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ABSTRACT: The widespread occurrence of organic micropollutants (OMPs) is a M
challenge for aquatic ecosystem management, and closing the gaps in risk 5|,

1

assessment of OMPs requires a data-driven approach. One promising tool for :
increasing the spatiotemporal coverage of OMP data sets is through the active owps  Lakes
involvement of citizen volunteers to expand the scale of OMP monitoring. Working
collaboratively with volunteers from the Citizens Statewide Lake Assessment
Program (CSLAP), we conducted the first statewide study on OMP occurrence in
surface waters of New York lakes. Samples collected by CSLAP volunteers were
analyzed for OMPs by a suspect screening method based on mixed-mode solid-
phase extraction and liquid chromatography-high resolution mass spectrometry.
Sixty-five OMPs were confirmed and quantified in samples from 111 lakes across
New York. Hierarchical clustering of OMP occurrence data revealed the relevance of
11 most frequently detected OMPs for classifying the contamination status of lakes.
Partial least squares regression and multiple linear regression analyses prioritized three water quality parameters linked to agricultural
and developed land uses (ie., total dissolved nitrogen, specific conductance, and a wastewater-derived fluorescent organic matter
component) as the best combination of predictors that partly explained the interlake variability in OMP occurrence. Lastly, the
exposure-activity ratio approach identified the potential for biological effects associated with detected OMPs that warrant further
biomonitoring studies. Overall, this work demonstrated the feasibility of incorporating citizen science approaches into the regional
impact assessment of OMPs.
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B INTRODUCTION North America. Recently, the USGS and USEPA completed an
expanded joint study that detailed the prevalence of over 700
organic contaminants in U.S. streams and associated
bioactivities of concern, further highlighting the need for
improved biomonitoring of chemical exposures.”'® Collec-
tively, these and other investigations underscore the
importance for continued research into the occurrence, fate,
and effects of OMPs in aquatic ecosystems'’ and the necessity

Human-induced environmental changes have significantly
altered ecosystem functions and services around the
globe.' ™ One of the well-recognized anthropogenic stressors
on aquatic ecosystems is the ubiquitous presence of organic
micropollutants (OMPs) that may trigger unforeseen
ecological consequences at low exposure concentrations (e.g.,
ng/L—ug/L levels)."~® OMPs consist of a complex mixture of
synthetic organic substances,”” '’ many of which are designed-
bioactive chemicals,”'""'* as well as their transformation
products (TPs).">~' Given the diverse sources and transport
pathways of OMPs, broad-scope monitoring is essential for
characterizing their occurrence patterns and ecological
relevance but requires concerted efforts to achieve the desired
spatiotemporal and analytical coverage.”'” To date, the U.S.
Geological Survey (USGS) and U.S. Environmental Protection
Agency (USEPA) have undertaken the majority of large-scale
OMP occurrence studies in the U.S. with a primary focus on Received: July 30, 2020

streams and groundwater. For example, a USGS-led nation- Revised:  September 28, 2020
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of augmenting professional-led efforts with coordinated public
participation as an integral part of future OMP monitoring and
mitigation efforts."”

Over the past two decades, citizen science-based water
quality monitoring has gained increasing popularity worldwide
(e.g, over 1500 active programs in the U.S.) SO with
emphasis on contaminants of public and environmental health
concerns, such as agrochemicals,zz_24 lead,”>*° fecal indicator

wide reconnaissance first reported the widespread occurrence
of pharmaceuticals, hormones, and other organic contaminants
in streams surveyed across 30 states,’ providing one of the
earliest evidence for surface water contamination by OMPs in
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Figure 1. Map of CSLAP lakes participating in this study. Further details about the morphometry, watershed characteristics, and water quality
status of lakes are summarized in Tables S1 and S2. Satellite Image Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,

USGS, AeroGRID, IGN, and the GIS User Community.

bacteria,””*® and microplastics.”” ™ Harnessing citizen science
would offer a cost-effective means to collect OMP data at
scales or resolutions unattainable by individual investigators or
research teams while providing an outreach mechanism to
inform and involve the general public. However, the inclusion
of citizen science in OMP research has been rare.’**
Historically, citizen science has been particularly attractive
for professional scientists and government agencies in lake-rich
states where citizen volunteers can provide support for local
lake and watershed management practices and public outreach
missions.’>”” One notable example is the Citizens Statewide
Lake Assessment Program (CSLAP) in New York State, which
is among the longest-running water quality monitoring
programs in the U.S.*® Since its inception in 1985, CSLAP
has engaged citizen volunteers from over 270 lake communities
in water sample collection and on-site water quality measure-
ments.””*" CSLAP also forms the basis for one of the most
extensive surveillance platforms for harmful algal blooms in the
U.S.*" Given its established volunteer network and logistics
support from participating lake associations, CSLAP represents
a unique platform for integrating OMP surveillance with a
statewide citizen science-based lake water quality monitoring
program while promoting public awareness of OMPs.

