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CGPOPS: A C++ Software for Solving Multiple-Phase

Optimal Control Problems Using Adaptive Gaussian

Quadrature Collocation and Sparse Nonlinear Programming

YUNUS M. AGAMAWI and ANIL V. RAO, University of Florida

A general-purpose C++ software program called CGPOPS is described for solving multiple-phase optimal

control problems using adaptive direct orthogonal collocation methods. The software employs a Legendre-

Gauss-Radau direct orthogonal collocation method to transcribe the continuous optimal control problem

into a large sparse nonlinear programming problem (NLP). A class of hp mesh refinement methods are im-

plemented that determine the number of mesh intervals and the degree of the approximating polynomial

within each mesh interval to achieve a specified accuracy tolerance. The software is interfaced with the open

source Newton NLP solver IPOPT. All derivatives required by the NLP solver are computed via central finite

differencing, bicomplex-step derivative approximations, hyper-dual derivative approximations, or automatic

differentiation. The key components of the software are described in detail, and the utility of the software is

demonstrated on five optimal control problems of varying complexity. The software described in this article

provides researchers a transitional platform to solve a wide variety of complex constrained optimal control

problems.
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1 INTRODUCTION

Optimal control problems arise in a wide variety of subjects including virtually all branches of
engineering, economics, and medicine. Over the past few decades, the subject of optimal control
has transitioned from theory to computations as a result of the increasing complexity of optimal
control applications and the inability to solve them analytically. In particular, computational opti-
mal control has become a science in and of itself, resulting in a variety of numerical methods and
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corresponding software implementations of those methods. To date, most software implemen-
tations of optimal control involve direct transcription of a continuous optimal control problem
to a nonlinear programming problem (NLP). The resulting NLP from discretizing the continuous
optimal control problem may then be solved using well-established techniques. Examples of well-
known software for solving optimal control problems include SOCS [10],DIRCOL [58],GESOP [44],
OTIS [57],MISER [28], PSOPT [6], GPOPS [54], ICLOCS [21], ACADO [40], and GPOPS − II [52].

Over the past few decades, direct collocation methods have become popular in the numerical
solution of nonlinear optimal control problems. In a direct collocation method, the state and con-
trol are parameterized at an appropriately chosen set of discrete points along the time interval of
interest. The continuous optimal control problem is then transcribed to a finite-dimensional NLP.
The resulting NLP may then be solved using well-known software such as SNOPT [26], IPOPT [12],
and KNITRO [13]. Direct collocation methods were originally developed as h methods (e.g., Euler
or Runge-Kutta methods) where the time interval of interest is divided into a mesh and the state is
approximated using a fixed-degree polynomial in each mesh interval. Convergence in anhmethod
is then achieved by increasing the number and placement of the mesh points [11, 43, 62]. More re-
cently, a great deal of research has been done in the class of direct Gaussian quadrature orthogonal
collocationmethods [8, 14, 19, 20, 23–25, 30, 41, 42, 45, 51, 54]. In a Gaussian quadrature collocation
method, the state is typically approximated using a Lagrange polynomial where the support points
of the Lagrange polynomial are chosen to be points associated with a Gaussian quadrature. Orig-
inally, Gaussian quadrature collocation methods were implemented as p methods using a single
interval. Convergence of the p method was then achieved by increasing the degree of the poly-
nomial approximation. For problems whose solutions are smooth and well behaved, a Gaussian
quadrature orthogonal collocation method converges at an exponential rate [17, 36–39]. The most
well-developed p Gaussian quadrature methods are those that employ either Legendre-Gauss (LG)
points [8, 54], Legendre-Gauss-Radau (LGR) points [24, 25, 45], or Legendre-Gauss-Lobatto (LGL)
points [19].

In this article, a new optimal control software called CGPOPS is described that employs hp
direct orthogonal collocation methods. An hp method is a hybrid between an h and a p method in
that both the number of mesh intervals and the degree of the approximating polynomial within
each mesh interval can be varied to achieve a specified accuracy. As a result, in an hp method,
it is possible to take advantage of the exponential convergence of a Gaussian quadrature method
in regions where the solution is smooth and introduce mesh points only when necessary to deal
with potential nonsmoothness or rapidly changing behavior in the solution. Originally,hpmethods
were developed as finite-element methods for solving partial differential equations [5, 33–35]. In
the past few years, the problem of developing hp methods for solving optimal control problems
has been of interest, and Refs. [15, 16, 47, 48, 50] provide examples of the benefits of using an
hp-adaptive method over either a p method or an h method. This recent research has shown that
convergence using hp methods can be achieved with a significantly smaller finite-dimensional
approximation than would be required when using either an h or a p method.

It is noted that previously the software GPOPS − II was developed as described in Ref. [52].
Although both the GPOPS − II and CGPOPS software programs implement Gaussian quad-
rature collocation with hp mesh refinement, CGPOPS offers several advantages both in terms
of computational efficiency, portability, and accuracy over GPOPS − II. First, GPOPS − II

is a MATLAB software program, whereas CGPOPS is a C++ software program. Further-
more, because CGPOPS is implemented in C++, it has the potential for improved computa-
tional efficiency and portability over MATLAB software such as GPOPS − II. Second, although
GPOPS − II employs both sparse finite-differencing and automatic differentiation using the
software ADiGator [61], CGPOPS includes the following four derivative estimation methods:
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central finite differencing, bicomplex-step [46], hyper-dual [22], and automatic differentiation [32].
Finite-difference derivative estimation is included because using finite difference makes it possi-
ble to compute NLP derivatives for the widest range of problems, whereas bicomplex-step and
hyper-dual derivative estimation methods are included because they are significantly more ac-
curate and more computationally efficient than either finite differencing or automatic differenti-
ation (see Ref. [4] for a comprehensive analysis of these different differentiation methods). It is
noted, however, that the bicomplex-step and hyper-dual derivative estimation methods are semi-
automatic differentiation methods that employ source transformation and operator overloading.
As a result, these methods are limited to problems where the functions are included in the over-
loaded library. Third, although GPOPS − II is only capable of identifying the first-order deriv-
ative dependencies and over-estimates the dependencies of the second derivatives, CGPOPS is
able to exactly identify both the first- and second-order derivative dependencies of the continuous
optimal control problem functions when the derivatives are approximated using the hyper-dual
method. The improvement in determining the dependencies at the level of second derivatives fur-
ther improves computational efficiency over GPOPS − II. Finally, CGPOPS implements the
Gauss quadrature collocation method in a fundamentally different way from the approached used
in GPOPS − II. Specifically, CGPOPS includes the ability to divide the time interval into mul-
tiple domains. This multiple-domain approach is then used as the basis for a new bang-bang mesh
refinement method as described in Ref. [2]. It is found for problems where the optimal control is
bang-bang that the mesh refinement method described in Ref. [2] significantly improves accuracy
and computational efficiency over previously developedmesh refinementmethods as implemented
in GPOPS − II.

The objective of this work is to describe a computationally efficient general-purpose C++ opti-
mal control software that accurately solves a wide variety of constrained continuous optimal con-
trol problems. In particular, the software described in this article employs a differential form of the
multiple-interval version of the LGR collocation method [23–25, 51]. The LGR collocation method
is chosen for use in the software because it provides highly accurate state, control, and costate
approximations while maintaining a relatively low-dimensional approximation of the continuous
problem. The key components of the software are then described and the software is demonstrated
on five examples from the open literature. Each example demonstrates different capabilities of the
software. The first example is the hyper-sensitive optimal control problem taken from Ref. [55]
and demonstrates the ability of the software to accurately solve a problem whose optimal solution
changes rapidly in particular regions of the solution. The second example is the reusable launch
vehicle entry problem taken from Ref. [11] and demonstrates the ability of CGPOPS to compute
an accurate solution using a relatively coarse mesh. The third example is the space station attitude
control problem taken from Refs. [11, 53] and demonstrates the ability of the software to generate
accurate solutions to a problem whose solution is not intuitive. The fourth example is a free-flying
robot problem taken from Refs. [11, 56] and shows the ability of the software to handle bang-bang
optimal control problems using the novel bang-bang control mesh refinement method included
in the software. The fifth example is a launch vehicle ascent problem taken from Refs. [7, 11, 54]
that demonstrates the ability of the software to solve a multiple-phase optimal control problem. To
validate the results, the solutions obtained using CGPOPS are compared against the solutions
obtained using the software GPOPS − II [52].
This article is organized as follows. In Section 2, the general multiple-phase optimal con-

trol problem is presented. In Section 3, the LGR collocation method that is used as the basis of
CGPOPS is described. In Section 4, the key components of CGPOPS are described. In Sec-
tion 5, the results obtained using the software on the five aforementioned examples are shown.
In Section 6, a discussion of the capabilities of the software that are demonstrated by the results
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obtained using the software is provided. In Section 7, possible limitations of the software are dis-
cussed. Finally, in Section 8, conclusions on the work described in this article are provided.

