)V//||[V/]|%, with v a vertex of the final
mesh. Alternate methods to find the closest point are used when
the gradient function is not available. See Figure 9.

Figure 9: In the second step of the GradNormal algorithm, each
vertex of o is projected to the closest point on the level curve,
resulting in the polygonal curve .

Step 3: The 3-dimensional version of the GradNormal algorithm
requires an additional operation to achieve the claimed angle
bounds. After the projection step, small angles can appear in one
particular configuration. The corrective operation involves
removing four triangles meeting at a valence four vertex and
adding a diagonal to the resulting quadrilateral, as in Figure 10.

W L, ¥ ¥ ————

(a) (d)

Figure 10: Poor angles are eliminated by removing the four edges
meeting each valence four vertex (as in the outlined quadrilateral
in (a)) and adding a diagonal to the resulting quadrilateral (see

().

The GradNormal algorithm has a superficial resemblance to the
Dual Contouring Algorithm, where every edge intersecting the
isocurve gives an edge of the final mesh and every cell intersected
by the curve gives a vertex, Figure 11 [AF05]. But there is little
actual overlap between them.

2020 The Author(s)
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Figure 11: In the Dual Contouring Algorithm, the curve F is
approximated by a polygonal curve & whose normals agree with
those of F along intersections with triangle edges.

4. The GradNormal Algorithm

In this section we describe in detail the two steps of the
GradNormal Algorithm. We first describe the tiling by tetrahedra
used to generate the intermediate mesh in Step 1 of the algorithm.
We then describe the projection used to obtain the finial mesh.

4.1. Goldberg tetrahedra

The classification of tilings of R® by tetrahedra is still not
completely understood. An interesting historical note is that
Aristotle falsely claimed that regular tetrahedra can meet five-to-
an-edge and fit together to tile space [Sen81]. In fact, the dihedral
angle of a regular tetrahedron is somewhat less than 2n/5 = 72°, so
they do not fit evenly around an edge. The search for tetrahedra
that do fit together led Sommerville to find four tetrahedral shapes
that tile R3. Baumgartner found a further example and Goldberg
discovered three infinite families. Eppstein, Sullivan and Ungor
constructed tilings of space by acute tetrahedra, with all dihedral
angles less than 90° [ESUO04]. It might seem that tetrahedra that are
acute, or as close to regular as possible, are preferable for
producing regular triangulations, but that turns out not to be the
case. A search through the infinite family of tilings discovered by
Goldberg was carried out and led to the tiling that gives the best
mesh angles for our method.

A tetrahedron in the Goldberg family, shown in Figure 6, is
constructed by first tiling the xy-plane with equilateral triangles of
unit length. Three edges of the tetrahedron are graphs over edges
of one of these equilateral triangles, each rising by a distance of a
from its initial to its final vertex. The other edges connect pairs of
the resulting four vertices. The vertical edge AB has length 3a. If
we rescale by a factor of e then the equilateral triangle has edge
length e and the edge AB has length 3ae. We call this tetrahedron
Tae. Every Goldberg tetrahedron has two edges with dihedral angle
72 and one with dihedral angle 7/3. In our application,V e
determines

the size of the tetrahedron and we take a = e 2/4. This choice of a
optimizes the resulting mesh angles among those obtained by
Goldberg tetrahedra, and can be proved to give a near optimal mesh
when our method is applied to any tetrahedral shape. The resulting
tetrahedron shape coincides with a tiling described by Sommerville
[Som23] and has vertices located along the body-centered cubic
lattice.

4.2. Step 1 of the GradNormal Algorithm

Algorithm 1 Step 1 of the GradNormal Algorithm - the MidNormal

Procedure

1: procedure MIDNORMAL(e)
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2: Input a function f: P — R, a choice of scale e = 1/N.
3: fori=1to 6N do
4: Compute the sign of f at the four vertices ti1,11°,1* of
tetrahedron 7; in a tiling of the unit cube P by Goldberg
tetrahedra isometric to .. If the value of f'at a vertex is exactly
zero, take the sign to be positive.

5: If the sign of fis different at one vertex of t; from the sign at the
remaining three vertices, add to a list of triangles T the
elementary normal triangle in t; that separates that vertex from
the remaining three. The vertices of this triangle are located at
midpoints of edges of ..

