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Abstract 

We describe a new method for approximating an implicit surface F by a piecewise-flat triangulated surface whose triangles 

are as close as possible to equilateral. The main advantage is improved mesh quality which is guaranteed for smooth surfaces. 

The GradNormal algorithm generates a triangular mesh that gives a piecewise-differentiable approximation of F, with angles 

between 35.2 and 101.5 degrees. As the mesh size approaches 0, the mesh converges to F through surfaces that are isotopic to 

F. 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Modeling]: Curve, 

surface, solid, and object representations— 

1. Introduction 

We study the problem of approximating a surface in R3 by a mesh 

that has optimal angle properties. In computations based on mesh 

descriptions of a surface, it is often essential to avoid “slivers’, or 

triangles with angles close to zero. A random process for selecting 

vertices on a surface gives a triangulation with expected minimum 

angle approaching zero as the number of points increases [BEY91], 

implying that slivers are hard to avoid when creating meshes from 

points sampled on a surface. 

Badly shaped triangles can cause mesh-based algorithms to 

break down for numerical reasons. Avoiding poor quality triangles 

is important for a wide variety of applications, including computer 

graphics, shape comparison, finite elements, finding numerical 

solutions of PDEs, and geometric modeling. In one important area 

of applications, a function f : R3 → R measures the absorption at 

each point of an X-ray or imaging machine, or the density of a solid 

object, where a level set F = f−1(c) represents the surface of a 

scanned object, such as an organ, bone, brain cortex or protein. For 

purposes of visualization, geometric processing, surface 

comparison, surface classification, or modeling of properties of the 
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surface, it is desirable to have a high quality mesh representing the 

surface. 

We note that it is possible to construct a sequence of surfaces 

converging to F pointwise and consisting entirely of flat 

equilateral triangles, but with the tangent planes of the triangles 

not converging to those of the surface. The search for a regular 

mesh whose triangles approximate the tangent spaces of a given 

surface leads to two conflicting goals. One goal is to make the 

triangles as close to equilateral as possible, and the second is to 

have the mesh conform differentiably to the surface, so that its 

tangent planes approximate those of the surface. 

In this paper we introduce the GradNormal Algorithm, which 

produces a mesh whose tangent planes converge to those of a 

differentiable implicit surface F ⊂ R3, and whose triangles have 

angles in the interval [35.2◦,101.5◦]. These angle bounds are the 

best rigorously established. We prove that the GradNormal meshes 

are 2-dimensional manifolds that converge to F as the mesh size 

approaches zero, and that the convergence is piecewise-smooth, as 

explained later. 

Example meshes produced by GradNormal for implicit surfaces, 

defined as level sets of explicitly given mathematical functions, are 

shown in Figure 1 and Figure 2. These are obtained by tiling the 
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unit cube with 869,652 tetrahedra and displayed using MeshLab 

[CCC∗08]. See Table 1 for data on how these angles improve as the 

tiling becomes finer. 

GradNormal meshes can also be produced by inputting 

nonsmooth surfaces, described as a union of polygonal faces. This 

al- 

lows us to use GradNormal to improve a mesh with poor angle 

quality. A mesh produced from the Stanford Bunny [TL94, Bun] is 

shown in Figure 3, obtained using GradNormal with a tiling of the 

cube with 6,748,416 tetrahedra. A signed-distance-function can be 

obtained from the original Stanford Bunny Mesh, after filling in 

holes. This defines an implicit surface, computed using 

TriMesh [DH20]. The code used to produce these images is 

available on GitLab [HT19]. 

 
(a) 

(b) 

Figure 1: The mesh of the sphere has 25,092 triangular faces with 

angles in the interval [35.4◦,102.7◦]. The torus has 35,838 

triangular faces with angles in the interval . At 

sufficiently fine scales all angles lie in the interval [35.2◦,101.5◦]. 

(genus 5) triangular faces. They have angles in the intervals 

[22.1◦,129.0◦] (genus 2) and  (genus 5). 

In Figure 4 we see the range of mesh angles produced by the 

GradNormal algorithm at two resolutions and the angles in the 

original Stanford Bunny mesh. Note that the original mesh has 

holes and isolated vertices. The holes were filled in prior to 

remeshing with the GradNormal algorithm. When applied to a non-

smooth surface that has sharp corners at vertices and folds along 

edges, the angle bounds that GradNormal guarantees for smooth 

surfaces do not apply, even in the limit. Nonetheless Figure 4 

shows that the angles are more clustered around 60o than in the 

original mesh. To compare the distribution of angles in one chart, 

the counts have been normalized by dividing by three times the 

number of triangular faces, or 348,162 for the GradNormal mesh 

with 6,748,416 tetrahedra and 1,400,310 for the GradNormal mesh 

with 52,931,340 tetrahedra. The two GradNormal meshes have 

very similar distributions, with most angles between 40o and 80o, 

while the original Stanford mesh had many angles near 30o and 90o. 

 

Figure 3: The original Stanford Bunny Mesh (with several holes 

and isolated points) gave angles in the interval [0.49◦,177.6◦]. The 

mesh of the Stanford Bunny shown here, produced by GradNormal 

using a 6,748,416 tetrahedra tiling of the cube, gives angles in the 

interval . 
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Figure 4: Angle distributions for the original Stanford Bunny mesh 

and for GradNormal meshes of the Stanford Bunny at two 

resolutions. 

The GradNormal algorithm proceeds in three steps. The first 

step produces a mesh with acute triangles that we call a MidNormal 

mesh. While having very good angle properties, and giving a 

2dimensional manifold that lies close to the implicit surface, its 

normal vectors do not align with those of F. The second step 

involves a projection of the MidNormal mesh vertices to the 

implicit surface, so that normal vectors align with those of the 

surface. This is followed by a single remeshing operation involving 

vertices of valence four. A careful analysis of the distortion of 

angles under this step establishes the properties claimed for the 

GradNormal mesh. 

The first step is similar to the Marching Tetrahedra algorithm, 

but with important differences. The underlying idea behind both 

algorithms appears in the theory of normal surfaces, a powerful 

tool used to study surfaces in 3-dimensional manifolds that goes 

back to work of Kneser in 1929 [Kne29]. The GradNormal 

algorithm begins by tiling space with tetrahedra of a fixed shape. It 

uses a tetrahedral tiling chosen to optimize the angles appearing in 

the final mesh. Intersecting a surface F with these tetrahedra tiles 

generates an approximation of F by triangles and quadrilaterals, as 

in Figure 5. 

