PHYSICAL REVIEW D 102, 116019 (2020)

Linearized optimal transport for collider events
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We introduce an efficient framework for computing the distance between collider events using the tools
of Linearized Optimal Transport (LOT). This preserves many of the advantages of the recently introduced
Energy Mover’s Distance, which quantifies the work required to rearrange one event into another, while
significantly reducing the computational cost. It also furnishes a Euclidean embedding amenable to simple
machine learning algorithms and visualization techniques, which we demonstrate in a variety of jet tagging
examples. The LOT approximation lowers the threshold for diverse applications of the theory of optimal

transport to collider physics.
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I. INTRODUCTION

What is the distance between collider events? This
question, although simple to pose, is notoriously difficult
to answer. Identical events at parton level can appear to
differ upon reconstruction due to soft or collinear emission,
while topologically distinct events at parton level can
appear identical upon reconstruction, depending on the
degree of coarse graining. Despite such challenges, the
value of a well-defined distance is clear: the comparison of
collider events, or the reconstructed objects contained
therein, is an essential step in extracting physics from
collider data.

Significant progress was made toward defining a useful
metric on the space of collider events in Ref. [1], where
the “Energy Mover’s Distance” (EMD) was introduced to
compare the energy flow between events. Properly speaking,
the Energy Mover’s Distance is an adaptation of the Earth
Mover’s Distance, itself an example of the p-Wasserstein
distance appearing in the theory of optimal transport.
Intuitively, the p-Wasserstein distance between two normal-
ized energy distributions represents the minimal amount of
work required to rearrange one distribution to look like the
other and may be modified (as in the EMD of Ref. [1]) to
accommodate events with different total energies.

As observed in Ref. [1] and further developed in Ref. [2],
the EMD has numerous applications to collider physics.
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Among other things, it provides a new perspective on
existing jet variables, implies inequalities satisfied non-
perturbatively by jet observables, and enables the definition
of a distance between theories (where theories are defined
as collections of events weighted by cross sections). From a
practical perspective, the EMD defines new quantities
associated with collider events that can be used as input
to machine learning (ML) algorithms and leveraged in
collider analyses, providing a novel intermediary between
simple analytic variables and deep neural networks. The
EMD defined in Ref. [1] has been subsequently applied to
distance-based analysis of jets in CMS Open Data [3], to
the definition of a new “‘event isotropy” shape variable [4],
as a metric for variational autoencoder-based anomalous jet
tagging [5], and (with suitable generalization) to discrimi-
nation at the full event level [6]. A number of other metrics
for collider events have been explored in Ref. [7]. Broadly
speaking, the many applications of the EMD pursued in
Refs. [1-6] highlight the potential relevance of tools from
the theory of optimal transport for collider physics.
However, one of the major practical challenges to the use
of EMD in analyzing collider events is the computational
cost; for a dataset containing N, events, computing the
pairwise distance between all events is O(N2,)." This
poses a challenge given that computing the p-Wasserstein
distance between two events itself takes fractions of a
second, putting the calculation of EMDs between events in
typical collider datasets beyond the reach of desktop
computers. It is also unsuitable for use with ML methods

"The possibility of reducing such classical O(N2,,) strategies
to O(N.y) quantum algorithms was pointed out in Ref. [8].
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that require more structure than just the pairwise distances
between events.

In this paper, we define an efficient framework for
computing the distance between collider events by apply-
ing the tools of Linearized Optimal Transport (LOT),
preserving the many advantages of the EMD while sig-
nificantly reducing the computational cost and furnishing a
Euclidean embedding suitable for use in a wide range of
ML algorithms. In particular, we implement the LOT
approximation of the 2-Wasserstein distance, as introduced
in Ref. [9]. To the extent that the 2-Wasserstein distance has
a pseudo-Riemannian structure (unlike p-Wasserstein dis-
tances with p # 2, including the p =1 Earth Mover’s
Distance), the LOT approximation amounts to projecting
onto the 2-Wasserstein tangent plane at a chosen reference
event and computing simpler #2 distances on that plane. We
make this point of view rigorous in the Appendix, where we
prove that, as the reference event in the LOT approximation
is refined, LOT converges to the distance between events on
the tangent plane, which provides a well-defined metric on
the space of events.

The LOT approach vastly speeds up the computation of
optimal transport distances between collections of N,
events by requiring the determination of only O(N.)
computationally intensive p-Wasserstein distances, fol-
lowed by O(N2,,) computationally efficient 2 distances.
In practice, replacing the traditional optimal transport
computation with this linear version reduces the computa-
tional effort of the classification task from a computer
cluster to a single PC. Even with this dramatic reduction in
computational time, we still achieve comparable accuracy
to previous work using the original Wasserstein distances
on the classification task.

Beyond the significant computational speedup, LOT
provides an isometric linear embedding into Euclidean
space, suitable for use in a wider range of ML algorithms.
We demonstrate its utility as input to ML algorithms tasked
with discriminating between samples of boosted jets con-
taining diverse Standard Model (SM) and beyond-Standard
Model (BSM) particles. Due to the fact that our ML models
lack the expressivity of deep neural networks, they will not,
in general, achieve the same levels of accuracy. Instead, our
approach offers a much clearer interpretation in terms of the
underlying physics, while still achieving very good levels
of accuracy. For example, it can provide answers to
questions regarding what properties are most important
in distinguishing them from each other; see Fig. 5.

This paper is organized as follows. In Sec. II, we review
the p-Wasserstein distance and the Linearized Optimal
Transport approximation to the p = 2 distance, framed in
terms suitable for application to collider events. We then

* Another pseudo-Riemannian structure, reminiscent of the
2-Wasserstein metric, has also been used to reduce the computa-
tional complexity of multiparticle correlators [10].

illustrate features of the LOT approximation in the context
of jet tagging in Sec. III, computing LOT pseudodistances
between various classes of boosted jets using an isotropic
(in cylindrical coordinates) distribution as a reference
event. The utility of LOT as an input to simple machine
learning algorithms is highlighted in Sec. IV, where we
explore the performance of linear discriminate analysis
(LDA), k-nearest neighbor (kNN), support vector machine
(SVM), and k-medoids clustering algorithms in the pair-
wise classification of boosted QCD, W, ¢, Higgs, and BSM
jets. The comparable performance of models respectively
coupled with the LOT and EMD metrics suggests that the
former approximation matches the discriminating power of
the latter metric while offering considerable computational
speedup. It is also readily amenable to visualization, which
we demonstrate in a number of examples. We conclude and
enumerate a variety of future directions in Sec. V. A proof
of the convergence of the LOT approximation to a true
metric in the continuum limit is reserved for the Appendix.

II. LINEARIZED OPTIMAL TRANSPORT

Let an event £ denote a collection of particles at locations
x; in a rectangular domain Q, with energies E;, E = 0.
Given two events £ & with the same total energy,
YuEi=) E ;» the theory of optimal transport provides
various notions of distance between the two events. In
particular, for p > 1, the p-Wasserstein distance is given by

. . _ 1/p
W,(£.€) = min_ <Z[jgij||xi _xij) ’

gi;€T(E.E)
rEé) = {gij:gij >0, Zgij = E,, Zgij = Ej}» (1)
j i

where |[|x; — X;|| denotes the angular distance on the
underlying space 2, which we will often refer to as the
ground metric. When p =1 or 2, W, is also known as
the Earth Mover’s Distance or the Monge-Kantorovich
distance, respectively. Up to normalizing the energies
E, E ; by dividing through by the total energy of each
event, we may assume without loss of generality that the
total energy of all events we consider equals 1.

