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Abstract

Model reduction methods aim to describe complex dynamic phenomena using only rel-
evant dynamical variables, decreasing computational cost, and potentially highlighting key
dynamical mechanisms. In the absence of special dynamical features such as scale separa-
tion or symmetries, the time evolution of these variables typically exhibits memory effects.
Recent work has found a variety of data-driven model reduction methods to be effective for
representing such non-Markovian dynamics, but their scope and dynamical underpinning
remain incompletely understood. Here, we study data-driven model reduction from a dy-
namical systems perspective. For both chaotic and randomly-forced systems, we show the
problem can be naturally formulated within the framework of Koopman operators and the
Mori-Zwanzig projection operator formalism. We give a heuristic derivation of a NARMAX
(Nonlinear Auto-Regressive Moving Average with eXogenous input) model from an under-
lying dynamical model. The derivation is based on a simple construction we call Wiener
projection, which links Mori-Zwanzig theory to both NARMAX and to classical Wiener fil-
tering. We apply these ideas to the Kuramoto-Sivashinsky model of spatiotemporal chaos
and a viscous Burgers equation with stochastic forcing.
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1 Introduction
Unsteady fluid flow, fluctuations in power grids, neural activity in the brain: these and many
other complex dynamical phenomena arise from the interaction of a large number of degrees
of freedom across many orders of magnitude in space and time. But, in these and many other
systems, only a relatively small subset of the dynamical variables are of direct interest or even
observable. Reduced models, i.e., models that use only relevant dynamical variables to repro-
duce dynamical features of interest on relevant timescales, are thus of great potential utility,
especially in tasks requiring repeated model runs like uncertainty quantification, optimization,
and control. Moreover, relevant dynamical mechanisms are often easier to glean and under-
stand in reduced models.

Many approaches to model reduction — also known as the closure problem in physics and
reduced-order modeling in engineering — have been proposed. On one hand, a variety of an-
alytical and computational methods have been proposed based on dynamical systems theory
and statistical mechanics. These have been especially successful in situations with special dy-
namical features like sharp scale separation, low dimensional attractors, or symmetries; see,
e.g., [1, 2, 3, 4]. However, not all scientific and engineering applications exhibit these features,
and in such cases reduced models must account for memory and noise effects (see, e.g., [5, 6]
as well as Sect. 2). On the other hand, while purely data-driven approaches, i.e., those based on
fitting generic statistical models to simulation data or physical measurements, have been quite
successful in a variety of settings without sharp scale separation (see, e.g., [7, 8, 9, 10, 11, 12],
the dynamical basis for these methods is often unclear, and as a result their scope of appli-
cability remain incompletely understood. In addition, a systematic understanding from the
nonlinear dynamical systems point of view would provide a framework for analyzing and im-
proving these methods.

This paper is the first step in our effort to bridge this gap; for different perspectives and
approaches to similar questions, see, e.g., [13, 14, 15, 16]. First, using Koopman operators, the
Mori-Zwanzig formalism, and Wiener filtering, we propose a simple mathematical formulation
of data-driven model reduction. The resulting framework links dynamical systems theory and
data-driven modeling, and can serve as a starting point for systematic approximations in model
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reduction. In particular, we show that a variant of the NARMAX (Nonlinear Auto-Regressive
Moving Average with eXogenous input) representation of stochastic processes, widely used in
time series analysis and data-driven modeling (see [17, 18, 8] and references therein), can
be derived via a construction we call “Wiener projections,” which is equally applicable to ei-
ther deterministic chaotic or random dynamical systems. Another consequence of our work
is that for problems with time-stationary statistics, classical Wiener filtering can provides an
alternative to Mori-Zwanzig as a framework for model reduction.
Organization. In Sect. 2, we recall relevant dynamical systems theory background, including
a discrete-time version of the Mori-Zwanzig formalism and the NARMAX representation of
stochastic processes. We also formulate the problem of data-driven driven model reduction
considered in this paper. Sect. 3 describes the Wiener projection and its basic properties, and
shows how it can be used to derive a variant of NARMAX. Sect. 4 is concerned with numerical
implementation details, and Sect. 5 examines the application of these ideas to the Kuramoto-
Sivashinsky partial differential equation (PDE) and to a stochastic Burgers equation. For the
convenience of readers, we have included appendices on an alternate derivation of the Mori-
Zwanzig equation (which sheds some light on its interpretation); a summary of classical Wiener
filtering and the z-transform; and detailed numerical results on our two examples.

2 Data-driven model reduction in discrete time

2.1 Problem formulation and dynamical systems setting

We assume the full system of interest is a discrete-time dynamical system

Xn+1 = F(Xn). (2.1)

The states Xn are points in a spaceX, which can be a vector space, a manifold, or a more general
space. We refer to Eq. (2.1) as the full model. The dynamical variables of interest, or relevant
variables, are defined by x = π(X ), π being a given function mapping points in X to points in
d-dimensional Euclidean space Rd , generally with d ≪ dim(X). (The choice of π is dictated in
part by the application, in part by dynamical considerations such as scale separation.) Eq. (2.1)
can accommodate continuous time systems by letting F be the time-∆t solution map (for some
∆t > 0) or a Poincaré map. We focus on discrete-time reduction because (i) observations are
always discrete in time, and (ii) discrete-time reduced models avoid the numerical errors that
come from integrating continuous time reduced models, which can be significant in chaotic
systems [8, 19].

By data-driven model reduction, we mean using data to construct reduced models that
use only the relevant variables. We are interested in reduced models that can (i) forecast xn

given its past history, and (ii) reproduce long-time statistics, e.g., correlations and marginal
distributions. In general, parametric model reduction methods begin with a family of models
with unknown parameters and observations exn = π(eXn), where (eXn)Nn=0 is a trajectory (or
multiple trajectories) of the full model. One then estimates the parameters by fitting the model
to the data, usually by minimizing a suitable loss function. Methods differ in their choice of
models and loss functions, which can impact both model fitting and the performance of the
reduced model.

A useful approach to the statistical properties of dynamical systems is to view the space of
observables on X as forming a Hilbert space H = L2(µ) with inner product 〈 f , g〉 =

∫︁

f g dµ.
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The probability distribution µ describes the long-time statistics of typical solutions of Eq. (2.1),
and is invariant, i.e., if X0 has distribution µ, then so does Xn for all n > 0. Inner products
are thus naturally interpreted as steady-state correlations. Many dynamical systems of interest
possess multiple “natural” invariant measures; the choice of a suitable measure is dictated in
part by the application, in part by computational tractability. For example, in molecular dynam-
ics, one may consider microcanonical, canonical, or grand canonical ensembles; for dissipative
chaotic systems, relevant invariant probability measures are often singular distributions sup-
ported on strange attractors that nevertheless reflect the statistics of a set of initial conditions
with positive phase space volume.

In principle, the measure µ need not be invariant. But invariance significantly simplifies
the problem of data-driven model reduction, and in addition guarantees many convenient
mathematical properties. Without the invariance assumption, far more data would be needed.
For these reasons, we focus on stationary processes in this paper. Equivalently, we assume X0

has distribution µ, so that (Xn) is stationary.

Recall that the Koopman operator is the operator M defined by Mϕ(X ) = ϕ(F(X )). The
Koopman operator advances observables forward in time: Mϕ(X ) gives the value of ϕ at the
next step if the current state is X . The Koopman operator and its adjoint, the Perron-Frobenius
transfer operator, describes the dynamics from the function space point of view. Much is known
about their properties as operators on H and on other relevant Banach spaces, see, e.g., [20]
or [21]. Both the Koopman and Perron-Frobenius operators have been used extensively in
computational nonlinear dynamics; see, e.g., [22, 23].

We will use extensively two properties:

(i) The Koopman operator is invertible when F is invertible, and M−1ϕ = ϕ ◦ F−1.

(ii) With the inner product 〈·, ·〉 above, Koopman operators are Hilbert space isometries (i.e.,
〈Mu, M v〉= 〈u, v〉) and unitary (M M ∗ = M ∗M = I) when F is invertible [21, 20].

We note that property 2 relies on the invariance of µ.
One of the uses of Koopman operators (and the Mori-Zwanzig formalism introduced in the

next section) is to turn nonlinear dynamics questions into questions involving linear opera-
tors, for which mathematical analysis and formal manipulation are often easier. We will take
advantage of this in Sect. 3.

2.2 Discrete-time Mori-Zwanzig formalism

The MZ formalism originally arose in classical statistical mechanics [6, 5], and has been used in
physical applications ranging from fluid dynamics to materials science and molecular dynamics
(see, e.g., [5, 24, 10, 25, 26, 27, 28, 29, 30, 31, 32, 33]). As we will discuss in Sect. 3.3, it also
applies to systems with random forcing and/or (bounded) delays. Here we review a discrete
MZ theory [34].

The starting point of Mori-Zwanzig formalism is the Mori-Zwanzig equation, which asserts
that there exists a sequence of functions ξ1,ξ2, · · · : X→ Rd such that for n⩾ 0,

xn+1 = PF(xn) +
n
∑︂

k=1

Γk(xn−k) + ξn+1(X0) (2.2a)
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with
Γk = P(ξk ◦ F) and Pξn = 0. (2.2b)

In Eq. (2.2), P can be any projection operator. The first, “Markov” term is then the “best”
approximation of F by functions in the range V of the projection P (more on this below).
The second, “memory” term captures all non-Markovian effects representable in V. The last,
“noise” term represents errors at each step, and are orthogonal to functions in V. We present
a derivation below, and an alternate derivation via a dual equation in A.

To make use of the Mori-Zwanzig equation, one must first choose a projection operator P.
A common choice is the conditional expectation (Pϕ)(x) = Eµ[ϕ(X )|π(X ) = x]. Another is
finite rank projection: fix a collection of linearly independent functions ψ1(x), · · · ,ψν(x) of x ,
then take P to be orthogonal projection onto their linear span, i.e.,

Pϕ(x) = Ψ(x) · 〈Ψ,Ψ〉−1 · 〈Ψ,ϕ〉, (2.3)

where 〈 f , g〉=
∫︁

f T ·g dµ for matrix-valued f and g, and the columns ofΨ(x) = [ψ1(x) · · · ψν(x)]
span V. With P as in Eq. (2.3), we can write PF = Ψ · c0 and Γk = Ψ · ck for coefficient vectors
ck. Eq. (2.2) then becomes

xn+1 =
∑︂

k⩾0

Ψ(xn−k) · ck + ξn+1. (2.4a)

Eq. (2.2b) now take the form

ck = 〈Ψ,Ψ〉−1 · 〈Ψ,ξk ◦ F〉 (2.4b)

and
〈ξn,Ψ ◦π〉= 0. (2.4c)

In this paper, we will mainly consider finite rank projections and a closely related “Wiener
projection” in Sect. 3. See, e.g., [5, 35, 6, 25] for discussions of the conditional expectation
and other choices.

The Mori-Zwanzig equation is an exact description of the dynamics of xn. Without further
approximation, it does not represent a reduction in model complexity. The equation does,
however, highlight the interdependence of the projection P and the noise (ξn). To arrive at
closed equations of motion for the relevant variables xn, it is necessary to choose P so that
the noise terms (ξn) can be effectively modeled. A common approach is to choose P to be a
projection onto the slow variables. One then appeals to scale separation and other physical
considerations to justify modeling (ξn) by a stochastic process ηn, e.g., a stationary Gaussian
process. The coefficients (ck) can be approximated by, e.g., perturbation techniques. The power
spectrum of the noise and the memory kernel are related by so-called fluctuation-dissipation
relations, of which Eq. (2.4b) is an example [36, 6].