2 GENERAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS

The general multiple-phase optimal control problem that can be solved by CGPOPS is given as
follows. Without loss of generality, consider the following general multiple-phase optimal control

problem where each phase is defined on the interval t ∈ [t
(p )
0 , t

(p )

f
]. First, let p ∈ {1, . . . , P } be the

phase number, where P is the total number of phases. Determine the state y(p ) (t ) ∈ R
1×n

(p )
y , the

control u(p ) (t ) ∈ R
1×n

(p )
u , the integrals q(p ) ∈ R

1×n
(p )
q , the start times t

(p )
0 ∈ R, and the terminus

times t
(p )

f
∈ R in all phasesp ∈ {1, . . . , P }, alongwith the static parameters s ∈ R

1×ns thatminimize

the objective functional

J = ϕ
(

e(1), . . . , e(P ), s
)

, (1)

subject to the dynamic constraints

dy(p )

dt
≡ ẏ(p ) = a(p )

(

y(p ) (t ), u(p ) (t ), t , s
)

, p ∈ {1, . . . , P }, (2)

the event constraints

bmin ≤ b
(

e(1), . . . , e(P ), s
)

≤ bmax, (3)

the inequality path constraints

c
(p )

min ≤ c(p )
(

y(p ) (t ), u(p ) (t ), t , s
)

≤ c
(p )
max, p ∈ {1, . . . , P }, (4)

the integral constraints

q
(p )

min ≤ q(p ) ≤ q
(p )
max, p ∈ {1, . . . , P }, (5)

and the static parameter constraints

smin ≤ s ≤ smax, (6)

where

e(p ) =
[
y(p ) (t

(p )
0 ), t

(p )
0 , y

(p ) (t
(p )

f
), t

(p )

f
, q(p )

]
, p ∈ {1, . . . , P }, (7)

and the integral vector components in each phase are defined as

q
(p )
j =

∫ t
(p )

f

t
(p )
0

д
(p )
j

(

y(p ) (t ), u(p ) (t ), t , s
)

dt ,

j ∈
{
1, . . . ,n

(p )
q

}
,p ∈ {1, . . . , P }.

(8)

It is important to note that the event constraints of Equation (3) contain functions that can relate
information at the start and/or terminus of any phase (including any relationships involving any
integral or static parameters), with phases not needing to be in sequential order to be linked.
Moreover, it is noted that the approach to linking phases is based on well-known formulations in
the literature, such as those given in Refs. [9, 11]. A schematic of how phases can potentially be
linked is given in Figure 1.
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Fig. 1. Schematic of linkages for the multiple-phase optimal control problem. The schematic consists of

seven phases where the termini of phases 1, 2, and 4 are linked to the starts of phases 2, 3, and 5, respectively,

whereas the termini of phases 1 and 6 are linked to the starts of phases 6 and 4, respectively.

3 LGR COLLOCATION METHOD

As stated at the outset, the objective of this research is to provide researchers a computationally
efficient general-purpose optimal control software for solving of a wide variety of complex con-
strained continuous optimal control problems using direct collocation. Although in principle any
collocation method can be used to approximate the optimal control problem given in Section 2, in
this research the LGR collocation method [23–25, 45, 47, 48, 50] is employed. It is noted that the
NLP arising from the LGR collocation method has an elegant sparse structure that can be exploited
as described in Refs. [3, 51, 52]. In addition, the LGR collocationmethod has a well-established con-
vergence theory as described in Refs. [17, 36–39].
In the context of this research, a multiple-interval form of the LGR collocationmethod is chosen.

In the multiple-interval LGR collocation method, for each phase p of the optimal control problem
(where the phase number p ∈ {1, . . . , P } has been omitted to improve clarity of the description of
the method), the time interval t ∈ [t0, tf ] is converted into the domain τ ∈ [−1,+1] using the affine
transformation,

t =

tf − t0

2
τ +

tf + t0

2
,

τ = 2
t − t0

tf − t0
− 1.

(9)

The domain τ ∈ [−1,+1] is then divided into K mesh intervals, Sk = [Tk−1,Tk ] ⊆ [−1,+1], k ∈
{1, . . . ,K } such that

K
⋃

k=1

Sk = [−1,+1],

K
⋂

k=1

Sk = {T1, . . . ,TK−1}, (10)

and −1 = T0 < T1 < . . . < TK−1 < TK = +1. For each mesh interval, the LGR points used for col-
location are defined in the domain of [Tk−1,Tk ] for k ∈ {1, . . . ,K }. The control is parameterized
at the collocation points within each mesh interval. The state of the continuous optimal control
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problem is then approximated in mesh interval Sk , k ∈ {1, . . . ,K }, as

y(k ) (τ ) ≈ Y(k ) (τ ) =

Nk+1
∑

j=1

Y
(k )
j ℓ

(k )
j (τ ), ℓ

(k )
j (τ ) =

Nk+1
∏

l=1
l�j

τ − τ
(k )

l

τ
(k )
j − τ

(k )

l

, (11)

where ℓ
(k )
j (τ ) for j ∈ {1, . . . ,Nk + 1} is a basis of Lagrange polynomials, (τ

(k )
1 , . . . ,τ

(k )
Nk

) are the

set of Nk LGR [1] collocation points in the interval [Tk−1,Tk ) in Sk , τ
(k )
Nk+1

= Tk is a noncollocated

support point, and Y
(k )
j ≡ Y(k ) (τ

(k )
j ). Differentiating Y(k ) (τ ) in Equation (11) with respect to τ gives

dY(k ) (τ )

dτ
=

Nk+1
∑

j=1

Y
(k )
j

dℓ
(k )
j (τ )

dτ
. (12)

The dynamics are then approximated at the Nk LGR points in mesh interval k ∈ {1, . . . ,K } as

Nk+1
∑

j=1

D
(k )
i j Y

(k )
j =

tf − t0

2
a
(

Y
(k )
i ,U

(k )
i , t
(

τ
(k )
i , t0, tf

)

, s
)

, i ∈ {1, . . . ,Nk }, (13)

where

D
(k )
i j =

dℓ
(k )
j (τ

(k )
i )

dτ
, i ∈ {1, . . . ,Nk }, j ∈ {1, . . . ,Nk + 1}

are the elements of the Nk × (Nk + 1) LGR differentiation matrix [24] in mesh interval Sk , k ∈

{1, . . . ,K }, and U
(k )
i is the parameterized control at the ith collocation point in mesh interval k .

Finally, reintroducing the phase notation p ∈ {1, . . . , P }, the phases of the problem are linked to-
gether by the event constraints

bmin ≤ b
(

E(1), . . . ,E(P ), s
)

≤ bmax, (14)

where E(p ) is the endpoint approximation vector for phase p defined as

E(p )
=

[
Y
(p )
1 , t

(p )
0 ,Y

(p )

N (p )
+1
, t

(p )

f
,Q(p )

]
(15)

such that N (p ) is the total number of collocation points used in phase p given by

N (p )
=

K (p )
∑

k=1

N
(p )

k
, (16)

and Q(p ) ∈ R
1×n

(p )
q is the integral approximation vector in phase p.