One interpretation of the p-Wasserstein distance is that it
represents the minimal amount of “effort” required to
rearrange the distribution of energy in £ to match £. In
this case, g;; represents the amount of energy moved from

particle i in event & to particle j in event &, and ||x; — %
represents the “cost” of moving energy between the two

*While the detector on which the collision data is recorded is a
cylinder, due to the fact that we will translate jets clustered with
unit radius parameter to be centered at the origin, we may neglect
the periodic boundary conditions in the azimuthal angle and
consider the underlying domain to be a rectangle.
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locations. With this interpretation, I'(E, E‘) is the set of
possible ways to rearrange £ to look like &, known as the
set of transportation plans: any rearrangement g;; can only
move non-negative amounts of energy; the total amount of
energy moved from a fixed particle i in & to all of the
particles in & must coincide with the original energy E;;
and, symmetrically, the total amount of energy moved from
all of the particles in & to any fixed particle j in & must
coincide with E. More generally, there are several methods

to extend the Wasserstein distance to events £ and £ with
different total energies, including the version of the Earth
Mover’s Distance considered in Ref. [1], which is a type of
partial optimal transport distance [11-13] created by
interpolating between the 1-Wasserstein distance and the
total variation norm.

Over the past 20 years, optimal transport distances
have emerged as important metrics for image classification
tasks [14—19]. These metrics are unique in that they lift
the ground metric on the underlying space to the set of
probability distributions on that space. This is in contrast
with more traditional metrics, such as the #% norm. For
example, in an image based approach, the #> norm com-
putes the distance between two events £ and & by, first,
binning the particles on a grid with N bins; second,
representing the energy at each grid location by vectors
v, » € RVN; and, third, computing the distance between &
and & via the standard Euclidean norm,

dp gy (E.E) = <Z|v — 7 )1/2. (2)

Unlike the Wasserstein metric, the #2 norm does not
respect the geometry of the underlying space. For example,
suppose each event consists of a single particle with energy
1, the particles are distance ||x; — %, || apart, and the grid for
the #? norm is fine enough so that the particles fall in
different bins. Then,

W,(E.8) = |x; —%| and dpg(E.E) = V2.
While the p-Wasserstein metrics take into account the
particles’ locations on the underlying space, this informa-
tion is neglected by the classical #> norm. This ability to
preserve spatial information provides the p-Wasserstein
metrics with a natural advantage in image classification
tasks.

In spite of these theoretical benefits of optimal transport
metrics, wider adoption in image classification has been
slowed by two obstacles: computational cost and limited
choice of classification algorithms. In terms of computa-
tional efficiency, computing the p-Wasserstein distance
between two events, with n particles in each event, requires
O(n?) operations via Bertsekas’s auction algorithm and

O(n?log(n)) operations via entropic regularization and
the Sinkhorn algorithm [20-24]. This is in contrast to the
classical #? norm, which is naively O(n), when the number
of bins is chosen proportional to the number of particles,
n ~ N. In image classification tasks, the high cost of the
p-Wasserstein metrics is compounded by the fact that one
needs to compute the pairwise p-Wasserstein distances
between the entire collection of N, images, requiring
O(N2,,) computations of the distance. In the particular case
of classifying jet events, the number of particles per event
is relatively small, n~ 10%, and it is this latter need to
compute pairwise distances between a large number of
events, N~ 10°, which is the main computational
expense. Furthermore, existing work using classical opti-
mal transport metrics must also cope with the significant
computational demands of storing the matrix of pairwise
distances.

The goal of the present work is to overcome the problem
of high computational cost and limited choice of algorithms
by using the Linearized Optimal Transport approximation
of the 2-Wasserstein distance, originally introduced by
Wang et al. [9] as a method for visualizing variation in sets
of images. Let R denote the reference event, a collection of
particles at locations y; with energies R;. For any event &,
let r;; denote an optimal transport plan from R to &, that is,
a minimizer of (1). (Note that there may be more than one
optimal transport plan between two given events.) In
general, a transport plan r;; may send energy from particle
i in the reference measure to many different particles in
event £. Consider the average of these locations, weighted
by how much energy is sent to each and normalized by the
amount of energy starting at particle i,

Zrl] Xije (3)

This provides a map from an event £ to a vector z; in 2n-
dimensional Euclidean space, R2", where 7 is the number
of particles in the reference jet.

The LOT approximation of the 2-Wasserstein metric
measures the distance between two events £ and & by
considering the Euclidean distances between all pairs
(z;,Z;), weighted by the mass starting at particle i,

LOT, ;(£.8) = <ZR||Z, z||2> -4

Note that this approximation depends on the choice of
transport plans r;;, 7

In Fig. 1, we 111ustrate the LOT-W2 computation and its
relationship to the standard 2-Wasserstein metric (OT-W2).
The top row shows two optimal transport plans that
rearrange a uniform reference jet of 81 constituent particles
(green) into two sample jets (blue and red), according to the
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FIG. 1. Upper left: an optimal movement using the OT-W2
metric to rearrange a uniform reference jet of 9 x 9 =8l
constituent particles (green) into the sample jet 1 (blue). Upper
right: an optimal movement using the OT-W2 metric to rearrange
the same uniform reference jet (green) into another sample jet 2
(red). Lower left: an optimal movement to rearrange the sample
jet 1 into the sample jet 2 using LOT-W2. Lower right: an optimal
movement to rearrange the two sample jets directly using OT-W2.

exact 2-Wasserstein metric. Gray lines indicate how energy
from particle y; in the reference jet is sent to particle x; in
sample jet 1 or particle X; in sample jet 2. Note that, as there
are multiple optimal ways to perform this rearrangement,
the rearrangement is not guaranteed to be symmetric: in the
top left figure, compare the fifth particle from the left on the
bottom row (which splits mass between both blue particles)
to the top row (which sends all mass to the right particle). In
the bottom left subplot, we illustrate Z; — z;, to visualize the
difference in how the reference jet is rearranged for jet 1
and jet 2. Predictably, we observe that the main difference
is energy goes further to the right in the case of jet 2. The
LOT approximation of the 2-Wasserstein distance is com-
puted by taking the sum of the lengths of the gray vectors
squared, weighted by the energy of the reference measure
R; = 1/81, so that LOT,;(E,&) ~ 1.07. Finally, in the
lower right subplot, we illustrate the OT-W2 distance
between jet 1 and jet 2, which corresponds to moving
half of the energy in the jet 1 a distance 1.5, so
W, (€. &) = (1.5%/2)1/2 ~ 1.06.

