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The development of single charge resolving, macroscopic silicon detectors has opened a window into rare

processes at the O(eV) scale. In order to reconstruct the energy of a given event, or model the charge signal

obtained for a given amount of energy absorbed by the electrons in a detector, an accurate charge yield model is

needed. In this paper we review existing measurements of charge yield in silicon, focusing in particular on the

region below 1 keV. We highlight a calibration gap between 12–50 eV (referred to as the “UV-gap") and employ

a phenomenological model of impact ionization to explore the likely charge yield in this energy regime. Finally,

we explore the impact of variations in this model on a test case, that of dark matter scattering off electrons, to

illustrate the scientific impact of uncertainties in charge yield.

I. INTRODUCTION

Recent developments in silicon (Si) based particle detectors,

including cryogenic calorimeters [1, 2] and pixelated quantum

charge detectors [3, 4], have ushered in a new era of O(eV)

sensitivity to resolving the deposited energy of particles that

traverse through them. These devices, capable of counting

individual charge-pairs, not only have specific particle physics

applications — such as in placing constraints on the existence

of light MeV scale dark matter that recoils off electrons [4–7],

or in probing non-standard model neutrino interactions [8, 9]

— but broad astronomical applications such as in exoplanet

searches [10].

Common to all of these use cases is the need to precisely

identify the energy of the external particle. Generically, par-

ticle detectors work by measuring the deposited energy in

an absorber material by one of three main avenues: charge

production (ionization), photon production (e.g. scintillation)

or collective excitations (phonons and plasmons), with fur-

ther down-conversions intermixing these different production

modes. In a semiconductor like Si — where ionization plays a

dominant role above the band gap Eg (∼1 eV) — the deposited

recoil energy Er is often inferred from counting the number of

electron-hole pairs created, n, by way of the mean energy-per-

pair εeh . Due to the concurrent emission of phonons during

the ionization process, εeh > Eg and εeh is only reflective of the

aggregate response of the material. The Fano factor, F, quan-

tifies the dispersion of n for a given E and is sub-Poissonian

(F<1). For deposits �20 eV in Si the statistical nature of

this ionization process leads to asymptotic behaviour in the

values for εeh and F and thus provides for a simple statisti-

cal relationship between the expected energy and what was

counted.

In this paper, we demonstrate that this relationship is not

straightforward in the low-count regime. We show that sys-

tematics on the order of 50% can arise when applying ion-

ization models in scientific applications due to both the finite

∗ ramanathan@uchicago.edu
† kurinsky@fnal.gov

band-gap and complex features of the band-structure of crys-

talline Si which are not averaged out, and that the width of

the hole band, rather than plasmon interactions, has a visible

impact on the charge yield in the regime between 12–50 eV.

Disentangling the effect of ionization is vital for correctly at-

tributing the response of the detector to the physics of dark

matter or some other unmeasured process, such as potential

signals from elastic nuclear recoil, the Migdal effect1 [11], or

other collective effects [12, 13].

The existing literature on ionization response is vast and

often delves deeply into the condensed matter foundations of

this topic which perhaps does not serve well a practitioner

from the particle-physics community. As such, this paper is

concerned with summarizing and providing for a simple phe-

nomenological model, well supported by data, to allow exper-

imental collaborations using Si detectors to provide results on

an equal footing. We provide tables of computed probabilities

pn(E), interpreted as the probability to ionize n charge-pairs

as a function of the deposited energy, for E ≤ 50 eV and a

closed functional form for E > 50 eV. This paper also serves

as a blueprint for constructing a low-energy ionization model

for similar semiconductor targets, which we leave for future

work.

II. MODELING QUANTUM YIELD

The process we attempt to model is energy redistribution

from an initial hot carrier2 to the electron and phonon system,

in particular the ionization of subsequent electron-hole pairs

by the initial carrier, known as impact ionization. All of the

initial recoil energy is given to a single electron-hole pair. The

number of total electron-hole pairs created after the cascade

1 Ionization induced by the sudden shift of a recoiling nucleus
2 A hot carrier is any charge with momentum much larger than that accessible

thermally. For high-purity Si at and below room temperature, all charge

pairs generated by particle interactions can be considered hot carriers.
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process is typically calculated as

n =
Er

εeh(Er )
(1)

where εeh has been shown to be constant in the high-energy

limit (see Table I).