A normal surface with respect to a 3-dimensional triangulation τ 

is an embedded surface S ⊂ M whose intersection with any 

tetrahedron in τ has the simplest possible form, cutting across each 

tetrahedron in the same way as a flat plane. The surface intersects 

a single tetrahedron in one of two types of elementary disk. An 

elementary disk is either a single flat triangle or two flat triangles 

meeting along a common edge and forming a quadrilateral. The 

vertices of each triangle of an elementary disk are located at the 

midpoints of different edges of the tetrahedron, as in Figure 5. The 

MidNormal mesh consists of such elementary disks. 

Given an implicit surface F, the GradNormal algorithm first 

produces a MidNormal mesh. It then projects the mesh vertices to 

the closest point on the surface F, and finishes with a single 

remeshing step that removes valence four vertices. 

 

Figure 5: Elementary disks forming part of a normal surface. A 

triangle separates one vertex from the other three. A quadrilateral 

that separates pairs of vertices is split into two triangles by adding 

a diagonal. There are four possible types of triangle and three 

possible types of quadrilaterals in each tetrahedron. 

The quadrilaterals of a normal surface are divided along a 

diagonal to produce a mesh. The mesh consists of flat triangles that 

separate the vertices of a tetrahedron in the same way as F. The 

MidNormal mesh locates the vertices of the triangles on the 

midpoints of the tetrahedron edges. In contrast Marching 

Tetrahedra interpolates these vertex positions along the edges of 

the tetrahedron. This interpolation results in angles that can be 

arbitrarily close to zero [NH91], so that Marching Tetrahedra is 

often combined with further algorithms that improve mesh quality 

[CDS12]. 

The tiling of R3 that we use is obtained by optimizing angles 

among a family of tetrahedra discovered by Goldberg [Gol74]. A 

particular Goldberg tiling is determined, up to isometry, by a pair 

of positive constants a,e that determine a tetrahedron τa,e, as in 

Figure 6. Isometric copies of τa,e fill R3 with no gaps, with pairs of 

tetrahedra matching along faces. In our setting e is a scale 

parameter that determines the size of the tetrahedron, and we fix√

 a 

 

to have the value a = e 2/4. This choice gives the optimal angles 

for our method. It turns out that this choice of tetrahedral shape 

coincides with the tetrahedra in a tiling described by Sommerville 

[Som23]. A straightforward computation then shows that the 

MidNormal mesh has angles in the interval [45◦,90◦]. 

 

Figure 6: (a) A tetrahedron τa,e, one of a family that tiles R3. The 

scale independent parameter a ∈ (0,∞) determines the shape. (b) 

These tetrahedra stack to tile a vertical column over an equilateral 

triangle of length e (center). (c) A surface in R3 divides the vertices 

of these tetrahedra, leading to a triangular mesh. Part of a normal 

surface is also shown. 

The MidNormal mesh gives a continuous approximation to the 

surface F. A differentiable approximation is achieved in the second 

part of the GradNormal Algorithm. It starts with a MidNormal 

mesh and then projects each of the vertices to the closest point on 

the surface F. We will see that all angles are then as claimed, with 
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the exception of a collection of valence-four vertices. These can 

have arbitrarily small angles, and are removed in a remeshing step 

which deletes four triangles adjacent to a common valence four 

vertex and triangulates the resulting quadrilateral by adding a 

diagonal. Properties of the resulting mesh M1(f,e) are given in the 

following theorem, proven in Section 4. 

Theorem 1.1 Let F = f−1(0) ∈ R3 be a compact level surface of a 

smooth function f and let M1(f,e) be the mesh produced by the 

GradNormal algorithm with tetrahedra of scale e. Then as e → 0, 

(1) The triangular mesh M1(f,e) is a 2-dimensional manifold 

homeomorphic to F under the nearest point projection map. 

(2) The surface M1(f,e) converges to F piecewise-differentiably. 

(3) The mesh angles lie in the interval . 

Piecewise-differentiable convergence means that (1) as e → 0 

the mesh converges pointwise to F and that (2) for any ε > 0, when 

e is sufficiently small the distance between a unit normal vector on 

the mesh at some point and the unit normal at the nearest point on 

F is 

less than ε. Note that while normal vectors are not uniquely defined 

at a point which is a vertex or on an edge of a mesh, this property 

holds for any of the finite number of choices for a normal. 

2. Related Work 

A large number of algorithms has been written for representing 

surfaces given by an implicit function and almost all of them 

originate from Marching Cubes [LC87]. Marching cubes applied 

directly does not give good angle bounds, since a plane cutting 

close to an edge will intersect in a triangle containing an arbitrarily 

small angle. A relatively recent survey on implicit surface meshing 

techniques by Araujo [dALJ∗15] gives an overview of different 

approaches to isosurface meshing. The article classifies and 

compares techniques for fast visualization of isosurfaces based on 

different features of meshes including quality of meshes but does 

not discuss provable bounds on angles. Recent results in this 

direction can be found at [Wen13, CPS19]. Labelle and Shewchuk 

developed an “Isosurface Stuffing” procedure that achieves 

dihedral angle bounds for tetrahedra filling a 3-dimensional region, 

along with angle bounds for the 2-dimensional mesh formed by the 

region’s boundary [LS07]. It achieves angles in the interval 

 for the boundary surface mesh. Liang and Zhang used 

a related octree method to find meshes of regions bounded by 

smooth curves in the plane that are guaranteed to have angles in 

the interval 

 [LZ14]. P. Chew gave a procedure based on point 

insertion and remeshing to achieve a Constrained Delaunay 

triangulation for a surface in the plane or in R3 that gives angles 

between 30◦ and 120◦ [Che93]. A recent remeshing algorithm by Hu 

et. al. [HYB∗17] gives experimental evidence for mesh regularity 

comparable to the GradNormal algorithm. 

The problem of finding meshes with good angle properties has 

been extensively studied for subregions of the plane with fixed 

boundary. We refer to the survey articles by Bern and Eppstein 

[BE92] and Zamfirescu [Zam13]. Some approaches create 

Delaunay Triangulations for planar regions, which give various 

forms of optimal regularity for a given vertex set [CDS12]. 

However Delaunay Triangulations can produce triangles with 

small angles. 

In some settings acute triangulations can be realized. Work of 

Burago and Zalgaller shows that any polyhedral surface has a 

subdivision that is acute [BZ60] (see also [Sar09], [HU07]). Colin 

de Verdiere and A. Marin showed that any smooth Riemannian 

surface admits a sequence of geodesic triangulations with vertices 

on the surface and angles that, in the limit, lie in the intervals 

[3π/10,2π/5] for the case of genus zero, [π/3,π/3] for genus one, and 

[2π/7,5π/14] for the case of genus greater than one [dVM90]. By 

Gauss-Bonnet, these bounds are optimal for smooth surfaces. Their 

results use the Uniformization Theorem and constructing 

triangulations on an appropriate conformal model in the Moduli 

Space associated to the surface. We are not aware of algorithms 

based on these approaches. 