The LOT approximation does not, in general, provide
a metric on the space of events. For example, if the
reference event R consists of a single particle at location
v, then z; = Z/- x;E; is the “center of energy” of &£, and

any two events £, & with equal center of energy satisfy
LOT, ;(€,€) = 0. Consequently, it is clear that a necessary

condition for the LOT approximation to capture finer
properties of events is that the reference event cannot be
too concentrated. In fact, this condition is also sufficient. In
the Appendix, we describe how the LOT approximation
extends to reference events R given by general measures
on Euclidean space. When the reference event does not
concentrate on lower -dimensional sets, the LOT approxi-
mation coincides with the transport metric with base R,
denoted W, 5, which is a well-defined metric on the space
of events, corresponding to taking the distance between two
events by projecting on the 2-Wasserstein tangent plane at
R. In Corollary 1 of the Appendix, we prove that, if the
reference event R is given by a collection of N? particles,
uniformly distributed on a rectangle €, with equally
weighted energies RY = 1/N?, then, as N — +oo, the
LOT approximation converges to W, x, where R is the
probability measure uniformly distributed on Q,

lim LOT (€, &) = War(E.8). (5)

N—-+oc0

For this choice of R and any events &, EonQ, the transport
metric is bounded above and below by the original
2-Wasserstein distance [25],

Wi(E,8) S Wyr(E,E) S CWL(E.E)Y,  (6)

where the constant C > 0 depends on Q. In this way,
LOT not only converges to a well-defined transport metric
W, %, but that transport metric captures the behavior of
the original 2-Wasserstein metric at large and small dis-
tances. See Refs. [26-28] for further analysis of the LOT
embedding.

avg = 0.67%, std = 5.82%

0.16

0.14

0.12

0.10

Density
o
(=3
oo

0.06

0.04

0.02

0 - >
-40%  -30%  -20% -10% 0% 10% 20% 30% 40%
Percentage difference

FIG. 2. Distribution of percentage differences between the LOT
approximation and the 2-Wasserstein distance for pairs of events
in a sample of 500 mixed W and QCD jets.
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On one hand, the LOT approximation, the W,  transport
metric, and the 2-Wasserstein metric do not need to attain
similar values for the pairwise distances between events in
order for LOT to offer good discrimination power in
classification and clustering tasks. However, as an illus-
tration of the similarity of LOT and the 2-Wasserstein
metric in practice, we plot in Fig. 2 a histogram of the
difference between the LOT approximation and the
exact 2-Wasserstein metric when computing the pairwise

distances between a sample of 500 mixed W and QCD jets.
The reference event is given by 225 constituent particles
uniformly distributed on a 15 x 15 grid. We observe that
the LOT approximation is on average slightly larger than
the 2-Wasserstein distance (mean 0.67%), and they are
generally of comparable size (standard deviation equal
to 5.82%).

The key benefit of the LOT approximation is that it
provides a natural embedding &+ z; of events into

TABLE I. Results for the seven jet tagging tasks using four different machine learning models coupled with the LOT coordination.
Comparison task
Model Dataset Wvs QCD tvs QCD tvs W Hvs QCD Hvs W BSM vs QCD BSM vs W
LDA Sample dataset AUC 0.6896 0.7863 0.8464 0.7642  0.7865 0.7158 0.7244
TPR 0.6926 0.7746  0.7886  0.7378 0.7762 0.6713 0.6562
FPR 0.3133 0.2020  0.0958  0.2095 0.2032 0.2397 0.2074
Approximate run time Several seconds
Full dataset AUC 0.7041 0.8077 0.8573  0.7703  0.8443 0.7337 0.7455
TPR 0.7156 0.7969  0.7957  0.7661 0.8254 0.7549 0.6804
FPR 0.3075 0.1815  0.0812  0.2255 0.1368 0.2874 0.1894
Approximate run time Several seconds
SVM Sample dataset AUC 0.8410 0.8630 0.8751 0.8349  0.8831 0.8239 0.8806
TPR 0.8148 0.8929  0.8333 0.8006  0.8750 0.8582 0.9090
FPR 0.1327 0.1669  0.0831 0.1308 0.1088 0.2104 0.1478
Approximate run time 2 h
Full dataset AUC 0.8687 0.8780 0.8805  0.8426  0.9100 0.8331 0.9077
TPR 0.8451 0.8873  0.8365 0.8185 0.9103 0.8471 0.9191
FPR 0.1077 0.1313  0.0755 0.1332  0.0904 0.1808 0.1037
Approximate run time 6 h
Hyperparameters C 1.0 1.0 10.0 1.0 1.0 1.0 1.0
y 100.0 100.0 10.0 100.0 100.0 100.0 100.0
kNN Sample dataset AUC 0.8191 0.8450 0.8659  0.8203  0.8628 0.8026 0.8361
TPR 0.7741 0.8164  0.8040  0.7975 0.8295 0.8172 0.8241
FPR 0.1358 0.1264  0.0723 0.1568 0.1038 0.2120 0.1520
Approximate run time 15 min
Full dataset AUC 0.8455 0.8601 0.8735 0.8280  0.8831 0.8192 0.8772
TPR 0.8033 0.8217 0.8156  0.8040  0.8566 0.8261 0.8836
FPR 0.1123 0.1014  0.0686  0.1479  0.0905 0.1876 0.1292
Approximate run time 4 h
Hyperparameter k 20 40 10 20 20 10 20
k-medoids Sample dataset AUC 0.6797 0.8096 0.8074 0.7689  0.8028 0.7622 0.6698
clustering TPR 0.7947 0.9282  0.6583 0.8374  0.6835 0.8837 0.5216
FPR 0.4354 0.3089  0.0436  0.2996  0.0778 0.3592 0.1821
Signal percentage (63.78%, (74.70%, (94.00%, (73.60%, (90.11%, (71.05%, (74.81%,
(signal, background) 2597%)  9.27%) 27.02%) 18.81%) 26.24%) 15.33%) 37.75%)
Clusters’ size (6118, (6159, (3565, (5682, (3861, (6211, (3549,
(signal, background) 3882) 3841) 6435) 4318) 6139) 3789) 6451)
Medoids true labels 1, 0) 0, 0) 1, 0) 1, 0) 1,1 (1, 0) (1, 0)
(signal: 1, background: 0)
Approximate run time 30 min
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Euclidean space. This embedding is useful for two reasons.
First, LOT, ;(&, &) coincides with the #2 distance of the
Euclidean coordinates z;,7;, weighted by the energies of
the reference measure R;. Consequently, to compute the
pairwise LOT approximation between all events in a sample
requires O(N,,;) computations of the 2-Wasserstein metric,
in order to construct the embedding &+ z;, and then
O(N?2,,) computations of the #> metric, in order to compute
the value of LOT between all events. Given that each
computation of #2 is, on average, 4 orders of magnitude
faster than computing a Wasserstein distance, this results in
an enormous computational advantage.

The second reason that the LOT Euclidean embedding is
useful in jet classification is that it allows us to apply a
wider range of classification algorithms directly to the
vectors z;, Z; representing the events £, €. While existing
work using optimal transport for jet classification con-
sidered algorithms that only rely on pairwise distances
between all events, such as kNN, by using the LOT
Euclidean embedding, we are able to apply algorithms
that require a Euclidean structure, such as LDA. By
leveraging this Euclidean structure, even this simplistic
algorithm is able to provide novel ways to visualize
variation in the dataset (see Fig. 5) and surprisingly
accurate classification, compared to more sophisticated
learning methods (see Table I). Finally, by passing the
Euclidean coordinates directly to the ML models and
thereby delegating computation of the entire pairwise
LOT approximate distance to efficient downstream meth-
ods, the LOT approximation has a large storage advantage
over traditional optimal transport techniques in ML.

III. OBJECT CLASSIFICATION WITH LOT

To demonstrate the efficacy of the LOT framework, we
now focus exclusively on the task of jet tagging, that is,
distinguishing one type of jet from another. In addition to
being an important tool in experimental analyses, jet
tagging serves as an ideal playground to test new machine
learning ideas in the realm of both supervised classification
and unsupervised clustering. Given that optimal transport
quantifies the similarity between the energy flows of two
jets, the hope is that the metrics can effectively capture the
differences among a variety of jet types. For the purposes of
this application, we take an event to consist of a single jet
and consider the flow of p; associated with particles in
the jet.