At low energy, we know that this formula breaks down. In

a perfect lattice, any ionizing interaction below Eg is energet-

ically inaccessible, so this equation is undefined (εeh → ∞).

For energies between Eg and 2Eg, only one electron-hole pair

is allowed by energy conservation, forcing a direct relation-

ship between energy and εeh to ensure the mean is fixed. The

uncertainty in this function therefore enters between Er = 2Eg

and the high energy limit Er >> Eg.

This allows us to summarize the goal of this work as fully

characterizing the behavior first of εeh:

εeh(Er ) =



∞ Er < Eg

Er Eg ≤ Er < 2Eg

εimp(Er ) Er ≥ 2Eg

εeh,∞ Er → ∞
(2)

where εimp(Er ), the mean energy imparted by impact ioniza-

tion, is the unknown function.

This process also has a variance σ2(Er ), commonly related

to the mean energy by the Fano factor [14]:

F(Er ) =
σ2(Er )
neh(Er )

=

σ2(Er )εeh(Er )
Er

(3)

This factor, too, has an energy dependence, and in the high-

energy limit some measurements have been made, but this

parameter is far less well constrained (see Table I). From en-

ergy conservation, F = 0 below 2Eg and like the mean, has

an asymptotic limit. The function is therefore

F(Er ) =



0 Er < 2Eg

Fimp(Er ) Er ≥ 2Eg

F∞ Er → ∞
(4)

This two-component model has been repeatedly validated

for energies >6 keV (see Table I). A straightforward exten-

sion to lower energies, a placeholder often used in literature

when discussing low energy phenomena, is to modify the

piece-wise descriptions above to εimp = Er and Fimp = 0

for Eg < Er < εeh; we refer to this as the “Simple Model"

hereafter. Our goal here however is to explore a phenomeno-

logical model which stitches together the near-gap and high-

energy limits based on available experimental measurements.

This requires a framework for calculating εimp and Fimp . We

begin by breaking down the calculation into constituent com-

ponents, and then explore calculations made under different

assumptions, as well as implications for Fano factor modeling.

Following Ref. [15], we calculate the number of electron-

hole pairs generated as

n(Er ) = 1 +

∫ Er−Eg

E=0

dEP(E, Er )〈N(E)〉 (5)

FIG. 1. Evolution of the finite support Beta distribution, used to

model the double probability distribution P(E,Er ), for selected val-

ues of shape parameter α. The α → 0 case corresponds to all the

deposited energy going to a single carrier. The α = 1 scenario is a

uniform distribution, while α → ∞ corresponds to an equal energy

splitting. Overlaid (dotted lines) is data extracted from Wolf [15]

for Si at 4.32 and 4.42 eV (derived from internal quantum efficiency

measurements of a Si solar cell) and Si0.32Ge0.68 at 1.66 eV (numer-

ical calculations), indicating the general evolution even over a small

energy range between the different regimes of energy partitioning

between hot carriers.

where P(E, Er ) is the probability of the interaction occur-

ring with a given energy distribution between the electron and

hole, and 〈N(E)〉 is the quantum yield, the average number

of charges produced by impact ionization by a carrier with

initial energy E above gap 3, assumed identical for electrons

and holes. By definition, if the carriers do not impact ionize

any additional electron-hole pairs, n(Er ) = 1.

A. Initial Energy Distribution

The role of P(E, Er ) is to describe how energy is distributed

between the carriers in the electron-hole pair, and is normal-

ized in E by definition to 2 (one electron and one hole per pair).