In New York State, OMPs have been increasingly detected
in streams, Great Lakes tributaries, and groundwater,“_54 but
comparatively little is known about the composition and
concentrations of OMPs in lakes apart from those located in
specific areas of concern.”>™>" In this work, we sought to
engage an established network of CSLAP volunteers in a New
York statewide OMP occurrence study focusing on lakes with
lakefront communities. Our specific objectives of this study
were (i) to conduct suspect screening and target quantification
of OMPs in water samples collected by citizen volunteers from
lakes across New York State, (ii) to prioritize predictors for the
interlake variabilities in OMP occurrence using multivariate
statistical analysis, and (iii) to perform a screening-level
assessment of the potential for biological effects associated
with OMPs using the exposure-activity ratio approach.

H MATERIALS AND METHODS

Chemical sources and reagent preparation are described in the
Supporting Information (SI).

Volunteer Participation and Field Sampling. CSLAP is
coadministered by the New York State Department of
Environmental Conservation (NYSDEC) and the New York
State Federation of Lake Associations (NYSFOLA). Currently,
501 citizen volunteers actively participate in the CSLAP.”®
Volunteer recruitment and training for this study commenced
in Spring 2018 following the protocol approved by the
Syracuse University (SU) institutional review board. Volun-
teers were trained in water sample collection, storage, and
shipping by experienced staff from NYSFOLA, NYSDEC, or
the Upstate Freshwater Institute (UFI). In compliance with
trace-level sampling protocols,”” volunteers were instructed not
to wear personal care products or topical medications on the
sampling day. Step-by-step written protocols, precleaned
sampling bottles, and chain of custody forms were provided
to volunteers before sampling. To ensure sample integrity,
NYSFOLA and NYSDEC staff conducted routine on-site
quality control checks with volunteers. Over the 2018 and
2019 CSLAP sampling seasons (i.e., June to October), a total
of 314 one-liter surface water grab samples were collected by
143 volunteers from 111 lakes (Figure 1) at the deepest basin
of the lake or multiple designated CSLAP sampling sites on
lakes with larger surface areas. Most of the participating lakes
feature watersheds that are largely forested, while others have
watersheds dominated by agriculture and residential and urban
development. These lakes support a variety of uses, including
drinking water supply, swimming, and fishing, but differ in
water quality trends and trophic state. Lake morphometry and
watershed characteristics (e.g., residence time, watershed-to-
lake-area ratio, percent watershed land usage) and lake
classifications are summarized in the SI (Tables S1 and S2).
For each round of sampling, one trip blank (prepared by
ultrapure water) was included with lake water samples to assess
any contamination from sample handling, transport, and
storage. Quality control samples were also collected by
NYSDEC staff and submitted with the volunteer-collected
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samples to compare analytical results for the regular CSLAP
water quality indicators, which were further reviewed by
NYSDEC staft for consistency. Samples for OMP analysis were
frozen and shipped overnight with the routine CSLAP samples
to UFI and SU.

Sample Analysis. Upon return to the laboratory, lake
water samples (duplicate; S00 mL each) were spiked with a
mixture of isotope-labeled internal standards (200 ng/L; Table
S6), vacuum filtered through 0.7-um glass fiber filters, and
extracted by mixed-mode solid-phase extraction (SPE)®”®" for
analysis by liquid chromatography-high resolution mass
spectrometry (LC-HRMS). Suspect screening’”>®® was
performed to expand the analytical coverage with a focus on
OMPs of relevance to U.S. surface waters. To this end, a
custom suspect database containing compound-specific in-
formation for pharmaceuticals, pesticides, personal care,
household and industrial chemicals, and their TPs was
compiled from the following sources: the U.S. Food and
Drug Administration’s approved human and veterinary drug
product listings,64’65 the USEPA’s pesticide chemical search
database,”® the U.S. Drug Enforcement Administration’s drugs
of abuse resource guide,67 the Personal Care Products
Council’s cosmetic ingredient listing,”® and peer-reviewed
literature. Compounds with one or more of the following
properties were excluded from the suspect list: (1) have an
exact mass less than 100 Da or greater than 1000 Da, (2) have
a predicted LogP value®”’® of greater than 6.0 or less than
—2.0, (3) contain only carbon and hydrogen atoms but no
heteroatoms, (4) contain metallic or metalloidic elements, or
(5) lack commercially available reference standards from major
chemical vendors. The final compound database for suspect
screening contained the name, CAS number, molecular
formula, and category of 3308 compounds (Table S1S).
Suspect screening was conducted using TraceFinder 4.1
(Thermo Scientific) by interrogating the exact masses and
isotopic patterns of peaks (i.e, mass spectal features) picked
from the full scan mass spectra against those of compounds in
the suspect database.”” Mass spectral database searching was
performed with data-dependent tandem mass spectra of picked
peaks via mzCloud’' using a node-based workflow in
Compound Discoverer 3.1 (Thermo Scientific) or via
MassBank’” using the RMassBank”> package in R 3.5.3.
Suspect compounds with an mzCloud match factor of >30
and/or an MassBank score of >0.3 were confirmed or rejected
by comparing their chromatographic retention times and
tandem mass spectra to those of authentic reference standards.
Out of the 156 suspect compounds (Table S12) retained by
SPE, 67 were confirmed and quantified using corresponding
reference standards. Trip blanks (duplicate; 500 mL each)
were processed and analyzed with each batch of samples to
identify potential procedural contamination or analytical
interferences. Further details on suspect screening workflow
development and SPE-LC-HRMS method performance and
validation are given in the SI (Section S4). Lake water samples
were also analyzed for water quality parameters (i.e., pH,
specific conductance, chlorophyll a, nitrate-nitrite nitrogen,
ammonia nitrogen, total dissolved nitrogen, total nitrogen, and
chloride) as well as absorbance and fluorescence properties as
detailed in the SI (Section S3).