6: If the sign of f'is different at two vertices from the sign at the
remaining two vertices of 7;, add to T two triangles formed by
taking the normal quadrilateral in 7; that separates the two pairs
of vertices and adding a diagonal as follows: For quadrilateral
LMNQ add diagonal MN. For quadrilateral KMPN add
diagonal MN. For quadrilateral KLPQ add diagonal LQ. Again
position the vertices of these triangles at midpoints of edges of
;. See Figure 6(a) for notation.

7: Output T .

It is straightforward to compute the edge lengths and angles in
the triangular meshes obtained by applying the MidNormal
procedure to the tetrahedral tilings of R? produced by the Goldberg
tiling.

Lemma 4.1 The MidNormal mesh produced using the Goldberg

tiling is a 2-dimensional manifold mesh that has angles in the
interval [43°,90°]

Remark. When applied to a smooth compact implicit surface F' =
f1(0) that has an embedded e-tubular neighborhood Ne(F), or
equivalently having reach €, and given a positive constant e < &/2,
the MidNormal algorithm produces a mesh M(f e) satisfying

1. M(fe) is an embedded 2-dimensional manifold.

2. The triangles around a given vertex are graphs over a common
plane.

3. The surface M(f,e) converges to F in Hausdorff distance as ¢ —
0.

4. The surface M(fe) is isotopic to F' in Ne(F).

5. The nearest neighbor projection from the mesh M(fe) to F'is a
homeomorphism for e sufficiently small.

The faces of the approximating meshes have normal vectors that
lie in a fixed finite set of 18 normal directions, and therefore the
approximation is continuous, but not piecewise-differentiable.
However the geometry of the approximating surfaces is uniformly
biLipschitz equivalent to the limiting surface F.

4.3. The GradNormal algorithm: Steps 2 and 3

The second step of the GradNormal algorithm moves the vertices
of the MidNormal mesh so that they lie on the implicit surface F.

A vertex of the MidNormal mesh is moved to the closest point on
F. This point is unique when F is differentiable and the mesh lies
sufficiently close to F. The current implementation uses the
gradient of the function f defining F in this step. In the case of a
linear function it exactly projects each vertex to the nearest point
on F. In general it produces a first-order approximation of F,
improving the zeroth-order approximation given by the
MidNormal procedure. An alternative to using the gradient
projection would be to call a function that returns for each point
the coordinates of the nearest point on F.

Unfortunately the mesh resulting from the projection process
can have sliver triangles with arbitrarily small angles, so a
corrective step 3 is needed. An analysis of the badly behaving
triangles shows that they all result from a particular phenomenon
that can be easily corrected. We will show that small angles in the
projected mesh can only arise from projecting angles that lie in one
of four triangles that are adjacent in the MidNormal mesh to a
vertex of valence four. The GradNormal algorithm corrects this by
removing any set of four triangles that meet at a common valence-
four vertex and adding a diagonal to the resulting quadrilateral, as
in Figure 10.

This valence-four vertex move will be shown to eliminate all
sliver triangles and to give a high quality mesh with the claimed
angle bounds of [35.2°,101.5°]. We now state the algorithm.

The proof of the resulting properties claimed in Theorem 1.1 is
rather lengthy, and is given in full in the Appendix. In this section
we sketch the general idea.

A smooth compact surface F has bounded curvature and as e —
0, its intersection with a tetrahedron 1(e) is closely approximated
by a plane Q. This plane can be chosen to be the plane that
intersects the edges of the tetrahedron at the points where F
intersects these edges. Thus the angles of the nearest point
projection of an elementary normal disc in t of diameter less than
e onto F" has angles that converge as e — 0 to the angles determined
by the nearest point projection onto the plane Q.
Algorithm 2 GradNormal Algorithm

1: procedure GRADNORMAL(e, f)

2: Input a differentiable function f: P — R with level set F =f"'(0)
and a choice of scale e = 1/N.

3: Apply the MidNormal procedure with size parameter e to obtain
a mesh M(fe).

4: Compute the gradient Vfat the vertices of M(fe).

5: Remove each vertex of valence 4 and its four adjacent triangles.
Add a diagonal to the resulting quadrilateral, giving two new
triangles in the mesh.

6: Relocate each vertex v to v— fAV)VH|VA]. 7:

Output the resulting list of triangles T °.

When the surface F separates vertices of a tetrahedron 7 it
defines elementary normal discs which are very close to flat

&
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triangles or quadrilaterals. The MidNormal procedure produces a
normal surface that intersects a tetrahedron t along one of four
triangles or one of three quadrilaterals. Four triangles
4KLM,AKNQ,ALNP and 4MPQ come from elementary triangles.
The quadrilaterals are divided into two triangles, leading to six
additional triangles,

4KLQ and 4LPQ, 4KMN and 4MNP, and 4LMN and 4MNQ.