Here, we consider five types of jets: single-pronged QCD
(quark or gluon) jets, two-pronged boosted W boson jets,
three-pronged boosted top quark jets, two-pronged boosted
Higgs boson jets, and two-pronged boosted jets from a
hypothetical new particle. This new BSM particle ¢ is
taken to be a scalar transforming in the 6 representation of
SU(3)c and carrying electromagnetic charge +1; we
consider a benchmark mass of mgy =100 GeV with a

width of I'y = 2 GeV. It couples equally to all quark pairs
that respect charge conservation. We calculate the Feynman
rules for this BSM particle ¢ using FEYNRULES [29].

Instead of examining all possible pairwise combinations,
we narrow our analysis to the following seven pairs: W vs
QCD, t vs QCD, t vs W, H vs QCD, H vs W, BSM vs QCD,
and BSM vs W. For the most part, these comparisons could
be thought of as treating both QCD and W boson jets as
backgrounds, whereas top, Higgs boson, and BSM jets are
treated as signals. The W vs QCD pair is introduced as a
benchmark for the performance of the other six tagging
tasks, as well as for a meaningful comparison with the
results obtained in Ref. [1].

We generate proton-proton collision events using
MADGRAPH26.7 [29] at /s = 14 TeV, where the two-
pronged boosted Higgs boson jets are generated via
qq — Z(— vb) + H(— bb) and the BSM jets are generated
through ¢g — ¢¢); all other SM jets are created via pair
production. The BSM (anti)particle subsequently decays to
two quarks. The matrix elements are then fed into
PYTHIAS.243 [30], with hadronization and multiple particle
interactions switched on using default tuning and showering
parameters. No detector simulation is included. Afterward,
we cluster the jets in FASTJET33.2 [31] using the anti-ky
algorithm with a jet radius of 1.0, where at most two jets with
pr € [500,550] GeV and |y| < 1.7 are kept.

To remove any artificial difference in the energy flows of
the produced jets, every jet is preprocessed by boosting
and rotating to center the jet 4-momentum and vertically
align the principal component of the constituent p; flow in
the rapidity-azimuth plane using the ENERGYFLOW package
[1,3,10,32,33].

In order to have a unified framework for the seven com-
parison tasks, we work with a single choice of reference jet.
The reference jet has a total py of 525 GeV and 225
constituent particles, each with the same amount of p;
evenly distributed on a 15 x 15 grid with |y| < 1.7 and
|¢p| < 5. This corresponds to an isotropic distribution on the
cylinder; note that related reference distributions were
explored in Ref. [4] for the purposes of defining the event
isotropy variable. While raising the number of particles in
the reference jet does marginally improve the approxima-
tion of LOT to W, x, it greatly increases the computational
cost and does not improve the accuracy of the classification
and clustering tasks. We have also tried nonuniform
reference jets, and the resulting LOT approximation does
not show any material difference compared to what is
obtained from the uniform reference jet. Furthermore, as
we justify rigorously in the Appendix, the LOT approxi-
mation with a uniform reference jet can be seen as an
approximation of W, g, the transport metric with base R,
which approximates the original 2-Wasserstein metric at
large and small distances; see Eq. (6). For this reason, we
will often refer to the LOT approximation as the LOT
pseudodistance in what follows.
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FIG. 3. Upper left: the optimal movement to rearrange one
QCD jet (red) into another (blue) using the exact OT-W2 metric.
Upper right: the optimal movement to rearrange the same two
QCD jets using LOT-W2. Lower left: the optimal movement to
rearrange a W jet (orange) into a QCD jet (blue) using the exact
OT-W2 metric. Lower right: the optimal movement to rearrange
the same QCD and W jets using LOT -W2.

We first normalize the py of all jets to unity before using
the Python Optimal Transport library [34] to compute the
exact Optimal Transport (OT) distance between a given jet
and the reference jet, with the cost being the Euclidean
distance squared in the rapidity-azimuth coordinate.*

Once we have this OT distance in hand, we proceed
to calculate the linear embedding for each jet using the
method in Sec. II. Later, we recover the approximate LOT
pseudodistance between any two jets from the weighted £2
distance between their Euclidean coordinates, which we
refer to as their LOT coordinates. (Note that, due to the fact
that we choose our reference jet so that all particles have
equal energy, the weighted #? norm reduces to a classical
£? norm in our setting.)

Figure 3 shows the optimal energy movements between
two sample QCD jets and between sample QCD and W jets
using the OT-W2 distance and the LOT-W2 approximation,
respectively. All jets are normalized to have unit p; before
computing both metrics. In visualizing the OT-W2 metric,

“This normalization step obviates the need to modify the OT
distance with an additional difference term as in Ref. [1]. For jet
samples in the p; range explored here, we found that simple
machine learning algorithms exhibit comparable or slightly better
performance when using exact OT-W1 or OT-W2 distances
computed between normalized jets, compared to EMD distances
computed between non-normalized jets.

points in the y-¢b plane represent constituent particles, with
sizes proportional to their p7; the darkness of the lines
connecting points in the two jets indicate how much p7 is
moved from one particle to another. In visualizing the
LOT pseudodistance, vectors located at each particle in the
reference jet indicate the difference between movement of
pr from that particle in the reference jet to particles in
the respective sample jets. In each case, the total distance
between the two jets is also shown. These examples illus-
trate the qualitative properties of both metrics applied to
simulated events: in the case of OT-W2, large OT distances
correspond to the movement of significant amounts of
energy between particles widely separated in the ground
metric, while large LOT pseudodistances correspond to
very different transport plans between the reference jet
and the respective particles. We observe that the LOT-
W2 pseudodistance is numerically close to the exact
OT-W2 distance, consistent with the bounds from
inequality (6).

IV. MACHINE LEARNING WITH LOT

Once we assign a LOT coordinate to each jet, the inputs
for jet tagging become standardized, enabling the applica-
tion of a large pool of simple machine learning algorithms.
LDA, kNN, and SVM are among many suitable algorithms
for classification. Such a meaningful jet representation also
makes it possible to try unsupervised clustering algorithms
where we leave the model itself to assign a label for each
jet. One simple example is k-medoids clustering. Though
relatively limited in performance, all the above-mentioned
traditional models have important advantages over neural
networks. They are more computationally economic, have
fewer hyperparameters to tune, and offer better human
interpretability. Most of them are also off-the-shelf func-
tions implemented in the PYTHON package SCIKIT-LEARN
[35], making their adoption easier in practice. In our
analysis, we use all four aforementioned machine learning
models to either classify or cluster the jets.

The simple supervised classifier kNN [36] relies on a
majority vote of one’s closest k neighbors in the training set
to determine the class membership of the new data point.
Here, k is a model hyperparameter to be tuned. We test k in
the range from 10 to 1000 with an increment of 10. Since
kNN relies only on a notion of pairwise distance, it serves
as a good probe to check whether our LOT approximation
sufficiently captures the difference among various jet types
while at the same time adequately reflecting the similarity
within one specific type. The simplicity in understanding
kNN and its reliance only on pairwise distances between
events contribute to its adoption in the original EMD
paper [1].

A more sophisticated model, the SVM [37], lifts the
inputs into a high-dimensional space and finds an optimal
hyperplane to best separate the data. Key to SVM is the
choice of a kernel function. Here, we use the common
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radial basis function kernel exp[—yd(x, x')?], where d(x, x')
is the LOT pseudodistance between the two data points and
y is a tunable hyperparameter controlling how much
influence a single training example has. A high y suggests
that only nearby points are considered. Another hyper-
parameter of the model C regulates the strength of the
penalty term when a sample is misclassified, where a high
value implies that nearly all training examples need to be
classified correctly. In our analysis, we let both C and y run
from 107 to 10° again with an increment of 10. Thus, there
are 11 x 11 = 121 pairs of hyperparameters, and the model
needs to be run for 121 times to determine the best choice.