As a physical example, one may consider the motion of heavy particle suspended in a fluid,
a problem originally studied by Smoluchowski and Einstein [37]. The “system” consists of the
heavy particle and the water molecules making up the surrounding fluid. Projecting onto the
particle degrees of freedom, the Markov term is given by equation of motion for a free particle,
the memory term gives rise to drag due to the fluid, and the noise term represents random
forces due to thermal fluctuation of the surrounding fluid.
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Orthogonality conditions (e.g., Eq. (2.4c)) play a key role in MZ theory and in Wiener fil-
tering: they are equivalent to optimality in the least squares sense. In using reduced models to
generate predictions, one often assumes the driving noise (i.e., the ξn in Eq. (2.4)) is indepen-
dent of xm for n> m. Orthogonality conditions provide partial justification for this (standard)
procedure. Eq. (2.4c) comes from Pξn = 0, but does not imply Ψ(xm) is uncorrelated with ξn

for n> m. More on this in Sect. 3.
Derivation of the Mori-Zwanzig equation. The MZ equation can be driven as follows. We start
with the Dyson formula

M n+1 =
n
∑︂

k=0

M n−kPM(QM)k + (QM)n+1, (2.5)

where, as before, M is the Koopman operator and P is a projection on H whose range V
are functions that depend only on the relevant variables x; and Q = I − P is the orthogonal
projection. Eq. (2.5) is readily proved by induction. To see how Eq. (2.4) follows from Eq. (2.5),
apply both sides of Eq. (2.5) to the observation function π and evaluate at X0, yielding

(M n+1π)(X0)
⏞ ⏟⏟ ⏞

(I)

=
n
∑︂

k=0

(M n−kPM(QM)kπ)(X0)

⏞ ⏟⏟ ⏞

(II)

+ ((QM)n+1π)(X0)
⏞ ⏟⏟ ⏞

(III)

. (2.6)

Define ξn = (QM)nπ, so that Pξn = 0 for n ⩾ 1. For Term (I), the definition of the Koop-
man operator M gives π(F n+1(X0)) = π(Xn+1) = xn+1. For Term (III), we have (by definition)
ξn+1(X0). For Term (II), we have

(M n−kPM(QM)kπ)(X0) = (PM(QM)kπ)(Xn−k)

as before. Since M(QM)kπ= Mξk = ξk◦F and the range of P consists of functions of x = π(X ),
we get

(M n−kPM(QM)kπ)(X0) = P(ξk ◦ F)(xn−k).

Combining all these and PQ = 0 yields Eq. (2.2).

2.3 NARMAX modeling

Whereas MZ theory seeks systematic derivations of reduced models, NARMAX (Nonlinear
Auto-Regressive Moving Average with eXogenous input) is a generic approach to paramet-
ric data-driven modeling of time series [18, 38, 17]. A common version of the NARMAX model
is

xn+1 = f (xn) + zn, (2.7a)

zn + ap−1zn−1 + · · · + a0zn−p = dqwn + · · · + d0wn−q (2.7b)

+Ψ(xn) · b1 + · · · + Ψ(xn−r) · br ,

where f and Ψ are given functions, and the wi are independent identically distributed (IID)
random variables, usually assumed to be Gaussian (as we do here). One can view xn+1 = f (xn)
as a crude predictor of xn+1, and Eq. (2.7b) a corrector based on a model of the residuals zn.
Note that like the MZ equation, Eq. (2.7) is non-Markovian.
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In applications of NARMAX, the main task of the would-be modeler is to first choose the
forms of f , Ψ and the orders p, q, r, then determine ai, bi, and di by minimizing a suitable loss
function. One common approach to parameter estimation is least squares regression: let exn de-
note time series obtained from the full model (either by simulation or physical measurement),
and define

bxn+1 = f (exn) + ezn, (2.8a)

ezn + ap−1ezn−1 + · · · + a0ezn−p =Ψ(exn) · b1 + · · · + Ψ(exn−r) · br (2.8b)

The bxn+1 is the one-step prediction based on exn, · · · , exn−r . One then tunes (ai, bi) to minimize
the mean squared error

∑︁

n ∥xn−bxn∥2, possibly in combination with regularization techniques,
e.g., Tikhonov regularization or a sparsity-inducing ℓ1 term. The moving average coefficients dn

are determined by fitting a stochastic process of the form dqwn + · · · + d0wn−q to the residual.
Another approach to parameter estimation is based on maximum likelihood estimation (MLE).
In this approach, one assumes the statistics of the noise (wn), e.g., independent N(0, I) random
vectors, and infer the (ai, bi) and di jointly by maximum likelihood methods and variations
thereof.

Whatever the method, we emphasize that the form of Eqs. (2.7) does not, by itself, deter-
mine a reduced model or a model reduction procedure. One must either specify the statistics
of the noise term, or the loss function to be minimized. (And, for non-convex loss functions,
the optimization procedure.) These choices can have a significant impact on the usefulness of
the model so obtained.

3 Wiener projections

3.1 Definition and basic properties

We now set aside Mori-Zwanzig for a moment, and consider another way to conceptualize
memory effects in model reduction based on Wiener filters [39, 40]. Let un and vn be two zero-
mean wide-sense stationary processes. The Wiener filter is the sequence (hn) that minimizes
the mean-squared error (MSE):

E
�∥︁

∥︁un − (v ⋆ h)n
∥︁

∥︁

2�
, (3.1)

where (v ⋆ h)n =
∑︁

k vn−k · hk denotes convolution, with hn = 0 for n < 0. (See B for more
details.) It satisfies the orthogonality condition

cov(vm, rn) = 0 , n⩾ m, (3.2)

where rn is the residual un −
∑︁

k vn−k · hk, i.e., filter errors are uncorrelated with the data on
which the filter output is based. Eq. (3.2) is equivalent to the minimum-MSE criterion.

We observe that the Wiener filter can be applied to model reduction as well: with Xn as
in Eq. (2.1) and Ψ as before, let hn be the causal Wiener filter for un = xn+1 = π(Xn+1) and
vn = Ψ(xn). We then obtain xn+1 =

∑︁

k⩾0Ψ(xn−k) · hk + rn+1 with cov(Ψ(xm), rn) = 0 for n> m
with rn playing the role of the residual rn in Eq. (3.2).

How is this Wiener filter view related to the MZ formalism? We now sketch an argument
showing that Wiener-based model reduction is in fact a special case of the MZ equation, one
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with some attractive properties. Let Ψn = Ψ(xn), and assume F is invertible so that M is
invertible and unitary. Let PW be orthogonal projection onto the subspace

W = span(Ψ ∪M−1Ψ ∪M−2Ψ ∪ · · · ), (3.3)

where M−kΨ is a short-hand for {M−kψ1, · · · , M−kψν}. Note PW = P∗W , i.e., PW is self-adjoint.
Since M−1v ∈W for all v ∈W , we have

M−ℓPW = PW M−ℓPW , ℓ⩾ 0. (3.4)

This implies QW M−ℓPW = 0 or, upon taking adjoints, PW M ℓQW = 0. The Dyson formula (2.5)
for PW thus simplifies:

M n+1 =
n
∑︂

k=0

M n−kPW M(QW M)k + (QW M)n+1 (3.5a)

= M nPW M + (QW M)n+1 (3.5b)

since PM(QM)k = 0 for k ⩾ 1. Applying both sides of Eq. (3.5b) to π, we obtain

xn+1 =
∑︂

k⩾0

Ψ(xn−k) · hk + ξn+1, (3.6a)

〈ξn,Ψ(xm)〉= 0 , n> m. (3.6b)

Though Eq. (3.6a) and Eq. (2.4a) are formally identical, the orthogonality relation (3.6b) is
strictly stronger than Eq. (2.4c). The reason is that for the finite rank projection in Sect. 2.2,
the orthogonality relation means

∫︁

ξn(X )T ·Ψ(πX ) dµ(X ) = 0, i.e., the noise functions ξn are
orthogonal to a finite dimensional subspace of H. In contrast, in Eq. (3.6b), the orthogonality
relation EX0∼µ[ξn(X0)T · Ψ(πXm)] = 0 means the ξn is (in general) orthogonal to an infinite
dimensional subspace ofH, and is analogous to Eq. (3.2), where the expectation is with respect
to the stationary measure µ on a suitably defined path space. The orthogonality (3.6b) is sig-
nificant for two reasons. First, in stochastic models like NARMAX (2.7), one typically assumes
the driving noise wm is independent of xn for m > n. While natural, this is not guaranteed
by the MZ equation. Eq. (3.6b) does not imply such independence, either, but comes a step
closer.1 Second, orthogonality relations like (3.6b) are equivalent to optimality in the sense of
least squares. The MZ equation does not guarantee the stronger orthogonality (3.6b) because
it does not guarantee optimal estimation of xn+1 using Ψ(xn),Ψ(xn−1), · · · .

We refer to the projection PW and the associated decomposition (3.6) as the Wiener projec-
tion. Two comments: first, the lack of (explicit) memory terms in Eq. (3.5b) is not surprising
because we have simply incorporated all relevant memory effects in the definition of PW itself,
and also assumed the availability of that entire past history at the initial time n = 0, so there
is nothing more for a memory term to capture. Second, though the subspace W is defined in
terms of M−1 and its powers, in practice one does not need to compute M−1 or F−1 in working
with W as one can simply keep track of the (recent) history in stepping forward the reduced
model. So our formalism can be safely applied to dissipative dynamical systems, for which F−1

may be extremely unstable.

In addition to the orthogonality (3.6b), the Wiener projection has the following properties:
1For the analogous construction with P being conditional expectation (rather than finite rank projection), one

can show that the (ξn) are martingale differences.
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(i) Eq. (3.4) implies the existence of h0, h1, · · · such that Eqs. (3.6) hold, and if the vectors
∪k⩾0M−kΨ are linearly independent, then the coefficients (hk) are unique. (The coeffi-
cients hn may be ill-conditioned functions of the data if the basis functions are nearly
degenerate. This is an important but nontrivial issue, which we plan to explore in future
work.)

(ii) The correlation matrices 〈ξm,Ψn〉 and 〈ξm,ξn〉 are functions of m−n, i.e., ξm and Ψn are
jointly wide sense stationary. (The process (Ψn) is stationary by assumption.)

The first claim is a direct consequence of the preceding discussion. For the second claim,
first we show that ξn = (QW M)nπ is wide sense stationary: by taking adjoints in Eq. (3.4), we
get PW M ℓ = PW M ℓPW . A short calculation2 yields

M ℓQW =QW M ℓQW , ℓ⩾ 0. (3.7)

Repeated application of Eq. (3.7) yields

(QW M)nπ=QW MQW MQW · · ·QW MQW Mπ (3.8a)

= M n−1QW Mπ (3.8b)

= M n−1ξ1 (3.8c)

= ξ1 ◦ F n−1 , n= 1,2, · · · . (3.8d)

Thus, 〈ξm,ξn〉 = 〈ξ1 ◦ F m−1,ξ1 ◦ F n−1〉. Since the probability distribution µ is F -invariant, we
have

〈ξ1 ◦ F m−1,ξ1 ◦ F n−1〉=
∫︂

ξ1(F
m−1(x)) · ξ1(F

n−1(x))T dµ(x)

=

∫︂

ξ1(F
m−n(x)) · ξ1(x)

T dµ(x)

= 〈ξ1 ◦ F m−n,ξ1〉,

i.e., ξ1,ξ2, · · · is wide sense stationary.
To see that 〈ξm,Ψn〉 is also a function of m− n, observe

〈ξm,Ψn〉= 〈ξ1 ◦ F m−1,Ψ0 ◦ F n〉 (3.9a)

= 〈ξ1 ◦ F m−n−1,Ψ0〉, (3.9b)

using Eq. (3.8) and the invariance of µ. This can also be established by a more “operator-
theoretic” argument: observe

PW M−m(QW M)n = PW M−mM n−1QW M (3.10a)

= PW M n−m−1QW M . (3.10b)

(Eq. (3.10a) follows by repeated use of Eq. (3.7) with ℓ = 1.) Using ξn = M n−1ξ1 (see
Eq. (3.8c)) and the definition of Pw, we see that 〈Ψm,ξn〉 is a function of m− n.