We need to consider the angles obtained when these 10 triangles
are projected onto F, which as noted can be assumed to be a plane.

To capture all possible projections we consider all possible
planes that could represent F. We describe such a plane by its unit
normal vector, a point on the unit sphere. The space of such planes
is given by certain regions on the unit sphere. We prove that the
smallest angles of a projected triangle must happen along the
boundary of one of these spherical regions. Each boundary segment
is parameterized and its minimal angle values are evaluated. This
computation gives the desired angle bounds except for triangles
that meet a valence-four vertex. It is essential for the achievement
of the angle bounds to remove these triangles.

Altogether there are 12 triangles with 36 angles projecting to
four edges each, or 144 angle functions in total, each defined on an
interval of normal directions connecting two points on the sphere
along a spherical arc. The union of all these angle functions is
graphed in Figure 18. Computations carried out in Mathematica
show that all angles are between 35.25°and 101.45°.

Vertices of valence-four come from an intersection with an edge
of type AD in a Goldberg tetrahedron, as shown in Figure 6. This
edge has a dihedral angle of 90° in each of the four adjacent
tetrahedra, and the four adjacent tetrahedra combine to form an
octahedron as in Figure 12. The removal of triangles meeting
vertices of valence-four and their replacement by two triangles
gotten by adding a diagonal improves the angle bounds of the
resulting triangles to lie between 35.25°and 101.45°.

The nearest point projection from mesh M(fe) to F is a
homeomorphism for e sufficiently small. When f is linear, the
projected triangle is contained in F, and gives a C! approximation
for e sufficiently small. In the argument above, the angle bounds
established for F a plane also hold for e sufficiently small, since F’
Nt converges smoothly to the intersection of a plane with T as e —
0.

5. Remarks

5.1. Other Surface Descriptors

The GradNormal algorithm takes as input an implicit surface, given
as a level set of a function on R3, but is amenable to other forms of
surface input. For example, if the input is a triangulated surface F’
having poor mesh quality, then there exist procedures to produce a
function on R* that computes distance from the surface. Such
signed distance functions have been extensively studied
[Sym98,PT92]. If the input describing a surface is a point cloud,
methods such as the Moving Least Squares and Adaptive Moving
Least Squares produce a function giving a level set description of
the surface [Dey06,SOS04]. This function can then be used as
input to the GradNormal algorithm.

©
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5.2. Convergence and curvature

When we have bounds on the principle curvatures of F we can get
angle bounds on the mesh for a given value of e. We investigate
these bounds here, as they are relevant to whether the GradNormal
algorithm can be used effectively. The bounds of Theorem 1.1 are
guaranteed to apply as the scale size e — 0. To test them at a given
size, we can fix e = 1 and consider how the angle bounds on the
mesh are affected by curvature bounds on the surface F. Though
this can be done rigorously, we present here some experimental
results obtained as a preliminary step. These give some preliminary
evidence that the GradNormal algorithm is fast in practice and
converges at reasonable scale.

We set e = 1 and consider the angles attained by a mesh
approximating a surface F whose principle curvatures are bounded
above in absolute value by a constant ko. We estimate these angles
by modeling F' with a sphere. Since spheres of the appropriate
radius have maximal principal curvatures and since they realize all
tangent directions, this gives a reasonable approach to modeling
the worst case for an angle bound. We obtain in this way
experimental bounds for the angles obtained in the GradNormal
algorithm. In Table 1 the result of applying the GradNormal
algorithm to surfaces of genus zero (sphere), genus two and genus
five. These surfaces are scaled to exhibit the effect of varying
curvature on the quality of the output mesh. Computations at four
different scales were carried out for each surface on a 2014
MacBook Pro. The number of tetrahedra used to tile the cube in the
four runs was 113,100, 869,652, 6,748,416 and 52,931,340. Each
run took at most 1,141 seconds on a 2014 MacBook Pro with a 2.5
GHz Quad-Core Intel Core i7. After rescaling to fix the size of the
tetrahedra, the principle curvatures of the implicit surfaces are
bounded above by ku, shown in the second column. The following
columns show the minimum 0, and maximum angles in the
resulting mesh Oy.