Since both SVM and kNN involve hyperparameter
tuning, they are relatively time consuming to train for
large datasets. In contrast, LDA [38] has closed-form
solutions with no hyperparameter, making it an attractive
model for a quick first look into the data. With the
assumptions that the input data is Gaussian and the
Gaussian for each class shares the same covariance matrix,
LDA projects the input high-dimensional data onto a
direction that is most discriminative, denoted as the
LDA direction. Here, we use LDA both as a classifier
and as a tool for visualization, a point to be elaborated later.

For unsupervised learning, we choose as a first try
k-medoids clustering [39] implemented in the PYTHON
package PYCLUSTERING [40]. The goal of the model is to
partition the dataset so that the distance between points
labeled to be in a cluster and the point designated as the center
of that cluster is minimized. Note that the centers, called
medoids, are chosen from actual data points. For the present
application, the model is asked to group the unlabeled data
into k = 2 clusters. Then, the true labels are uncovered. The
cluster with a higher percentage of signal jets is denoted as
the signal cluster, whereas the other is designated as the
background cluster. We also retrieve the true labels of the two
picked medoids. Ideally, the true label of the medoid should
be the same as the label of its own cluster. If not, we prefer the
cluster’s label. We then assign all jets in the signal cluster as
signals and those in the background cluster as background
jets. This assignment is compared with the ground truth to
assess the performance of our clustering model. Strictly
speaking, the model is semisupervised, for we need the true
labels to decide which cluster is the signal cluster. A more
detailed discussion of k-medoids and its performance will be
given in a later paragraph.

For every comparison task, we create two balanced
datasets, each with about 50% signal jets. The smaller
one, named the sample dataset, consists a total of 10000
jets and is mainly used for picking the best hyperpara-
meters, though it also constitutes a complete analysis in its
own right. The full dataset, on the other hand, has 140 000
jets in total and is used to assess the model performance and
draw the final conclusions.

For the two classifiers KNN and SVM, the sample dataset
is further divided into a training sample of 5000 jets, a

validation sample of 2500 jets used to decide the best
hyperparameters, and a test sample of 2500 jets. The full
dataset is split into a training set of 100 000 jets and a test
set of 40 000 jets for these two models. For LDA, thanks to
its high efficiency, we train and test on both the sample
dataset (training sample size equal to 8000, test sample size
equal to 2000; validation sample is not needed since there is
no hyperparameter for LDA) and the full dataset (training
set size equal to 100000, test set size equal to 40 000),
which amounts to two separate, identical analyses. The
k-medoids algorithm has only been applied to the sample
dataset due to its computational intensity, and in this case,
all 10 000 jets are fed into the model at once for clustering.

Figure 4 displays the receiver operating characteristic
(ROC) curves of the three classifiers KNN, SVM, and LDA
for each of the seven comparison tasks. Also included is the
area under the ROC curve (AUC), which encapsulates the
model performance in a single number between 0 and 1. An
AUC close to 1 is most desirable, whereas a value around
0.5 suggests a random classifier, the worst-case scenario.
All results are obtained on the full test datasets consisting of
40000 jets, using the models trained on 100 000 jets with
hyperparameters, if present, picked by the sample datasets.

To get a better sense of the model performance, we
compare the AUCs of our LOT-coupled ML models for
the W vs QCD classification task with other common
classifiers built in Ref. [1] where the training set, though
different, also contains 100 000 balanced W and QCD jets,
and the test set contains 20 000 such jets. The model most
akin to our k_,oNN-LOT is k_3,NN-EMD built upon the
EMD proposed in Ref. [1], an interpolation between the
OT-W1 distance and total variation norm.” The N-subjetti-

ness ratio 1g:1 /rle, introduced in Refs. [41,42], is a
widely used observable specifically designed to spot two-
prong jet substructure. For the other three classifiers,
namely the Energy Flow Network (EFN) and Particle
Flow Network (PFN) neural networks [33], and a linear
classier trained on Energy Flow Polynomials (EFPs) [32],
please refer to the original papers for more details.

Datasets Model AUC
k_,oNN-LOT 0.845

Our datasets SVM-LOT 0.869
LDA-LOT 0.704

k_3;»,NN-EMD 0.887

1,5:1 /1-113:1 0.776

Datasets in Ref. [1] PEN 0.919
EFPs 0.917

EFN 0.904

5Although our samples are not identical to those in Ref. [1],
we apply the same prescription for simulating and preparing
the samples, and our W/QCD jet samples yield results for
k_3>NN-EMD compatible with Ref. [1].
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FIG. 4. ROC curves for the seven jet tagging tasks evaluated on the full test datasets of 40k jets. The x coordinate shows the signal
efficiency rate and the y coordinate gives the background rejection rate.

Not surprisingly, the neural networks obtain the best
performance. But the four optimal transport inspired
models (three with LOT and one with EMD) are on a
par with these state-of-the-art complex classifiers, and they
significantly outperform the N-subjettiness observable
(with the single exception of the exceptionally simplistic
LDA). More pertinent to our current investigation is the
observation that models coupled with LOT-W2 approxi-
mation perform as well as those using the exact EMD
metric. The AUCs of kNN-LOT and SVM-LOT are close to
the AUC of KNN-EMD, suggesting that it does not make
much difference for jet tagging whether we use the exact

OT metric or its linearized version. Yet on the practical
level, the LOT approximation has a significant advantage
over the exact OT metric. The computation of the LOT
coordinates for 140 000 jets only takes about 10 min on a
desktop computer, whereas it is infeasible to compute the
full exact OT matrix of pairwise distances on the same
computer and still requires significant time on a cluster.
Table I summarizes the results obtained for all seven
comparison tasks, with complete, independent analyses
done both on the sample datasets and the full datasets. In
addition to AUC, we also report the true positive rate (TPR)
and false positive rate (FPR), where the TPR is the same as
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FIG. 5. Bottom: projection of the LOT coordinates of 10 000 jets in the sample dataset onto the LDA direction chosen by the model.

Blue dots represent W boson jets and red dots refer to top jets. The seven larger dots represent jets whose LDA coordinates are
-3,-2,-1,0, 1, 2, 3 sigma away from the mean jet (starting from the left). Top: the energy flow in the rapidity-azimuthal plane of the
seven jets chosen in the bottom plot respectively. The intersection of the dashed lines shows the location of the origin in the y-¢ plane.

the signal efficiency and the FPR equals 1 minus the
background rejection. A TPR near 1 and a FPR close to 0
are preferable. For SVM and kNN, we also include the
hyperparameters chosen by the sample datasets. The results
for k-medoids are harder to interpret, so we defer a full
discussion to a later paragraph.

Also included in the table is the approximate run time for
each task, performed on an iMac with 3.6 GHz 8-Core Intel
Core 19 and 16 GB memory. The longest analysis takes no
more than 10 h, which, when combined with the extra few
minutes for calculating the LOT coordinates, is quite
manageable. LDA in particular only takes seconds to
process the full datasets, and in this light, its classification
results are surprisingly good. In addition, models per-
formed on the sample datasets require as few as 2 h for
a full scan of hundreds of possible combinations of
hyperparameters. Competitive classification performance
coupled with efficient computational time suggests that the
Linearized Optimal Transport metric may play a role in
event classification alongside the exact OT metric, complex
neural networks, and traditional handpicked observables.