2Since PW M ℓ = PW M ℓ(PW + QW ) = PW M ℓPW + PW M ℓQW . Combined with PW M ℓ = PW M ℓPW , we have
PW M ℓQW = 0. From this, we get M ℓQW = (PW +QW )M ℓQW = PW M ℓQW +QW M ℓQW =QW M ℓQW .
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3.2 Deriving NARMAX via rational approximations

Eq. (3.6) would not reduce computational cost unless the sum in k can be truncated. Simply
keeping a small number of terms, however, may not provide a good approximation. Put another
way, to use Eq. (3.6) as the basis for model reduction, it is necessary to find an effective way
to parametrize the space of filters (hn). To do this, we use an idea from MZ theory [6]. Let

H(z) =
∑︂

n⩾0

hnz−n (3.11)

denote the z-transform of (hn). This is the discrete-time analog of the Laplace transform; its
properties are summarized in B. The z-transforms X (z), Ψ(z), and Ξ(z) of (xn), (Ψn), and (ξn),
respectively, are similarly defined. Then using the convolution property of the z-transform (see
B), we have the formal relation

X (z) = Ψ(Z) ·H(z) +Ξ(z). (3.12)

In applications of MZ theory to, e.g., statistical physics, rational approximations of the transfer
function H(z) are frequently effective [36, 6]. This suggests the (uncontrolled) approximation

H(z)≈ B(z)/A(z), (3.13a)

with

A(z) = zp + ap−1zp−1 + · · · + a0 and B(z) = brz
r + · · · + b0 . (3.13b)

Neglecting convergence and other mathematical issues for now, if we substitute the ansatz
H(z) = B(z)/A(z) into Eq. (3.12), we obtain X (Z) = Ψ(z) · B(z)/A(z) + Ξ(z). This relation
among z-transforms is equivalent to a recurrence relation. To see this, define yn =

∑︁

n⩾0Ψn−k ·
hk. Then Y (z) = Ψ(z) · H(z), so that A(z)Y (z) = Ψ(z) · B(z). Inverting the z-transform yields
yn + ap−1 yn−1 + · · · + a0 yn−p = Ψn−p+r · br + · · · + Ψn−p · b0. Summarizing, this suggests
Eq. (3.6a) with the ansatz H(z) = B(z)/A(z) can be written

xn+1 = yn + ξn+1, (3.14a)

yn + ap−1 yn−1 + · · · + a0 yn−p = Ψn−p+r · br + · · · + Ψn−p · b0. (3.14b)

If we set one column of Ψ to be f in Eq. (2.7), Eq. (3.14) is essentially Eq. (2.7).
Modulo transients, Eq. (3.14b) will correctly compute yn provided the recursion is stable

in the sense that bounded Ψn lead to bounded yn. This holds if and only if the roots of the
polynomial A(z) all lie strictly within the unit circle. In this paper, we refer to the condition
hn → 0 as the decaying memory condition. Decaying memory is necessary for Eq. (3.6) to be
meaningful, for otherwise the reduced model would be sensitive to information in the distant
past. We note decaying memory is necessary but not sufficient for the overall numerical stability
of the reduced model.

If the decaying memory condition can be enforced, Eq. (3.14b) provides an efficient way
to compute the convolution in Eq. (3.6a), at a cost of not satisfying Eq. (3.5b) exactly. As a
result, there may be additional memory-like corrections. A detailed analysis of this is left for
future work.
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Eq. (3.12) is purely formal in that in our context, where the (xn), (Ψn), and (ξn) are sta-
tionary time series, the z-transforms do not converge for any z ∈. A more careful treatment
uses the idea of power spectra. As this is useful later in the paper, we recall the notion here.

For a stationary stochastic process (un), its spectral power density (or simply power spectrum)
is the function Suu(θ ) =

∑︁∞
n=−∞ Cuu(n)einθ , where Cuu(n) is the autocovariance function (ACF)

cov(un, u0). Similarly, for two stationary stochastic processes (un) and (vn), their cross power
spectrum Suv(θ ) is defined by

∑︁∞
n=−∞ Cuv(n)einθ , where Cuv(n) = cov(un, v0) is the cross corre-

lation function (CCF). In our context, we can view xn, Ψn = Ψ(xn), and ξn are (possibly matrix-
valued) zero-mean (wide-sense) stationary time series satisfying xn+1 =

∑︁

k⩾0Ψn−k ·hk+ξn with
cov(xm,ξn) = cov(Ψm,ξn) = 0 for all n > m. Then, using the properties of power spectra and
z-transforms, one can show

Sx x(θ ) = H∗(e−iθ )SΨΨ(θ )H(e
−iθ ) +H∗(eiθ )SΨξ(θ ) + SξΨ(θ )H(e

−iθ ) + Sξξ(θ ). (3.15)

Eq. (3.11) typically does not converge for all z ∈; we assume the domain of convergence
contains the unit circle, so that Eq. (3.15) makes sense.

Loss function and nonlinear regression. Eq. (3.14) does not, by itself, fully specify a dynamical
model: to have a well-defined model, one needs to specify, e.g., the statistics of the (ξn). For
example, we can approximate ξn by a moving average of the form dqwn + · · · + d0wn−q,
where the wn are independent N(0, I) random vectors; this then gives a NARMA(X) represen-
tation (2.7). Alternatively, one can prescribe the properties of the (ξn) implicitly by specifying
the loss function to be minimized, which we now discuss. We observe that the rational approx-
imation above implies p = q, simplifying order selection.

Since Mori-Zwanzig aims to minimize the difference between the full and reduced models
with respect to the L2 norm, a natural choice is to minimize the mean squared error

E (a, b) =
1
N

N−1
∑︂

n=0

∥︁

∥︁

∥︁exn+1 − bxn+1

�

eΨ1, · · · , eΨn; a, b
�

∥︁

∥︁

∥︁

2
(3.16)

a = (ap−1, · · · , a0) and b = (bq, · · · , b0) are the coefficients of A(z) and B(z) in Eq. (3.13a), (exn)
are data obtained from the full model (say by simulation), and eΨn = Ψ(exn), and where the
one-step prediction bxn is here defined by

bxn+1(eΨ1, · · · , eΨn) =
∑︂

k⩾0

eΨn−k · hk . (3.17)

Because of the parametrization H(z) = B(z)/A(z), the mean squared error E (a, b) depends
nonlinearly on a and b. This leads to two3 possible approaches:

- Nonlinear regression, i.e., tuning a and b to minimize E (a, b) in Eq. (3.16).

- Finding hn directly by solving a (potentially very large) linear programming problem,
then finding a good rational approximation H(z)≈ B(z)/A(z).

3In standard approaches to Wiener filtering, one makes use of the power spectra Sx x , Sxψ, and Sψψ and their
meromorphic continuations and solves the filtering problem by Wiener-Hopf techniques (see, e.g., [40]). In the
context of data-driven modeling, direct minimization of E (a, b) is more attractive because of the various sources
of statistical error.
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In either case, we then fit a noise model to the residuals from the nonlinear regression.
For high dimensional problems, the second approach is computationally more challenging.

In this paper, we use the nonlinear regression approach. Numerical details are described in
Sect. 4.

Multistep form and linear regression. Modulo transients, Eq. (3.14) is equivalent (see B) to the
multistep recursion

xn+p+1 + ap−1 xn+p + · · ·+ a0 xn+1 = Ψ(xn+r) · br + · · ·+Ψ(xn) · b0 + ξn+p+1, (3.18)

where ξn+p+1 = ξn+p+1 + ap−1ξn+p + · · ·+ a0ξn+1. Unlike Eq. (3.14), this formulation does not

introduce any auxiliary variables. The noise (ξn) in Eq. (3.18) is related to the (ξn) in Eq. (3.14)
by Sξξ(θ ) = |A(e

iθ )|2Sξξ(θ ). This means there is no simple orthogonality relation between ξn

and Ψn. For these reasons, Eq. (3.18) is less convenient than Eq. (3.14) for model fitting. Both
require p vectors x1, · · · , xp ∈ Rd as initial conditions. In practice, these initial conditions can
have a measurable impact on noise models; we discuss this and other implementation issues
in Sect. 4.

Eq. (3.18) suggests an alternative loss function: compute the one-step predictions using

bxn+p+1 + ap−1exn+p + · · ·+ a0exn+1 = Ψ(exn+r) · br + · · ·+Ψ(exn) · b0, (3.19)

and minimizing the left and right hand sides, i.e.,

E∗(a, b) =
1
N

N−1−p
∑︂

n=1

∥︁

∥︁

∥︁exn+p+1 −
p−1
∑︂

j=0

a jexn+ j+1 −
r
∑︂

j=0

b j
eΨn+ j

∥︁

∥︁

∥︁

2
. (3.20)

One can then fit the residual by a noise model, e.g., by a power spectrum method (see Sect. 4.4)
or a moving average model. The difference between minimizing E (a, b) in Eq. (3.16) and
E∗(a, b) above is that the latter entails only linear regression, which can be computed very
quickly when the number of time lags is not large. Also, whereas Eq. (3.17) depends on the
all available past history, Eq. (3.19) depends only on the past r steps. However, minimizing
E∗(a, b) may produce such effective models because it neglects long-range correlations in the
data.

Finally, we observe that in Eq. (3.18), if the sequence (ξn) is assumed to be IID Gaussian,
the resulting model is what is often referred to as the NARMA model in time series analysis
(see, e.g., [41, 38]). In this case, one can infer the coefficients a and b by the conditional
maximal likelihood method, which entails minimizes the cost function

E (a, b | ξ1, · · · ,ξp) =
1
N

N−1−p
∑︂

n=1

∥︁

∥︁

∥︁exn+p+1 −
p−1
∑︂

j=0

a j(exn+ j+1 − eξn+ j+1)−
r
∑︂

j=0

b j
eΨn+ j

∥︁

∥︁

∥︁

2
. (3.21)

In the above, the sequence (eξn)n>p can be computed recursively from data for each given pair of
(a, b). This cost function is similar to E (a, b), and the optimization is similar to the nonlinear
regression above: instead of using (hn) above, one computes the sequence (eξn)n>p in each
optimization step (see [8] for more details).
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3.3 Random dynamical systems and systems with delays

Model reduction techniques are routinely applied to both deterministic and random dynamical
systems, as well as systems with delays. The MZ formalism applies to both random dynamical
systems and to discrete-time systems with bounded delays, as we now explain. Our construc-
tion here is related to the “shift operator” discussed in [42].

We first explain how the MZ formalism applies to random dynamical systems. Consider
the Euler-Maruyama discretization4 of a stochastic differential equation (SDE) of the form
u̇t = f (ut) + ẇt:

un+1 = un + f (un)∆t +
⎷
∆t wn , (3.22)

where the wn are independent N(0, I) random vectors. The above has the general form

un+1 = F(un, wn). (3.23)

Let w = (· · · , w−1, w0, w1, · · · ) denote the entire history of the forcing. A standard way to
rewrite Eq. (3.22) as an autonomous dynamical system (Eq. (2.1) above) is to augment the
state un with the history of the forcing w. In dynamical systems language, such constructions
are known as “skew products.” Here we sketch the key ideas, and refer interested readers
to, e.g., [43, 44, 45] for mathematical details (see also [46, 47] for extensions to stochastic
differential equations).

Given a forcing sequence w, we define σ(w) to be the sequence whose nth entry is wn+1,
i.e., σ(w)n = wn+1. In other words, σ(w) is sequence w shifted by 1 in time. If we shift n times,
then wn is moved into position 0, so that π0(σn(w) = wn, where π0(w) = w0.

Using this notation, we can rewrite Eq. (3.23) as un+1 = F(un,π0(σn(w))), where w is a
given realization of the forcing sequence. Now denote w(n) = σn(w); then {w(n) | n ∈ Z} is a
sequence of forcing sequences, all related to each other by time shifts. Then

un+1 = F
�

un,π0(w
(n))
�

, (3.24a)

w(n+1) = σ(w(n)). (3.24b)

Let X be the space of all pairs (u, w), i.e., X is the state space of the discretized SDE augmented
with its forcing history. Then Eq. (3.24) is a dynamical system of the form Eq. (2.1), albeit
one with an infinite-dimensional state space X. This does not prevent one from applying the
Mori-Zwanzig formalism. In practice, one does not need to (and generally cannot) keep track
of the entire forcing history w, and a fragment of it is often sufficient. Note that within this
framework, observation functions Ψ can depend on both the state un and the forcing history
w(n).

Finally, we note that an invariant probability distribution µ, related in a natural way to the
stationary distribution of Eq. (3.22), can be constructed on this augmented state space; see,
e.g., [43, 44].

As for general delay terms, for example terms of the form Ψ(xk, xk−ℓ) for ℓ ⩽ L (which
appear in our model for the Burgers equation later in the paper), one can use a standard
construction: as in Eq. (2.1), let F be a given dynamical system with state space X, and replace

4The ideas we introduce here are quite general; we focus on Euler-Maruyama for the sake of simplicity.
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the state space X by the (L+1)-fold cartesian product X= XL+1, and replace F by a map F on
X with

F(X ) = F(X0, · · · , X L) = (F(X0), X0, · · · , X L−1) (3.25)

for X = (X0, · · · , X L) ∈ X. This constructions can be combined with the skew product construc-
tion described earlier to handle stochastic systems with delays.