The full treatment used by Ref [15] is to treat carriers equally,

such that this function obeys the symmetry relationship

P(E, Er ) = P((Er − Eg) − E, Er ) (6)

where, for small energies, we find the distribution is highly

peaked around E = 0 and E = Er −Eg. The robust calculation

involves a summation over allowed energy states for the con-

duction and valence bands given the transition matrix element

for photon absorption, and that model will be included in our

3 Note that Er is the total absorbed energy, measured from the top of the

valence band, while E is the energy above the bottom of the conduction

band for electrons or below the top of the valence band for holes.
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comparison of calculations. The symmetry of this function,

however, allows for three simplifying assumptions to capture

the full range of possible outcomes:

1. P(E, Er ) = δ(E)+δ(Er−Eg−E) – A peaked distribution

for maximal energy imbalance, approximately true for

very low energy transfer (referred to in this paper as ‘all

to one’);

2. P(E, Er ) = 2
[
Er − Eg

]−1
– A flat distribution, approx-

imately true for Er >> Eg (referred to in this paper as

‘uniform’);

3. P(E, Er ) = 2δ(Er − Eg − 2E) – A peaked distribution

at half of the above-gap energy, which occurs for Er

around resonance features near the ∼ 3.4–4.2 eV direct-

gap transitions in Si (referred to in this paper as ‘equal

split’). This is also the case that minimizes overall im-

pact ionization, which is a strong function of energy.

We extend these three cases to the one-component model

described by the one-parameter beta distribution

P(x |α) = 2

B(α) xα−1(1 − x)α−1 (7)

where x = E
Er−Eg

and B(α) is the one-parameter Beta function

used to normalize the probability distribution. One can see that

this function has the same symmetry as P(E, Er ), and each

case above has a corresponding α value: case 1 corresponds

to α→ 0, case 2 to α = 1, and case 3 to α→ ∞. These cases,

and more general cases for a range of α values found in this

paper, are shown in Fig. 1.

We can qualitatively compare the shape of this distribution

to the calculations done by Ref. [15], to set expectations for

how α scales with energy. We see that, for Er ∼ Eg, the

excess energy is given entirely to either the electron or hole,

and we expect α → 0 in the low energy limit. Around Er =

4.3 − 4.4 eV, see Fig. 1, we observe a transition from equal

energy split to more uniform energy sharing, corresponding to

a rapid increase in α through 1 to α > 1. Ref. [16] notes that

the hole valence band width W is only 12 eV wide, and thus

we expect in the high-energy limit that the electron takes the

majority of the energy; so we expect the applicability of our

P(E, Er ) description to lessen due to its inability to capture the

narrower allowed space for the hole energy and the asymmetry

of the distribution.

B. Impact Ionization Model

The second component of the yield model is the impact

ionization function 〈N(E)〉, which we recollect describes the

mean number of electron-hole pairs produced by a hot car-

rier with initial energy E . This function is bounded by two

extremes; in the limit of maximal impact ionization, up to

〈N(E)〉= E/Eg, electron-hole pairs can be created (rounding

down to the nearest integer), and in the limit of no impact

ionization, 〈N(E)〉= 0. In the second case, energy is largely

dissipated by phonon emission, meaning that the true 〈N(E)〉

is thus determined by a rate balance between impact ionization

and phonon emission as a function of energy. Ref. [17] shows

that the dominant phonon-scattering mechanism in these en-

ergy ranges, both by rate and total energy dissipated, is through

the emission of optical phonons, and thus acoustic phonon

emission can be neglected in impact ionization modeling.

As in Ref. [15], we adopt the impact ionization model of Alig

et al. [18]. In this model, only two energy dissipation processes

are considered: electron-hole pair creation, and emission of a

phonon of energy ~ω0. In Si, ~ω0∼63 meV [17], so a charge

carrier above gap can easily create many optical phonons. If

the rate of electron-hole pair creation is Γeh(E) and phonon

production is Γph(E), then the probability of generating an

electron-hole pair at a given energy is dependent only on the

ratio of these rates, found to be

Γph(E)
Γeh

= A
105

2π

(E − ~ω0)1/2
(
E − Eg

)7/2 . (8)