Given that the sample datasets constitute complete
analyses on their own rights, we can compare their results
with those obtained using the full datasets. In general,
model performance naturally gets better with more training
data, but we observe that the increase in performance going
from 10 000 jets to 140 000 jets is perhaps not significant
enough to justify the extra computational resources needed.
Since the numbers quoted for AUC, TPR, and FPR are only
intended as general performance evaluations rather than
precise measures, the fluctuations in these numbers can be
safely ignored, and we therefore conclude that a dataset of
10000 jets (with as few as 5000 for training) is already
enough to assess the overall quality of the model and the
underlying metric.

Some general features can be immediately read off from
the table. Whichever jets we compare, SVM always gives
the best classification performance with AUCs around 0.9,

approaching the performance of neural networks. This
suggests that jets represented in their LOT coordinates
are indeed very well separated by a hyperplane in some
high-dimensional feature space, which in turn demonstrates
the fitness of the approximate metric itself. Except for t vs
W jets classification, the hyperparameters chosen for SVM
via the validation process are all the same, with C = 1 and
y = 100 where 1 happens to be the default value for C in
SCIKIT-LEARN. It means that the model uses only a
reasonable amount of regularization and thus a relatively
smooth decision surface is drawn. On the other hand, a y of
100 is considered large, indicating that only nearby samples
can have an influence on the classification of a new point.

This latter observation is consistent with what is sug-
gested by the hyperparameter k picked by kNN. All seven
comparison tasks prefer small k values less than 50, which
means that to determine the type of an unknown jet we need
to look no further than its closest 50 neighbors. If LOT does
not place same-type jets near each other as desired, then
models with hyperparameters preferring locality will not be
able to achieve such satisfying classification performances.
Therefore, the hyperparameters picked by SVM and kNN
provide an indirect evidence for the suitability of the
optimal transport metric—it indeed groups jets of the same
type near each other and separates those of different types.
We will later turn this speculation into more convincing and
intuitive visualization.

Among the seven jet tagging tasks, KNN and SVM both
have the best performance in distinguishing Higgs boson
jets from W boson jets and are least capable of separating
BSM jets from QCD jets. This is mainly caused by a
relatively high false positive rate, meaning that the models
have a tendency to wrongly classify QCD jets as BSM jets.
The same reason applies to LDA when it performs poorly
on W vs QCD classification relative to other tasks. For each
type of signal jets (t, H, or BSM), all three classification
models perform better when the background is a W jet
rather than a QCD jet.
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We now focus on the k-medoids clustering algorithm,
which is only analyzed on the sample datasets due to
computational limitations. Given that unsupervised learn-
ing is inherently more difficult than supervised learning, it
is not surprising to see the performance of k-medoids
algorithm as inferior to that of KNN or SVM. But even then,
except for the W vs QCD and BSM vs W tasks, the AUCs
of k-medoids are all above 0.75, on a par with the
supervised learning models analyzed on the sample data-
sets. The clustering algorithm even shows superior perfor-
mance compared to LDA for most tagging tasks. This
remarkable achievement again points to the merit of the
underlying approximate LOT distance and is encouraging
for the further exploration of optimal transport applications
to unsupervised learning algorithms.

It should be noted that AUC is not the only gauge of
model performance. Especially in the case of k-medoids
clustering, we also need to take a look at other indicators to
map a more complete picture. Beside examining the TPR
and FPR, we also like to know more about the properties of
the two clusters output by the algorithm. If the model is
perfect, then each cluster should contain only signal jets or
only background jets. The purity of the two clusters is given
in the second row of k-medoids clustering in the table,
where we record the signal percentage (defined as the
number of signals in the cluster divided by the total number
of jets in that cluster) in the signal cluster and the back-
ground cluster, respectively. By definition, the signal
cluster is the group with a majority of signal jets, which,
if pure, should have a signal percentage of 100%. Similarly,
a pure background cluster should have 0% signal percent-
age. Notice that the sum of the signal percentage of the two
clusters does not necessarily equal 1 (but in the ideal case, it
does). The worst-case scenario is to have the signal
percentage of both clusters close to 50%. A quick look
at the second row at least qualitatively confirms that the
AUC of the task is indeed higher whenever we have two
purer clusters, with the best AUC obtained for t vs QCD
clustering which has a signal percentage of 74.70% for the
signal cluster and only 9.27% for the background cluster.

The size of the clusters also reveals how well the model
performs. Ideally, the result would be two clusters with
equal size, that is, each with 5000 jets, since the data
themselves are balanced. Here, the best result we have is for
the H vs QCD task, where the Higgs cluster has 5682 jets
and the QCD cluster has a total of 4318 jets. But in general,
the two clusters are not well balanced. In the worst case, the
W cluster has 81.77% more jets than the BSM cluster, and
it does correspond to the lowest AUC score.

In theory, the two medoids should be the most repre-
sentative jet for the clusters to which they respectively
belong. Since the medoids are actual data points, we can
uncover their true labels and check whether they agree
with the type of the cluster they are assigned to. Only the
two tasks, t vs QCD and H vs W, give conflicting answers.

For the t vs QCD clustering, the two chosen medoids
are both background QCD jets. Thus, the signal top
cluster acquires a QCD jet as its representative. The
situation is reversed for the H vs W task where now the
background W cluster elects a signal Higgs jet as its
exemplar. Nevertheless, both tasks enjoy high AUC scores,
which suggests that the true labels of the medoids might not
have a direct influence on model performance.

The general message here is that AUC, though powerful
and straightforward, is not enough to assess the perfor-
mance of an algorithm; other indicators are required to gain
a fuller appreciation of the strength and weakness of the
model, both for clustering and for classification.

Lastly, we use LDA to visualize jets and aid under-
standing of the LOT approximation and its associated
Euclidean embedding. Our approach follows work by
Wang et al. [9], which introduced the LOT framework
and applied it to visualization tasks, such as discriminating
nuclear chromatin patterns in cancer cells. Given the 225 x
2 linearized coordinate for each jet, we first stack the list of
the second coordinate ¢ at the end of the list of the first
coordinate y and reshape the coordinate to be 450 x 1,
which is then fed into a LDA model for the projection of the
450 coordinates onto one single most discriminative
direction (denoted as the LDA direction). This allows us
to represent every jet as one single point on the LDA
direction for easy visualization. Figure 5 shows such
projection for the 10 000 jets in the t vs W sample dataset,
which enjoys the highest AUC among the seven tasks with
the LDA classifier. A clear separation between W and top
jets can be seen, with the majority of W boson jets grouped
toward the left end of the LDA direction and most top jets
towards the right end, explaining the good performance of
the LDA classifier for this task.

It is enlightening to see how jets vary along the chosen
LDA direction. To this end, we first select the jet whose
one-dimensional projected LDA coordinate has a value
closest to the mean of all LDA coordinates in the dataset
and denote it as the mean jet. We then compute the standard
deviation of the dataset. Now, jets whose LDA coordinates
are up to 3 sigmas away from the mean jet are displayed in
Fig. 5. We observe a clear tendency of particles spreading
more on the y-¢ plane as we move from the left end of the
LDA direction to the right end, i.e., from negative sigmas to
positive sigmas, corresponding well to our intuition that top
jets are more smeared and tend to have a three-pronged
structure.