The aforementioned LGR discretization then leads to the following NLP. Minimize the objective
function

J = ϕ
(

E(1), . . . ,E(P ), s
)

, (17)

subject to the defect constraints

∆(p )
= D(p )Y(p ) −

t
(p )

f
− t

(p )
0

2
A(p )
= 0, p ∈ {1, . . . , P }, (18)

the path constraints

c
(p )

min ≤ C
(p )
i ≤ c

(p )
max, i ∈ {1, . . . ,N (p ) },p ∈ {1, . . . , P }, (19)

the event constraints

bmin ≤ b
(

E(1), . . . ,E(P ), s
)

≤ bmax, (20)
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the integral constraints

q
(p )

min ≤ Q(p ) ≤ q
(p )
max, p ∈ {1, . . . , P }, (21)

the static parameter constraints

smin ≤ s ≤ smax, (22)

and the integral approximation constraints

ρ (p )
= Q(p ) −

t
(p )

f
− t

(p )
0

2

[
w(p )

] T
G(p )

= 0, p ∈ {1, . . . , P }, (23)

where

A(p )
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(p )
(

Y
(p )
1 ,U

(p )
1 , t

(p )
1 , s
)

...

a(p )
(

Y
(p )

N (p )
,U

(p )

N (p )
, t

(p )

N (p )
, s
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
N (p )×n

(p )
y , (24)

C(p )
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(p )
(

Y
(p )
1 ,U

(p )
1 , t

(p )
1 , s
)

...

c(p )
(

Y
(p )

N (p )
,U

(p )

N (p )
, t

(p )

N (p )
, s
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
N (p )×n

(p )
c , (25)

G(p )
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(p )
(

Y
(p )
1 ,U

(p )
1 , t

(p )
1 , s
)

...

g(p )
(

Y
(p )

N (p )
,U

(p )

N (p )
, t

(p )

N (p )
, s
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
N (p )×n

(p )
q , (26)

D(p ) ∈ R
N (p )×[N (p )

+1] is the LGR differentiation matrix in phase p ∈ {1, . . . , P }, and w(p ) ∈ R
N (p )×1

are the LGR weights at each node in phase p. It is noted that a(p ) ∈ R
1×n

(p )
y , c(p ) ∈ R

1×n
(p )
c , and

g(p ) ∈ R
1×n

(p )
q correspond respectively to the functions that define the right-hand side of the dy-

namics, the path constraints, and the integrands in phase p ∈ {1, . . . , P }, where n
(p )
y , n

(p )
c , and n

(p )
q

are respectively the number of state components, path constraints, and integral components in

phase p. Finally, the state matrix, Y(p ) ∈ R
[N (p )

+1]×n
(p )
y , and the control matrix, U(p ) ∈ R

N (p )×n
(p )
u , in

phase p ∈ {1, . . . , P } are formed as

Y(p )
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y
(p )
1
...

Y
(p )

N (p )
+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and U(p )

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

U
(p )
1
...

U
(p )

N (p )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

respectively, where n
(p )
u is the number of control components in phase p.

4 MAJOR COMPONENTS OF CGPOPS

In this section, we describe the major components of the C++ software CGPOPS that implement
the aforementioned LGR collocation method. In Section 4.1, the large sparse NLP associated with
the LGR collocation method is described. In Section 4.2, the structure of the NLP described in
Section 4.1 is shown. In Section 4.3, the method for scaling the NLP via scaling of the optimal
control problem is overviewed. In Section 4.4, the approach for estimating the derivatives required
by the NLP solver is explained. In Section 4.5, themethod for determining the dependencies of each
optimal control function to provide the most sparse NLP derivative matrices to the NLP solver
is presented. In Section 4.6, the hp mesh refinement methods that are included in the software
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to iteratively determine a mesh that satisfies a user-specified accuracy tolerance are described.
Finally, in Section 4.7, we provide a high-level description of the algorithmic flow of CGPOPS.

4.1 Sparse NLP Arising from the Radau Collocation Method

The resulting NLP that arises when using LGR collocation to discretize the continuous optimal
control problem is given as follows. Determine the NLP decision vector, z, that minimizes the NLP
objective function,

f (z), (28)

subject to the constraints

Hmin ≤ H(z) ≤ Hmax (29)

and the variable bounds

zmin ≤ z ≤ zmax. (30)

It is noted that although the size of the NLP arising from the LGR collocation method changes
depending upon the number of mesh intervals and LGR points used in each phase, the structure of
the NLP remains the same regardless of the size of the NLP. Finally, in the sections that follow, the
subscript “:” denotes either a row or a column, where the “:” notation is analogous to the syntax
used in the MATLAB programming language.

4.1.1 NLP Variables. For a continuous optimal control problem transcribed into P phases, the
NLP decision vector, z, has the following form:

z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(1)

...

z(P )

s1
...

sns

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where z(p ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y
(p )

(:,1)
...

Y
(p )

(:,n
(p )
y )

U
(p )

(:,1)
...

U
(p )

(:,n
(p )
u )

(Q(p ) )
T

t
(p )
0

t
(p )

f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

Y(p ) ∈ R
[N (p )

+1]×n
(p )
y is the state approximation matrix (see Equation (27)), U(p ) ∈ R

N (p )×n
(p )
u is the

control parameterization matrix (see Equation (27)), Q(p ) ∈ R
1×n

(p )
q is the integral approximation

vector, and t
(p )
0 and t

(p )

f
are scalars of the initial and final time, respectively, for phasep ∈ {1, . . . , P },

and si for i ∈ {1, . . . ,ns } are the static parameters appearing throughout the entire problem.

4.1.2 NLP Objective and Constraint Functions. The NLP objective function, f (z), is given in the
form

f (z) = ϕ (E(1), . . . ,E(P ), s), (32)

where E(p ),p ∈ {1, . . . , P }, is the endpoint approximation vector defined in Equation (15), and the
typical cost functional of a general multiple-phase optimal control problem has been turned simply
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into a Mayer cost function by using the integral approximation vector, Q(p ) , to approximate the
Lagrange cost in each phase p. The NLP constraint vector, H(z), is given in the form

H(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(1)

...

h(P )

b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where h(p )
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆
(p )

(:,1)
...

∆
(p )

(:,n
(p )
y )

C
(p )

(:,1)
...

C
(p )

(:,n
(p )
c )

(ρ (p ) )
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, p = {1, . . . , P }, (33)

∆(p ) ∈ R
N (p )×n

(p )
y , ρ (p ) ∈ R

1×n
(p )
q , and C(p ) ∈ R

N (p )×n
(p )
c are respectively the defect constraint ma-

trix, the integral approximation constraint vector, and the path constraint matrix in phase p ∈

{1, . . . , P }, and b ∈ R
nb×1 is the event constraint vector for the entire problem. The defect con-

straint matrix, integral approximation constraint vector, and path constraint matrix in phase p are
defined by Equations (18), (23), and (25), respectively. It is noted that the constraints are divided
into the equality defect and integral constraints

∆
(p )

= 0,

ρ (p )
= 0,

p ∈ {1, . . . , P }, (34)

and the inequality discretized path and event constraints

c
(p )

min ≤ C
(p )
i ≤ c

(p )
max, i ∈ {1, . . . ,N (p ) },p ∈ {1, . . . , P },

bmin ≤ b ≤ bmax.
(35)

4.2 Sparse Structure of NLP Derivative Functions

The structure of the NLP created by the LGR collocation method is presented in detail in Refs. [3,
51]. Specifically, Refs. [51] and [3] respectively describe the sparse structure of the NLP for the
differential form of the LGR collocation method for the single- and multiple-phase optimal control
problem. As described in Section 4.1.1, the values of the state approximation coefficients at the
discretization points, the control parameters at the collocation points, the initial time, the final
time, and the integral approximation vector of each phase, as well as any static parameters of
the problem, make up the NLP decision vector. The NLP constraint vector consists of the defect
constraints and path constraints applied at each of the collocation points, as well as any integral
approximation constraints, for each phase, and event constraints, as described in Section 4.1.2.
The derivation of the NLP derivative matrices in terms of the original continuous optimal control
problem functions is described in detail in Refs. [3, 51, 52] and is beyond the scope of this article.
However, it is noted that the sparsity exploitation derived in Refs. [3, 51, 52] requires computing
partial derivatives of the continuous optimal control problem functions on the first- and second-
order derivative levels.
Examples of the sparsity patterns of the NLP constraint Jacobian and Lagrangian Hessian are

respectively shown in Figure 2(a) and (b) for a single-phase optimal control problem. It is noted
that for the NLP constraint Jacobian, the off-diagonal phase blocks relating constraints in phase
i to variables in phase j for i � j are all zeros. Similarly, for the NLP Lagrangian Hessian, the off-
diagonal phase blocks relating variables in phase i to variables in phase j for i � j are all zeros
except for the variables making up the endpoint vectors that may be related via the objective
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Fig. 2. Example sparsity patterns for the single-phase optimal control problem containing ny state compo-

nents, nu control components, and nq integral components, as well as nc path constraints, ns static param-

eters, and nb event constraints.
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function or event constraints. The sparsity patterns shown in Figure 2 are determined explicitly
by identifying the derivative dependencies of the NLP objective and constraints functions with
respect to the NLP decision vector variables. It is noted that the phases are connected using the
initial and terminal values of the time and state in each phase along with the static parameters.