5.3. Running time

The GradNormal algorithm as implemented runs in linear time in
the number of tetrahedra used in the 3-dimensional tiling. This
follows from the same arguments used to establish this bound for
Marching Cubes [Wenl3]. There are no point insertion or
remeshing steps, other than a single round involving valence four
vertex removal in Step 3. While the python code in the
implementation

Genus | km Om om vertices faces
0.23 | 33.0° 102.8° 1,082 1,988
0 0.09 | 34.2° 101.3° 6,782 12,564
0.05 | 35.4° 102.7° 27,104 50,300
0.03 | 35.2° 101.1° | 433,208 | 866,412
0.57 | 10.9° 153.8° 1,336 2,540
2 0.29 | 22.2° 129.0° 5,438 10,306
0.15 | 27.8° 118.8° 21,880 41,600
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0.08 | 3.7 | 108.9° 87,802 | 166,898
0.8 26.6° | 122.00 7,318 14,652
5 0.4 29.2° | 1134 29,348 55,122
0.2 30.8° | 109.4° | 117,878 | 235,772
0.1 33.4° | 104.4° | 471,696 | 943,408

Table 1: A tetrahedral tiling with scale given by e =1 is intersected
with surfaces whose principle curvatures are bounded above by k.
The Om and Om columns show the minimal and maximal mesh
angles. The vertex and face columns indicate the number of
vertices and faces in the mesh. As ku — 0 the surface becomes
flatter, and the angles converge to lie within the predicted interval
[35.2°,101.5°]

has not yet been optimized for speed, the code that produced the
genus-two surface in Figure 2 ran in 15.8 seconds on a 2014
MacBook Pro.

5.4. Computational Methodology

The proof of Theorem 1.1 involves extensive angle computations
with trigonometric functions. These were carried out with the
software package Mathematica 12. The GradNormal Algorithm
has been implemented in Python. Files are available at [HT19]. The
values obtained for the angle bounds depend on the accuracy of
Mathematica floating point functions. It is possible to calculate
these bounds using interval arithmetic, but this has not yet been
done.

6. Conclusion

We present a novel algorithm for meshing an isosurface. The main
advantages include simplicity of the algorithm, fast running time,
low space usage and guaranteed triangles of high quality when
applied to a smooth surface. Experiments with surfaces defined by
simple mathematical functions indicate that the resulting mesh has
reasonable angle bounds even with a coarse tetrahedral tiling, and
that the guaranteed limiting angle bounds of 35.27,101.5] for
meshes approximating smooth surfaces are approached using
practical sized tilings of space. A drawback of the GradNormal
algorithm, as with other methods based on regular meshes, is that
it is not adapted to local surface features. In particular, sharp
features, angles and corners may not be captured by the procedure,
and the guaranteed angle bounds do not apply when GradNormal
is applied to non-smooth surfaces.
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7. Appendix A.

In this Appendix we present the details of the proof of Theorem
1.1. We first state a result on the distortion of angles under
projections to a rotated plane.

Lemma 7.1 Suppose that~v = (v1,1),v1 > 0 is a vector in the first
quadrant of the xy-plane and that ~w = (w1,w2)6=~0 and subtends
an angle o < m with~v. Rotate the xy-plane around the x-axis
through an angle of 6, 0 < 6 < n/2 and denote the orthogonal
projections of the rotated vectors~v,~w back to the xy-plane
by~v(0)),~w(0). Then as 0 increases from 0 to n/2 the angle o(0)
between~v(0) and ~w(0) satisfies:

(1) If ~w is parallel to the positive x-axis or to the negative
y-axis then o(0) is monotonically decreasing.

(2) If ~w is parallel to the negative x-axis or to the positive
y-axis then o(0) is monotonically increasing.

(3) If ~w lies in the interior of the second quadrant then a(0)
is monotonically increasing.

(4) If ~w lies in the interior of the fourth quadrant then o(0)
is monotonically decreasing.

(5) If ~w lies in the interior of the first quadrant then a(0)
achieves its minimum at an endpoint of the interval [0,7/2].

(6) If ~w lies in the interior of the third quadrant then a(0)

achieves its maximum at an endpoint of the interval [0,7/2].