Data Analysis. For each lake, the mean cumulative
concentrations of OMPs (Y [OMPs]) and cumulative
detections of OMPs ();OMPs,,) were calculated by averaging
data from samples taken from multiple sites or on different

13761

dates to avoid overrepresentation. Spearman’s correlation
analysis, linear regression analysis, nonparametric ¢ tests, and
analysis of variance were performed using GraphPad Prism 8.4
to explore bivariate correlations and data distributions.
Hierarchical cluster analysis was performed on binary OMP
occurrence or z-score standardized OMP concentration data*®
using the factoextra’* and pheatmap’® packages in R. Partial
least squares regression (PLSR) was performed using SIMCA
16.0 (Umetrics) to explore the predictive power of lake-
watershed attributes and physicochemical properties of water
samples for the overall OMP occurrence in lakes. Briefly, the
PLSR model extracted orthogonal principal components from
the data set by cross-validation to achieve an optimal balance
between the explained variation in the response (i.e.,
(2.[OMPs] and Y, OMPs,)) and the predictive residual sum
of squares.”® Permutation tests were run to validate the model
by randomized reordering the response variable 50 times and
retesting the model on every new data set.”” Each predictor
variable was ranked for its relevance in explaining the response
variables by the variable importance in the projection (VIP)
score, with a VIP score of >1.0 being the most influential.”®
Multiple linear regression (MLR) was performed by stepwise
variable selection to identify a subset of PLSR-prioritized
variables that could best explain the interlake variability in
Y [OMPs] with minimal multicollinearity based on their
variable inflation factors (i.e., < 2).”” Performance statistics of
the PLSR and MLR models are summarized in the SI (Table
S14). To assess the potential for OMP biological effects,
exposure-activity ratios (EARs) were calculated using the
toxEval package™ in R. For each lake, the cumulative EARs
(X EARs) were determined for the mean exposure scenario
assuming additivity of effects as described in previous
studies.'”>>»*'=* Further details on EAR calculations are
provided in the SI (Section S6).

B RESULTS AND DISCUSSION

Occurrence Patterns of OMPs. Overall, suspect screening
confirmed the presence of 67 OMPs in surface water samples
from 111 lakes across New York. Two active ingredients of
insect repellents (i.e., N,N-diethyl-3-methylbenzamide
(DEET) and icaridin), although not detected in trip blanks,
were excluded from further data analysis because personal
communications with volunteers indicated that usage of bug
spray or mosquito repellent products could not be completely
avoided under challenging field conditions (e.g, during the
black fly season). Of the remaining 65 OMPs, 35 could be
operationally classified as pharmaceuticals and their TPs, 20 as
pesticides and their TPs, and 10 as personal care, household
and industrial chemicals (Table S13). With a few exceptions,
OMPs occurred at concentrations within the range of 10—
1000 ng/L (Figure S8), including several that have rarely been
reported for New York surface waters (e.g, protriptyline,
norepinephrine, fluridone, 2-hydroxybenzothiazole).
Y [OMPs] ranged from 90 to 5400 ng/L among these lakes
with a median concentration of 770 ng/L, while ) OMPs,
ranged from 3 to 36 compounds per lake with a median count
of 9 (Figures S9 and S$10). Similar to prior findings,”**
Y. [OMPs] correlated with ) OMPs,) (Spearman p = 0.656—
0.739; p < 0.0001; Figure S11). The mean of ) [OMPs] did
not vary significantly across different classes of lakes (defined
by general protection and pollution management status)
according to Tukey’s multiple comparison tests (Figure S12).
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Hierarchical cluster analysis based on the binary OMP
occurrence data of 314 samples grouped OMPs into two major
clusters (Figure 2a). Cluster 1 contains 11 OMPs that were
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Figure 2. Hierarchical clustering of OMPs by the binary OMP
occurrence data (i.e., presence or absence) in lake water samples (n =
314): (a) Dendrogram of OMP clusters. Cluster 1 (blue, bottom)
contains 11 OMPs that were most frequently detected in the samples.
Cluster 2 (red, top) contains the remaining $4 OMPs. (b) Correlation
between the cumulative concentration of OMPs ()’ [OMPs]) and the
cumulative concentration of cluster 1 OMPs (),[OMPs]¢jqer 1) in
lakes (n = 111). The green square symbol represents the outlier. The
blue solid line represents the linear regression line. The light blue
dotted lines represent the 95% confidence intervals of the linear
regression line. The red dashed line represents the 1:1 ratio. Error
bars represent the standard deviations from duplicate measurements.