4.3 Scaling of the Optimal Control Problem for the NLP

The NLP described in Section 4.1 must be well scaled for the NLP solver to obtain a solution.
CGPOPS includes the option for the NLP to be scaled automatically by scaling the continuous
optimal control problem. The approach to automatic scaling is to scale the variables and the first
derivatives of the optimal control functions to be ≈ O (1). First, the optimal control variables are
scaled to lie on the unit interval [−1/2, 1/2] and is accomplished as follows. Suppose that it is
desired to scale an arbitrary variable x ∈ [a,b] to x̃ such that x̃ ∈ [−1/2, 1/2]. This variable scaling
is accomplished via the affine transformation

x̃ = vxx + rx , (36)

where vx and rx are the variable scale and shift, respectively, defined as

vx =

1

b − a
,

rx =

1

2
−

b

b − a
.

(37)

Every variable in the continuous optimal control problem is scaled using Equations (36) and (37).
Next, the Jacobian of the NLP constraints can be made ≈ O (1) by scaling the derivatives of the
optimal control functions to be approximately unity. First, using the approach derived in Ref. [11],
in CGPOPS the defect constraints are scaled using the same scale factors as were used to scale
the state. Next, the objective function, event constraints, and path constraints scale factors are
obtained by sampling the gradient of each constraint at a variety of sample points within the
bounds of the unscaled optimal control problem and taking the average norm of each gradient
across all sample points.

4.4 Computation Derivatives of NLP Functions

The NLP derivative functions are obtained by exploiting the sparse structure of the NLP arising
from the hp LGR collocation method. Specifically, in Refs. [3, 51], it has been shown that by using
the derivative form of the LGR collocation method, the NLP derivatives can be obtained by com-
puting the derivatives of the optimal control problem functions at the LGR points and inserting
these derivatives into the appropriate locations in the NLP derivative functions. In CGPOPS,
the optimal control derivative functions are approximated using one of four types of derivative
estimation methods: sparse central finite differencing, bicomplex-step derivative approximations,
hyper-dual derivative approximations, and automatic differentiation.

4.4.1 Central Finite Difference. To see how the central finite-difference derivative approxima-
tion works in practice, consider the function f (x), where f : R

n → R
m is one of the optimal control

functions (i.e., n andm are respectively the size of an optimal control variable and an optimal con-
trol function). Then, ∂f/∂x is approximated using a central finite difference as

∂f

∂xi
≈

f (x + hi ) − f (x − hi )

2h
, (38)

where hi arises from perturbing the ith component of x. The vector hi is computed as

hi = hiei , (39)
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where ei is the i
th row of the n × n identity matrix and hi is the perturbation size associated with

xi . The perturbation hi is computed using the equation

hi = h(1 + |xi |), (40)

where the base perturbation size h is chosen to be the optimal step size for a function whose input
and output are ≈ O (1) as described in Ref. [27]. Second derivative approximations are computed
in a manner similar to that used for first derivative approximations with the key difference being
that perturbations in two variables are performed. For example, ∂2f/∂xi∂x j can be approximated
using a central finite-difference approximation as

∂2f (x)

∂xi∂x j
≈

f (x + hi + hj ) − f (x + hi − hj ) − f (x − hi + hj ) + f (x − hi − hj )

4hihj
, (41)

where hi , hj , hi , and hj are as defined in Equations (39) and (40). The base perturbation size is
chosen to minimize round-off error in the finite-difference approximation. Furthermore, it is noted
that hi → h as |xi | → 0.

4.4.2 Bicomplex-Step. To see how the bicomplex-step derivative approximation works in prac-
tice, consider the function f (x), where f : R

n → R
m is one of the optimal control functions (i.e., n

and m are respectively the size of an optimal control variable and an optimal control function).
Then, ∂f/∂x is approximated using a bicomplex-step derivative approximation as

∂f (x)

∂xi
≈

Im1[f (x + i1hei )]

h
, (42)

where Im1[·] denotes the imaginary i1 component of the function evaluated with the perturbed
bicomplex input, ei is the i

th row of the n × n identity matrix, and the base perturbation size h
is chosen to be a step size that will minimize truncation error while refraining from encounter-
ing round-off error due to bicomplex arithmetic, which is described in detail in Ref. [46] and is
beyond the scope of this article. It is noted that the imaginary component i1 has the property
i21 = −1. Second derivative approximations are computed in a manner similar to that used for first
derivative approximations with the key difference being that perturbations in two variables are
performed in two separate imaginary directions. For example, ∂2f/∂xi∂x j can be approximated
using a bicomplex-step derivative approximation as

∂2f (x)

∂xi∂x j
≈

Im1,2[f (x + i1hei + i2hej )]

h2
, (43)

where Im1,2[·] denotes the imaginary i1i2 component of the function evaluated with the perturbed
bicomplex input, where it is noted that i22 = −1, and i1i2 is a bi-imaginary direction distinct from
either the i1 or i2 imaginary directions (i.e., i1i2 = i2i1).

4.4.3 Hyper-Dual. To see how the hyper-dual derivative approximation works in practice, con-
sider the function f (x), where f : R

n → R
m is one of the optimal control functions (i.e., n andm are

respectively the size of an optimal control variable and an optimal control function). Then, ∂f/∂x
is approximated using a hyper-dual derivative approximation as

∂f (x)

∂xi
=

Ep1 [f (x + ϵ1hei )]

h
, (44)

where Ep1[·] denotes the imaginary ϵ1 component of the function evaluated with the perturbed
hyper-dual input, ei is the ith row of the n × n identity matrix, and the base perturbation size
h is chosen to be unity because for first and second derivatives the hyper-dual arithmetic does
not suffer from either truncation or round-off error (described in detail in Ref. [22] and beyond
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the scope of this article). It is noted that the imaginary component ϵ1 has the property of being
nilpotent (i.e., ϵ21 = 0). Second derivative approximations are computed in a manner similar to that
used for first derivative approximations with the key difference being that perturbations in two
variables are performed in two separate imaginary directions. For example, ∂2f/∂xi∂x j can be
approximated using a hyper-dual derivative approximation as

∂2f (x)

∂xi∂x j
=

Ep1,2[f (x + ϵ1hei + ϵ2hej )]

h2
, (45)

where Ep1,2[·] denotes the imaginary ϵ1ϵ2 component of the function evaluated with the perturbed
hyper-dual input, where it is noted that ϵ2 also has the property of being nilpotent (i.e., ϵ22 = 0),
and ϵ1ϵ2 is a bi-imaginary direction distinct from either the ϵ1 or ϵ2 imaginary directions (i.e.,
ϵ1ϵ2 = ϵ2ϵ1).

4.4.4 Automatic Differentiation. In this section, the basis of automatic differentiation is dis-
cussed. As described in Ref. [49], automatic (algorithmic) differentiation may be derived from the
unifying chain rule and supplies numerical evaluations of the derivative for a defined computer
program by decomposing the program into a sequence of elementary function operations and
applying the calculus chain rule algorithmically through the computer [32]. The process of auto-
matic differentiation is described in detail in Ref. [32] and is beyond the scope of this article. It
is noted, however, that the first- and second-order partial derivatives obtained using the Taylor
series–based derivative approximation methods described in Sections 4.4.1 through 4.4.3 may be
computed to machine precision using automatic differentiation. Specifically, CGPOPS employs
the well-known open source software ADOL-C [31, 59] to compute derivatives using automatic
differentiation.