3. Dimension two 

In this section we explain the idea behind the GradNormal 

algorithm in the simpler setting of curves in the plane. The 

3dimensional setting will be presented in the next section. The 

planar algorithm takes as input an implicit curve given by a 

function f : R2 → R with domain containing the unit square I2 = 

[0,1]×[0,1] and outputs a piece-wise linear curve that approximates 

the level curve F = f−1(0) within the unit square. 

Step 1 (lower-dimensional analog of producing the MidNormal 

mesh): A neighborhood of the unit square is tiled by triangles. The 

algorithm evaluates the function f on a triangle’s vertices and 

checks if all function values have the same sign. If not then it takes 

midpoints of two edges with endpoints of opposites signs and 

connect them by a straight line segment. This becomes an edge of 

the resulting polygonal curve α as in Figure 7. 

 

Figure 7: In the planar version of the MidNormal mesh, a curve F 

passing through three triangles is approximated by a polygonal 

“normal” curve α, which passes through midpoints of triangle 

edges. 

Note that in contrast to Marching Tetrahedra in this dimension, 

the vertices are not interpolated along the edge, but are always 

taken at midpoints. See Figure 8. 
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Figure 8: In the planar version of the Marching Tetrahedra mesh, 

the curve F is approximated by a polygonal curve β that meets 

triangle edges where the curve does. 

Step 2 (lower-dimensional analog of the projection step of 

GradNormal): Each vertex v ∈ α is projected to the closest point on 

the isocurve F to give a polygonal curve approximating F that has 

vertices on F. For differentiable functions f, GradNormal computes 

the gradient ∇f of the function f at vertices of the polygonal curve 

γ and uses a first order method to estimate the closest point. This 

takes a vertex v to v = v− f(v)∇f/||∇f||2, with v a vertex of the final 

mesh. Alternate methods to find the closest point are used when 

the gradient function is not available. See Figure 9. 

 

Figure 9: In the second step of the GradNormal algorithm, each 

vertex of α is projected to the closest point on the level curve, 

resulting in the polygonal curve γ. 

Step 3: The 3-dimensional version of the GradNormal algorithm 

requires an additional operation to achieve the claimed angle 

bounds. After the projection step, small angles can appear in one 

particular configuration. The corrective operation involves 

removing four triangles meeting at a valence four vertex and 

adding a diagonal to the resulting quadrilateral, as in Figure 10. 

 

 (a) (b) 

Figure 10: Poor angles are eliminated by removing the four edges 

meeting each valence four vertex (as in the outlined quadrilateral 

in (a)) and adding a diagonal to the resulting quadrilateral (see 

(b)). 

The GradNormal algorithm has a superficial resemblance to the 

Dual Contouring Algorithm, where every edge intersecting the 

isocurve gives an edge of the final mesh and every cell intersected 

by the curve gives a vertex, Figure 11 [AF05]. But there is little 

actual overlap between them. 

 

Figure 11: In the Dual Contouring Algorithm, the curve F is 

approximated by a polygonal curve δ whose normals agree with 

those of F along intersections with triangle edges. 

4. The GradNormal Algorithm 

In this section we describe in detail the two steps of the 

GradNormal Algorithm. We first describe the tiling by tetrahedra 

used to generate the intermediate mesh in Step 1 of the algorithm. 

We then describe the projection used to obtain the finial mesh. 

4.1. Goldberg tetrahedra 

The classification of tilings of R3 by tetrahedra is still not 

completely understood. An interesting historical note is that 

Aristotle falsely claimed that regular tetrahedra can meet five-to-

an-edge and fit together to tile space [Sen81]. In fact, the dihedral 

angle of a regular tetrahedron is somewhat less than 2π/5 = 72◦, so 

they do not fit evenly around an edge. The search for tetrahedra 

that do fit together led Sommerville to find four tetrahedral shapes 

that tile R3. Baumgartner found a further example and Goldberg 

discovered three infinite families. Eppstein, Sullivan and Ungor 

constructed tilings of space by acute tetrahedra, with all dihedral 

angles less than 90◦ [ESU04]. It might seem that tetrahedra that are 

acute, or as close to regular as possible, are preferable for 

producing regular triangulations, but that turns out not to be the 

case. A search through the infinite family of tilings discovered by 

Goldberg was carried out and led to the tiling that gives the best 

mesh angles for our method. 

A tetrahedron in the Goldberg family, shown in Figure 6, is 

constructed by first tiling the xy-plane with equilateral triangles of 

unit length. Three edges of the tetrahedron are graphs over edges 

of one of these equilateral triangles, each rising by a distance of a 

from its initial to its final vertex. The other edges connect pairs of 

the resulting four vertices. The vertical edge AB has length 3a. If 

we rescale by a factor of e then the equilateral triangle has edge 

length e and the edge AB has length 3ae. We call this tetrahedron 

τa,e. Every Goldberg tetrahedron has two edges with dihedral angle 

π/2 and one with dihedral angle π/3. In our application,√ e 

determines 

 

the size of the tetrahedron and we take a = e 2/4. This choice of a 

optimizes the resulting mesh angles among those obtained by 

Goldberg tetrahedra, and can be proved to give a near optimal mesh 

when our method is applied to any tetrahedral shape. The resulting 

tetrahedron shape coincides with a tiling described by Sommerville 

[Som23] and has vertices located along the body-centered cubic 

lattice. 

4.2. Step 1 of the GradNormal Algorithm 

Algorithm 1 Step 1 of the GradNormal Algorithm - the MidNormal 

Procedure 

1: procedure MIDNORMAL(e) 

+ 

F v 

v 

+ 

F 
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2: Input a function f : I3 → R, a choice of scale e = 1/N. 

3: for i = 1 to 6N3 do 

4: Compute the sign of f at the four vertices τi1,τi
2,τi

3,τi
4 of 

tetrahedron τi in a tiling of the unit cube I3 by Goldberg 

tetrahedra isometric to τe. If the value of f at a vertex is exactly 

zero, take the sign to be positive. 

5: If the sign of f is different at one vertex of τi from the sign at the 

remaining three vertices, add to a list of triangles T the 

elementary normal triangle in τi that separates that vertex from 

the remaining three. The vertices of this triangle are located at 

midpoints of edges of τi. 