Here A is a constant of the system, defined as

A =
|Mph |
|Meh |

4π4

V∆

(
~

2

2m

)3

(9)

where V is the semiconductor volume, ∆ is the volume per

electronic state, m is the free particle mass, and |Mph | (|Meh |)
is the phonon (electron) scattering matrix element. This en-

ables us to calculate the charge production probability of a

particle with energy Ei , using Eq. 8, as

peh =

[
1 +
Γph(Ei)
Γeh(Ei)

]−1

. (10)

The elegance of this model is that it is able to reduce the com-

plex micro-physics of the problem to one phenomenological

constant, A, which can be tuned to match experimental val-

ues. This is beneficial due to the complex nature of electron-

electron interactions at this energy scale.

There are a number of simplifying assumptions made in this

model which need to be explicitly stated. The electrons and

holes are assumed to be free particles to first approximation,

and therefore scattering is isotropic and effective masses are

vacuum masses. It assumes all states are equally accessible,

and therefore that the matrix element for each transition is

identical. We do however constrain the hole energy Eh ≤ W .

All these assumptions are akin to assuming interactions are

highly athermal and occur far enough above the band-gap that

the detailed band structure is negligible. It also simplifies

phonon scattering substantially, allowing for a single, quan-

tized phonon energy, ignoring the multiple optical phonons

and the continuum of acoustic phonon energies [17].

The latter assumption is justified by the rate difference men-

tioned earlier; the optical phonons all have comparable energy,

so the impact of having multiple distinct energies is small. The

former assumption comes from the high density of states for

particles far above the band-gap, but nonetheless makes A

a non-physical parameter, and requires explicit validation of

this model before it can be considered predictive. The ben-

efit is that A can be tuned to produce the correct εeh in the
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TABLE I. Literature values for the Fano factor F, mean energy per electron-hole pair εeh in

the high-energy limit, band-gap energy Eg the ratio A of phonon-carrier to carrier-carrier

scattering, the optical phonon energies ~ωo, and the plasmon energy ~ωp l. An earlier

version of this table specific to Fano factor can also be found in [36]. We summarize the

energy gap at a few key temperatures, but all references have many more data points and

focus on fitting measurements to the functional form of [22]; see there for more details.

We exclude band-gap data from [37], fit in [22], due to discrepancy with more modern

methods which have seen widespread adoption (see for example [33]). For the last three

values, these are not from quantum yield measurements. The [19] values come from hot-

electron injection measurements. The other two values come from the sources specified

above.

Parameter Value Temperature Source Reference

F

0.118 110 – 240 K 5.9 keV γ [25]

0.117 180 K 5.9 keV γ [26]

0.14 – 0.16 180 K 2 – 3.7 keV γ [27]a

0.128 130 K 5 – 8 keV γ [28]

0.119 123 K 5.9 keV γ [29]

3.66 eV 300 K 1 eV – 1 keV γ [30]

3.66 eV 300 K 115 – 136 keV e,γ [31]

3.63 eV 300 K 1 MeV e−, 5.5 MeV α [32]

3.62 eV 300 K 5.5 – 6.3 MeV α [31]

εeh 3.67 eV 180 K 2 – 3.7 keV γ [27]

3.749 eV 123 K 5.9 keV γ [29]

3.75 eV 110 K 5.9 keV γ [25]

3.70 eV 100 K 5.5 MeV α [33]

3.72 eV 6 – 70 K 480 keV γ [34]

3.72 eV 5 K 5.5 MeV α [33]

Eg

∼1.12 300 K

Photoabsorption

[23]

1.127 290 K [24]

1.164 110 K [24]

1.166 90 K [24]

1.169 0 K [23]

1.170 0 K [24]

A 5.2 eV2b 300 K 2 – 5 eV e− [19]

~ω0 59 meV (TO), 62 meV (LO) N/A DFTc [17]

~ωp ld 16.6 ± 0.1 eV N/A EELSe [35]

a See also [38]
b Data compared to the value obtained by [18]
c Calculated from density functional theory (DFT), assumed temperature independent;

see [17] for more details.
d We did not do an exhaustive survey of plasmon energy measurements as they were

not important for the detailed low-energy modeling, but we expect there is some

uncertainty in this value beyond the statistical uncertainty on this measurement.
e Electron energy-loss spectroscopy

3. Scholze et al. [30] measure of εeh at 300 K between 3

and 1500 eV, with a gap between 8 eV and 50 eV,using

a Si photodiode in an X-ray beamline. We use these

measurements to extract an expected curve for α as a

function of photon energy at room temperature. These

data are shown in Fig. 4.