As another illustration, we examine more closely how
the OT-W2 metric rearranges the p; of one jet to make
it look like another, as shown in Fig. 6. Here, we first
select the rightmost top jet ' and the leftmost W boson jet
W' in the bottom plot of Fig. 5. We then compute the exact
2-Wasserstein optimal transportation matrix y;;, which
instructs how much of p; is moved from particle i in jet
W' (denoted as W}) to particle j in jet 7' (denoted as 7}).
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FIG. 6. The OT-W2 movement of p; to rearrange the leftmost W boson jet W' (blue) into the rightmost top jet ¢' (red) in the sample
dataset. The intermediate green plots show artificial jets created via the interpolation parameter a. When a = 0 and 1, the jets are
respectively identical to W! and ¢' up to visualization. Again, the intersection of the dashed lines shows the location of the origin.

To interpolate between the two extreme jets, we create a
new jet that depends on an interpolation parameter
a € [0, 1], where @ = 0 outputs a jet identical to W' and
a = 1 recovers the ¢! jet. This new artificial jet* contains
i X j particles, each with

PT ="7Yijs
y = (1=a)xy(W}) +axy(t),
" = (1—a) x p(W}]) + ax ¢(1}), (7)

where y(W!) is the y coordinate of the ith particle in jet W',
and likewise for the others. From the perspective of
optimal transport theory, this artificial jet is precisely the
2-Wasserstein geodesic between the jets. Several values of
a are picked in Fig. 6 so as to show a few representatives of
the interpolated jets and help us understand intuitively the
pr movement by the OT-W2 metric. This interpolation
technique may prove relevant to the fast simulation of
collider events, insofar as it allows interpolation between
real events.

The above visualizations provide useful insight into the
performance of the LOT approximation and the machine
learning model coupled to it, offering a useful intermediary
between analytic kinematic variables and deep neural
networks.

V. CONCLUSION

The theory of optimal transport offers a new perspective
on the traditional problems of collider physics, beginning
with the introduction of the OT-based Energy Mover’s
Distance in Ref. [1]. But the practical value of exact OT
metrics as competitors to specialized variables and deep

neural networks is limited by the need to determine O(N2,,)
computationally expensive OT distances between N,
events. In this paper, we have introduced an efficient
approximation scheme for computing optimal transport
distances in collider events using a linear optimal transport
approximation to the 2-Wasserstein distance. This entails
computing the exact OT distance between each event and a
reference jet containing n particles; the corresponding
transport plan provides a map from the event to a vector
in n-dimensional Euclidean space. The approximate LOT
distance between two events is then obtained by com-
puting a simple weighted #? distance between the corre-
sponding n-vectors, so that only O(N.,,) OT distances and
O(NZ,)¢? distances are required. This makes the calcu-
lation of approximate OT distances between collider events
in a typical sample accessible to a desktop computer.
Furthermore, we have proven that this LOT approximation
converges to a true metric on the space of collider events in
the continuum limit.

The Euclidean embedding furnished by our approxima-
tion scheme makes it a natural input to simple machine
learning algorithms that require more than the pairwise
distance between events, such as LDA. We have demon-
strated the value of the LOT framework for jet tagging in
a number of classification tasks, illustrating both the
relative computational efficiency (compared to exact OT
approaches) and interpretability (compared to deep neural
networks) of our approach. The two classifiers kNN and
SVM coupled with the LOT approximation achieve high
performance on a level comparable to both the exact OT
approach and complex neural networks, while significantly
outperforming the traditional N-subjettiness variable. The
choice of the hyperparameters of the two models further
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confirms the effectiveness of the approximate LOT distance
in capturing the difference among various jet types. As a
quick first look into the datasets, LDA performs surpris-
ingly well and provides an intuitively clear visualization
method. The good performance of the k-medoids clustering
algorithm is encouraging for further explorations of the
application of the LOT framework to tasks beyond super-
vised learning, including clustering and anomaly/novelty
detection. Finally, the similarity in the performance of the
sample datasets and the full datasets suggests that only as
few as 10000 jets are required to have an estimate on the
quality of the model and the underlying metric, further
reducing the computational cost.

There are a wide variety of future directions. The
computational speedup offered by the LOT approximation
should make it possible to apply optimal transport methods
more broadly in analyzing both simulated and actual
collider data. Likewise, this speedup motivates extending
LOT methods to other optimal transport metrics (such as
unbalanced OT) which may be relevant to collider physics
but whose application is currently limited by computational
cost. To the extent that it involves the transport plan from a
reference jet to an event, the approximate LOT distance
shares aspects with the OT-based event isotropy varia-
ble [4], and it would be interesting to investigate their
relationship further. The convergence of the LOT approxi-
mation to a true metric in the continuum limit suggests it
may play a role as a discrete approximation scheme in the
broader geometric approach to collider observables pro-
posed in Ref. [2].

More broadly, there remains much to explore at the
interface between collider physics and the theory of optimal
transport.
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APPENDIX: FROM LOT APPROXIMATION
TO LOT DISTANCE

In this Appendix, we prove the convergence of the LOT
approximation, defined in Eq. (4), to a true metric in the
continuum limit. For the sake of brevity, we will only
briefly discuss the optimal transport theory underlying
this result, primarily with the goal of establishing notation.

We refer the reader to the textbooks by Ambrogio et al.
[43], Peyré and Cuturi [24], Santambrogio [44], and Villani
[45] for further background.

Let P(R?) denote the set of probability measures on R
Given u,v € P(RY), a measurable function t:R¢ — R?¢
transports p onto v if v(B) = u(t='(B)) for all measureable
sets B C RY. We call v the push-forward of y under t and
write v = t#u. For historical reasons, it is conventional in
the field of optimal transport to think of the amount of
measure u gives to a measurable set B as the mass of B with
respect to p and to interpret a measurable function t as a
transport map that rearranges the mass in u to look like v.
Conveniently for physicists, the “mass” and “energy”
notation is equivalent in natural units, and we will use
the former here. Given a probability measure on a product
space, for example y € P(R? x RY), its marginals are
given by the push-forward of the measure through the
projections on each component of the product. For exam-
ple, if 72:R¢ x R? — R4 is the projection onto the second
component of R? x RY, then z’#y is the second marginal
of y. Finally, we say that £ € P(R?) has finite second
moment if M,(E) = [qa |x[*dE(x) < +oo, in which case
we write £ € P,(R?).

For any &, Ee Pz(Rd), the 2-Wasserstein distance from
& to & is given by

- 1/2
Wa(£.8) = min ( / |x—y|2dy<x,y>) ,
yel(£,€) \JRIxR?

[EE) ={yePRxRY):z'#y = E n’#y = E}.

Note that, in the special case £ = 3,6, E;, € = > 5X,Ej’
the above definition of the 2-Wasserstein distance coincides
with that given in Sec. II. We refer to the set of transport
plans y € T'(£, €) that achieve the minimum as the set of
optimal transport plans, which we denote by T'o(u,v).
Furthermore, we say that a plan y € ['(£, ) is induced by a
transport map if there exists a measurable function t :R? —
RY so that y = (id x t)#&, where id(x) = x is the identity
mapping.

Just as we may extend the 2-Wasserstein distance from
the discrete case to the case of probability measures, we
may likewise extend the definition of the LOT functional,
as well as define the related concept of transport metrics.
We devote particular attention to the case that the reference
measure R does not give mass to sets of (d — 1)-dimen-
sional Hausdorff measure; in other words, the measure does
not concentrate on small sets. In this case, for any
& € P,(R?), there exists a unique optimal transport plan
p €TH(R,E), and p is induced by a transport map [46].
This transport map is unique (up to sets of £ measure zero),
and we refer to it as the optimal transport map from R to £,
denoted t& [47]. The function x > t& (x) represents where
mass starting at location x in the reference measure R is
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sent in the target measure &, in order to rearrange the mass
from R into &, using the least amount of effort. Note that a
necessary condition for such an optimal transport map to
exist is that an optimal rearrangement of R to £ does not
split mass; that is, all mass starting at a specific location in
‘R must be sent to the same location in &.