most frequently detected in the samples, indicating consistency
in watershed loadings and in-lake persistence of these OMPs.
Cluster 2 contains OMPs derived from agricultural, waste-
water, or mixed sources with limited detections and highly
variable concentration profiles. Most of the cluster 1 OMPs
also overlapped with those repeatedly detected in other surface

water systems. Benzothiazole, a high production volume
manufacturing additive, occurred in 100% of the lakes (93%
of the samples) with the highest median concentration (307
ng/L) among all detected OMPs. Benzothiazole and its
derivatives (e.g., 2-hydroxybenzothiazole; detected in 13% of
the lakes/samples) are used in a variety of consumer and
industrial products such as corrosion inhibitors in antifreeze
and coohng liquids and vulcanization accelerators in rubber
material.** Consistent with previous findings,**~*" the
ubiquitous presence of benzothiazole likely reflects sustained
inputs from surface runoff generated in the lake watershed
(e.g, those of tire abrasion from roads or winterization of
lakefront camps and vehicles). Atrazine, metolachlor, and their
TPs (ie, atrazine-2-hydroxy, atrazine-desethyl, metolachlor
oxanilic acid, and metolachlor ethanesulfonic acid) also
occurred at relatively high frequencies (in 10—100% of the
lakes and 17—96% of the samples), providing further evidence
to their near-ubiquitous presence in New York streams and
rivers.”>*¥** Atrazine and metolachlor are two of the most
heavily used agricultural herbicides in the U.S.,** but both
herbicides are also applied on urban landscapes,89 suggesting
that multiple sources and transport mechanisms might have
collectively contributed to the co-occurrence of these
herbicides and related TPs. Two wastewater tracer com-
pounds,””" caffeine (a stimulant) and sucralose (an artificial
sweetener), occurred in 62 and 43% of the lakes (38 and 50%
of the samples, respectively) with a range of caffeine-to-
sucralose ratio from 0.014 to 3.92, pointing to the inputs of
untreated and/or treated wastewater into some lakes. Para-
xanthine, a major TP of caffeine,”” also occurred in 29% of the
lakes with quantifiable caffeine. Other frequently detected
OMPs included 2,4-D (herbicide; 48% of the lakes and 37% of
the samples), which has high agricultural and nonagricultural
uses, as well as protriptyline (antidepressant; 61% of the lakes
and 28% of the samples) that is most likely of wastewater
origin. Protriptyline is believed to be reported for the first time
in lake waters as thlS compound was rarely targeted in previous
occurrence studies” and its environmental fate and transport
remain poorly defined.”* With one notable exception, the
cumulative concentrations of cluster 1 OMPs showed a strong
linear correlation (R* = 0.970, p < 0.0001) with Y [OMPs]
with a slope of 1.05 + 0.02 (Figure 2b), suggesting the
usefulness of this compound mixture as an indicator for overall
levels of OMPs in the participating lakes. Closer examination
of the outlier revealed that its deviation from the linear
relationship was driven by the exceptionally high concentration
of fluridone (i.e,, 3900 + 540 ng/L). Fluridone is a systemic
herbicide applied to control invasive submerged aquatic
vegetation such as Hydrilla verticillata and Myriophyllum
spicatum in New York lakes,” so the elevated concentration
of fluridone in this outlier lake likely resulted from direct
impact of such applications. On average, the y-intercept of the
linear regression line was 80 + 23 ng/L, which provided a
semiquantitative estimate for the cumulative concentrations of
cluster 2 OMPs (ie, 115 + 190 ng/L) within the defined
chemical space (i.e, OMPs amenable to SPE-LC-HRMS).
Further hierarchical cluster analysis based on the z-score
standardized data of cluster 1 OMPs grouped 111 lakes into six
clusters (Figure 3). Cluster A contains lakes that were
characterized by moderate concentrations of benzothiazole,
2,4-D, atrazine (including its two TPs), and metolachlor
(including its two TPs). Cluster B contains over 50% of the
lakes that were mainly characterized by high concentrations of
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Figure 3. Hierarchical clustering of CSLAP lakes (n = 111) by z-score
normalized concentration profiles of cluster 1 OMPs. Heatmap of
lakes are labeled with CSLAP IDs (row) and cluster 1 OMPs
(column). Lakes are grouped into six clusters (i.e., cluster A, B, C, D,
E, and F, respectively). “Atrazine + TPs” represents the summed
concentration of atrazine, atrazine-2-hydroxy, and atrazine-desethyl.
“Metolachlor + TPs” represents the summed concentration of
metolachlor, metolachlor oxanilic acid, and metolachlor ethanesul-
fonic acid. The color scale (red to blue) indicates the magnitude of
normalized OMP concentrations.