6: If the sign of f is different at two vertices from the sign at the 

remaining two vertices of τi, add to T two triangles formed by 

taking the normal quadrilateral in τi that separates the two pairs 

of vertices and adding a diagonal as follows: For quadrilateral 

LMNQ add diagonal MN. For quadrilateral KMPN add 

diagonal MN. For quadrilateral KLPQ add diagonal LQ. Again 

position the vertices of these triangles at midpoints of edges of 

τi. See Figure 6(a) for notation. 

7: Output T . 

 

It is straightforward to compute the edge lengths and angles in 

the triangular meshes obtained by applying the MidNormal 

procedure to the tetrahedral tilings of R3 produced by the Goldberg 

tiling. 

Lemma 4.1 The MidNormal mesh produced using the Goldberg 

tiling is a 2-dimensional manifold mesh that has angles in the 

interval . 

Remark. When applied to a smooth compact implicit surface F = 

f−1(0) that has an embedded ε-tubular neighborhood Nε(F), or 

equivalently having reach ε, and given a positive constant e < ε/2, 

the MidNormal algorithm produces a mesh M(f,e) satisfying 

1. M(f,e) is an embedded 2-dimensional manifold. 

2. The triangles around a given vertex are graphs over a common 

plane. 

3. The surface M(f,e) converges to F in Hausdorff distance as e → 

0. 

4. The surface M(f,e) is isotopic to F in Nε(F). 

5. The nearest neighbor projection from the mesh M(f,e) to F is a 

homeomorphism for e sufficiently small. 

The faces of the approximating meshes have normal vectors that 

lie in a fixed finite set of 18 normal directions, and therefore the 

approximation is continuous, but not piecewise-differentiable. 

However the geometry of the approximating surfaces is uniformly 

biLipschitz equivalent to the limiting surface F. 

4.3. The GradNormal algorithm: Steps 2 and 3 

The second step of the GradNormal algorithm moves the vertices 

of the MidNormal mesh so that they lie on the implicit surface F. 

A vertex of the MidNormal mesh is moved to the closest point on 

F. This point is unique when F is differentiable and the mesh lies 

sufficiently close to F. The current implementation uses the 

gradient of the function f defining F in this step. In the case of a 

linear function it exactly projects each vertex to the nearest point 

on F. In general it produces a first-order approximation of F, 

improving the zeroth-order approximation given by the 

MidNormal procedure. An alternative to using the gradient 

projection would be to call a function that returns for each point 

the coordinates of the nearest point on F. 

Unfortunately the mesh resulting from the projection process 

can have sliver triangles with arbitrarily small angles, so a 

corrective step 3 is needed. An analysis of the badly behaving 

triangles shows that they all result from a particular phenomenon 

that can be easily corrected. We will show that small angles in the 

projected mesh can only arise from projecting angles that lie in one 

of four triangles that are adjacent in the MidNormal mesh to a 

vertex of valence four. The GradNormal algorithm corrects this by 

removing any set of four triangles that meet at a common valence-

four vertex and adding a diagonal to the resulting quadrilateral, as 

in Figure 10. 

This valence-four vertex move will be shown to eliminate all 

sliver triangles and to give a high quality mesh with the claimed 

angle bounds of [35.2◦,101.5◦]. We now state the algorithm. 

The proof of the resulting properties claimed in Theorem 1.1 is 

rather lengthy, and is given in full in the Appendix. In this section 

we sketch the general idea. 

A smooth compact surface F has bounded curvature and as e → 

0, its intersection with a tetrahedron τ(e) is closely approximated 

by a plane Q. This plane can be chosen to be the plane that 

intersects the edges of the tetrahedron at the points where F 

intersects these edges. Thus the angles of the nearest point 

projection of an elementary normal disc in τ of diameter less than 

e onto F has angles that converge as e → 0 to the angles determined 

by the nearest point projection onto the plane Q. 

Algorithm 2 GradNormal Algorithm 

1: procedure GRADNORMAL(e, f) 

2: Input a differentiable function f : I3 → R with level set F = f−1(0) 

and a choice of scale e = 1/N. 

3: Apply the MidNormal procedure with size parameter e to obtain 

a mesh M(f,e). 

4: Compute the gradient ∇f at the vertices of M(f,e). 

5: Remove each vertex of valence 4 and its four adjacent triangles. 

Add a diagonal to the resulting quadrilateral, giving two new 

triangles in the mesh. 

6: Relocate each vertex v to v− f(v)∇f/||∇f||2. 7:

 Output the resulting list of triangles T 0. 

 

When the surface F separates vertices of a tetrahedron τ it 

defines elementary normal discs which are very close to flat 
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triangles or quadrilaterals. The MidNormal procedure produces a 

normal surface that intersects a tetrahedron τ along one of four 

triangles or one of three quadrilaterals. Four triangles 

4KLM,4KNQ,4LNP and 4MPQ come from elementary triangles. 

The quadrilaterals are divided into two triangles, leading to six 

additional triangles, 

4KLQ and 4LPQ, 4KMN and 4MNP, and 4LMN and 4MNQ. 

We need to consider the angles obtained when these 10 triangles 

are projected onto F, which as noted can be assumed to be a plane. 

To capture all possible projections we consider all possible 

planes that could represent F. We describe such a plane by its unit 

normal vector, a point on the unit sphere. The space of such planes 

is given by certain regions on the unit sphere. We prove that the 

smallest angles of a projected triangle must happen along the 

boundary of one of these spherical regions. Each boundary segment 

is parameterized and its minimal angle values are evaluated. This 

computation gives the desired angle bounds except for triangles 

that meet a valence-four vertex. It is essential for the achievement 

of the angle bounds to remove these triangles. 

Altogether there are 12 triangles with 36 angles projecting to 

four edges each, or 144 angle functions in total, each defined on an 

interval of normal directions connecting two points on the sphere 

along a spherical arc. The union of all these angle functions is 

graphed in Figure 18. Computations carried out in Mathematica 

show that all angles are between 35.25◦ and 101.45◦. 

Vertices of valence-four come from an intersection with an edge 

of type AD in a Goldberg tetrahedron, as shown in Figure 6. This 

edge has a dihedral angle of 90◦ in each of the four adjacent 

tetrahedra, and the four adjacent tetrahedra combine to form an 

octahedron as in Figure 12. The removal of triangles meeting 

vertices of valence-four and their replacement by two triangles 

gotten by adding a diagonal improves the angle bounds of the 

resulting triangles to lie between 35.25◦ and 101.45◦. 