The gap in the Ref [30] data is reflective of a broader “UV-

gap" in the region between VUV and X-ray energies caused

both by lack of tunable sources and the very short mean free

path of photons in this energy range in all materials (see e.g.

Ref. [39]). For wavelengths below ∼8 eV, photons from a

thermal or athermal source can penetrate through thin windows

and coatings, and enough deposition occurs in the Si to be

distinguished from quenched surface events. Above 8 eV,

very few table-top sources exist, and only specialized windows

can transmit light with adequate efficiencies. At 50 eV and

above X-ray fluorescence sources become available4. At these

energies, the photoelectric cross section also begins to drop,

and high intensity light can be generated and propagated to the

detector through thin metal windows [30]. For these reasons

very little data exist over this 40 eV energy gap, and in the

following section we discuss the extrapolations we employ to

stitch together the quantum yield across this gap.

4 The lowest Kα line is found in Lithium at 52 eV
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A. Monte-Carlo Simulation

To compute pn, εeh F, and 〈N(E)〉 we employ the Monte-

Carlo algorithm outlined in Ref. [40], following the schematic

shown in Fig. 1 of Ref. [18]. A single external particle

deposits energy Er , and with selected parameters A, ~ω0 and

Eg triggers a cascade briefly outlined as follows:

1. If Er > Eg, we generate an electron and a hole with ener-

gies given by P(E, Er ), but with the imposed constraint

Eh < W ; otherwise, the chain terminates.

2. We follow each particle as it down-converts. Any elec-

trons with energy>~ωpl are assumed to create plasmons

of quantity np = bEi/~ωplc. These are individually

treated as impact ionizations.

3. We calculate the charge production probability pn of a

particle with energy Ei using Eq. 10. We select ioniza-

tion or phonon production according to this probability.

4. If a phonon is produced, then energy ~ω0 is lost in the

medium and the process loops back to step 2. with new

energy Ei+1 = Ei−~ω0.

5. If instead an ionization event occurs then 3 new particles

are effectively created — the original plus and electron

and a hole, with a total energy of Ei − Eg due to the

release of the new electron-hole pair. We assume here

that the conduction and valence bands are isotropic and

parabolic, and that all states are available to the new

scattered products. The split between these 3 particles

results in energies Ei+1,e,h with values given by integrat-

ing over the density of states (see Section II.B. in Ref.

[40]) and where Ei+1 is the new energy of the original

particle. Here is where, post-hoc, we set Eh ≤ W , also

applicable to the original particle if it is a hole, and

re-split the difference in energies uniformly between re-

maining carriers.

6. If Ei+1 <Egthen the process terminates and only Ee,h

are fed back into step 2. otherwise all 3 particles are

independently looped back to step 2..

This process continues until all tracked particles have kinetic

energy below Eg, including those produced by the plasmons,

resulting in the production of n electrons (and holes). Repeat-

ing this nested approach yields a distribution of charge pairs,

normalization of which gives the requisite probability of of

pair-creation pn.

IV. RESULTS

We begin this section by exploring, through simulation, the

effects of the parameters A and Eg at ∼100 eV (>>Eg) on εeh
and F, allowing us to fold in the effects of temperature. Next,

we present the results of fitting our single-parameter model

to the data from Ref. [30], to finally produce pair-creation

probabilities pn(T).