benzothiazole but comparatively low concentrations of other
cluster 1 OMPs. Compared to clusters A and B, clusters C, D,
E, and F contain lakes that were characterized by lower
concentrations of benzothiazole but elevated concentrations of
protriptyline, metolachlor (and its two TPs), 2,4-D, or
sucralose, respectively. Clusters A, D, and E lakes also feature
a higher fraction of agricultural land use in their contributing
watersheds than cluster B, C, and F lakes (Mann—Whitney U
test p < 0.0001), which offers a possible explanation for the
overall higher concentrations of pesticides in these lakes.
Indeed, the cumulative concentrations of 2,4-D, atrazine, and
metolachlor showed a positive correlation with the percent
agricultural land usage (%Agricultural) across lakes (p = 0.661;
p < 0.0001; Figure S13), although the amount of agricultural
landscape alone was not necessarily sufficient for predicting the
occurrence of specific pesticides. Moving west to east across
the state (—79°26’ to —72°17’), the cumulative concentration
of these three pesticides decreased (p = —0.399; p < 0.0001),
which partly agreed with the farmland density gradient™ and
agricultural pesticide use profile®® in New York. Clusters C and
F lakes feature a higher fraction of urban/residential land use
(%Urban/Residential) in their watersheds than other lakes
(Mann—Whitney U test p < 0.0001). The cumulative
concentrations of protriptyline, sucralose, and caffeine also
showed a positive correlation with the percent urban/
residential land usage (p = 0.578; p < 0.0001; Figure S13),
suggesting urban and residential development as a likely source
of these wastewater-associated OMPs. Furthermore, the
cumulative concentrations of these three OMPs decreased
north to south (44°40’ to 40°55’; p = —0.331; p = 0.0007) but
increased west to east (p = 0.235; p = 0.0182), which matched
the statewide trends in population density”” and associated
regional differences in the abundance of septic and centralized
wastewater treatment systems.”””” Together, Y [OMPs]
correlated positively with the summed percent of agricultural
and urban/residential land usage (%Agricultural+Urban/
Residential; p = 0.528; p < 0.0001) but negatively with the
percent of forested land usage (%Forested; p = —0.459; p <
0.0001), further confirming the association between OMP
prevalence and influences of anthropogenic land use in the lake
watershed. Of the remaining lake and watershed attributes,
Y [OMPs] also exhibited a positive, albeit weak, correlation
with the watershed-to-lake-area ratio (p = 0.273; p = 0.0039)
and a weak negative correlation with the lake residence time (p
= —0.197; p = 0.0403), respectively. Hypothetically, higher
watershed-to-lake-area ratios would likely contribute greater
OMP loadings to the receiving lakes,"% while longer residence
times may favor abiotic and biotic transformations of OMPs in
the lake water column.'®" Still, generalization of mechanistic
drivers for OMP occurrence in these lakes requires focused
work to quantify the watershed transport capacity and the
extent of in-lake processing of OMPs.

Predictors of OMP Occurrence. Many multire-
gion, 7383102103 ingle-watershed, ™ %*™'%° and fixed-station
studies'”** have explored the utility of watershed land-use/
land-cover metrics, physicochemical and optical properties of
water samples, or their combinations for tracking the
spatiotemporal occurrence patterns of OMPs in streams,
rivers, and lake tributaries. However, less emphasis has so far
been placed on OMPs in lakes. To further identify potential
predictors of OMP occurrence, PLSR modeling was performed
using ),[OMPs] and ) OMPs, as the response variables and
a suite of 30 lake-watershed attributes, water quality

https://dx.doi.org/10.1021/acs.est.0c04775
Environ. Sci. Technol. 2020, 54, 13759-13770


http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c04775/suppl_file/es0c04775_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c04775/suppl_file/es0c04775_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c04775?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c04775?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c04775?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c04775?fig=fig3&ref=pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c04775?ref=pdf