Given a reference measure R € P,(R?), which does not
give mass to sets of (d — 1)-dimensional Hausdorff mea-
sure, and measures &, & € P,(RY), the transport metric
with base R is given by

Wanl€.8) = ([ -kpar) " (a

The transport metric with base R is a well-defined metric
on P,(RY), which can be interpreted as computing the
distance between £ and & by projecting onto the tangent
plane at R (see Ref. [48], Proposition 1.15, Ref. [9],
Eq. (6), and Ref. [43], Egs. (7.3.2) and (9.2.5) and
Theorem 8.5.1).

In this section, we prove that the Linearized Optimal
Transport approximation converges as the discretization
of the reference measure is refined. In order to do this, we
now define the LOT functional for general measures and
show its relationship with the transport metric with base k.
Given measures R, E,E € P,(RY), for any p € Ty(R, E),
p €TH(R.E), there exists € P(R? x R? x RY) so that

"o =p and 1'Hw =p, (A2)
where 7'/ is the projection on the ith and jth components of
R? x R? x RY; when R does not give mass to small sets;
then, @ is unique (see Ref. [43], Lemma 5.3.2). By
disintegration of measures, there exists a family {w, €
P(R?x RY)}, cge so that for any measurable function
fiRIx R4 x R? - [0, +00),

. (/f (r1,32,33) oo, (xz,x3)>d72(x1)

- / o ) ) (A3)

In this way, for R.E. € € P,(RY) and p € [,(R.E),
peTH(R, 5) the LOT functional is defined by

LOT,;(£.€)

= (/ ‘ /(x2 —x3)dw, (x;,x3)

In the special case that R = 7,6, R;, €= }; 3, E;, and
E=> O, E, this reduces to the LOT functional defined

in Sec. II. Furthermore, in the special case that R does
not give mass to sets of (d — 1)-dimensional Hausdorff

2 1/2
dR(x1)> . (A4)

measure, the optimal transport plans p = (id x t%)#R
and p = (id x t%)#R are unique, as is the measure
o = (id x t& x t5,#R and its disintegration w, =
5“% (62,8, (1)) Consequently, when R does not give mass

to small sets, the LOT functional is independent of the
choice of transport plans p.p, and LOT,;(E, &) =

W,z (E,&); that is, the LOT approximation becomes a
well-defined metric on the space of probability measures
with finite second moment. Similarly, when R does not
give mass to small sets, the LOT Euclidean embedding can
be thought of, from a geometric perspective, as the inverse
of the exponential map

E— /xzda)xl(xz,)@) = t%, (AS)

which is an isometric embedding from W,z to L*(R).

We now prove that, for any sequence RY %R where R
does not give mass to small sets, the LOT approximation
corresponding to R converges to the transport metric with
base R. Furthermore, we allow the events £V and &V to
likewise vary along convergent sequences.

Proposition 1: Consider three sequences of probability
measures RV, EN, EN € P,(R?) that converge to R, &, and
& in the 2-Wasserstein metric. If R does not give mass to
small sets, then for any choices of optimal transport plans
PV €TH(RN,EV) and pV € Ty(RN,EN), we have

Jim LOT (EN.EN) = W,z (E.8).

(A6)

Proof.—Throughout, we use the equivalence between
convergence in the Wasserstein metric and narrow con-
vergence combined with convergence of second moments
(see Ref. [43], Remark 7.1.11). In particular, this fact
ensures that RV, £V, and EV converge narrowly, so @" is
narrowly relatively compact (see Ref. [43], Lemma 5.2.2).
Any narrow limit point @ of this sequence satisfies, in the
sense of narrow convergence,

1 '2 = i 1 '2 N = i N =

" Ho NEIBOOH #o Nl_lgl()()p p, (A7)
1 ’3 p— 1 1 ’3 N = 1 ~N = 0

' #w Nl_l)rfooﬂ' #o Ngrfmp g, (A8)

where p €T(R.E), pETH(R.E) (see Ref. [43],
Proposition 7.1.3). Since R does not give mass to sets
of (d — 1)-dimensional Hausdorff measure, the limit point
o is unique, and @ = (id x t& x t5)#R (see Ref. [43],
Lemma 5.3.2). Furthermore, since
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: N
N1—1>I4I:100M2(w )
= lim / 1 [+ [xal? + [x3Pd@™ (x1, xp, x3)
N—+o0

= [Jim M, (RV) 4 M,(EN) + M, (EN)

= My(R) + M3(E) + M (&) = My (@), (A9)
we obtain that @ — @ not only narrowly but also in the
Wasserstein metric.

We now apply this convergence of @" to @ to conclude
the convergence of the LOT approximation to the transport
metric with base R. First, we will show

HmsupLOT v v (EV,EN) < Wy (€. ).
N—>+o0

(A10)

N

By Jensen’s inequality for the probability measures @y,

LOT v v (EN,EV)

1/2
< ( [ 1= s <x2,x3>dRN<x1>)

1/2
= (/ |x2 —x3|2da)N(x1,x2,x3)> .

Taking the limsup as N — +oco and using the convergence

(Al1)

of " to @ = (id x t& x t5)#R in the Wasserstein metric
gives inequality (A10) (see Ref. [43], Lemma 5.1.7 and
Proposition 7.1.5).

It remains to show that

HminfLOT, yv (EN.ENY > W, 1 (E.8).

(Al12)

Since R does not give mass to sets of (d — 1)-dimensional
Hausdorff measure, W, (&, E‘) =LOT, (&, g’) and,
squaring both sides, it is equivalent to show

limint / o () AR (x,) = / w(x))PAR(x,), (AI3)

N—+c0

where

oV (xy) = /(x2 —x3)d0’le (x2,x3)

v(xy) = /(xz _x3)dwx1 (%2, x3) (Al14)

Since RY — R narrowly and x + |x|? is convex, this holds
as long as vV € L?(RM) weakly converge to v € L*>(R)
(see Ref. [43], Theorem 5.4.4 (ii)). Indeed, for any
f € C®(RY), the fact that @V — @ in the Wasserstein
metric ensures

lim / F0r) oY () dRY (x1)

N—+o00
= Jim [ 7(01) e = ) 3, 5)aRY ()
= NETm/f(xl)(xz = x3)do™ (x1, x5, x3)

= [ 160 = ) 23
://f(x])(xz—X3)da)xl()€2,x3)dR(xl)

— [ Feotx )R ). (A15)
|
Corollary 3: Let Q be a two-dimensional rectangular
domain, and consider a sequence of reference measures R
given by a sum of N? Dirac masses with weights 1/N?2,
uniformly distributed on Q. Then, as N — +o0, the LOT
approximation with base R" converges to the transport
metric with base R, where R is the probability measure
uniformly distributed on Q. That is, for any events &, & ,and
for any p € Ty(RN,E), p € Ty(RN,E), we have
Jim LOT, v (€, &) =Wyr(€,E).  (Al6)
Proof.—Note that, by construction, R" converges in the
Wasserstein metric to the probability measure uniformly

distributed on Q, which does not give mass to small sets.
Consequently, the result follows from Proposition 1. =
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