A. Micro-physics & Temperature dependence

To investigate the effects of both temperature, by proxy

of gap energy Eg, and changes in the probability of phonon

emission A, we compute the dependence of both Egand F on

these parameters via simulation. Based on linear behavior

across both dimensions for both quantities, we identify the

global relations

εeh = 1.7Eg + 0.084A + 1.3, (12)

F = −0.028Eg + 0.0015A + 0.14 (13)

via least-squares regression. We confirm the consistency of

both the model and of selecting A = 5.2 eV2, matching the

original derivation in Ref. [18] and the empirical validation

in Ref. [19], by noting that the resultant εeh values are in

agreement with Table I at 300 K, seen by the confluence of

dashed lines in the planar slices of Fig. 3.

Fano values, shown in Fig. 3 (bottom) are constant at 2%

level, but undershoot literature as per Table I. Unlike for εeh
this model is not tuned for a specific Fano factor, and is thus

predictive. The discrepancy observed between Fano mea-

surements, and between the model and measurements, can

potentially be attributed to one-sided systematics inherent to

the measurements we quote that serve to inflate the measured

Fano factor (see Appendix A). We note, however, that the most

recent measurements of the Fano Factor in Si in Ref. [29], us-

ing a device with single charge resolution, are closer to our

asymptotic value of F∞ = 0.115 than prior considerations.

Finally, εeh tracks the relationship from the experimental

setup of Ref. [33], to within 0.5%, allowing use to con-

clude that our single-parameter model, regardless of energy

partition, is capable of reproducing measured εeh and F for

high-energy energy depositions.

B. Energy Dependence

We account for P(E, Er ) by extracting it from data, specif-

ically Ref. [30], by fitting to measured pair creation energy

below 100 eV as a function of energy. This fit is performed

assuming A = 5.2 eV2 and by setting T = 300 K, the tem-

perature at which these data were acquired. The left panel

of Fig. 4 shows the mean energy-per-pair εeh as a function of

initial energy for the 3 simplified energy distribution scenarios

discussed in Section II A. We note that the assumptions lead

to the same behavior below 3 eV, and converge to the same

value by ∼100 eV, but are largely discrepant in the energies be-

tween these points. None of the simplified models accurately

reproduce the measured behavior between 3 and 10 eV; by

20 eV, all but the extreme α = 0 energy distributions have con-

verged. We turn off the effects of W and plasmon production

when discussing the simplified energy distribution scenarios

to more precisely disentangle their effects on the overall charge

yield.

The lack of experimental data in the region between

∼9–50 eV, often termed the “UV-gap", necessitates the use

of an extrapolation, where we have chosen to drive α to 1 par-

simoniously using a single parameter exponential tied to the







9

FIG. 6. Pair-creation probability distributions for best-fit model at

0 K, 100 K and 300 K (former curves effectively overlap). These

lines are to be interpreted as the probability to ionize the labeled

number of charge pairs for a given deposited energy. These are not

PDFs in that only the sum of curves across a given point in energy is

normalized to 1.

tests of the Hubble Wide Field Camera 3 CCDs at 224 K.

We stress here the point that both 〈N(E)〉 and F are de-

rived quantities, which are arguably only useful at “high" en-

ergies where they are a shorthand for packaging the messy

dynamics of ionization response with appeals to the central

limit theorem. We argue that the probability of creating n

electron-hole pairs, pn, is the preferential basis to understand

charge yield by formulating these quantities in terms of ion-

ization probability: 〈N〉 = ∑∞
n=0 npn, 〈N2〉 = ∑∞

n=0 n2pn, and

F =
〈N2 〉−〈N 〉2

〈N 〉 from which we recognize that the use of ag-

gregate quantities, and exclusion of higher moments, informa-

tionally constrains both parameters. Stated more concretely,

if
∑

n

[
pn(E) > 0

]
> 2, as is true for most energies, then

there are more terms than constraining equations and multiple

solutions of pn would satisfy the same 〈N(E)〉 and F curves.