4.5 Method for Determining the Optimal Control Function Dependencies

It can be seen from Section 4.2 that the NLP associated with the LGR collocation method has a
sparse structure where the blocks of the constraint Jacobian and Lagrangian Hessian are depen-
dent upon whether a particular NLP function depends upon a particular NLP variable, as was
shown in Refs. [3, 51]. The method for identifying the optimal control function derivative depen-
dencies in CGPOPS utilizes the independent nature of the hyper-dual derivative approxima-
tions. Specifically, since the imaginary directions used for hyper-dual derivative approximations
are completely independent of one another, second-order derivative approximations only appear
nonzero if the partial actually exists (same for first-order derivative approximations). For example,
suppose that f (x) is a function where f : R

n → R
m and x = [x1 . . . xn]. The hyper-dual deriva-

tive approximation of ∂2f (x)/∂xi∂x j will only be nonzero if the actual ∂
2f (x)/∂xi∂x j exists and is

nonzero. Given this knowledge of the exact correspondence of hyper-dual derivative approxima-
tions to the actual derivative evaluations, identifying derivative dependencies of optimal control
problem functions with respect to optimal control problem variables becomes simple, as existing
partial derivatives will have nonzero outputs when approximated by the hyper-dual derivative ap-
proximations, whereas nonexisting partial derivatives will simply be zero always. To ensure that
derivative dependencies are not mistakenly missed due to a derivative approximation happening
to equal zero at the point at which it is being evaluated for an existing nonzero partial derivative,
the hyper-dual derivative approximations are evaluated at multiple sample points within the vari-
able bounds. In this manner, the derivative dependencies of the optimal control problem functions
can be easily identified exactly for the first- and second-order derivative levels. The computa-
tional expense of identifying the derivative dependencies in this manner is minimal, whereas the
exact second-order derivative sparsity pattern that is obtained can significantly reduce the cost of
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computing the NLP Lagrangian Hessian when compared to using an over-estimated sparsity pat-
tern as done in GPOPS − II [52].

4.6 Adaptive Mesh Refinement

In the past few years, the subject of adaptive mesh refinement has been of considerable study in
the efficient implementation of Gaussian quadrature collocation methods. The work on adaptive
Gaussian quadrature mesh refinement has led to several articles in the literature including those
found in Refs. [15, 16, 29, 47, 48, 50]. CGPOPS employs the recently developed mesh refinement
methods described in Refs. [2, 15, 47, 48, 50]. The mesh refinement methods of Refs. [50], [15], [47],
[48], and [2] are respectively referred to as the hp-I, hp-II, hp-III, hp-IV, and hp-BB methods. In all
five of the hp-adaptive mesh refinement methods, the number of mesh intervals, width of each
mesh interval, and degree of the approximating polynomial can be varied until a user-specified
accuracy tolerance has been achieved.When using any of themethods inCGPOPS, the terminol-
ogy hp-Method(Nmin,Nmax) refers to a method whose minimum and maximum allowable polyno-
mial degrees within a mesh interval are Nmin and Nmax, respectively. All five methods estimate the
solution error using a relative difference between the state estimate and the integral of the dynam-
ics at a modified set of LGR points. The key difference between the five methods lies in the manner
in which the decision is made to either increase the number of collocation points in a mesh interval
or to refine themesh. In Ref. [15], the degree of the approximating polynomial is increased if the ra-
tio of the maximum curvature over the mean curvature of the state in a particular mesh interval is
below a user-specified threshold. However, Ref. [50] uses the exponential convergence property of
the LGR collocation method and increases the polynomial degree within a mesh interval if the esti-
mate of the required polynomial degree is less than a user-specified upper limit. Similarly, Refs. [47,
48] employ a nonsmoothness criterion to determine whether an h or p method should be used for
a given mesh interval while also utilizing mesh reduction techniques to minimize the size of the
transcribed NLP in regions of the solution where such high resolution is not required. If ap method
refinement is prescribed for a given mesh interval and the estimate of the polynomial degree ex-
ceeds the allowed upper limit, the mesh interval is divided into more mesh intervals (i.e., h method
employed). Last, the mesh refinement method developed in Ref. [2] is designed for bang-bang op-
timal control problems and employs estimates of the switching functions of the Hamiltonian to
obtain the solution profile. In CGPOPS, the user can choose between these five mesh refinement
methods. Finally, it is noted that CGPOPS has been designed in a modular way, making it pos-
sible to add a new mesh refinement method in a relatively straightforward way if it is so desired.

4.7 Algorithmic Flow of CGPOPS

In this section, we describe the operational flow of CGPOPS with the aid of Figure 3. First, the
user provides a description of the optimal control problem that is to be solved. The properties of
the optimal control problem are then extracted from the user description from which the state,
control, time, and parameter dependencies of the optimal control problem functions are identified.
Subsequently, assuming that the user has specified that the optimal control problem be scaled
automatically, the optimal control problem scaling algorithm is called and these scale factors are
determined and used to scale the NLP. The optimal control problem is then transcribed to a large
sparse NLP and the NLP is solved on the initial mesh, where the initial mesh is either user supplied
or determined by the default settings in CGPOPS. Once the NLP is solved, the NLP solution is
analyzed as a discrete approximation of the optimal control problem and the error in the discrete
approximation for the current mesh is estimated. If the user-specified accuracy tolerance is met,
the software terminates and outputs the solution. Otherwise, a new mesh is determined using one
of the supplied mesh refinement algorithms and the resulting NLP is solved on the new mesh.
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Fig. 3. Flowchart of CGPOPS algorithm.

5 EXAMPLES

CGPOPS is now demonstrated on five examples taken from the open literature. The first example
is the hyper-sensitive optimal control problem taken from Ref. [55] and demonstrates the ability
of CGPOPS to efficiently solve problems that have rapid changes in dynamics in particular
regions of the solution. The second example is the reusable launch vehicle entry problem taken
from Ref. [11] and demonstrates the efficiency of CGPOPS on a more realistic problem. The
third example is the space station attitude optimal control problem taken from Refs. [11, 53] and
demonstrates the efficiency ofCGPOPS on a problemwhose solution is highly nonintuitive. The
fourth example is a free-flying robot problem taken from Ref. [11] and demonstrates the ability
of CGPOPS to solve a bang-bang optimal control problem using discontinuity detection. The
fifth example is a multiple-stage launch vehicle ascent problem taken from Refs. [7, 11, 54] and
demonstrates the ability of CGPOPS to solve a problem with multiple phases.

All five examples were solved using the open source NLP solver IPOPT [12] in second deriva-
tive (full Newton) mode with the publicly available multifrontal massively parallel sparse direct
linear solver MA57 [18]. All results were obtained using the differential form of the LGR colloca-
tion method and various forms of the aforementioned hp mesh refinement method using default
NLP solver settings and the automatic scaling routine in CGPOPS. For CGPOPS, all first- and
second-order derivatives for the NLP solver were obtained using hyper-dual derivative approxima-
tions as described in Section 4.4.3 with a perturbation step size of h = 1. All solutions obtained by
CGPOPS are compared against the solutions obtained using the previously developed MATLAB
software GPOPS − II [52], which also employshp LGR collocation methods. For GPOPS − II,
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Fig. 4. CGPOPS and GPOPS − II solutions to Example 1 using hp-IV(3,10).

the first- and second-order derivatives for the NLP solver were obtained using the automatic dif-
ferentiation software ADiGator [60] for all examples except the fifth example, which used sparse
central finite differences. All computations were performed on a 2.9-GHz Intel Core i7 MacBook
Pro runningMACOS-X version 10.13.6 (High Sierra) with 16-GB 2133-MHz LPDDR3 of RAM. C++
files were compiled using Apple LLVM version 9.1.0 (clang-1000.10.44.2). All m-scripts were exe-
cuted using MATLAB version R2016a (build 9.0.0.341360). All plots were created using MATLAB
version R2016a (build 9.0.0.341360).

5.1 Example 1: Hyper-Sensitive Problem

Consider the following optimal control problem taken from Ref. [55]. Minimize the objective func-
tional

J =
1

2

∫ tf

0

(x2 + u2)dt , (46)

subject to the dynamic constraints

ẋ = −x3 + u, (47)

and the boundary conditions

x (0) = 1, x (tf ) = 1.5, (48)

where tf = 10, 000. It is known for a sufficiently large value of tf that the interesting behavior in
the solution for the optimal control problem defined by Equations (46) through (48) occurs near
t = 0 and t = tf (see Ref. [55] for details), whereas most of the solution is a constant. Given the
structure of the solution, a majority of collocation points need to be placed near t = 0 and t = tf .