The nearest point projection from mesh M(f,e) to F is a 

homeomorphism for e sufficiently small. When f is linear, the 

projected triangle is contained in F, and gives a C1 approximation 

for e sufficiently small. In the argument above, the angle bounds 

established for F a plane also hold for e sufficiently small, since F 

∩τ converges smoothly to the intersection of a plane with τ as e → 

0. 

5. Remarks 

5.1. Other Surface Descriptors 

The GradNormal algorithm takes as input an implicit surface, given 

as a level set of a function on R3, but is amenable to other forms of 

surface input. For example, if the input is a triangulated surface F 

having poor mesh quality, then there exist procedures to produce a 

function on R3 that computes distance from the surface. Such 

signed distance functions have been extensively studied 

[Sym98,PT92]. If the input describing a surface is a point cloud, 

methods such as the Moving Least Squares and Adaptive Moving 

Least Squares produce a function giving a level set description of 

the surface [Dey06,SOS04]. This function can then be used as 

input to the GradNormal algorithm. 

5.2. Convergence and curvature 

When we have bounds on the principle curvatures of F we can get 

angle bounds on the mesh for a given value of e. We investigate 

these bounds here, as they are relevant to whether the GradNormal 

algorithm can be used effectively. The bounds of Theorem 1.1 are 

guaranteed to apply as the scale size e → 0. To test them at a given 

size, we can fix e = 1 and consider how the angle bounds on the 

mesh are affected by curvature bounds on the surface F. Though 

this can be done rigorously, we present here some experimental 

results obtained as a preliminary step. These give some preliminary 

evidence that the GradNormal algorithm is fast in practice and 

converges at reasonable scale. 

We set e = 1 and consider the angles attained by a mesh 

approximating a surface F whose principle curvatures are bounded 

above in absolute value by a constant k0. We estimate these angles 

by modeling F with a sphere. Since spheres of the appropriate 

radius have maximal principal curvatures and since they realize all 

tangent directions, this gives a reasonable approach to modeling 

the worst case for an angle bound. We obtain in this way 

experimental bounds for the angles obtained in the GradNormal 

algorithm. In Table 1 the result of applying the GradNormal 

algorithm to surfaces of genus zero (sphere), genus two and genus 

five. These surfaces are scaled to exhibit the effect of varying 

curvature on the quality of the output mesh. Computations at four 

different scales were carried out for each surface on a 2014 

MacBook Pro. The number of tetrahedra used to tile the cube in the 

four runs was 113,100, 869,652, 6,748,416 and 52,931,340. Each 

run took at most 1,141 seconds on a 2014 MacBook Pro with a 2.5 

GHz Quad-Core Intel Core i7. After rescaling to fix the size of the 

tetrahedra, the principle curvatures of the implicit surfaces are 

bounded above by kM, shown in the second column. The following 

columns show the minimum θm and maximum angles in the 

resulting mesh θM . 

5.3. Running time 

The GradNormal algorithm as implemented runs in linear time in 

the number of tetrahedra used in the 3-dimensional tiling. This 

follows from the same arguments used to establish this bound for 

Marching Cubes [Wen13]. There are no point insertion or 

remeshing steps, other than a single round involving valence four 

vertex removal in Step 3. While the python code in the 

implementation 

Genus kM θm θM vertices faces 

 0.23 33.0◦ 102.8◦ 1,082 1,988 

0 0.09 34.2◦ 101.3◦ 6,782 12,564 

 0.05 35.4◦ 102.7◦ 27,104 50,300 

 0.03 35.2◦ 101.1◦ 433,208 866,412 

 0.57 10.9◦ 153.8◦ 1,336 2,540 

2 0.29 22.2◦ 129.0◦ 5,438 10,306 

 0.15 27.8◦ 118.8◦ 21,880 41,600 
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 0.08 31.7◦ 108.9◦ 87,802 166,898 

 0.8 26.6◦ 122.0◦ 7,318 14,652 

5 0.4 29.2◦ 113.4◦ 29,348 55,122 

 0.2 30.8◦ 109.4◦ 117,878 235,772 

 0.1 33.4◦ 104.4◦ 471,696 943,408 

Table 1: A tetrahedral tiling with scale given by e = 1 is intersected 

with surfaces whose principle curvatures are bounded above by kM. 

The θm and θM columns show the minimal and maximal mesh 

angles. The vertex and face columns indicate the number of 

vertices and faces in the mesh. As kM → 0 the surface becomes 

flatter, and the angles converge to lie within the predicted interval 

. 

has not yet been optimized for speed, the code that produced the 

genus-two surface in Figure 2 ran in 15.8 seconds on a 2014 

MacBook Pro. 

5.4. Computational Methodology 

The proof of Theorem 1.1 involves extensive angle computations 

with trigonometric functions. These were carried out with the 

software package Mathematica 12. The GradNormal Algorithm 

has been implemented in Python. Files are available at [HT19]. The 

values obtained for the angle bounds depend on the accuracy of 

Mathematica floating point functions. It is possible to calculate 

these bounds using interval arithmetic, but this has not yet been 

done. 

6. Conclusion 

We present a novel algorithm for meshing an isosurface. The main 

advantages include simplicity of the algorithm, fast running time, 

low space usage and guaranteed triangles of high quality when 

applied to a smooth surface. Experiments with surfaces defined by 

simple mathematical functions indicate that the resulting mesh has 

reasonable angle bounds even with a coarse tetrahedral tiling, and 

that the guaranteed limiting angle bounds of  for 

meshes approximating smooth surfaces are approached using 

practical sized tilings of space. A drawback of the GradNormal 

algorithm, as with other methods based on regular meshes, is that 

it is not adapted to local surface features. In particular, sharp 

features, angles and corners may not be captured by the procedure, 

and the guaranteed angle bounds do not apply when GradNormal 

is applied to non-smooth surfaces. 
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7. Appendix A. 

In this Appendix we present the details of the proof of Theorem 

1.1. We first state a result on the distortion of angles under 

projections to a rotated plane. 

Lemma 7.1 Suppose that~v = (v1,1),v1 > 0 is a vector in the first 

quadrant of the xy-plane and that ~w = (w1,w2)6=~0 and subtends 

an angle α < π with~v. Rotate the xy-plane around the x-axis 

through an angle of θ, 0 ≤ θ ≤ π/2 and denote the orthogonal 

projections of the rotated vectors~v,~w back to the xy-plane 

by~v(θ)),~w(θ). Then as θ increases from 0 to π/2 the angle α(θ) 

between~v(θ) and ~w(θ) satisfies: 

(1) If ~w is parallel to the positive x-axis or to the negative 

y-axis then α(θ) is monotonically decreasing. 