Proof Rotation about the x-axis through an angle of 0 takes the
point (x,y,0) to (x,ycos6,ysind). Thus ~v(0) = (vi,cos0) and ~w(0) =
(wi,w2cos0). The angle between each vector and the xaxis is
decreasing with 0, implying the claims in Cases (1) — (4). The last
two cases needs a more detailed investigation. In Case (5) each of
wi,w2 is positive, and we can assume that w2 = 1 by scaling. The
angle a(0) between~v(0) and ~w(0) satisfies
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coso(0) =

viwl +c0s20 . p(vi2
+c0s20)p(w12 +c0s20)
For given vectors~v and ~w the cosine of a(0) has first derivative

sin@cos By, —w (v wi — cos’ 8)
(v + cos? @)%/ 2(w? +cos2 §)3/2

(cosa(ﬂ))’ =

A computation shows that the critical points of cosa(0) lie either at
the boundary of the interval [0,71/2], or in the case where viwi < 1,
N
at an interior point where 6= arccos viwi. A further computation
shows that the second derivative at the interior critical point is
positive, so there is no interior local maximum. Thus the cosine of
o is maximized at the endpoints of 0 € [0,n/2], implying that the
angle a(0) is minimized at one of these two endpoints. For Case
(6), where the angle between~v and ~w is greater than n/2, we note
that this angle is complementary to that between ~v and —~w,
which was studied in Case (5). Thus a maximum in this case
coincides with a minimum in Case (5), and this again occurs at an

endpoint of the interval as claimed. []

Corollary 7.1 Suppose two vectors in R? are orthogonally projected
to a family of rotated planes that begins with the plane containing
them and contains planes rotated about a line through an angle of
at most /2. If the vectors subtend an angle smaller or equal to n/2
then the minimum angle between the projected edges occurs at
either the initial or final projection. If they subtend an angle greater
than n/2 then the maximum angle between the projected edges
occurs at either the initial or final projection.

Let M(f,e) be the mesh produced by the MidNormal procedure
and M'(fe) a projection of M(f.e) along gradient vectors of f
towards the surface F as in the GradNormal algorithm. Since F is
smooth and compact it has bounded curvature and as e — 0, its
intersection with a tetrahedron 7t is increasingly closely
approximated by the plane that intersects the edges of the
tetrahedron at points where F intersects these edges. When the
surface F separates the vertices of T so as to define an elementary
normal disk E, then the plane Q separating the same vertices and
intersection the edges of 1 at points where F intersects these edges
smoothly converges to F on a neighborhood of t of radius e. Thus
the angles of the nearest point projection of an elementary normal
triangle in t of diameter less than e onto F gives angles that
converge as e — 0 to the angles determined by the nearest point
projection onto the plane Q.

We note that in the GradNormal projection we do not project
vertices onto the surface F, but rather onto the plane where ' would
be if f'was a linear function. This plane smoothly converges to F' in
a neighborhood of tc as e — 0. We conclude that in computing the
angles of a projection of an elementary normal triangle in T whose
three points have been projected to F, we can assume, with
arbitrarily small error as e — 0, that F'is a plane that separates the
vertices of T in the same way as the normal surface F.
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We now classify the various cases of how a plane F can intersect
a tetrahedron 1. There are four cases where F' Nt is a triangle and
three where it is a quadrilateral that is divided into two triangles
along a diagonal. A special case occurs when four adjacent
tetrahedra meet along an edge of valence four and produce a
rhombus which is then divided into two triangles. Counting cases,
we see that there are altogether 12 triangles and 36 angles that can
be projected onto some plane. Due to symmetry, some of these are
equivalent. The case of a valence-four vertex in M(f,e) includes two
triangle shapes up to isometry, and requires special treatment and
we consider it first because it affects projections of the remaining
cases. Valence-four come from an intersection with an edge of type
AD in a Goldberg tetrahedron, as in Figure 6.

We now consider the valence-four vertices. A vertex of
valencefour appears in the mesh M(fe) when four elementary
normal triangles meet the edge 4D at its midpoint M. This edge has
a dihedral angle of 90° in each of the four adjacent tetrahedra, and
the four adjacent tetrahedra combine to form an octahedron as in
Figure 12.

Figure 12: Four adjacent tetrahedra meet along AD, forming an
octahedron. The mesh surface meets this octahedron in four
triangles, with a common valence-four vertex at M.

We consider first the case where F is a plane that intersects the
octahedron separating vertex A from vertices B,C,D. We denote by
Xthe closure of the set of unit vectors perpendicular to such planes,
oriented to point towards 4. We denote by Y the subset of X
consisting of normals to planes separating vertex 4 from vertices
B,C,D,B>,C>. We want to study angle bounds of projected triangles
described by the set Y after a valence-four vertex has been removed
and a new edge have been inserted in the remaining quadrilateral.