The optimal control problem given in Equations (46) through (48) was solved using CGPOPS

with the mesh refinement methods hp-I(3,10), hp-II(3,10), hp-III(3,10), and hp-IV(3,10) on an initial
mesh of 10 evenly spaced mesh intervals with three LGR points per mesh interval. Furthermore,
the NLP solver and mesh refinement accuracy tolerances were set to 10−7 and 10−6, respectively.
The solution obtained using CGPOPS with the hp-IV(3,10) method is shown in Figure 4 along-
side the solution obtained using GPOPS − II [52] with the hp-IV(3,10) method. It is seen that
the CGPOPS and GPOPS − II solutions are in excellent agreement. Moreover, the optimal
objective obtained using both CGPOPS and GPOPS − II was 3.3620559 to eight significant
figures. Additionally, the computation time required by CGPOPS and GPOPS − II to solve
the optimal control problem was 0.2153 and 1.5230 seconds, respectively. To demonstrate how
CGPOPS is capable of capturing the interesting features of the optimal solution, Figure 5 shows
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Fig. 5. CGPOPS and GPOPS − II solutions to Example 1 near t = 0 and t = tf using hp-IV(3,10).

Fig. 6. CGPOPS and GPOPS − II mesh refinement history for Example 1 using hp-IV(3,10).

the solution on the intervals t ∈ [0, 25] (near the initial time) and t ∈ [9975, 10000] (near the final
time). It is seen that CGPOPS accurately captures the rapid decay from x (0) = 1 and the rapid
growth to meet the terminal condition x (tf ) = 1.5, with the density of the mesh points near t = 0
and t = tf increasing as the mesh refinement progresses. Additionally, Figure 6 shows the mesh
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Table 1. Performance of CGPOPS on Example 1 Using hp-I(3,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-I(3,10) Points hp-I(3,10) Points

1 28.27 31 28.27 31
2 4.090 67 4.090 67
3 7.060 × 10−1 101 7.060 × 10−1 101
4 1.661 × 10−1 134 1.661 × 10−1 134
5 1.476 × 10−2 158 1.476 × 10−2 158
6 1.139 × 10−3 191 1.139 × 10−3 191
7 7.557 × 10−7 218 7.557 × 10−7 218

Table 2. Performance of CGPOPS on Example 1 Using hp-II(3,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-II(3,10) Points hp-II(3,10) Points

1 28.27 31 28.27 31
2 1.667 65 1.667 65
3 3.193 106 3.193 106
4 1.557 × 10−1 140 1.557 × 10−1 140
5 4.142 × 10−1 165 4.142 × 10−1 165
6 1.261 × 10−2 185 1.261 × 10−2 185
7 4.423 × 10−2 204 4.423 × 10−2 204
8 4.707 × 10−4 209 4.707 × 10−4 209
9 1.090 × 10−3 226 1.090 × 10−3 226
10 7.742 × 10−6 247 7.742 × 10−6 247
11 7.470 × 10−7 250 7.470 × 10−7 250

refinement history. Finally, Tables 1 through 4 show the approximation of the error in the solution
on each mesh, where it is seen that the error approximation decreases with each mesh refinement
iteration using any of the hp methods.

5.2 Example 2: Reusable Launch Vehicle Entry

Consider the following optimal control problem taken from Ref. [11] where the objective is to
maximize the crossrange during the atmospheric entry of a reusable launch vehicle (where the
numerical values in Ref. [11] have been converted from English units to SI units). Maximize the
objective functional

J = ϕ (tf ), (49)

subject to the dynamic constraints

ṙ = v sinγ , θ̇ =

v cosγ sinψ

r cosϕ
,

ϕ̇ =

v cosγ cosψ

r
, v̇ = −

D

m
− д sinγ ,

γ̇ =

L cosσ

mv
−

(

д

v
−
v

r

)

cosγ , ψ̇ =

L sinσ

mv cosγ
+

v cosγ sinψ tanϕ

r
,

(50)
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Table 3. Performance of CGPOPS on Example 1 Using hp-III(3,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-III(3,10) Points hp-III(3,10) Points

1 28.27 31 28.27 31
2 5.207 22 5.207 22
3 5.848 × 10−1 112 5.848 × 10−1 112
4 9.156 × 10−2 139 9.156 × 10−2 142
5 5.732 × 10−3 115 5.732 × 10−3 112
6 9.927 × 10−5 146 9.927 × 10−5 146
7 2.451 × 10−5 153 2.451 × 10−5 153
8 8.237 × 10−7 160 8.237 × 10−7 160

Table 4. Performance of CGPOPS on Example 1 Using hp-IV(3,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-IV(3,10) Points hp-IV(3,10) Points

1 28.27 31 28.27 31
2 4.763 46 4.763 46
3 8.214 × 10−1 52 8.214 × 10−1 55
4 1.813 × 10−1 55 1.813 × 10−1 58
5 2.114 × 10−2 61 2.114 × 10−2 61
6 1.688 × 10−3 87 1.688 × 10−3 87
7 8.991 × 10−7 106 8.991 × 10−7 106

and the boundary conditions

h(0) = 79248 km, h(tf ) = 24384 km,

θ (0) = 0 deg, θ (tf ) = Free,

ϕ (0) = 0 deg, ϕ (tf ) = Free,

v (0) = 7.803 km/s, v (tf ) = 0.762 km/s,

γ (0) = −1 deg, γ (tf ) = −5 deg,

ψ (0) = 90 deg, ψ (tf ) = Free,

(51)

where r = h + Re is the geocentric radius, h is the altitude, Re is the polar radius of the Earth, θ is
the longitude,ϕ is the latitude,v is the speed,γ is the flight path angle,ψ is the azimuth angle, andm
is the mass of the vehicle. Furthermore, the aerodynamic and gravitational forces are computed as

D = ρv2SCD/2, L = ρv2SCL/2, д = μ/r 2, (52)

where ρ = ρ0 exp(−h/H ) is the atmospheric density, ρ0 is the density at sea level, H is the density
scale height, S is the vehicle reference area, CD is the coefficient of drag, CL is the coefficient of
lift, and μ is the gravitational parameter.
The optimal control problem given in Equations (49) through (52) was solved using CGPOPS

with the hp-I(4,10), hp-II(4,10), hp-III(4,10), and hp-IV(4,10) methods on an initial mesh consisting
of 10 evenly spaced mesh intervals with four LGR points per mesh interval. The NLP solver and
mesh refinement accuracy tolerances were both set to 10−7. The initial guess of the state was a
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Table 5. Performance of CGPOPS on Example 2 Using hp-I(4,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-I(4,10) Points hp-I(4,10) Points

1 2.463 × 10−3 41 2.463 × 10−3 41
2 9.891 × 10−5 103 9.896 × 10−5 103
3 3.559 × 10−6 118 3.559 × 10−6 118
4 3.287 × 10−7 133 3.287 × 10−7 133
5 8.706 × 10−8 134 8.706 × 10−8 134

Table 6. Performance of CGPOPS on Example 2 Using hp-II(4,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-II(4,10) Points hp-II(4,10) Points

1 2.463 × 10−3 41 2.463 × 10−3 41
2 6.026 × 10−6 193 6.023 × 10−6 193
3 8.227 × 10−8 261 8.227 × 10−8 261

Table 7. Performance of CGPOPS on Example 2 Using hp-III(4,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-III(4,10) Points hp-III(4,10) Points

1 2.463 × 10−3 41 2.463 × 10−3 41
2 2.850 × 10−5 71 2.850 × 10−5 71
3 2.065 × 10−6 141 2.065 × 10−6 141
4 8.887 × 10−8 148 8.887 × 10−8 148

Table 8. Performance of CGPOPS on Example 2 Using hp-IV(4,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-IV(4,10) Points hp-IV(4,10) Points

1 2.463 × 10−3 41 2.463 × 10−3 41
2 2.364 × 10−5 122 3.364 × 10−5 122
3 3.286 × 10−7 200 3.286 × 10−7 192
4 9.561 × 10−8 203 1.285 × 10−7 194
5 — — 9.561 × 10−8 195

straight line over the duration t ∈ [0, 1, 000] between the known initial and final components of
the state or a constant at the initial values of the components of the state whose terminal values are
not specified, whereas the initial guess of both controls was zero. Tables 5 through 8 show the per-
formance of both CGPOPS and GPOPS − II on this example for the four hp methods, where
the mesh refinement history is nearly identical using any of thehp methods. The solution obtained
using CGPOPS with the hp-III(4,10) method is shown in Figures 7(a) through 8(b) alongside the
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Fig. 7. CGPOPS and GPOPS − II state solutions to Example 2 using hp-III(4,10).

solution obtained using the software GPOPS − II [52] with the hp-III(4,10) method, where it
is seen that the two solutions obtained are essentially identical. Moreover, the optimal objective
obtained using both CGPOPS and GPOPS − II was 0.59627639 to eight significant figures.
Furthermore, Figure 9 shows the identical mesh refinement history of the two best performing
methods. Finally, the computation time used by CGPOPS is approximately half the amount of
time required byGPOPS − II to solve the optimal control problem, taking 0.9105 and 1.9323 sec-
onds, respectively.