(2) If ~w is parallel to the negative x-axis or to the positive 

y-axis then α(θ) is monotonically increasing. 

(3) If ~w lies in the interior of the second quadrant then α(θ) 

is monotonically increasing. 

(4) If ~w lies in the interior of the fourth quadrant then α(θ) 

is monotonically decreasing. 

(5) If ~w lies in the interior of the first quadrant then α(θ) 

achieves its minimum at an endpoint of the interval [0,π/2]. 

(6) If ~w lies in the interior of the third quadrant then α(θ) 

achieves its maximum at an endpoint of the interval [0,π/2]. 

Proof Rotation about the x-axis through an angle of θ takes the 

point (x,y,0) to (x,ycosθ,ysinθ). Thus ~v(θ) = (v1,cosθ) and ~w(θ) = 

(w1,w2cosθ). The angle between each vector and the xaxis is 

decreasing with θ, implying the claims in Cases (1) – (4). The last 

two cases needs a more detailed investigation. In Case (5) each of 

w1,w2 is positive, and we can assume that w2 = 1 by scaling. The 

angle α(θ) between~v(θ) and ~w(θ) satisfies 

cosα(θ) =

 v1w1 +cos2θ . p(v12 

+cos2θ)p(w12 +cos2θ) 

For given vectors~v and ~w the cosine of α(θ) has first derivative 

. 

A computation shows that the critical points of cosα(θ) lie either at 

the boundary of the interval [0,π/2], or in the case where v1w1 < 1, 

√ 

at an interior point where θ= arccos v1w1. A further computation 

shows that the second derivative at the interior critical point is 

positive, so there is no interior local maximum. Thus the cosine of 

α is maximized at the endpoints of θ ∈ [0,π/2], implying that the 

angle α(θ) is minimized at one of these two endpoints. For Case 

(6), where the angle between~v and ~w is greater than π/2, we note 

that this angle is complementary to that between ~v and −~w, 

which was studied in Case (5). Thus a maximum in this case 

coincides with a minimum in Case (5), and this again occurs at an 

endpoint of the interval as claimed.  

Corollary 7.1 Suppose two vectors in R3 are orthogonally projected 

to a family of rotated planes that begins with the plane containing 

them and contains planes rotated about a line through an angle of 

at most π/2. If the vectors subtend an angle smaller or equal to π/2 

then the minimum angle between the projected edges occurs at 

either the initial or final projection. If they subtend an angle greater 

than π/2 then the maximum angle between the projected edges 

occurs at either the initial or final projection. 

Let M(f,e) be the mesh produced by the MidNormal procedure 

and M1(f,e) a projection of M(f,e) along gradient vectors of f 

towards the surface F as in the GradNormal algorithm. Since F is 

smooth and compact it has bounded curvature and as e → 0, its 

intersection with a tetrahedron τ is increasingly closely 

approximated by the plane that intersects the edges of the 

tetrahedron at points where F intersects these edges. When the 

surface F separates the vertices of τ so as to define an elementary 

normal disk E, then the plane Q separating the same vertices and 

intersection the edges of τ at points where F intersects these edges 

smoothly converges to F on a neighborhood of τ of radius e. Thus 

the angles of the nearest point projection of an elementary normal 

triangle in τ of diameter less than e onto F gives angles that 

converge as e → 0 to the angles determined by the nearest point 

projection onto the plane Q. 

We note that in the GradNormal projection we do not project 

vertices onto the surface F, but rather onto the plane where F would 

be if f was a linear function. This plane smoothly converges to F in 

a neighborhood of τe as e → 0. We conclude that in computing the 

angles of a projection of an elementary normal triangle in τe whose 

three points have been projected to F, we can assume, with 

arbitrarily small error as e → 0, that F is a plane that separates the 

vertices of τ in the same way as the normal surface F. 
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We now classify the various cases of how a plane F can intersect 

a tetrahedron τ. There are four cases where F ∩τ is a triangle and 

three where it is a quadrilateral that is divided into two triangles 

along a diagonal. A special case occurs when four adjacent 

tetrahedra meet along an edge of valence four and produce a 

rhombus which is then divided into two triangles. Counting cases, 

we see that there are altogether 12 triangles and 36 angles that can 

be projected onto some plane. Due to symmetry, some of these are 

equivalent. The case of a valence-four vertex in M(f,e) includes two 

triangle shapes up to isometry, and requires special treatment and 

we consider it first because it affects projections of the remaining 

cases. Valence-four come from an intersection with an edge of type 

AD in a Goldberg tetrahedron, as in Figure 6. 

We now consider the valence-four vertices. A vertex of 

valencefour appears in the mesh M(f,e) when four elementary 

normal triangles meet the edge AD at its midpoint M. This edge has 

a dihedral angle of 90◦ in each of the four adjacent tetrahedra, and 

the four adjacent tetrahedra combine to form an octahedron as in 

Figure 12. 

 

Figure 12: Four adjacent tetrahedra meet along AD, forming an 

octahedron. The mesh surface meets this octahedron in four 

triangles, with a common valence-four vertex at M. 

We consider first the case where F is a plane that intersects the 

octahedron separating vertex A from vertices B,C,D. We denote by 

X the closure of the set of unit vectors perpendicular to such planes, 

oriented to point towards A. We denote by Y the subset of X 

consisting of normals to planes separating vertex A from vertices 

B,C,D,B2,C2. We want to study angle bounds of projected triangles 

described by the set Y after a valence-four vertex has been removed 

and a new edge have been inserted in the remaining quadrilateral. 

For a plane separating vertex A from vertices B,C,D,B2,C2, the 

induced mesh has a valence-four vertex where it intersects edge 

AD. The GradNormal algorithm removes the four triangles 

adjacent to the edge AD: 4KLM, 4KL2M, 4K2LM and 4K2L2M. 

Note that the four vertices B,C,B2,C2 are coplanar, since there is a 

reflection through M preserving the octahedron and interchanging 

A and D, B and B2, and C and C2. These four triangles form a 

pyramid MKLK2L2 whose base is a flat rhombus parallel to 

rhombus BCB2C2. For a 4, the rhombus is a square that 

realizes dihedral angles of 45 with the faces ABC, ABC2, AB2C and 

AB2C2 of the octahedron, as indicated in Figure 12. We now 

analyze the location of the set Y in the unit sphere. 

Claim 7.1 Suppose F is a plane separating vertex A from vertices 

B,C,D,B2,C2. Then the unit normal vector of the plane F lies in the 

interior of a spherical quadrilateralY ⊂ X. The vertices ofY are 

normal to the faces ABC, ABC2, AB2C and AB2C2. 