However, due to the well behaved nature of εeh and F for

Er & 50 eV, where they are effectively flat, we can compute

the exact Gaussian functional form,

pn(E) = 1
√

2πnF∞
Exp

[
−1

2

(
nεeh,∞ − E
√

nF∞εeh,∞

)2]
(14)

to infer pn in and beyond this region, sufficient for practical

applications.

D. Scientific Impact Example: DM Scattering

To investigate how low energy ionization statistics can po-

tentially affect scientific results, we study the case of dark

matter particles scattering off electrons. The bound nature of

the electrons and crystalline band structure of the target re-

quires us to follow the prescription of Ref. [5] to compute

FIG. 7. Top: The quantum yield, defined as the average number of

charge pairs created at a given energy, for the best-fit model at 0K,

100K and 300K. Empirical data from Refs. [15, 41–43] are provided

as points of comparison. Bottom: Variation of the Fano factor Ffor

the best-fit model at 0K, 100K and 300K. While the asymptotic values,

equivalent to those computed in Fig. 3 (bottom right), are within 1%

of each other, there can be upwards of a ∼10% difference at specific

energy values.

scattering rates. Exploring the case of a 2 MeV and 10 MeV

DM particle for form factors FDM ∝ q−k (k = 0, 2), after con-

volution with the various presented charge yield models, we

see the ionization spectra represented in Fig. 8. The simple di-

vision of energies into bins of εeh dramatically underestimates

the tails of the spectra by many orders of magnitude. Even

with application of a charge yield model, 1 and 2 e− produc-

tion rates are significantly different for varying α = 0 → +∞.

Translating these scattering spectra to a hypothetical direct de-

tection experiment, under the assumption of a 2 e− threshold

and Poisson background fluctuations, we can look at exclu-

sion curves of electron-recoil dark matter scattering in a Si

detector as presented in Fig. 9. These curves represent 90%

confidence level upper limits on the reference cross-section σe
for a 1 kg year exposure with 0 observed events, as a func-
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FIG. 8. Dark matter electron scattering ionization spectra for the various ionization schemes presented in this paper, using a DM form factor

FDM ∝ 1 and masses of 2 MeV (left) and 10 MeV (right).

tion of DM mass. The effect of the charge yield modeling is

pronounced at masses < 10 MeV as seen by the lower panel

ratio of the various models to the parsimonious simple model

— revealing a difference of ∼50% in limits when using a

more accurate charge yield prescription. The case of α = 0

significantly underestimates limits, particularly at masses of

1–5 MeV. Finally, the sensitivity of the experiment is differ-

ent for the different cases, with lower mass thresholds varying

from 0.5–1 MeV, which is a purely model dependent effect and

does not accurately reflect the true underlying physics.

V. DISCUSSION

We have provided a physically motivated charge yield model

for a Si detector. By appealing to well-measured laboratory

data, we have constructed an ionization response model valid

between∼1.2–8 eV and further motivated an extension into the

“UV-gap" in which there are no current measurements. We

have investigated how these probabilities vary with tempera-

ture and have explored the scientific impact of these models

on a test case of electron-recoil dark matter.

In contrast to the treatment in Ref. [44], in which the Fano

distribution is used to model charge yield down to the ion-

ization threshold, we find that both εeh and F are inadequate

to accurately capture low-energy ionization yield. This is in

large part due to the solid-state nature of Si; for processes

close to the gap, where the phase space is restricted by the

band-structure, we observe non-trivial departures from this

simple two-parameter model. For processes at energies much

larger than the band-gap, where carriers can be treated as free

particles, we find that we recover the simple model.

While this model is the best current estimate of the behavior

of charge yield due to electron-recoil processes in Si, we wish

to highlight shortcomings of the model which further data

will help to address. In particular, this model appeals to the

plasmon (with energy ∼17 eV in Si) to explain the linearity

at high-energy without any theoretical motivation for doing

so. While the plasmon explanation provides a convenient

heuristic, it is merely empirical, and is not predictive, as shown

in Ref. [45]. In this work, we see no significant feature at the

plasmon energy in any model. The parameter which has the

largest impact on ionization yield is the width of the hole

band, which introduces a non-linearity in the predicted yield

for energies comparable to the hole band width, ∼12 eV, as

shown in Fig. 6. Direct measurements of charge yield near the

hole band edge and around the plasmon energy, within the UV

gap, may yield more information about the relative importance

of these processes at intermediate energies between the optical

and soft X-ray data currently available.