5.3 Example 3: Space Station Attitude Control

Consider the following space station attitude control optimal control problem taken from Refs. [11,
53]. Minimize the cost functional

J =
1

2

∫ tf

t0

uTudt , (53)

subject to the dynamic constraints

ω = J−1
{
τдд (r) −ω

⊗ [Jω + h] − u
}
,

ṙ =

1

2

[
rrT + I + r⊗

]
[ω −ω0 (r)] ,

ḣ = u,

(54)
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Fig. 8. CGPOPS and GPOPS − II control solutions to Example 2 using hp-III(4,10).

Fig. 9. CGPOPS and GPOPS − II mesh refinement history for Example 2 using hp-III(4,10).

the inequality path constraint

‖h‖ ≤ hmax, (55)

and the boundary conditions

t0 = 0, tf = 1800,

ω (0) = ω̄0, r(0) = r̄0, h(0) = h̄0,

0 = J−1
{
τдд (r(tf )) −ω (tf )

⊗
[
Jω (tf ) + h(tf )

]}
,

0 =

1

2

[
r(tf )r

T (tf ) + I + r(tf )
⊗
] [

ω (tf ) −ω0 (r(tf ))
]
,

(56)

where (ω, r, h) is the state and u is the control. In this formulation, ω is the angular velocity, r
is the Euler-Rodrigues parameter vector, h is the angular momentum, and u is the input moment
(and is the control). Furthermore,

ω0 (r) = −ωorbC2, τдд = 3ω2
orb

C⊗3 JC3,

ωorb = 0.6511
π

180
, hmax = 10000,

(57)
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Table 9. Performance of CGPOPS on Example 3 Using hp-I(4,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-I(4,10) Points hp-I(4,10) Points

1 9.409 × 10−6 41 9.409 × 10−6 41
2 6.496 × 10−7 47 6.496 × 10−7 47

Table 10. Performance of CGPOPS on Example 3 Using hp-II(4,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-II(4,10) Points hp-II(4,10) Points

1 9.409 × 10−6 41 9.409 × 10−6 41
2 2.389 × 10−6 50 2.387 × 10−6 50
3 7.125 × 10−7 55 7.130 × 10−7 55

Table 11. Performance of CGPOPS on Example 3 Using hp-III(4,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-III(4,10) Points hp-III(4,10) Points

1 9.409 × 10−6 41 9.409 × 10−6 41
2 9.542 × 10−7 50 9.559 × 10−7 50

Table 12. Performance of CGPOPS on Example 3 Using hp-IV(4,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-IV(4,10) Points hp-IV(4,10) Points

1 9.409 × 10−6 41 9.409 × 10−6 41
2 1.049 × 10−7 53 1.046 × 10−7 53
3 7.125 × 10−7 57 7.130 × 10−7 57

and C2 and C3 are the second and third column, respectively, of the matrix

C = I +
2

1 + rTr

(

r⊗r⊗ − r⊗
)

. (58)

In this example, the matrix J is given as

J =

⎡⎢⎢⎢⎢⎢⎣

2.80701911616 × 107 4.822509936 × 105 −1.71675094448 × 107

4.822509936 × 105 9.5144639344 × 107 6.02604448 × 104

−1.71675094448 × 107 6.02604448 × 104 7.6594401336 × 107

⎤⎥⎥⎥⎥⎥⎦
, (59)
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whereas the initial conditions ω̄0, r̄0, and h̄0 are

ω̄0 =

⎡⎢⎢⎢⎢⎢⎣

−9.5380685844896 × 10−6

−1.1363312657036 × 10−3

+5.3472801108427 × 10−6

⎤⎥⎥⎥⎥⎥⎦
,

r̄0 =

⎡⎢⎢⎢⎢⎢⎣

2.9963689649816 × 10−3

1.5334477761054 × 10−1

3.8359805613992 × 10−3

⎤⎥⎥⎥⎥⎥⎦
, h̄0 =

⎡⎢⎢⎢⎢⎢⎣

5000
5000
5000

⎤⎥⎥⎥⎥⎥⎦
.

(60)

A more detailed description of this problem, including all of the constants J, ω̄0, r̄0, and h̄0, can be
found in Ref. [53] or [11].

The optimal control problem given in Equations (53) through (60) was solved using CGPOPS

with the hp-I(4,10), hp-II(4,10), hp-III(4,10), and hp-IV(4,10) methods on an initial mesh consisting
of 10 uniformly spaced mesh intervals and four LGR points per mesh interval. The NLP solver
and mesh refinement accuracy tolerances were set to 10−7 and 10−6, respectively. The initial guess
was a constant over the time interval t ∈ [0, 1800], where the constant was (ω̄0, r̄0, h̄0) for the
state and zero for the control. The essentially identical mesh refinement histories for CGPOPS

and GPOPS − II are shown in Tables 9–12. The state and control solutions obtained using
CGPOPS are respectively shown in Figures 10 and 11 alongside the solution obtained using
the optimal control software GPOPS − II [52] with the hp-I(4,10). It is seen that the CGPOPS

solution matches extremely well with the GPOPS − II solution. Moreover, the optimal objec-
tive obtained using both CGPOPS and GPOPS − II was 3.5867511 × 10−6 to eight significant
figures. Finally, the computation time required by CGPOPS and GPOPS − II to solve the op-
timal control problem was 0.5338 and 2.7696 seconds, respectively.

5.4 Example 4: Free-Flying Robot Problem

Consider the following optimal control problem taken from Refs. [11, 56]. Minimize the objective
functional

J =

∫ tf

0

(u1 + u2 + u3 + u4)dt , (61)

subject to the dynamic constraints

ẋ = vx , ẏ = vy ,

v̇x = (F1 + F2) cos(θ ), v̇y = (F1 + F2) sin(θ ),

θ̇ = ω, ω̇ = αF1 − βF2,

(62)

the control inequality constraints

0 ≤ ui ≤ 1, (i = 1, 2, 3, 4), Fi ≤ 1, (i = 1, 2), (63)

and the boundary conditions

x (0) = −10, x (tf ) = 0, y (0) = −10, y (tf ) = 0,
vx (0) = 0, vx (tf ) = 0, vy (0) = 0, vy (tf ) = 0,
θ (0) = π

2 , θ (tf ) = 0, ω (0) = 0, ω (tf ) = 0,
(64)

where
F1 = u1 − u2, F2 = u3 − u4, α = 0.2, β = 0.2. (65)

It is known that the optimal control problem defined by Equations (61) through (65) is a bang-bang
optimal control. Given the structure of the solution, the hp-BB(3,10) mesh refinement method [2]
is also employed to solve this example.
The optimal control problem given in Equations (61) through (64) was solved using CGPOPS

with the mesh refinement methods hp-I(3,10), hp-II(3,10), hp-III(3,10), hp-IV(3,10), and hp-BB(3,10)
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Fig. 10. CGPOPS and GPOPS − II solutions to Example 3 using hp-I(4,10).
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Fig. 11. CGPOPS and GPOPS − II solutions to Example 3 using hp-I(4,10).
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Fig. 12. CGPOPS and GPOPS − II mesh refinement history for Example 4 using hp-BB(3,10) and hp-

II(3,10), respectively.