4 Numerical implementation
This section addresses the problem of fitting models of the form (3.14) to data. We take a
two-step approach: we first tune the coefficients a and b of the polynomials A(z) and B(z),
respectively, to minimize E (a, b) in Eq. (3.16); we then use a stationary Gaussian process to
model the residuals. Sects. 4.1 and 4.2 concern the decaying memory constraint. Sect. 4.3
discusses other details of optimization, and Sect. 4.4 noise modeling.

We have implemented the algorithms described here and the examples of Sect. 5 in Julia
version 1.4 [48]. For numerical optimization, we used the NLopt.jl package [49]. The source
code is being prepared for public release, and will be available at https://github.com/kkylin .

4.1 Decaying memory constraint and the second-order cascade

To fit a model of the form Eq. (3.6) to data, we will need to enforce the decaying memory
condition hk → 0 for two reasons. First, the decaying memory condition is necessary for the
reduced model to be meaningful. Second, while we can compute one-step predictions directly
using Eq. (3.17), either directly or by the fast Fourier transform, the computational cost will be
quite high for high dimensional problems. It would be much more efficient if we can implement
the convolution indirectly by making use of Eq. (3.14), i.e., compute the one-step prediction
by

bxn+1 = yn, (4.1)

yn + ap−1 yn−1 + · · · + a0 yn−p = Ψ(exn−p+r) · br + · · · + Ψ(exn−p) · b0.

But as discussed earlier, we need the decaying memory condition to ensure these recursions
will correctly compute yn . The challenge is that the loss function E (a, b) is highly nonlinear in
a and b. Because the decaying memory condition involves the roots of A(z) in Eq. (3.13a), it
exacerbates the problem. Our general approach is to reformulate Eq. (3.14) so that the decay-
ing memory constraint becomes easier to implement, at the cost of making the cost function
highly non-convex. We then fit reduced models to data using this representation by numerical
optimization. We have found this to be sufficient for the examples in this paper, though more
work needs to be done to ensure its robustness and efficiency for more general problems.

Consider a model of the form Eq. (3.14) given coefficients, and suppose for simplicity that
A(z) has real scalar coefficients. We begin with the the observation that for a quadratic poly-
nomial z2 +αz + β , its roots lie inside the unit disc if and only if (α,β) lies inside the triangle
in the αβ-plane with vertices (±2,1) and (0,−1). That is to say, for such an A(z), the decay-
ing memory condition consists of three linear inequalities. To make use of this observation for
non-quadratic A(z), we factor A(z) into a product of quadratic factors when p = deg(A) is even,
and quadratic factors and one linear factor if p is odd, i.e.,

A(z) =
p/2
∏︂

i=1

(z2 +αiz + βi) or A(z) = (z +α0)
⌊p/2⌋
∏︂

i=1

(z2 +αiz + βi). (4.2)
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In this form, the decaying memory condition is naturally expressed as a system of linear in-
equalities, which are easily imposed when performing numerical optimization.

In view of the convolution theorem for z-transforms, the quadratic factorization of A(z) is
equivalent to representing the linear filter with transfer function 1/A(z) as a cascade of second-
order filters. To see this, suppose (for simplicity) that p = 2s. We introduce auxiliary variables
(zn

i ) for i = 1, · · · , s (these variables zn
i differ from the z in z-transforms), and suppose they

satisfy
Stage 1 zn

1 +α1zn−1
1 + β1zn−2

1 = Ψn−p+r · br + · · ·+Ψn−p · b0

Stage 2 zn
2 +α2zn−1

2 + β2zn−2
2 = zn

1

...
...

Stage s zn
s +αsz

n−1
s + βsz

n−2
s = zn

s−1

. (4.3a)

We claim that if
xn+1 = zn

s + ξn+1 (4.3b)

then Eq. (4.3) is equivalent to Eq. (3.14), modulo transients. To see this, observe that (neglect-
ing initial conditions) we have

(1+αiz
−1 + βiz

−2)Zi(z) = Zi−1(z) , i = 2, · · · , s

(1+α1z−1 + β1z−2)Z1(z) = z−pΨ(z) · B(z).

Putting it all together (and remembering p = 2s) gives Zs(z) = Ψ(z) ·B(z)/Πs
i=1(z

2+αiz+βi) =
Ψ(z)·B(z)/A(z), and inverting z-transforms yields Eq. (4.3). The equivalence is up to transients
because we have neglected initial conditions in this discussion, and the argument is valid only
if the decaying meory condition holds. The recursion in Eq. (4.3) is explicit when p ⩾ q. In
the notation of Eq. (3.14), the output of the last stage gives yn, i.e., yn = zn

s .
Example. For p = r = 4, we have two stages:

Stage 1 zn
1 +α1zn−1

1 + β1zn−2
1 = Ψn · b4 + · · · +Ψn−4 · b0

Stage 2 zn
2 +α2zn−1

2 + β2zn−2
2 = zn

1

(4.4)

In this case, it is easy to show directly that

yn + a3 yn−1 + · · · + a0 yn−4 = Ψn · b4 + · · · +Ψn−4 · b0 (4.5)

where yn = zn
2 and

z4 + a3z3 + a2z2 + a1z + a0 = (z
2 +α1z + β1) · (z2 +α2z + β2) , z ∈ . (4.6)

The corresponding reduced model can be written as a system

xn+1 =yn + ξn+1

yn =−
�

a3 yn−1 + · · · + a0 yn−4

�

+
�

Ψn · b4 + · · · +Ψn−4 · b0

�

.

With p = r = 0, we have a one-step (Galerkin) recursion xn+1 = Ψn · b0 + ξn+1. Similarly, with
p = r = 1, we have xn+1 = yn+ξn+1 and yn = −a0 yn−1+Ψn · b1+Ψn−1 · b0 , and setting a0 = 0
yields xn+1 = Ψn · b1 +Ψn−1 · b0 + ξn+1.
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4.2 Initializing and running cascade-form models

We use the cascade-form model to impose the decaying memory condition. This is needed both
for running fitted reduced models and, as we explain later, for fitting models to data. Here, we
discuss how to initialize and run such models.

Running the model to produce predictions entails carrying out the recursions in Eq. (4.3),
at each point computing the predictors Ψn = Ψ(xn) with xn = yn−1 + ξn = zn−1

s + ξn. Though
derived from Eq. (3.14), Eq. (4.3) is quite different in form. Here we examine Eq. (4.3) more
closely, to clarify the flow of information in the algorithm and other details.

It is useful to first visualize Eq. (4.3) as a computation graph, a fragment of which is shown
here:

Step n− 2 Step n− 1 Step n

Stage s− 1 · · · zn−2
s−1 zn−1

s−1 zn
s−1

Stage s · · · zn−2
s zn−1

s zn
s

βs

αs

(For legibility, we have drawn the edges going into zn
s as solid lines; all others are dotted.) The

variable zn
s at time n and stage s depends on the corresponding variable zn

s−1 in the previous
stage, as well as the two previous steps (zn−1

s and zn−2
s ) in the same stage.

Once we have initial conditions, Eq. (4.3) can be iterated to generate sample paths. The
first thing is then to find the initial values zp−1

i and zp−2
i for i = 1, · · · , r from the given data

ex1, · · · , exN . An effective procedure is suggested by the computation graph: we set

ey0 = ex1 , ey1 = ex2 , · · · , eyp−1 = exp (4.7)

in the notation of Eq. (3.14) and Eq. (4.3). Assuming the coefficients αi and βi have already
been determined, the computation graph shows that knowing the values at stage s for n =
1, 2, · · · , p (which is the same as knowing y1, · · · , yp in Eq. (3.14)) allows one to solve for the
values at stage s− 1 for n = 3, 4, · · · , p. Iterating, this means we can determine zp−1

i , zp
i for all

stages i. From this, it is also straightforward to see that if y0 = · · · = yp−1 = 0, then zp−1
i =

zp−2
i = 0 for i = 1, · · · , r, so that the initial conditions for Eq. (4.3) are uniquely determined by

those of Eq. (3.14).
Once the initial data have been determined and noise generated (as described in Sect. 3),

the recurrence relations (4.3) can be iterated to generate predictions from the reduced model.

4.3 Fitting models to data

We now describe our overall optimization strategy:

(i) From the time series ex1, · · · , exN , compute the observations eΨn = Ψ(exn).

(ii) For given parameter vectors α,β , b, use the initial values ex1, · · · , exp to determine the
initial values zp−2

i , zp−1
i , i = 1, · · · , r, for Eq. (4.3).
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(iii) Generate one-step predictions bxn+1 by Eq. (4.1) for n= p, · · · , N , where H(z) = B(z)/A(z).

In the cascade representation, the MSE has the form

E ′(α,β , b) =
1
N

N
∑︂

n=p+1

∥︁

∥︁

∥︁exn+1 − bxn+1

�

eΨ1, · · · , eΨn;α,β , b
�

∥︁

∥︁

∥︁

2
(4.8a)

with the decaying memory constraints

βi ⩽ 1 and βi ⩾ ±αi − 1 . (4.8b)

(This says that (αi,βi) lies within a triangle in the α-β plane with vertices (±2, 1), (0,−1). As
asserted in Sect. 4.1, one can check that this is equivalent to the roots of z2 +αiz +βi lying in
the unit disc.) This can be minimized by direct optimization. One then finds the residuals

eξn = exn+1 − bxn+1

�

eΨ1, · · · , eΨn;α,β , b
�

(4.9)

and fit a noise model as before.
One can actually further reduce the dimensionality of the optimization problem; this is

described below. But first, we note that Step (iii) above is more efficiently implemented by
iterating

Stage 1 zn
1 +α1zn−1

1 + β1zn−2
1 = eΨn−p+r · br + · · ·+ eΨn−p · b0

Stage 2 zn
2 +α2zn−1

2 + β2zn−2
2 = zn

1

...
...

Stage s zn
s +αsz

n−1
s + βsz

n−2
s = zn

s−1

Output bxn+1 = zn
s

(4.10)

Modulo transients (see “initial conditions” below), this computes the convolutions in Eq. (3.17).
Note this iteration can only be carried out if α,β satisfy the decaying memory condition.

To further reduce the dimensionality of the nonlinear optimization problem, we observe
that for given (α,β), the function b ↦→ E ′(α,β , b) can be minimized by linear regression. For a
given (α,β), we thus define bb(α,β) to be the (unique) minimizer of b ↦→ E ′(α,β , b). We then
minimize E ′(α,β ,bb(α,β)) by nonlinear optimization. For the examples in this paper, this is
done using the BOBYQA algorithm[50] as implemented in the NLopt package [49].
Initial conditions. The recursions in Eq. (4.10), viewed as a system of non-autonomous linear
recurrences with eΨn as time-dependent forcing, have their own initial conditions. Neglect-
ing these “internal” initial conditions during fitting, for example by setting them all to zero,
can lead to worse fits. Without accounting for initial conditions, the residuals also exhibit
longer transients before approaching stationarity, which can complicate the construction of
noise models.

To estimate initial conditions for Eq. (4.10), we exploit the linearity of Eq. (4.10) in the
variables zn

i by decomposing the zn
i into the sum of a homogeneous solution zh,n

i and a par-
ticular solution zp,n

i , with zp,n
i satisfying Eq. (4.10) with zero initial conditions and zh,n

i solving
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Eq. (4.10) with eΨn ≡ 0. (In linear systems theory, these are the “zero state response” and “zero
input response,” respectively.) This leads to a linear regression problem for the initial values
{zh,0

i , zh,1
i | i = 1, · · · , s}, which can be solved jointly with the computation of bb(α,β) via linear

regression.

Remarks on optimization and related issues.
- Cascade-form models, decaying memory, and optimization. Eq (4.3) enables us to impose

the decaying memory constraint reliably during optimization. However, the decomposi-
tion of A(z) into quadratic factors introduces a symmetry: the value of the loss function
is invariant when the quadratic factors are permuted. This means there are many equiv-
alent global minima, which introduce many saddles into the landscape. While any of
the symmetric global minima will give equivalent reduced models, the presence of the
saddles can potentially slow down optimizers.

- Other optimization strategies. For simplicity, we have opted for direct nonlinear mini-
mization of E ′(α,β ,bb(α,β)) in this paper. It may be possible to improve the efficiency of
the optimization by exploiting the structure of Eq. (4.3) or the multistep representation
(Eq. (3.18) above) by using, e.g., iterative least squares.