For a plane separating vertex 4 from vertices B,C,D,B>,C2, the
induced mesh has a valence-four vertex where it intersects edge
AD. The GradNormal algorithm removes the four triangles
adjacent to the edge AD: 4KLM, 4KLoM, 4K>LM and 4K2L2M.
Note that the four vertices B,C, B>, Cz are coplanar, since there is a
reflection through M preserving the octahedron and interchanging
A and D, B and B, and C and C>. These four triangles form a
pyramid MKLK>L, whose base is a flat rthombus parallel to

= ey/2/ .
rhombus BCB>C>. For a o 4, the thombus is a square that

realizes dihedral angles of 45 with the faces ABC, ABC>, AB>C and
AB>C> of the octahedron, as indicated in Figure 12. We now
analyze the location of the set Y in the unit sphere.

Claim 7.1 Suppose F is a plane separating vertex A from vertices
B,C,D,B>,C>. Then the unit normal vector of the plane F lies in the
interior of a spherical quadrilateralY c X. The vertices ofY are
normal to the faces ABC, ABC>, AB>C and AB>C>.

Proof The set of planes with these separation properties is a subset
of the 3-dimensional set of planes in R3, and their unit normal
vectors Y form a 2-dimensional subset of the unit sphere. If a plane
with normal vector in Y does not meet a vertex of the octahedron
then it is in the interior of an open disk contained in Y, since it can
be rotated in any direction while remaining in Y. The same is true
for planes that meet only one vertex of the octahedron, since they
too can be rotated in all directions while still passing through only
this vertex. Planes in Y meeting two vertices of the octahedron can
be rotated only in one circular direction, and lie along a geodesic
arc on the 2-sphere that forms part of 0Y. Planes that meet three or
more vertices of the octahedron cannot be rotated while

maintaining their intersection with these points, and thus form
vertices of 0Y. To understand Y we consider which planes
separating vertex A4 from vertices B,C,D,B2,C> meet three or more
vertices, giving a vertex of Y on the unit sphere, or meet two
vertices, giving an edge of 0Y.

Figure 13: The spherical quadrilateral Y indicates normal
directions to planes that separate vertex A from vertices
B,C,D,B>,C>.

Moreover any plane separating A from B,C,D,B2,C> can be
displaced through parallel planes towards A till it contains 4. It
follows that the vertices of Y are determined by triples of vertices
that include 4 and are limits of planes with the right separation
property. These are given by normals ~nasc,~nasc
vecnap:C,~n4:C>to the faces ABC, ABC>, AB2C and AB>(C3, each of
which gives a vertex of 0Y. These four points on the unit sphere are
vertices of a spherical quadrilateral forming Y. All planes that
separate vertex A from the other vertices of the octahedron with
normal pointing towards 4 have unit normal vectors lying inside Y.
See Figure 13.

O

In the GradNormal algorithm we replace the four triangles
adjacent to edge 4D with the thombus BCB>(2, divided into two
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triangles along a diagonal. We need to estimate the angles of these
two triangles after they are projected onto a plane F with normal in
the spherical quadrilateral Y. Lemma 7.1 implies that the largest
and smallest angles among projections of the rhombus KLK>L> onto
F occur either in the rhombus KLK>L: itself or at a plane whose
normal lies in 8Y. This rhombus is a square and a diagonal divides
it into a pair of 45°.45%.90° triangles.

We project these two triangles onto planes with normals on 6Y.
The rhombus KLK>L, projects to a parallelogram, so the two
triangles project to congruent triangles, and it suffices to consider
the angles of one, say KLK>. We investigate what angles result from
projecting triangle KLK> onto a plane normal to 0Y. Each point in
an arc of 0Y is normal to a plane obtained by rotating one face of
the octahedron to another through an edge containing 4. One set of
angles results from projecting each of the three angles of triangle
KLK> to planes determined by the spherical arc from~n4sc to
~n48:C,. We parameterize an arc of normal vectors ~v(f) passing
from~v(0) =~n4pc: to~v(l) =~n4p.C> and compute the angles
resulting from projecting triangle KLK> to planes normal to~w(f).
These angles are then given by a collection of functions of a
parameter ¢ € [0,1]. The three angle functions from triangle KLK>
are plotted in Figure 14. The absolute minimum of the three angle
functions on this arc of 0Y is = 35.3004° > 35.25°, and the absolute
maximum is = 101.445° < 101.45°. We then do a similar
computation for each of the other arcs on 0Y. Figure 15 shows the
angles resulting from projecting 4KLK> onto the boundary arc of ¥
running between~n4pc and~n4pc>. Again each curve lies above
35.25° and below 101.45°, showing that all projected angles are
between these two bounds. The remaining two boundary arcs give
the same angle functions, due to a symmetry of the octahedron.
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Figure 14: (a) Angles of 4KLK> after projection onto the boundary
arc from ~napcto ~n4p.C of 0Y, parametrized by t € [0,1]. Detailed
views of these graphs near (b) t = 0 and (c) t = 0.5 indicate that
each curve lies above 35.25° and below 101.45".
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Figure 15: Angles of 4KLK: after projection onto the boundary arc
from~n4pc to~n4pc: of 0Y. Again each curve lies above 35.25° and
below 101.45".