Environmental Science & Technology

pubs.acs.org/est

parameters, and optical indices as the predictor variables.
Opverall, the PLSR model extracted three predictive compo-
nents with moderate predictive ability and low-background
correlations (Table S14). The strength of explained variation
and the goodness of prediction for Y,[OMPs] were slightly
lower than that of ) OMPs,, but both »[OMPs] and
2. OMPs, clustered near highly influential predictors along
the first component axis with limited separation on the second
component axis (Figure 4a). On the basis of the VIP scores,
the predictors with the most explanatory power (ie. those
with a VIP score of >1.0) for OMP occurrence followed the
order of total dissolved nitrogen (TDN) > specific
conductance > total nitrogen > nitrate-nitrite nitrogen >
freshness index (f:a) > %Agricultural > %Forested > %Urban/
Residential > fluorescence index (FI) > the maximum intensity
of fluorescent component $ (CS) > chloride (Figure 4b). Here,
CS was extracted by deconvoluting the excitation—emission
matrices of lake water samples with parallel factor analysis'®”
from a split-half validated S-component model (Figures S1—
S4). CS corresponds to the protein-like fluorescent compo-
nent’® associated with wastewater-derived organic mat-
ter.'”%'%” Several of these predictor variables (apart from
land use patterns discussed above) have been proposed as
surrogates for inferring OMP contamination status in surface
waters. For example, several studies have identified positive
correlations between the concentrations of OMPs and
conductivity (or the concentrations of major inorganic solutes
such as chloride),g"llo’111 fluorescence-based indices," """ or
nitrogen species (e.g, nitrate)%46 in aquatic ecosystems.
Other variables less frequently reported to covary with OMPs,
such as f:a and FI, also emerged as relevant predictors for
OMP occurrence largely due to their covariation with
watershed land use patterns. For instance, previous work has
shown the increasing export of fresh microbially produced
organic matter (measured by f:a and FI) from watersheds
along a land use gradient of increasing agricultural coverage.''*
Indeed, both f:a and FI correlated positively with %
Agricultural across the watersheds of participating lakes (p =
0.471—0.489; p < 0.0001).

Considering the multicollinearity among the 11 PLSR-
prioritized variables, stepwise MLR modeling was further
performed using these predictors to produce the most
parsimonious model accounting for the variation in
Y'[OMPs]. The final MLR model identified CS, specific
conductance, and TDN as the best combination of variables
that explained 45.8% of the variation in ),[OMPs] (Figure
4c). Performance of this MLR model for )’ [OMPs] was less
satisfactory compared to that of models developed by previous
studies using high-resolution spatiotemporal profiling of OMPs
and environmental covariates in individual watersheds.””'"
Other process-based metrics (e.g,, source dynamics, hydro-
logical transport, or in-lake processing) not considered in this
study likely drove compound-specific differences in the fate
and transport at more localized scales and ultimately
contributed to the inhomogeneous occurrence patterns of
> [OMPs]. Regardless, the PLSR and MLR modeling
provided initial insights into predictors of OMP occurrence
in lakes across a broad spatial scale by highlighting the
connections between the interlake variability in ).[OMPs] and
wastewater influence, agricultural land use, and watershed
runoff.

Potential for OMP Biological Effects. Given the limited
availability of water quality benchmarks for OMPs detected in
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Figure 4. Partial least squares regression (PLSR) and multiple linear
regression (MLR) modeling of OMP occurrence data in the lakes (1
= 111): (a) Loading scatter plot of PLSR analysis where Y variable
(2 [OMPs] or (3;OMPs;,)) is the response variable, X variable is the
predictor variable, and VIP is the variable influence on projection. On
the plot, 3.[OMPs] represents the mean cumulative concentration of
OMPs (ng/L) for each lake, ) OMPs, represents the mean
cumulative detection of OMPs for each lake, “%Agri” represents the
percent of agricultural land usage in the lake watershed, “%Urban/
Resi” represents the percent of urban/residential land usage in the
lake watershed, “%Forest” represents the percent of forested land
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Figure 4. continued