- An implementation detail. For interested readers, we describe the computation of bb(α,β)
by linear regression. We run the matrix version of the recursion

Stage 1 Zn
1 +α1Zn−1

1 + β1Zn−2
1 = eΨn

Stage i > 1 Zn
i +α2Zn−1

i + β2Zn−2
i = Zn

i−1,
(4.11)

for i = 2, · · · , r and setting Yn = Zn
s ; this is a matrix version of Eq. (4.10) with q = 0

and b0 = I . The resulting Yn and Zn
i are matrix-valued, with the same shape as eΨn. By

exploiting the commutativity of the convolution operators defined by B(z) and 1/A(z),
one can show that the desired one step prediction is given by

bxn+1 = Yn−p+q · bq + · · ·+ Yn−p · b0 . (4.12)

Combining this with the definition of E ′(α,β , b) lets us compute bb(α,β) via linear re-
gression.

4.4 Noise model

To construct a stochastic process ηn to model the residuals ξn, there are a few standard options:

(i) moving average representation, i.e., ηn = dqwn + · · · + d0wn−q with independent
wi ∼ N(0, I);

(ii) estimating the power spectrum of ξn and generating a stationary Gaussian process match-
ing the power spectrum;

(iii) constructing a linear SDE and fitting it to ξn by, e.g., maximum likelihood.

In earlier work, we have used a moving average representation together with a MLE to infer
the coefficients a and b simultaneously with the coefficients of the moving average. In this
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paper, because we want to compare nonlinear regression with other approaches, the power
spectrum method was found to be simpler.

After finding optimal values for ai, bi, and the initial yi, we fit a stationary Gaussian process
ηn to the residuals eξn+1 = bxn+1 − exn+1, by a random Fourier series approximating a Wiener
integral:

ηn =
1
⎷

2π

M−1
∑︂

j=0

f ( j∆θ ) e−in j∆θ w j

p

∆θ
D
−−−→
M→∞

1
⎷

2π

∫︂ 2π

0

f (θ ) e−inθ Ẇ θ dθ , (4.13)

where ∆θ = 2π/M , the w j are independent standard normal random variables (in the complex
case, Re(w j) and Im(w j) are independent with variance 1/2), Ẇ θ is white noise on the circle
S1, and f (θ ) is a square root of the spectral power density, i.e., Sξξ(θ ) = f (θ ) f (θ )∗. When ηn

takes on values in Rd , then Sξξ and f are d × d matrices and Ẇ θ is d-dimensional. The power
spectrum can be estimated from data by the periodogram method (see, e.g., [51] and references
therein). More efficient and accurate sampling methods are available [52], but we have found
the random Fourier series above to be sufficient the residuals (ξn) are relatively small, as occurs
in many examples (including ours). Whatever the method, the resulting reduced models will
only satisfy the orthogonality conditions approximately.

5 Examples
We now consider two concrete examples. In addition to illustrating the methods described in
earlier sections, there are two specific questions we would like to address:

- How effective is the model reduction method based on nonlinear regression (as described
in Sect. 3.2)?

- How does the nonlinear regression compare to the linear regression described in Sect. 3.2?

We would also like to see how the least squares based nonlinear regression compare to the
MLE used in [53].

5.1 Kuramoto-Sivashinsky (KS) PDE

The KS equation
Ut + UUx + Ux x + Ux x x x = 0 (5.1)

is a prototypical model of spatiotemporal chaos. Here, we consider Eq. (5.1) with 0 ⩽ x ⩽ L
and periodic boundary conditions. In Fourier variables uk(t), Eq. (5.1) is

u̇k = −
iλk

2

∑︂

ℓ

uℓuk−ℓ + (λ
2
k −λ

4
k)uk , λk =

2πk
L

. (5.2)

The lowest ≈ L/2π modes are linearly unstable. This long-wave instability and its interaction
with the quadratic nonlinearity lead to sustained chaotic behavior, with positive Lyapunov
exponents and exponential decay of correlations [54]. NARMAX modeling of Eq. (5.1) was
studied in [53], using likelihood-based parameter estimation and a slightly different form of
NARMAX. Here, we use the least squares procedure. Following [53], we set L ≈ 21.55, leading
to 3 linearly unstable modes and a maximum Lyapunov exponent of ≈ 0.04 (Lyapunov time ≈
25). In this regime, time correlation functions exhibit complex oscillations instead of the simple
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Figure 1: KS solutions. Panel (a) shows results computed using the 108-mode truncation (∆t =
10−3) (left), the 5-mode reduced model (∆t = 0.1) (middle), and the 5-mode truncation (∆t =
10−3) (right). In (b), we plot two Fourier modes as functions of time, with 90% confidence
intervals for the reduced model. Panel (c) shows the energy spectrum.

exponential decay often seen in strongly chaotic systems (Fig. 2(a)), providing a nontrivial
testbed for model reduction.

Eq. (5.1) is readily solved by truncating the Fourier series, provided the cutoff is large
enough. Here, we take as full model the 108-mode truncation; numerical tests show that KS
statistics are insensitive to the cutoff beyond this. Fig. 1(a) shows a sample solution of Eq. (5.1)
using this 108-mode truncation (“full”). By comparison, the 5-mode truncation with the same
initial conditions (“truncated”) diverges rapidly, and fails to reproduce the energy spectrum
(Fig. 1(c)).

Reduced model. To construct a reduced model using the lowest K = 5 Fourier modes, we follow
the procedure outlined in Sect. 3. The first step is to generate data from the full model, which
we do by numerically integrating the 108-mode truncation using a 4th-order exponential time-
differencing Runge-Kutta (ETDRK4) method [55, 56] with timestep ∆t = 10−3, for 108 steps.
We observe the first K = 5 Fourier modes at every 100 steps; the observation interval δ = 0.1
is the timestep for the reduced model. We drop the first half of the data to ensure stationarity.

We use the form of the reduced model in Eq. (3.14) with xn corresponding to un = (un
1, un

2, . . . , un
K);

see C.1 for a detailed description of the model. To select the orders p and r, we tried a variety
of small values until a combination is found that produces a stable reduced model. For the
function Ψ(u), we use three groups of functions:

Ψa
n− j = un− j ,

Ψ b
n− j = R∆t(un− j) ,

Ψ c
n− j,k =
∑︂

|k−l|⩽K ,K<|l|⩽2K
or |l|⩽K ,K<|k−l|⩽2K

eun−1
l eu

n− j
k−l for k = 1, · · · , K .

(5.3)

Here the first two groups Ψa and Ψ b come from the Galerkin truncation. The third group in
form ofΨ c represents that interaction between the unresolved high modes and the resolved low
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modes, in which the high modes eu, defined in C.1d, is motivated by the theory of approximate
inertial manifolds. In terms of the formalism of Sect. 3.1, the observation function Ψ(u) is a
K × (2K + K2) matrix whose entries consist of the terms given above, where K is the number
of relevant Fourier modes. Here, we use K = 5.

Finally, the reduced model is fit to data by the procedure outlined in Sect. 4. As was found
in [53], not all combinations of p and r lead to stable reduced models. Indeed, we have
experimented with “replaying” the residuals, i.e., compute the residuals eξn as in Sect. 4, then
running the reduced model with eξn+1 in place of the noise term. In the absence of round-off,
one would simply obtain xn = exn, i.e., reconstruct the original time series. Instead, for some
choices of (p, r), round-off errors were rapidly amplified. Here, we use the pair p = r = 3,
which is found to strike a balance between accuracy and efficiency. As measured by the product
of the mode and step counts, the reduced model represents an over 100-fold reduction in
computational cost.

Results. Fig. 1(a) compares the full model (“full”), the reduced model with p = r = 3 (“re-
duced”), and the 5-mode truncation with ∆t = 10−3 (“truncated”). As one can see, the reduced
model reproduces the full solution up to t ≳ 50, about 1.8× the Lyapunov time, consistent
with [53]. In contrast, the 5-mode truncation is accurate for a fraction of that time. Fig. 1(b)
takes a closer look at selected Fourier modes. For the reduced model, 100 independent real-
izations are run, and the resulting ensemble is used to estimate confidence intervals. Shown
is the mean (dashed, red), and 90% confidence intervals. Though the noise terms have ampli-
tudes ⩽ 10−4, they are rapidly amplified by exponential separation of trajectories due to the
long-wave instability in KS. Consistent with Fig. 1(a), the mean follows the true trajectory up
to t ≈ 40, at which point they begin to diverge. In contrast, the 5-mode truncation diverges by
t ≈ 20. Moreover, even when the confidence interval starts to widen, it continues to provide
useful bounds for some time. Eventually the ensemble approaches statistical steady state, and
the ensemble mean converges toward its expected value. Fig. 1(c) compares the energy spec-
tra 〈|uk|2〉: while the reduced model correctly predicts the spectrum, the 5-mode truncation
produces fluctuations that are too large.

We note that while the noise terms are small in amplitude (see Fig. 4), we could not have
constructed the confidence intervals in Fig. 1 without them. Moreover, we conducted numerical
experiments without the noise terms. The results (data not shown) show that the reduced
models do considerably worse at all tasks, and at least for some choices of (p, r) the solutions
converge quickly to 0.

In Fig. 2, we examine long-time statistics. In (a), we compare the autocovariance functions
of selected Fourier modes. Unlike the 5-mode truncation, the reduced model is able to repro-
duce quite complex features in the ACFs. Fig. 2(b) shows cross correlation functions for the
energy of the kth mode with the energy of the 4th mode, i.e., cov(|un

k|
2, |u0

4|
2) as a function

of the time lag n∆t; such cross correlation functions can be viewed as a measure of energy
transfer between modes. The reduced model correctly predicts these 4th moments, showing
that the reduced model captures genuinely nonlinear effects in KS dynamics. Panel (c) shows
the reduced model is able to reproduce marginal distributions, whereas the 5-mode trunca-
tion produces marginals that are too wide (compare with Fig. 1(c)). We conclude that both in
terms of short-time forecasting and long-time statistics, the reduced model effectively captures
KS dynamics. These findings are consistent with [53], suggesting the likelihood-based estima-

21



k = 2 k = 5

A
C

F

150 100 50 0 50 100 150

0.2

0.0

0.2

0.4

0.6

0.8

1.0 full
reduced
galerkin

150 100 50 0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Time lag Time lag

(a) Autocovariance functions Re(uk(t))

C
C

F

150 100 50 0 50 100 150

0.2

0.0

0.2

0.4

0.6

150 100 50 0 50 100 150

0.4

0.2

0.0

0.2

0.4

Time lag Time lag

(b) Energy cross-correlations cov(|uk(t)|2, |u4(0)|2)

PD
F

4 2 0 2 4
10 5

10 4

10 3

10 2

10 1

100

4 2 0 2 4
10 5

10 4

10 3

10 2

10 1

100

101

Re(uk) Re(uk)
(c) Marginal distributions

Figure 2: KS statistics. In all panels, solid blue is the full model, dashed red is the reduced
model, and dotted green the 5-mode truncation. Panel (a) shows autocovariance functions
for two Fourier modes Re(uk(t)). In (b), we show cross correlation functions for the energies
|uk(t)|2 and |u4(0)|2 for k = 2, 5. In (c), distributions of Re(uk) are shown.

tor used in [8, 53] and the least squares estimator above are comparable, and the NARMAX
model in [53] nearly optimal in the least squares sense. Numerical tests show that slightly dif-
ferent models (with different time lags p and r) may have similar statistical properties (such
as consistency) and comparable performance in prediction. This suggests that there may be
multiple reduced models fitting the data.