We conclude that all projections of the triangles obtained from
the diagonally divided rhombus in the GradNormal algorithm have
angles between 35.25°and 101.45°.

There is a symmetric case involving a rhombus where F' is
a plane that separates vertex D from A4,B,C. A symmetry
interchanges 4 and D, and it follows that this case gives the same
angle bounds.

There are 10 remaining cases to consider for projecting along a
gradient besides the valence-four case considered above. Four of
them involve angles obtained by projecting triangles 4KLM and
4KNQ with edge lengths (b/2,b/2,¢/2), and 4LNP and 4MPQ with
edge lengths (3a/2,b/2,¢/2). Six remaining cases involve
quadrilaterals divided into pairs of triangles: KLPQ is divided into
triangles KLQ and LPQ, KMPN is divided triangles KMN and
MNP, and LMNQ is divided into triangles LMN and MNQ.
Projections of each of these follows the same procedure therefore
we describe it here only for one of the triangles, 4KLM.

We compute the smallest angle that can occur from a projection
of 4KLM onto a plane F that cuts off vertex 4 from the other
vertices of the tetrahedron, and for which 4KLM is an elementary
normal disk. The closure of the set of possible unit normal vectors
for the plane F, oriented to point towards 4, belongs to a spherical
triangle 7. Vertices of T are unit normal vectors~n4sc,~n4sp,~n4cop
to the faces ABC, ACD and ABD.

We compute the minimal and the maximal angles that can occur
from a projection of 4KLM onto a plane F that cuts off vertex 4
from the other vertices of the tetrahedron, and for which 4KLM is
an elementary normal disk. The closure of the set of possible unit
normal vectors for the plane F, oriented to point towards 4, belongs
to a spherical triangle 7. Vertices of 7 are unit normal
vectors~n4sc,~n4pp,~n4cpto the faces ABC, ACD and ABD.

The dihedral angles between 4KLM and its three adjacent faces
are either 60° or 90°, and F can be nearly parallel to one of these
faces. A projection of 4KLM to a nearly perpendicular plane can
return a triangle with angles close to 0 or &, giving very poor angle
bounds. Fortunately, the elimination of valence-four vertices in the
GradNormal algorithm resolves this problem.

If the plane F is almost parallel to the face ABC and thus nearly
perpendicular to 4KLM, then F cuts off the vertex A from the other
vertices of octahedron ABCDB:C>. This case results in a
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valencefour vertex in the MidNormal mesh. The GradNormal
algorithm removes the vertex M in this case and thus avoids
projecting 4KLM to a near perpendicular plane. The same will
apply for planes with normals in a neighborhood of the vertex
~napcof T. We now investigate exactly how 7 is truncated in the
unit sphere when we eliminate planes for which MidNormal leads
to valence-four vertices at M

Call a plane allowable if it separates vertex 4 from vertices
B,C,D. Denote by X the closure of the set of unit normal vectors to
allowable planes, oriented to point towards 4. Then X forms a
spherical triangle in the unit sphere with
vertices~n4pc,~n4pp,~n4cp. Inside X is a subset Y c X
corresponding to normals of allowable planes that separate 4 from
the vertices Bz, Cz of the octahedron. All normals to planes for
which MidNormal gives valence-four vertices at M are in Y, but
some of these are also normal to planes that lead to higher valence
vertices at M. This leads us to define another subset Z € Y whose
points are in the closure of normals~v with the property that if the
normal to an allowable plane is in Z, then any parallel allowable
plane separates 4 from vertices B,C,D,B2,C>. It can be seen from
Figure 12 that a neighborhood of~n4scin X lies in Z, so this set is
non-empty. We now determine the precise shapes of Y and Z cY
on the sphere, determining the configuration shown in Figure 16.