usage in the lake watershed, “LA” represents the lake surface area
(ha), “Zyean” represents the lake mean depth (m), “RT” represents the
lake residence time (year), “WA” represents the lake watershed (ha),
“WA:LA” represents the watershed-to-lake-area ratio, “SC” represents
specific conductance (1S/cm), “NO,-N” represents the nitrate-nitrite
nitrogen concentration (ugN/L), “NH;-N” represents the ammonia
nitrogen concentration (ugN/L), “TDN” represents the total
dissolved nitrogen concentration (ugN/L), “TN” represents the
total nitrogen concentration (ugN/L), “Chl a” represents the
concentration of chlorophyll a (ug/L), “Cl™” represents the chloride
concentration (mg/L), “a,s,” represents the Napierian absorption
coefficient at 254 nm (m™!), “a,5,” represents the Napierian
absorption coefficient at 280 nm (m™'), “a,,” represents the
Napierian absorption coefficient at 440 nm (m™"), “E2:E3” represents
the ratio of absorption coeficients at 250 and 365 nm, “Sy” represents
the ratio of spectral slope coefficient S,75 505 to Syg0_350s
“CDOM,;50_4s0” represents the integrated absorption of chromophoric
dissolved organic matter (DOM) from 250 to 450 nm (m™'), “FI”
represents fluorescence index, “HIX” represents humification index,
“P:a” represents freshness index, “FDOM” represents the integrated
volumetric fluorescence intensity of fluorescent DOM (R.U.; water
Raman unit), “C1” represents the maximum intensity of fluorescent
component 1 (RU.), “C2” represents the maximum intensity of
fluorescent component 2 (R.U.), C3 represents the maximum
intensity of fluorescent component 3 (R.U.), C4 represents the
maximum intensity of fluorescent component 4 (R.U.), and CS
represents the maximum intensity of fluorescent component 5 (R.U.).
(b) VIP plot of predictor variables where the red dashed line
represents the VIP score threshold of 1.0 (X variables with a VIP
score of >1.0 were most important for the model performance). (c)
Cross plot of measured >, [OMPs] (with the subscript “measured”)
versus » [OMPs] (with the subscript “predicted”) predicted by
log;o(X[OMPs]) = 0.4312(£0.1150) X log,,(CS) +
0.3121(%0.0715) X logio(specific conductance) + 0.4696
(£0.1287) X logo(total dissolved nitrogen) + 1.115(+0.3396)
where Y.[OMPs] is in the unit of ng/L, CS is in the unit of water
Raman unit (R.U.), specific conductance is in the unit of 4S/cm, and
total dissolved nitrogen is in the unit of ygN/L. Error bars indicate
the standard deviation of measured .[OMPs] or the 95% confidence
interval of predicted Y. [OMPs]. The red dashed line represents the
1:1 ratio. Note that data matrices were log-transformed, centered, and
scaled to unit variance prior to PLSR and MLR analysis when
applicable. Performance statistics of the PLSR and MLR models are
summarized in Table S14.

this study,''® the EAR approach was implemented as a

screening tool to assess the potential for OMP biological
effects.”’ Fifty-seven of the detected OMPs (87%; including
their free and salt forms®") had matches in the ToxCast and
Tox21 high-throughput screening database at the time of
access,'"’~"" but only 46 (71%) were included for the final
EAR calculations after removal of unreliable exposure-response
data with data quality flags (Section S6).

Under mean exposure conditions, 19 OMPs showed one or
more EARs above the conservative effects-screening threshold
of 0.001 (Figure S14),> although a threshold exceedance does
not directly translate into ecologically relevant adverse effects
on aquatic species.””*>"*°~"** Four cluster 1 OMPs (i.e.,
metolachlor, caffeine, 2,4-D, and atrazine) had the greatest
numbers of EAR threshold exceedances (i.e,, 51, 39, 37, and 21
out of 111 lakes, respectively), while two cluster 2 OMPs (i.e.,
hydroxyprogesterone and hydrocortisone) exhibited the high-
est EARs (i.e,, 0.104 and 0.093, respectively) among OMPs.
On average, Y EARs for 2,4-D, metolachlor, atrazine, and

caffeine and other bioactive cluster 1 OMPs (i.e., benzothia-
zole, protriptyline, metolachlor ethanesulfonic acid, and
atrazine-desethyl) accounted for 46% and 16%, respectively,
of Y EARSs for all OMPs. Cluster 2 OMPs, while detected with
lower frequencies, collectively contributed to 38% of ) EARs
for all detected OMPs, suggesting their importance for
prioritization of biological effects. Of the 111 lakes, 88
(79%) had one or more OMPs with individual EARs greater
than 0.001, 98 (88%) had Y EARs greater than 0.001, and S
had ) EARs greater than 0.1 under mean exposure conditions
(Figure S1S5), with the top contributing OMPs to elevated
Y EARs being hydroxyprogesterone and 2,4-D. On average,
the mean of Y EARs for the six lake clusters were not
statistically different from each other based on Tukey’s
multiple comparison tests; however, the major fraction of
Y EARs for cluster C, D, and E lakes was attributable to cluster
1 OMPs (i.e., 54—96%), whereas Y EARs for cluster A, B, and
F lakes (i.e., 69—87%) were mainly driven by cluster 2 OMPs
(Figure 5).
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Figure 5. Cumulative exposure-activity ratios ()} EARs) for OMPs in
six clusters of lakes (i.e., cluster A, B, C, D, E, or F) under mean
exposure conditions. Error bars indicate the standard deviation of
Y EARs for a given cluster of OMPs (i.e, cluster 1 or 2) within a
cluster of lakes. The green dashed line represents the effects-screening
threshold of 0.001. The bottom percentage within each column
indicates the average fractional contribution of ) EARs for cluster 1
OMPs to Y EARs for all detected OMPs in a given cluster of lakes.