Linear vs. nonlinear regression. Sect. 3.2 emphasizes that choice of loss function should be
viewed as part of the model reduction procedure. In particular, for our ansatz, the MZ for-
malism suggests a least squares approach leading to nonlinear regression (the nonlinearity
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Figure 3: Linear vs nonlinear regression. Left: results from nonlinear regression with p = r =
1. Right: results from linear regression with p = 1, r = 0. Note as explained in the text, we
did not find any orders (p, r) for which both procedures produced useful models.
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Figure 4: KS power spectra. The left panel shows the spectral power density Sx x(θ ) for x = u3,
the k = 3 Fourier mode of the KS equation. The right panel shows the same power spectrum
on a log-log scale to better exhibit the structure near θ = 0. The solid blue curve is the
power spectrum of the Fourier mode u3 from the full model, the dashed red curve is the power
spectrum of the residuals ξ resulting from nonlinear regression with p = r = 1; the dotted
green curve is the power spectrum of the residual resulting from linear regression with p =
1, r = 0. Modes with k ̸= 3 behave similarly and are not shown.

arising from the way we parametrize the transfer function H(z) by a rational approximation).
An alternative is to infer the coefficients by linear regression, by minimizing the one step pre-
dictions in Eq. (3.19). Though the resulting reduced model Eq. (3.18) is formally equivalent
to Eq. (3.14), the coefficients and the statistics of the residuals are different. We emphasize
that both models are nonlinear and share the same functional form, and differ only in how
model coefficients are inferred. For both models, the residuals are computed via Eq. (4.3) and
a stationary Gaussian process fitted using the procedure outlined in Sect. 4.4.

Overall, using linear regression, we found far fewer combinations of (p, r) for which the
reduced models is stable. Unfortunately, for the range of relatively low order models we tested
(0⩽ p, r ⩽ 3), we did not find any combinations of p and r for which both procedures produced
stable models. Thus, we did not conduct a direct comparison between the two. The closest
pair of parameters we found were p = r = 1 using nonlinear regression, and p = 1, r = 0 using
linear regression. This means our nonlinear regression example uses a reduced model of the
form xn+2 + a0 xn+1 = Ψ(xn+1) · b1 +Ψ(xn) · b0 +ηn, while our linear regression model has the
form xn+2 + a0 xn+1 = Ψ(xn) · b0 +ηn.

Fig. 3 shows the results. Though both models are fairly low order, the nonlinear regression
model has performance comparable to the higher-order (p = r = 3) model discussed above. In
contrast, the linear regression model has significantly worse forecasting performance, and was
unable to reproduce the auto-correlation or cross correlation functions accurately. However, it
does reproduce marginal distributions and energy spectra (not shown) reasonably well.

To compare the statistical properties of the reduced models produced by linear and nonlin-
ear regression, Fig. 4 shows the power spectra Sx x(θ ) and Sξξ(θ ) for the relevant variables xn

and the residuals ξn, for the linear regression model and the two nonlinear regression model,
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for the k = 3 Fourier mode. (The other modes show similar trends.) As far as these power
spectra are concerned, the two nonlinear regression models have nearly identical behavior.
For nonlinear regression, the residuals (ξn) have broader and flatter power spectra than that
of (xn), indicating that the effect of the approximate Wiener projection here is to capture the
relatively slower dynamics. The residual is, however, far from white, suggesting the need for
more refined noise models than white noise forcing.

In contrast, linear regression produces much larger residuals, with a flat but less broad
power spectrum. It appears that linear regression could not fit the data nearly as well, but the
addition of a suitable noise model was able to correct for some of the defects of the reduced
model, e.g., marginal distributions and energy spectra. Temporal statistics appear to be more
delicate, however, and the linear regression model did not faithfully capture the details of
autocovariance functions.

Overall, these results suggest that for the KS equation, linear regression results in consider-
ably worse performance than nonlinear regression. This is consistent with our expectation (see
Sect 3.2) that linear regression may have worse performance because it neglects longer-range
correlations in the data. For “static” quantities like energy spectra and marginal distributions,
it appears that the noise model was able to compensate for this, but unable to generate correct
temporal statistics.

5.2 Stochastically-forced Burgers equation

Now consider a stochastically-forced viscous Burgers equation

Ut + UUx = νUx x + ζ (5.4)

with ζ(t, x)white in t and smooth in x , and U(t, x) 2π-periodic in x . More precisely, in Fourier
variables,

u̇k = −
iλk

2

∑︂

ℓ

uℓuk−ℓ − νλ2
kuk +σkẇk, (5.5)

where σk = 1 for |k| ⩽ 4 and σk = 0 for |k| > 4, ẇk is white noise, and λk = k. In contrast to
the KS equation, which is deterministic and exhibits self-sustained chaos, the viscous Burgers
equation is dissipative: without forcing, all solutions converge to the steady state u≡ 0 as t →
∞. Stationary statistics of u(x , t) thus reflect a balance between the forcing ζ and dissipation
through viscosity. We note that the stochastic Burgers equation has the so-called “one force one
solution” (1F1S) property [57]: for a given realization of ζt , t ⩾ 0, all initial conditions lead
asymptotically to the same (time dependent) solution. Put another way, modulo transients,
solutions of Eq. (5.5) are determined by the forcing.

In view of the 1F1S property, a natural question is: given a specific realization of the forcing
ζt , can a reduced model correctly predict the response of the system? To test this, we compare
a fully-resolved, 128-mode truncation of Eq. (5.5) with an under-resolved 9-mode truncation
and a 9-mode reduced model inferred from data. Throughout, ν = 0.05. (See [58] for an
alternate view of this problem.)

Data-driven reduced model. To generate data from the full model, we solve Eq. (5.5) using a
scheme of the form

un+1
k = Gk(u

n,∆t) +
⎷
∆t σk wn

k, (5.6)
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where Gk(u,∆t) is the result of applying ETDRK4 to the deterministic part of Eq. (5.5), un
k =

uk(n∆t), un = (un
1, · · · , un

K), and wn
k independent N(0,1) random variables. Like the standard

Euler-Maruyama scheme, Eq. (5.6) has weak order 1, but is more stable [59]. We solve the
full system with timestep ∆t = 0.00125 and observe every 8th step, so the reduced model has
timestep δ = 0.01. Except for minor differences, this has the form of Eq. (3.22).

To account for the forcing, we modify Eq. (3.14) to obtain

xn+1 = yn + ξn+1, (5.7a)

yn + ap−1 yn−1 + · · · + a0 yn−p (5.7b)

= Ψn−p+r · br + · · · + Ψn−p · b0+ (5.7c)

cqwn+q + · · · + c0wn. (5.7d)

The wn in the moving average (5.7d) are related to the forcing wn in Eq. (5.6) by wn = (w8n+
· · · + w8n+7)/

⎷
8; this correlates the full model and the reduced model during fitting. The

independent noise term ξn is inferred from the residuals as before, and permits one to quantify
the uncertainty in response prediction via ensemble forecasting. As noted in Sect. 3.3, random
dynamical systems like Eq. (5.5) are encompassed within MZ theory, and Eq. (5.7) can be
seen as a special case of the Wiener projection. As before, the orders p and r are selected by
trial-and-error.

We have also constructed reduced models of the form (3.14), which do not correlate the
reduced and full models through shared forcing. All else being equal, we found the perfor-
mance of Eq. (5.7) to be strictly better in our tests than Eq. (3.14) because more information
is retained. We report results obtained using Eq. (5.7) with p = r = 1, leading to a ∼ 50-fold
reduction in cost.

The exact form of the predictors Ψ(·) are given in D. Interested readers are referred to [60]
for further investigation of this and other parametric forms, consistency of estimators, and
model selection.

Results. Fig. 5(a) shows sample solutions. The 1F1S property suggests that the low modes
in the full, reduced, and the 9-mode truncation models will all be strongly correlated, as con-
firmed in the snapshots. However, one also sees that the 9-mode truncation exhibits significant
deviations from the full model, unlike the reduced model. Panels (b) and (c) shows this be-
havior in more details: because of the forcing, the low modes of all 3 models stay close over
time, but the 9-mode truncation shows relatively large deviations from the full model. As
before, Fig. 5(b) shows 90% confidence intervals for the reduced model, computed using an
ensemble of 100 trajectories. As expected, the forced modes are tightly entrained to each other,
whereas the 9-mode truncation shows significant deviation in higher modes. Because of the
1F1S property, the reduced model can be expected to correctly forecast the response for as
long as information about the forcing is available. As for the KS equation, the reduced model
here also reproduces long-time statistics; see Fig. 5(c) for the energy spectrum and D for other
statistics.

Finally, we note that while accurate response forecasting will clearly become more difficult
for larger observation intervals, the reduced model can nevertheless capture long-time statistics
for much larger observation times. Indeed, we have tested the reduced model for much larger
observation intervals, up to 0.1 (see Appendix D).
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Figure 5: Stochastic Burgers solutions. Panel (a) shows results computed using the 128-mode
truncation with ∆t = 0.00125 (left), and snapshots of the full model, the 9-mode reduced
model (∆t = 0.01), and the 9-mode truncation (∆t = 0.00125). In (b), we plot two Fourier
modes as functions of time, with 90% confidence intervals for the reduced model. Panel (c)
shows the energy spectrum.

Linear vs. nonlinear regression. In contrast to the KS equation, linear and nonlinear regression
produced essentially identical results for the Burgers equation. In particular, our tests show
that linear regression can produce marginal distributions and ACFs comparable to the nonlinear
regression model, and has nearly identical forecasting skill; see Fig. 14 in D.

Fig. 6 compares the spectral power densities Sx x(θ ) and Sξξ(θ ) for the relevant variables
xn and the residuals ξn, for the k = 3 Fourier mode. (The other modes are similar.) Unlike the
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Figure 6: Burgers power spectra. Left panels show the spectral power density Sx x(θ ) for the
kth Fourier mode of the Burgers equation. Right panels show the same power spectrum on
a log-log scale. Solid blue curves are the power spectrum of the Fourier mode uk from the
full;model, dashed red curves that of the residuals ξ from nonlinear regression; and dotted
green curves the residual power spectrum from linear regression. The green and red curves
essentially coincide.

KS equation, here the linear and nonlinear regression give essentially identical power spectra
of the noise. The residual spectrum is not broader than the spectrum of the Fourier mode itself,
likely because the Fourier modes of the Burgers equation are subjected to white noise forcing
and therefore contain much higher frequency content than their KS counterparts. As in the KS
example, leaving out the noise terms entirely led to much worse results.

In view of the discussion in Sect. 3.2, the remarkable contrast between this and the KS
equation may be due to the fact that the Burgers equation is being driven by white noise.
The 1F1S property implies that the dynamics is largely determined by the forcing, and hence
long-range temporal correlations play less of a role.

6 Concluding Discussion
Many issues surrounding this topic remain incompletely understood. We mention a few here:

- Nonparametric modeling. We have focused on parametric model reduction in this pa-
per. But in principle the observation functions Ψ(x) can be inferred from data using
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nonparametric methods like delay coordinates, manifold learning, dynamic model de-
composition, reservoir computing, and other machine learning techniques [61, 62, 63,
64, 65, 66, 67]. Eq. (3.6) still applies in these situations, and the Wiener projection
formulation complements and extends existing strategies for data-driven modeling and
model reduction by providing a systematic guide to incorporating memory and noise ef-
fects, in situations without sharp scale separation. For example, one may infer Ψ by a
combination of delayed coordinates and manifold learning, or artificial neural network
techniques.

- Other rational approximations of H(z). The simple rational approximation H(z) = B(z)/A(z)
is used here out of expedience. Experience has shown that other rational approximations,
e.g., those based on continued fractions, can sometimes yield effective approximations
with relatively few undetermined parameters [6]. These will be investigated in future
work.

- Structure-preserving reduced models. Most physical systems of interest are characterized
by exact or approximate conservation laws and symmetries, and it is important for re-
duced models to preserve fundamental physical constraints such as these. Structure-
preserving model reduction is an active area of study, and the framework described in
this paper may provide a new perspective on this problem.

- Numerical stability. In a data-driven approach, one often finds that the estimated re-
duced model is numerically unstable. Heuristically, this is because (i) reduced models
often coarse-grain in both time and space, and the relatively large time steps impose more
stringent stability requirements; (ii) most loss functions used in data-driven model reduc-
tion reflect the accuracy of the approximation, and one runs the risk of overfitting data.
Indeed, our results have shown that the most accurate reduced models (i.e., those with
the smallest residuals) are not always the best reduced model. A general understanding
of numerical stability in these models is currently lacking. Because our nonlinear regres-
sion method always produces linearly stable models, understanding numerical stability
will likely require tackling the strong nonlinearities inherent in these models.

- Quantification of the accuracy of a reduced model. Data-driven approaches have led to
many model reduction strategies that can successfully reproduce key dynamical features
such as energy spectrum and correlations. The development of systematic approaches to
quantify, analyze, and compare reduced models to full models remain incomplete. It is
our hope that the formalism developed in this paper will provide a new perspective on
this fundamental problem.