Proof The set of planes with these separation properties is a subset 

of the 3-dimensional set of planes in R3, and their unit normal 

vectors Y form a 2-dimensional subset of the unit sphere. If a plane 

with normal vector in Y does not meet a vertex of the octahedron 

then it is in the interior of an open disk contained in Y, since it can 

be rotated in any direction while remaining in Y. The same is true 

for planes that meet only one vertex of the octahedron, since they 

too can be rotated in all directions while still passing through only 

this vertex. Planes in Y meeting two vertices of the octahedron can 

be rotated only in one circular direction, and lie along a geodesic 

arc on the 2-sphere that forms part of ∂Y. Planes that meet three or 

more vertices of the octahedron cannot be rotated while 

maintaining their intersection with these points, and thus form 

vertices of ∂Y. To understand Y we consider which planes 

separating vertex A from vertices B,C,D,B2,C2 meet three or more 

vertices, giving a vertex of ∂Y on the unit sphere, or meet two 

vertices, giving an edge of ∂Y. 

 

Figure 13: The spherical quadrilateral Y indicates normal 

directions to planes that separate vertex A from vertices 

B,C,D,B2,C2. 

Moreover any plane separating A from B,C,D,B2,C2 can be 

displaced through parallel planes towards A till it contains A. It 

follows that the vertices of Y are determined by triples of vertices 

that include A and are limits of planes with the right separation 

property. These are given by normals ~nABC,~nABC2 

vecnAB2C,~nAB2C2 to the faces ABC, ABC2, AB2C and AB2C2, each of 

which gives a vertex of ∂Y. These four points on the unit sphere are 

vertices of a spherical quadrilateral forming Y. All planes that 

separate vertex A from the other vertices of the octahedron with 

normal pointing towards A have unit normal vectors lying inside Y. 

See Figure 13. 

 

In the GradNormal algorithm we replace the four triangles 

adjacent to edge AD with the rhombus BCB2C2, divided into two 
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triangles along a diagonal. We need to estimate the angles of these 

two triangles after they are projected onto a plane F with normal in 

the spherical quadrilateral Y. Lemma 7.1 implies that the largest 

and smallest angles among projections of the rhombus KLK2L2 onto 

F occur either in the rhombus KLK2L2 itself or at a plane whose 

normal lies in ∂Y. This rhombus is a square and a diagonal divides 

it into a pair of 45  triangles. 

We project these two triangles onto planes with normals on ∂Y. 

The rhombus KLK2L2 projects to a parallelogram, so the two 

triangles project to congruent triangles, and it suffices to consider 

the angles of one, say KLK2. We investigate what angles result from 

projecting triangle KLK2 onto a plane normal to ∂Y. Each point in 

an arc of ∂Y is normal to a plane obtained by rotating one face of 

the octahedron to another through an edge containing A. One set of 

angles results from projecting each of the three angles of triangle 

KLK2 to planes determined by the spherical arc from~nABC2 to 

~nAB2C2. We parameterize an arc of normal vectors ~v(t) passing 

from~v(0) =~nABC2 to~v(1) =~nAB2C2 and compute the angles 

resulting from projecting triangle KLK2 to planes normal to~v(t). 

These angles are then given by a collection of functions of a 

parameter t ∈ [0,1]. The three angle functions from triangle KLK2 

are plotted in Figure 14. The absolute minimum of the three angle 

functions on this arc of ∂Y is ≈ 35.3004◦ > 35.25◦, and the absolute 

maximum is ≈ 101.445◦ < 101.45◦. We then do a similar 

computation for each of the other arcs on ∂Y. Figure 15 shows the 

angles resulting from projecting 4KLK2 onto the boundary arc of Y 

running between~nABC and~nABC2. Again each curve lies above 

35.25◦ and below 101.45◦, showing that all projected angles are 

between these two bounds. The remaining two boundary arcs give 

the same angle functions, due to a symmetry of the octahedron. 

 

Figure 14: (a) Angles of 4KLK2 after projection onto the boundary 

arc from ~nABC to ~nAB2C of ∂Y, parametrized by t ∈ [0,1]. Detailed 

views of these graphs near (b) t = 0 and (c) t = 0.5 indicate that 

each curve lies above 35.25◦ and below 101.45◦. 

 

Figure 15: Angles of 4KLK2 after projection onto the boundary arc 

from~nABC to~nABC2 of ∂Y. Again each curve lies above 35.25◦ and 

below 101.45◦. 

We conclude that all projections of the triangles obtained from 

the diagonally divided rhombus in the GradNormal algorithm have 

angles between 35.25◦ and 101.45◦. 

There is a symmetric case involving a rhombus where F is 

a plane that separates vertex D from A,B,C. A symmetry 

interchanges A and D, and it follows that this case gives the same 

angle bounds. 

There are 10 remaining cases to consider for projecting along a 

gradient besides the valence-four case considered above. Four of 

them involve angles obtained by projecting triangles 4KLM and 

4KNQ with edge lengths (b/2,b/2,c/2), and 4LNP and 4MPQ with 

edge lengths (3a/2,b/2,c/2). Six remaining cases involve 

quadrilaterals divided into pairs of triangles: KLPQ is divided into 

triangles KLQ and LPQ, KMPN is divided triangles KMN and 

MNP, and LMNQ is divided into triangles LMN and MNQ. 

Projections of each of these follows the same procedure therefore 

we describe it here only for one of the triangles, 4KLM. 

We compute the smallest angle that can occur from a projection 

of 4KLM onto a plane F that cuts off vertex A from the other 

vertices of the tetrahedron, and for which 4KLM is an elementary 

normal disk. The closure of the set of possible unit normal vectors 

for the plane F, oriented to point towards A, belongs to a spherical 

triangle T. Vertices of T are unit normal vectors~nABC,~nABD,~nACD 

to the faces ABC, ACD and ABD. 

We compute the minimal and the maximal angles that can occur 

from a projection of 4KLM onto a plane F that cuts off vertex A 

from the other vertices of the tetrahedron, and for which 4KLM is 

an elementary normal disk. The closure of the set of possible unit 

normal vectors for the plane F, oriented to point towards A, belongs 

to a spherical triangle T. Vertices of T are unit normal 

vectors~nABC,~nABD,~nACD to the faces ABC, ACD and ABD. 

The dihedral angles between 4KLM and its three adjacent faces 

are either 60◦ or 90◦, and F can be nearly parallel to one of these 

faces. A projection of 4KLM to a nearly perpendicular plane can 

return a triangle with angles close to 0 or π, giving very poor angle 

bounds. Fortunately, the elimination of valence-four vertices in the 

GradNormal algorithm resolves this problem. 