In contrast, the general consensus ties the high-energy value

of εeh only to the band-gap energy and impact ionization en-

ergies. The generic expression for εeh is [33, 45–47]

εeh = Eg + 2L
[
Ei,e + Ei,h

]
+ Er (15)

where L is a factor which depends on the dispersion curve of

the conduction and valence bands, Ei,e and Ei,h are the ion-

ization thresholds for electrons and holes, and Er are phonon

losses. Ref. [33] shows that, for Ei,e ∼ Ei,h ∝ Eg, we get the

formula

εeh = C · Eg + Er (16)

where Er takes on values from 0.25 to 1.2 eV, and C is found

to be ∼2.2 to 2.9 eV. Ref. [47] finds, using a broader range

of materials, the parameters C ∼ 2.8 and Er ∼0.5–1.0 eV.

Studying materials with a fixed plasmon energy but varying

gaps (such as the polytypes of SiC, with gaps ranging from 2.4

to 3.3 eV for a fixed plasmon energy[48]) may help elucidate

the role the plasmon plays, if any, in this down-conversion

process.

Finally, we note that this model does not include the effects

of inner shell electrons or any possible temperature depen-

dence in the phenomenological constant A. The latter we
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FIG. 9. Dark matter electron scattering exclusion curves for a hypothetical experiment assuming a 2 e− threshold and Poisson backgrounds for

DM form factor FDM ∝ 1 (left) and FDM ∝ q−2 (right). The ratios of the curves against the simple model are plotted below each, highlighting

the around 50% discrepancy to computed limits accounting for silicon ionization micro-physics.

expect to be a small effect, as the energy scales involved are

higher than thermal energies at room temperature. The for-

mer have been noted to produce slight increases in the relative

energy per pair (see e.g. Ref. [38]), but only at the level of a

few percent, and likely sub-dominant to statistical fluctuations

for all but the most precise measurements. In addition, it is

possible that charged particles and photons, which impart a

different distribution of momenta to the electron-hole pairs,

may require slightly different amounts of energy per subse-

quent pair created. Direct measurement of ionization yield

by low energy electron recoils using Electron Energy Loss

Spectroscopy (EELS) and an active target will allow for bet-

ter characterization of the correspondence between electronic

depositions from massive particles or photons.

Appendix A: Fano Factor Systematics

A significant observation in this paper is that the Fano factors

predicted by the model are lower than all of the existing mea-

surements, which are inconsistent with each other. This can

be accounted for by the one-sided systematic introduced into

the measurement if finite charge collection efficiency (CCE) is

not accounted for, or if other secondary processes can lead to

impact ionization of additional charge in the crystal.

As an example of the systematic effect on measured Fano

factor, we consider here the effect of finite charge collection.

In this case, the probability of observing n − k final charges

given n initial charges is [49, 50]

Pn−k =
n!

k!(n − k)!η
n−k(1 − η)k, (A1)

where η is the collection efficiency. For η = 1, we find that

Pn−k = δ(n − k) as expected. If we assume perfect charge

resolution, we can calculate the measured mean (nmeas) and

variance (σCCE ) of the resulting charge distribution, which

gives

nmeas = η · n, (A2)

σ2
CCE = η · n(1 − η) = nmeas(1 − η). (A3)

Given these moments, we thus get the measured Fano factor

Fmeas =
σ2
meas

nmeas

(A4)

=

σ2
f ano
+ σ2

CCE

nmeas

(A5)

≈ F · n + η · n(1 − η)
η · n

(A6)

=

F

η
+ (1 − η) (A7)

where F is the intrinsic Fano factor. Here the approximate

sign comes from the fact that the CCE variance is slightly

broadened due to the Fano factor as well; this approximation
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