- Noise modeling. For both our examples, the residuals have small amplitude, and we have
seen that additive noise models work relatively well. We do not know if this approach
will continue to be effective when the residuals have large amplitude, as occurs in, e.g.,
molecular dynamics at finite temperatures.

- Relationship to other data-driven modeling approaches. In recent years, a variety of data-
driven modeling and model reduction techniques have been proposed, applicable in dif-
ferent dynamical regimes. These include delay coordinate embedding[68, 65, 69], man-
ifold learning and kernel regression [70, 63], dynamic mode decomposition (DMD)[71,
72, 14], and many others. The MZ framework should not be viewed as an alternative to
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these methods. Rather, it is complementary in the sense that it provides a general scaf-
fold into which different model reduction techniques can fit. For example, for problems
with low-dimensional attractors in high-dimensional phase spaces, delayed coordinates
and extensions like DMD are natural. But when the underlying assumptions (e.g., fast
convergence to the low-dimensional attractor, deterministic dynamics) are only satisfied
approximately, the MZ formalism may be useful for suggesting corrections.

To conclude, we have shown the Wiener projection provides a framework for data-driven
modeling that is grounded in dynamical systems theory. As such, we view it as a step towards
bridging the gap between nonlinear dynamics theory and data-driven model reduction. Within
this framework, we give a heuristic derivation of a version of the NARMAX model widely used
in time series modeling and analysis, providing an interpretation of NARMAX in terms of an
underlying dynamical system and evidence that it may be nearly optimal in the sense of least
squares. In addition to giving a dynamical systems interpretation for NARMAX, this framework
may provide a starting point for systematic data-driven model reduction. Using the KS and
stochastic Burgers equations, we have demonstrated the flexibility and effectiveness of this
view of model reduction for deterministic chaotic and random dynamics.
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A The dual equation and Mori-Zwanzig closure
In this section, we give an alternate derivation of the MZ equation (2.2) that makes use of a
dual equation describing the evolution of conditional probability distributions. Though longer,
it gives some additional insights into the meaning of the MZ equation.

As before, let F be a dynamical system with state space X. Suppose an initial condition
X0 is drawn from the distribution ρ0. Let ρn denote the distribution of Xn; then ρn+1 = Lρn,
where L is the transfer operator, defined by

∫︂

ϕ ◦ F dρ =

∫︂

ϕ d(Lρ) (A.1)

for suitable test functions ϕ. The above is equivalent to
∫︂

(Mϕ) dρ =

∫︂

ϕ d(Lρ), (A.2)

i.e., the operator L is the adjoint of the Koopman operator M , where the adjoint of an oper-
ator T acting on functions is the operator T † acting on distributions defined by

∫︁

(Tϕ) dρ =
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∫︁

ϕ d(T †ρ). With this, and with P and Q as before, we have

Q†ρn+1 =Q† Lρn

=Q† L(P† +Q†)ρn

=Q† LQ†ρn +Q† LP†ρn,

using P† +Q† = I . Solving the recurrence for Q†ρn gives

Q†ρn = (Q
† L)nQ†ρ0 +

n−1
∑︂

k=0

(Q† L)n−kP†ρk . (A.3)

From this it follows that

ρn+1 = Lρn

= LP†ρn + LQ†ρn

= LP†ρn + L(Q† L)nQ†ρ0 + L
n−1
∑︂

k=0

(Q† L)n−kP†ρk ;

in the last line we just substituted Eq. (A.3).
The above is equivalent to the operator equation

Ln+1 = LP† Ln + L(Q† L)nQ† + L
n−1
∑︂

k=0

(Q† L)n−kP† Lk . (A.4)

Taking adjoints, we get the Dyson formula

M n+1 = M nPM +Q(MQ)nM +
n−1
∑︂

k=0

M kP(MQ)n−kM . (A.5)

From this, the MZ equation follows as before.
Suppose now P is conditional expectation with respect to µ. Observe that for an observable

ϕ and a probability distribution ρ, we have
∫︂

Pϕ dρ =

∫︂∫︂ �∫︂

ϕ(x , y) µY |X (d y|x)
�

ρ(d x , d y ′)

=

∫︂ �∫︂

ϕ(x , y) µY |X (d y|x)
�

ρX (d x)

=

∫︂

ϕ(x , y)

∫︂

µY |X (d y|x) ρX (d x)

=

∫︂

ϕ d(P†ρ).

So the dual P† to the conditional expectation P is

(P†ρ)(d x , d y) = ρX (d x) ·µY |X (d y|x) . (A.6)
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That is, for a density ρ , P†ρ is the product of the X -marginal of ρ and the conditional density
µY |X . The operator P† preserves the X -marginals of densities, and P†µ= µ . If one were to con-
struct reduced models by keeping only the Markov term in the MZ equation, this corresponds to
the closure assumption that the unresolved modes have statistics given by the stationary distri-
bution µ conditioned on the resolved modes. This is the discrete-time analog of the averaging
principles for ODEs (see, e.g., [73]).

B Brief summary of z-transform and Wiener filters
For the convenience of readers, this Appendix provides a brief non-technical summary of some
basic facts about z-transforms and Wiener filtering. See, e.g., [74, 40, 75, 76] for more details.
z-transforms and linear filtering. We first consider (real or complex, scalar or vector) bi-infinite
sequences · · · , x−1, x0, x1, · · · that are causal, i.e., xn = 0 for n < 0. For simplicity, we assume
(xn) ∈ ℓ1 (though much of what we say below holds as long as the xn decay sufficiently fast as
n→∞). For a causal sequence, its z-transform is the formal series

X (z) =
∑︂

n⩾0

xnz−n. (B.1)

In the above expression, z should be viewed as a complex variable, though the series typically
does not converge for all z ∈. The ℓ1 assumption (which covers many examples in applications)
means the domain of convergence of X (z) includes the unit circle and X (e−iθ ) is a Fourier series
with xn as coefficients. In this case, the z-transform is invertible by

xn =
1

2π

∫︂ 2π

0

e−inθX (e−iθ ) dθ . (B.2)

More generally, the z transform can be inverted by an appropriate application of the Cauchy
integral formula.

The z-transform is the analog of the Laplace transform for difference equations. Two key
properties include:

(i) Shifts: if yn = xn+1 for n⩾ 0, then Y (z) = z(X (z)− x0).

(ii) Convolution: if wn = (x ⋆ y)n =
∑︁

k⩾0 xk yn−k, then W (z) = X (z) · Y (z).

In signal processing and time series analysis, the z-transform is useful for representing the
action of “linear filters.” That is, suppose we have a signal (xn). A linear filter is a linear
transformation mapping (xn) to (yn), with

yn = (x ⋆ h)n =
∑︂

k⩾0

xk · hn−k. (B.3)

The sequence (hn), which defines the filter, is known as its impulse response, so called because
hn is the response of the filter when (xn) is the unit impulse, i.e., xn = δn0, δmn being the
Kronecker delta function. By the convolution property, we then have Y (z) = H(z)X (z). H(z)
is the “transfer function” of the linear filter.

One of the ways in which the z-transform is useful is that the analytic properties of the
transfer function encode the asymptotic behavior of the impulse response. For example, if the
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transfer function H(z) of a scalar filter were meromorphic and all its poles lie strictly inside the
unit disc, then Eq. (B.2) tells us hn is causal and decays exponentially as n→∞. (If we only
know that the restriction of H to the unit circle is continuous, then hn → 0 is implied by the
Riemann-Lebesgue lemma.) In the reverse direction, if (hn) ∈ ℓ1 (as we assume), then H(z)
cannot have any poles outside the unit disc.
An application to NARMAX. In Sect. 3.2, we asserted the equivalence of Eqs. (3.14) and (3.18)
modulo transients. Here we show a derivation using z-transforms; an alternative is to use the
substitution yn = xn+1 − ξn+1 in Eq. (3.18). One of the advantages of the z-transform method
is that it provides an operational calculus for keeping track of indices systematically.

First, take z-transforms of Eq. (3.14), we get

z(X (z)− x0) = Y (z) + z(Ξ(z)− ξ0) (B.4a)

A(z)Y (z) + p0(z) = Ψ(z) · B(z) + q0(z) (B.4b)

where p0(z) and q0(z) are polynomials whose coefficients are functions of the initial conditions
x0, · · · , xp and Ψ(x0), · · · ,Ψ(xq), with deg(p) ⩽ deg(A) and deg(q) ⩽ deg(B), and p0 ≡ q0 ≡ 0
if the x0 = · · · = xp = Ψ0 = · · · = Ψq = 0. Substituting Eq. (B.4b) into (B.4a) and simplifying,
we get

zA(z)(X (z)− x0) + p0(z) = Ψ(z) · B(z) + q0(z) + zA(z)(Ξ(z)− ξ0). (B.5)

For comparison, if we transform Eq. (3.18), we get

zA(z)X (z) + p1(z) = Ψ(z) · B(z) + q1(z) + zA(z)Ξ(z). (B.6)

Comparing Eqs. (B.5) and (B.6), we see they are equivalent modulo terms involving initial
conditions. If all the zeros of A(z) lie inside the unit circle, then transients will decay as n→∞,
so modulo transients Eqs. (B.5) and (B.6) are equivalent. In particular, the recursions are
exactly equivalent for homogeneous initial conditions.

The above argument relies on the z-transform. Because the recursions are driven by the
ξn, its validity hinges on what we assume about ξn: if the ξn were, e.g., white noise, then the
z-transforms are not well-defined, but if the ξn decay sufficiently fast as n→∞, then the z-
transforms are valid. Supposing now that there is a sequence ξn such that Eqs. (B.5) and (B.6)
are not equivalent for homogeneous initial conditions x0 = · · ·= xp = Ψ0 = · · ·= Ψq = 0. Then
there is a least N > 0 for which they would disagree. But then if we set ξ′n = ξn for n⩽ N + p
and ξ′n = 0 for n > N + p, then (because the recursion has order p) the two recursions would
differ when driven by ξ′n.
Correlation functions and power spectra. The preceding discussion of the z-transform only
makes sense if the sequences involved decay sufficiently fast as n→∞. In our context, we are
interested in convolving such a sequence (hn) with stationary stochastic processes. The formal
series (B.1) does not make sense.

A standard approach is based on correlation functions. Suppose (Xk) and Yk are zero-mean
stationary stochastic processes taking values in Rd . We define the (matrix-valued) correlation
function to be

Cx y(k) = E
�

Xk · Y ∗0
�

(B.7)

where “∗” denotes the conjugate transpose. The corresponding power spectrum is

Sx y(z) =
∑︂

k

z−kCx y(k). (B.8)
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Note this generalizes the notion of spectrum introduced earlier, and we are abusing notation
slightly. The spectrum introduced earlier is Sx y(e−iθ ). We record some useful properties:

(i) Cx x(0) is hermitian positive-semidefinite.

(ii) Cx y(k)∗ = Cy x(−k), in particular Cx x(k)∗ = Cx x(−k).

(iii) Sx y(e−iθ )∗ = Sy x(e−iθ ).

(iv) Sx x(e−iθ )∗ = Sx x(e−iθ ), i.e., the power spectrum is hermitian for all θ .

(v) If Y = h ⋆ X , then
Cy x(n) =
∑︂

k

hn−k · Cx x(k), (B.9)

or Cy x = h ⋆ Cx x .

(vi) Taking z-transforms yields
Sy x(z) = H(z) · Sx x(z). (B.10)

Note the above identities are valid for both scalar and matrix quantities.

(vii) Similarly,
Cx y(n) =
∑︂

k

Cx x(n+ k) · h∗k. (B.11)

The z-transform is now
Sx y(z) = Sx x(z) ·H∗(1/z) (B.12)

where H∗ is the z-transform of the sequence h∗n.

(viii) Putting these relations together yields Cy y = h ⋆ Cx x ⋆ h∗, or equivalently

Sy y(z) = H(z) · Sx x(z) ·H∗(1/z). (B.13)

On the unit circle, this simplifies to

Sy y(e
−iθ ) = H(e−iθ ) · Sx x(e

−iθ ) ·H∗(eiθ ). (B.14)

In the scalar case, this reduces to Sy y(e−iθ ) = |H(e−iθ )|2Sx x(e−iθ ).

These properties also form the basis for the random Fourier representation of stationary stochas-
tic processes in Eq. (4.13).
Wiener filtering. We now record some basic results of Wiener filter theory for interested readers.
This material is not used directly in the paper.