If the plane F is almost parallel to the face ABC and thus nearly 

perpendicular to 4KLM, then F cuts off the vertex A from the other 

vertices of octahedron ABCDB2C2. This case results in a 
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valencefour vertex in the MidNormal mesh. The GradNormal 

algorithm removes the vertex M in this case and thus avoids 

projecting 4KLM to a near perpendicular plane. The same will 

apply for planes with normals in a neighborhood of the vertex 

~nABC of T. We now investigate exactly how T is truncated in the 

unit sphere when we eliminate planes for which MidNormal leads 

to valence-four vertices at M 

Call a plane allowable if it separates vertex A from vertices 

B,C,D. Denote by X the closure of the set of unit normal vectors to 

allowable planes, oriented to point towards A. Then X forms a 

spherical triangle in the unit sphere with 

vertices~nABC,~nABD,~nACD. Inside X is a subset Y ⊂ X 

corresponding to normals of allowable planes that separate A from 

the vertices B2,C2 of the octahedron. All normals to planes for 

which MidNormal gives valence-four vertices at M are in Y, but 

some of these are also normal to planes that lead to higher valence 

vertices at M. This leads us to define another subset Z ⊂ Y whose 

points are in the closure of normals~v with the property that if the 

normal to an allowable plane is in Z, then any parallel allowable 

plane separates A from vertices B,C,D,B2,C2. It can be seen from 

Figure 12 that a neighborhood of~nABC in X lies in Z, so this set is 

non-empty. We now determine the precise shapes of Y and Z ⊂Y 

on the sphere, determining the configuration shown in Figure 16. 

We first consider what points lie inY. Planes normal to vectors in 

Y can be moved to a parallel allowable plane that separates A from 

vertices B2,C2,B,C,D. Any such plane can be pushed through 

parallel planes in Y towards A, until it hits A, since it separates A 

from the other five vertices. The boundary of the set of such planes 

containing A is a spherical quadrilateral with vertices 

corresponding to the normals to the four faces of the octahedron 

meeting A, namely 

~nABC2,~nAB2C2 =~nBCD,~nACB2,~nABC. ThenY consists of points 

inside the spherical quadrilateral with these four vertices, a subset 

of the spherical triangle X. 

Next we consider what points lie in Z. An allowable plane 

normal to a vector in Z must separate A from B2,C2,B,C,D. This 

plane can be pushed away from A through parallel planes until it 

first hits one or more of the other five vertices. It cannot first hit D, 

as no allowable plane through D separates A from B2,C2,B,C. 

This set of vertices that it hits must include some subset of B,C 

since if it hits only one or both of B2,C2 then a parallel plane in 

Xwould not separate A from vertices B2,C2,B,C,D and thus its 

normal would not lie in Z. We consider which sets of three or more 

vertices may be reached by planes in Z when these planes are 

translated away from A through parallel planes. These form some 

of the vertices of the spherical polygon Z. Note that the four 

vertices B2,C2,B,C are coplanar, and form one plane defining a 

vertex of Z. Thus this is the only vertex hit by pushing a plane in Z 

away from A. Other vertices are found by planes in Z that contain 

A and two or more additional vertices, giving vertices of Z 

at~nABC,~nABC2,~nAB2C (but not ~nAB2C2, a neighborhood of which 

lies in Y − Z). The resulting region Z ⊂ Y is shown in Figure 16. It 

is the interior of the spherical quadrilateral formed by spherical 

geodesic arcs joining the four vertices~nABC,~nABC

. 

 

Figure 16: The spherical triangle X consists of normals to planes 

separating vertex A from vertices B,C,D. The regionY ⊂X consists 

of directions for which at least one normal plane gives a vertex of 

valence-four at M. The region Z ⊂ Y consists of directions where 

all normal planes in X give a a vertex of valence-four at M. 

The region X −Z is a spherical quadrilateral, since the vertices 

~nABC2, ~nBCB2C2 and ~nAB2C lie on a single spherical geodesic. This 

holds for all a and follows from the fact that lines BC2 and B2C are 

parallel to a line of intersection of planes ABC2 and AB2C. 

Therefore unit normal vectors for planes BCB2C2, ABC2 and AB2C 

are coplanar. Moreover X −Z is contained in a hemisphere, since 

all vectors in X have positive inner product with A. 

Each vertex of the spherical quadrilateral X −Z has distance at 

most π/2 from~nKLM, as seen by computing dihedral angles of the 

faces of the tetrahedron τ. The maximum distance of a boundary 

point from ~nBCD occurs at a vertex of X − Z, since X − Z is a 

spherical polyhedron contained in a hemisphere. It follows that 

each boundary point of X −Z has distance at most π/2 from 

~nKLM =~nKLM. Corollary 7.1 implies that extreme angles for the 

projection of 4KLM in the GradNormal algorithm are realized 

either by the triangle itself or by a projection to a plane with normal 

vector lying on one of the boundary edges of X −Z. There are three 

angles for 4KLM and four boundary edges of X −Z determining 

planes onto which they can project. The three angle functions given 

by 4KLM when projected onto the arc from ~nACD to ~nAB2C are 

shown in Figure 17, as are angles along each of the other three arcs 

of ∂(X −Z). 
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Figure 17: Angles of 4KLM after projection onto an arc of ∂(X − 

Z) running from (a) ~nACD to ~nAB2C, (b) ~nBCD to ~nAB2C, (c) ~nABD 

to~nACD, and (d)~nABD to~nABC2. Graphs repeat due to symmetries. 

Again all angles are in . 

We now consider projections of triangles after the removal of 

valence-four vertex. 

Triangles 4KNQ,4LNP and 4MPQ, as well as the triangles 

coming from dividing elementary quadrilaterals along a diagonal, 

all give rise to similar angle functions for each edge of a 

corresponding quadrilateral spherical region. Altogether there are 

12 triangles with 36 angles projecting to four edges each, or 144 

angle functions in total, each defined on an interval of normal 

directions connecting two points on the sphere along a spherical 

arc. The union of all these angle functions is graphed in Figure 18. 

This completes the proof of Theorem 1.1. 

 

Figure 18: Angles of all triangles in the GradNormal mesh are 

bounded above and below by the maximum and minimum values 

obtained in these graphs. A total of 144 angles are graphed over 

the boundary of spherical regions to produce these functions. 

Because of symmetries and coinciding functions, there are only 12 

distinct graphs resulting from these 144 angles. All curves lie 

above 35.25◦ and below 101.45◦. 
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