We first consider what points lie inY. Planes normal to vectors in
Y can be moved to a parallel allowable plane that separates 4 from
vertices B2, C2,B,C,D. Any such plane can be pushed through
parallel planes in Y towards A4, until it hits 4, since it separates A
from the other five vertices. The boundary of the set of such planes
containing A4 is a spherical quadrilateral with vertices
corresponding to the normals to the four faces of the octahedron
meeting 4, namely

~NABCy,~NAB2C: =~NBCD,~NACB,~N4pc. ThenY consists of points
inside the spherical quadrilateral with these four vertices, a subset
of the spherical triangle X.

Next we consider what points lie in Z. An allowable plane
normal to a vector in Z must separate 4 from Bz, C2,B,C,D. This
plane can be pushed away from A through parallel planes until it
first hits one or more of the other five vertices. It cannot first hit D,
as no allowable plane through D separates 4 from Bz, C2,B,C.

This set of vertices that it hits must include some subset of B,C
since if it hits only one or both of B2,C> then a parallel plane in
Xwould not separate 4 from vertices B2, C2,B,C,D and thus its
normal would not lie in Z. We consider which sets of three or more
vertices may be reached by planes in Z when these planes are
translated away from A through parallel planes. These form some
of the vertices of the spherical polygon Z. Note that the four
vertices Ba,C2,B,C are coplanar, and form one plane defining a
vertex of Z. Thus this is the only vertex hit by pushing a plane in Z
away from A. Other vertices are found by planes in Z that contain
A and two or more additional vertices, giving vertices of Z
at~n4pc,~n4pc2,~n45:C (but not ~n4p.C,, a neighborhood of which
lies in Y — Z). The resulting region Z C Y is shown in Figure 16. It
is the interior of the spherical quadrilateral formed by spherical

geodesic arcs joining the four vertices~n4pc,~n4pcz> TABC+ RBCELC,

ACD

Figure 16: The spherical triangle X consists of normals to planes
separating vertex A from vertices B,C,D. The regionY CX consists
of directions for which at least one normal plane gives a vertex of
valence-four at M. The region Z C Y consists of directions where
all normal planes in X give a a vertex of valence-four at M.

The region X —Z is a spherical quadrilateral, since the vertices

~Nn4pc2, ~npcpC2and ~nap:C lie on a single spherical geodesic. This
holds for all a and follows from the fact that lines BC2and B2C are
parallel to a line of intersection of planes ABC> and AB>C.
Therefore unit normal vectors for planes BCB2Ca, ABC2 and AB2C
are coplanar. Moreover X —Z is contained in a hemisphere, since
all vectors in X have positive inner product with A.

Each vertex of the spherical quadrilateral X —Z has distance at
most 7/2 from~nxLy, as seen by computing dihedral angles of the
faces of the tetrahedron 1. The maximum distance of a boundary
point from ~ngcp occurs at a vertex of X — Z, since X — Z is a
spherical polyhedron contained in a hemisphere. It follows that
each boundary point of X —Z has distance at most n/2 from
~nkwv =~nkLy. Corollary 7.1 implies that extreme angles for the
projection of 4KLM in the GradNormal algorithm are realized
either by the triangle itself or by a projection to a plane with normal
vector lying on one of the boundary edges of X —Z. There are three
angles for 4KLM and four boundary edges of X —Z determining
planes onto which they can project. The three angle functions given
by 4KLM when projected onto the arc from ~n4cp to ~n4s.C are
shown in Figure 17, as are angles along each of the other three arcs
of (X —-2).
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Figure 17: Angles of 4KLM after projection onto an arc of 0(X —
Z) running from (a) ~nacp to ~nap:C, (b) ~nco to ~nap:C, (¢) ~nasp
to~nacp, and (d)~nasp to~napc:. Graphs repeat due to symmetries.
Again all angles are in [35.25%, 101457

We now consider projections of triangles after the removal of
valence-four vertex.

Triangles 4KNQ,ALNP and 4MPQ, as well as the triangles
coming from dividing elementary quadrilaterals along a diagonal,
all give rise to similar angle functions for each edge of a
corresponding quadrilateral spherical region. Altogether there are
12 triangles with 36 angles projecting to four edges each, or 144
angle functions in total, each defined on an interval of normal
directions connecting two points on the sphere along a spherical
arc. The union of all these angle functions is graphed in Figure 18.

This completes the proof of Theorem 1.1.
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Figure 18: Angles of all triangles in the GradNormal mesh are
bounded above and below by the maximum and minimum values
obtained in these graphs. A total of 144 angles are graphed over
the boundary of spherical regions to produce these functions.
Because of symmetries and coinciding functions, there are only 12
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distinct graphs resulting from these 144 angles. All curves lie
above 35.25° and below 101.45".
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