The Wiener filter is the linear filter (hn) that minimizes the MSE

E
|︁

|︁

|︁Xn −
∑︂

k⩾0

Ψn−k · h−k

|︁

|︁

|︁

2
. (B.15)

Equivalently, if we write
Xn =
∑︂

k

hn−k ·Ψk + ξn (B.16)
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this amounts of choosing (hn) to minimize the residuals E|ξn|2. One can show that the power
spectrum satisfies

Sξξ = Sx x − Sxψ · S−1
ψψ
· Sψx

⏞ ⏟⏟ ⏞

(I)

+ (H · Sψψ − Sxψ) · S−1
ψψ
· (Sψψ ·H∗ − Sψx)

⏞ ⏟⏟ ⏞

(II)

(B.17)

where S·(·) denotes power spectra as before, and H(z) is the z-transform of (hn). Observe
Sξξ(e−iθ )⩾ 0 for all H. If we set

H(e−iθ ) = Sxψ(e
−iθ ) · S−1

ψψ
(e−iθ ) , (B.18)

then (II) vanishes. This means (I) is ⩾ 0. Since (II) is obviously ⩾ 0 as well, we see Tr(Sξξ) is
minimized by Eq. (B.18).

Unfortunately, the linear filter (hn) defined by Eq. (B.18) may not be cauasal, i.e., hn may
be nonzero for n < 0. Such a filter would use future values of Ψm with m > n to predict Xn.
How, then, do we find a causal filter, i.e., one with hn = 0 for n < 0? Let us first look at the
special case where Sψψ(z)≡ Id×d , i.e., (Ψn) is “white.” Then the functional to be minimized is

Tr
�

(H − Sxψ) · (H∗ − Sψx)
�

. (B.19)

By Plancherel’s Theorem, the optimal causal solution is given by H = [Sxψ]+, where

[S]+(e
−iθ ) =

1
2π

∞
∑︂

n=0

∫︂ 2π

0

ein(θ−θ ′)S(e−iθ ′) dθ ′. (B.20)

Summing over n ⩾ 0 instead of n ∈ Z sets the impulse response sn = 0 for n < 0, thus making
it causal. The [·]+ operator transforms a given function to the time domain, zero out all entries
for n< 0, then transform back to frequency domain.

Now, in general Ψn will not be white. But, since Sψψ(e−iθ ) ⩾ 0, there exist C such that
C(e−iθ ) · C∗(eiθ ) = Sψψ(e−iθ ). So if we take W = C−1 (as a function on S1), then w ⋆Ψ will be
white. A remarkable fact is that under very broad conditions, there is a function W (z) such
that all its poles and zeros lie inside the unit circle, and W (e−iθ ) = C(e−iθ ). Such a W defines
a causal stable linear filter (wn) such that w ⋆Ψ has power spectrum

W (e−iθ ) · Sψψ(e−iθ ) ·W (e−iθ )∗ ≡ Id×d , (B.21)

i.e., w ⋆Ψ is white. (The filter (wn) is known as a whitening filter.) Using the whitening filter,
one can check that

H(z) = [Sxψ(z) ·W ∗(1/z)]+ ·W (z) (B.22)

is indeed the causal Wiener filter.

C Kuramoto-Sivashinsky equation

Nonlinear terms in the NARMAX model

The Kuramoto-Sivashinsky example in Sect. 5 uses the reduced model from [53]. For the
convenience of readers, the full ansatz is reproduced here:
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un+1
k = un

k + R∆t
k (u

n) ∆t + zn
k ∆t, (C.1a)

zn+1
k = Φn

k + ξ
n+1
k , (C.1b)

Φn
k =

p
∑︂

j=0

ak, jz
n− j
k +

r
∑︂

j=0

bk, ju
n− j
k + ck,(K+1)R

∆t
k (u

n)

+ i
K
∑︂

j=1

ck, jeu
n
j+Keu

n
j+K−k +

q
∑︂

j=0

dk, jξ
n− j
k , (C.1c)

where

eun
j =

⎧

⎨

⎩

un
j , 1⩽ j ⩽ K

i
∑︁K
ℓ= j−K un

ℓ
un

j−ℓ , K < j ⩽ 2K .
(C.1d)

The nonlinear terms in Eqs. (C.1c) and (C.1d) are suggested by inertial manifold theory. See
[53] for details.

We compare the above ansatz to the model used in this study, of the form (3.14) with
predictors in (5.3). It is straightforward to show that the ansatz in Eq. (C.1) is equivalent to a
model of the form in Eq. (3.18):

un+p′+1 + ap′−1un+p′ + · · ·+ a0un+1 = Ψ
′
n+q′ · bq′ + · · ·+Ψn · b0 + ξ

′
n+1, (C.2)

for some choice of orders p′, q′, coefficients ai, bi, functions {Ψ ′n} and noise ξ′n. In addition
to the different approaches estimating the parameters (a, b), the models are different in the
following aspect:

(i) Here we model the noise by a Gaussian process using power spectrum from the residual
eξn, whereas Eq. (C.1) models the noise by a moving average process.

(ii) as suggested by the Wiener projection formalism, the model (3.14) in this study contains
time-delayed copies of all nonlinear terms, whereas Eq. (C.1) does not.

Detailed Numerical results

Figs. 7 and 8 are full versions of the numerical results shown in Sect. 5.1.
To further quantify finite-time forecasts as a function of the “lead time” (i.e., time since

initial observation), we introduce two standard measures of forecasting “skill,” the root mean
squared error and the anomaly correlation. Both are based on ensemble forecasts in the fol-
lowing way: let v(tn) denote the time series data for the full model, and take N0 short pieces,
i.e., {(v(tn), n= ni, ni + 1, . . . , ni + T )}N0

i=1 with ni+1 = ni + Tlag/∆t, where T = Tlag/∆t is the
length of each piece and Tlag is the time gap between two adjacent pieces. For each short piece
(v(tn), n= ni, . . . , ni + T ), we generate Nens trajectories of length T from the reduced model,
starting all ensemble members from the same initial segment

�

v(tni
), v(tni+1), . . . , v(tni+m)

�

,
where m= 2p+1, and denote the sample trajectories by (un(i, j), n= 1, . . . , T ) for i = 1, . . . , N0

and j = 1, . . . , Nens.
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Figure 7: Comparison of finite-time forecasts and marginal distributions. In all panels, solid
blue line is the full model (108-mode truncation), dashed red line is the 5-mode reduced model,
and dotted green line the 5-mode truncation. Left: trajectories starting from the same initial
conditions. For the reduced model, we show the 5th percentile, mean, and 95th percentile,
computed with an ensemble of size 100. The truncated model was terminated at t = 40 to
reduce clutter. Right: marginal densities.
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Figure 8: Comparison of autocovariance functions (ACFs) and energy cross correlation func-
tions (CCFs). In all panels, solid blue line is the full model (108-mode truncation), dashed red
line is the 5-mode reduced model, and dotted green line the 5-mode truncation. Left: Auto-
covariance functions for Re(uk(t)) for k = 1, · · · , 5. Right: Cross correlations between |u4(t)|2
and |uk(t)|2 for k = 1, · · · , 5.
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Figure 9: Forecasting skill as function of lead time of the reduced model for the KS equation.
Left: root mean squared error (RMSE). Right: anomaly correlation (ANCR). See text for details.

Again, we do not introduce artificial perturbations into the initial conditions, because the
exact initial conditions are known, and by initializing from data, we preserve the memory of
the system so as to generate better ensemble trajectories.

The root mean squared error is

RMSE(τn) :=

�

1
N0

N0
∑︂

i=1

|︁

|︁Re v(tni+n)−Re un(i)
|︁

|︁

2

�1/2

, (C.3)

where τn = n∆t, un(i) = 1
Nens

∑︁Nens

j=1 un(i, j), and the anomaly correlation (see, e.g., [77]) is

ANCR(τn) :=
1
N0

N0
∑︂

i=1

av,i(n) · au,i(n)
Æ

|av,i(n)|2 |au,i(n)|2
, (C.4)

where av,i(n) = Re v(tni+n) − Re 〈v〉 and au,i(n) = Re un(i) − Re 〈v〉 are the anomalies in data
and the ensemble mean. Here a · b=

∑︁K
k=1 ak bk, |a|2 = a · a, and 〈v〉 is the time average of the

long trajectory of v. Both statistics measure the accuracy of the mean ensemble prediction: the
RMSE measures, in an average sense, the difference between the mean ensemble trajectory,
and the ANCR shows the average correlation between the mean ensemble trajectory and the
true data trajectory. RMSE = 0 and ANCR= 1 would correspond to a perfect prediction, and
small RMSEs and large (close to 1) ANCRs are desired.

For our reduced model, we computed the RMSE and ANCR using ensembles of Nens = 100
trajectories with independent initial conditions. Fig. 9 (left) shows the RMSE and ANCR for
a range of lead times. As expected, the RMSE increases with lead time, and consistent with
Fig. 1(a), it is relatively small compared to its apparent asymptotic value (about 0.6) for lead
times < 50. The ANCR in Fig. 9 (right) corroborates this. The two figures are comparable to
Fig. 5 of [53] and show very similar trends.
Role of the noise terms ξn. We experimented with running the reduced model with ξn ≡ 0, i.e.,
without any noise term. This does not appreciably change the ACF or marginal distributions,
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nor the forecasting skill of the reduced model. However, the kind of ensemble prediction
and uncertainty quantification illustrated in Fig. 7 cannot be carried out without noise terms
calibrated to the reduced model.

D Stochastic Burgers equation
The nonlinear terms {Ψn− j} in Eq. (5.7c) are defined by

Ψa
n− j = un− j , Ψ b

n− j = R∆t(un− j) , and Ψ c
n− j,k =
∑︂

|k−l|⩽K ,K<|l|⩽2K
or |l|⩽K ,K<|k−l|⩽2K

eun−1
l eu

n− j
k−l for k = 1, · · · , K ,

where the terms {eu} are defined as

eun− j
k =

⎧

⎨

⎩

un− j
k , 1⩽ k ⩽ K;

iλk
2 e−νλ

2
k jδ
∑︁

|l|⩽K ,
|k−l|⩽K

un− j
k−l u

n− j
l , K < k ⩽ 2K .

(D.1)

These terms resemble those in Eq. (C.1d) as they are also introduced to represent the high
modes by the low modes. But there is a major difference: they represent the high modes as
a functional of the history of the low modes, rather than a function of the current state of the
low modes. This is due to the lack of an inertial manifold for the Burgers equation, unlike the
KSE. These terms are derived from an Riemann sum approximation of the integral equation for
the high modes, with suitable linear parametrization of the quadratic interaction. A detailed
derivation of the ansatz is presented in a forthcoming paper.

Figs. 10– 13 show numerical results for the stochastic Burgers equation.
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Figure 10: Response forecasting for the stochastic Burgers equation. For k = 1, · · · , 9, we
plot Re(uk(t)) as functions of t. In all panels, solid blue line is the full model (128-mode
truncation), dashed red line is the 9-mode reduced model, and dotted green line the 9-mode
Galerkin truncation. Initial transients (t < 8) are not shown.
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Figure 11: Marginal densities for the stochastic Burgers equation. We plot estimated densities
for Re(uk) for k = 1, · · · , 9. In all panels, solid blue line is the full model (128-mode truncation),
dashed red line is the 9-mode reduced model, and dotted green line the 9-mode Galerkin
truncation.
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Figure 12: Autocovariance functions for the stochastic Burgers equation. We plot autoco-
variance functions for Re(uk) for k = 1, · · · , 9. In all panels, solid blue line is the full model
(128-mode truncation), dashed red line is the 9-mode reduced model, and dotted green line
the 9-mode Galerkin truncation.
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Figure 13: Energy cross-correlation functions for the stochastic Burgers equation. We plot cross
correlation functions for |u2|2 and |uk|2 for k = 1, · · · , 9. In all panels, solid blue line is the full
model (128-mode truncation), dashed red line is the 9-mode reduced model, and dotted green
line the 9-mode Galerkin truncation.
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Spacetime view, full model Snapshots (legend below)
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Figure 14: The results using a linear regression with p = 1, r = 1 as in Eq. (3.19). They are
almost identical as those in Fig. 5 from a nonlinear regression using the model in Eq. (3.14)
with p = 1, r = 1.
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