Consistent with the patterns observed for ) [OMPs],
Y EARs also showed positive correlations with CS, specific
conductance, and TDN (p = 0.278—0.465; p < 0.0001—
0.0032) as well as the sum of %Agricultural and %Urban/
Residential (p = 0.447; p < 0.0001; Figure S16), supporting
the relevance of these metrics for characterizing the potential
impacts of OMPs on lake ecosystems. Like grevious bioactivity
profiling of river and stream samples,”"®* most lake water
samples had higher incidence of threshold exceedances in
nuclear receptor and DNA binding target families (Figure S17)
under the current EAR framework, which may serve to inform
hypothesis formulation for subsequent evaluation of specific
linkages between apical adverse outcomes and OMP
exposures.”” Taken together, the EAR outputs suggested
some potential for in vitro biological effects associated with
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detected OMPs in the participating lakes; nevertheless, it does
not address species-specific sensitivities, the toxic mode of
action of detected OMPs, or exposures to untargeted or
unknown OMPs not amenable to SPE-LC-HRMS.®" Thus,
translating compound-based EAR predictions to risk assess-
ment bears high uncertainties, and concerted biomonitoring
studies will be required to diagnose drivers of ecologically
relevant effects. Still, the EAR approach serves as a comparative
screening tool to place OMP occurrence data in a broader
context.

Environmental Implications. To the best of our
knowledge, this work represents the first study that
incorporates citizen science approaches into a statewide
investigation of OMP occurrence in surface waters. Leveraging
existing citizen science sampling efforts via CSLAP, our study
completed a broad-scale characterization of OMP occurrence
patterns and associated biological effects potential in New York
lakes with diverse watershed land use characteristics and water
quality status. Our study demonstrated that LC-HRMS
screening, multivariate statistical analysis, and EAR calculations
together provide multiple lines of evidence for OMP stress in
participating lakes. Our study also showed that CSLAP
volunteers are a well-trained and motivated workforce who
can assist with water sample collection for OMP analysis to
guide the regional impact assessment of OMPs. More
importantly, our commitment to public outreach ensured
that the results and implications of this research are
communicated to volunteers and their lake associations as
well as other interested stakeholders in an understandable and
scientifically accurate manner. For example, prior to the start of
this study, each volunteer and lake association received an
informational packet describing the project and providing
background knowledge about OMPs. Once data collection was
completed, they received a detailed written report that
included lake-specific OMP concentration data and descriptive
text highlighting potential watershed sources of OMPs along
with their potential impacts on aquatic ecosystems. Individual
lake results were also put into regional context using pie chart
maps that depicted statewide OMP occurrence patterns and
tables that summarized OMP concentration ranges observed in
all participating lakes. Furthermore, multiple in-person
presentations and webinars were organized during and after
this study to address specific questions from community
members regarding individual lake results and mitigation
options for OMPs. A project website was also created to share
information about this study with the general public.'*’
Ultimately, results from this work may serve as a starting
point from which systematic investigations can be designed to
explore the source attribution, input dynamics, and ecosystem
effects of OMPs in lakes. Furthermore, methods developed and
lessons learned from this study are expected to inform
development of a transferable and scalable framework that
can be adopted by other citizen science initiatives to fill
existing data gaps in OMP occurrence.

Our study also highlighted several challenges and oppor-
tunities for future considerations. One initial objective of this
work was to engage citizen volunteers in on-site monitoring of
an indicator OMP, atrazine, using commercially available paper
test strips. However, the test strips were not sufficiently
sensitive to detect low ng/L levels of atrazine in water
samples,”* which hindered a meaningful interpretation of
volunteer-collected strip test results (Figure S18). Going
forward, improving the sensitivity and robustness of test kits or

chemosensors for a wider array of compounds would be
essential for expanding the real-time monitoring capability for
OMPs. Second, the relatively large sample volume required for
SPE-LC-HRMS analysis (e.g, at least 1 L per sampling event),
while useful for the purpose of suspect screening, restricted the
number of samples that could be collected by volunteers with
limited funds and resources. Complementing offline SPE with
automated sample preconcentrationn‘*’125 can circumvent the
sample volume limitation if target screening of known OMPs is
the primary focus, thereby reducing the sample collection and
shipping costs while simultaneously increasing the sample
throughput and data resolution. Lastly, grab samples analyzed
in this study at best provided a snapshot of OMP occurrence in
a subset of lakes in New York State. Future work incorporating
passive sampling efforts (e.g., from offshore weather
buoys)'**"*” would help fulfill the needs of time-integrative
sampling but requires more challenging levels of citizen
participation and commitment. With appropriate training
methodology and timely knowledge sharing, we envision a
growing role of citizen science in collaborative OMP research.
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