on an initial mesh of 10 evenly spacedmesh intervals with five LGR points permesh interval. More-
over, the NLP solver and mesh refinement accuracy tolerances were set to 10−9 and 10−7, respec-
tively. Figure 12 shows the mesh refinement history for CGPOPS with the hp-BB(3,10) method
and GPOPS − II with the hp-II(3,10) method where CGPOPS only requires a single mesh re-
finement iteration to attain the requested accuracy, whereasGPOPS − II takes ninemesh refine-
ment iterations to attain that same accuracy. The solution obtained using CGPOPS with the hp-
BB(3,10) method is shown in Figures 13 and 14 alongside the solution obtained withGPOPS − II

[52] with the hp-II(3,10) method. It is seen that the CGPOPS and GPOPS − II solutions
are in excellent agreement. Furthermore, the optimal objective obtained using CGPOPS and
GPOPS − II are 7.9101471 and 7.9101421, respectively, in agreement to six significant figures.
Additionally, the computation time required by CGPOPS and GPOPS − II to solve the opti-
mal control problem was 0.6313 and 9.1826 seconds, respectively. To demonstrate how CGPOPS

is capable of accurately and efficiently capturing the bang-bang control profile of the optimal so-
lution, Figure 14 shows the control solutions obtained using CGPOPS employed with the hp-
BB(3,10) mesh refinementmethod andGPOPS − II with thehp-II(3,10) mesh refinementmethod
(where it is noted that the mesh refinement methods used were the most effective for that partic-
ular software program). It is seen that CGPOPS accurately captures the switching times for all
eight control discontinuities, whereas the solution obtained using GPOPS − II is less accurate
near the discontinuities for the third and fourth control components (see Figure 14(c), (d), and (f)).
Finally, Tables 13 through 17 show the estimated error on each mesh, where it is seen that the
approximation of the solution error decreases with each mesh refinement iteration using any of
the hp methods.

5.5 Example 5: Multiple-Stage Launch Vehicle Ascent Problem

Consider the following four-phase optimal control problem where the objective is to steer a
multiple-stage launch vehicle from the ground to the terminal orbit while maximizing the final
mass of the vehicle [7, 11, 54]. The problem is modeled as a four-phase optimal control problem.
Maximize the objective functional

J =m
(

t
(4)
f

)

, (66)
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Fig. 13. CGPOPS and GPOPS − II state solutions to Example 4 using hp-BB(3,10) and hp-II(3,10), re-

spectively.
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Fig. 14. CGPOPS and GPOPS − II control solutions to Example 4 using hp-BB(3,10) and hp-II(3,10),

respectively.
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Table 13. Performance of CGPOPS on Example 4 Using hp-I(3,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-I(3,10) Points hp-I(3,10) Points

1 5.7636 × 10−4 50 5.7636 × 10−4 50
2 2.3428 × 10−4 82 1.2977 × 10−4 82
3 7.5065 × 10−5 122 2.3256 × 10−4 120
4 6.2091 × 10−5 157 1.1175 × 10−5 161
5 9.4236 × 10−6 184 6.2093 × 10−5 188
6 3.9835 × 10−6 209 4.8405 × 10−6 212
7 2.8105 × 10−6 224 2.8104 × 10−6 234
8 8.3276 × 10−7 237 1.5139 × 10−6 253
9 5.4493 × 10−7 250 6.9960 × 10−7 261
10 3.4339 × 10−7 258 7.5178 × 10−7 268
11 3.4145 × 10−7 268 2.7108 × 10−7 281
12 1.3458 × 10−7 274 5.5799 × 10−7 287
13 2.3812 × 10−7 275 2.3815 × 10−7 295
14 9.0332 × 10−8 278 9.0299 × 10−8 297

Table 14. Performance of CGPOPS on Example 4 Using hp-II(3,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-II(3,10) Points hp-II(3,10) Points

1 5.7636 × 10−4 50 5.7636 × 10−4 50
2 2.3718 × 10−4 98 1.1649 × 10−4 98
3 6.4909 × 10−5 162 9.3164 × 10−5 146
4 2.1470 × 10−5 219 1.1244 × 10−4 207
5 9.3539 × 10−6 263 3.2283 × 10−6 267
6 1.0198 × 10−6 297 3.5320 × 10−7 302
7 1.7028 × 10−7 310 2.3505 × 10−7 320
8 9.8413 × 10−8 315 1.3862 × 10−7 322
9 — — 1.0431 × 10−7 325
10 — — 9.5122 × 10−8 328

subject to the dynamic constraints

ṙ(p ) = v(p ),

v̇(p ) = −
μ

‖r(p ) ‖3
r(p ) +

T (p )

m(p )
u(p )
+

D(p )

m(p )
,

ṁ(p )
= −

T (p )

д0Isp
,

(p = 1, 2, 3, 4), (67)

the initial conditions
r(t0) = r0 = (5605.2, 0, 3043.4) × 103 m,
v(t0) = v0 = (0, 0.4076, 0) × 103 m/s,
m(t0) = m0 = 301454 kg,

(68)
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Table 15. Performance of CGPOPS on Example 4 Using hp-III(3,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-III(3,10) Points hp-III(3,10) Points

1 5.7636 × 10−4 50 5.7636 × 10−4 50
2 1.8489 × 10−4 68 1.8489 × 10−4 68
3 5.8497 × 10−5 185 5.8497 × 10−5 185
4 4.3708 × 10−6 275 4.3709 × 10−6 264
5 8.2894 × 10−7 349 2.3747 × 10−6 324
6 4.5337 × 10−7 395 2.4780 × 10−7 389
7 8.1069 × 10−8 460 1.5231 × 10−7 410
8 — — 1.0142 × 10−7 436
9 — — 2.1817 × 10−7 437
10 — — 8.0985 × 10−8 458

Table 16. Performance of CGPOPS on Example 4 Using hp-IV(3,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-IV(3,10) Points hp-IV(3,10) Points

1 5.7636 × 10−4 50 5.7636 × 10−4 50
2 7.2614 × 10−5 100 7.2614 × 10−5 100
3 5.8350 × 10−5 163 5.8350 × 10−5 163
4 7.0276 × 10−6 212 3.9712 × 10−6 203
5 2.9097 × 10−6 259 1.9372 × 10−6 249
6 5.0338 × 10−7 317 7.0224 × 10−6 301
7 2.1987 × 10−7 362 1.1880 × 10−6 328
8 9.8979 × 10−8 376 7.4092 × 10−7 347
9 — — 1.9947 × 10−7 360
10 — — 9.1526 × 10−8 373

the interior point constraints

r(p )
(

t
(p )

f

)

− r(p+1)
(

t
(p+1
0

)

= 0,

v(p )
(

t
(p )

f

)

− v(p+1)
(

t
(p+1)
0

)

= 0, (p = 1, 2, 3),

m(p )
(

t
(p )

f

)

−m
(p )

dry
−m(p+1)

(

t
(p+1)
0

)

= 0,

(69)

the terminal constraints (corresponding to a geosynchronous transfer orbit)

a
(

t
(4)
f

)

= af = 24361.14 km, e
(

t
(4)
f

)

= ef = 0.7308,

i
(

t
(4)
f

)

= if = 28.5 deg, θ
(

t
(4)
f

)

= θf = 269.8 deg,

ϕ
(

t
(4)
f

)

= ϕf = 130.5 deg,

(70)

and the path constraints

|r(p ) |2 ≥ Re ,

‖u(p ) ‖22 = 1,
(p = 1, . . . , 4). (71)
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Table 17. Performance of CGPOPS on Example 4 Using hp-BB(3,10)

Mesh Estimated Number of Estimated Number of

Iteration Error (CGPOPS) Collocation Error (GPOPS − II) Collocation

Number hp-BB(3,10) Points hp-II(3,10) Points

1 5.7636 × 10−4 50 5.7636 × 10−4 50
2 6.2675 × 10−9 108 1.1649 × 10−4 98
3 — — 9.3164 × 10−5 146
4 — — 1.1244 × 10−4 207
5 — — 3.2283 × 10−6 267
6 — — 3.5320 × 10−7 302
7 — — 2.3505 × 10−7 320
8 — — 1.3862 × 10−7 322
9 — — 1.0431 × 10−7 325
10 — — 9.5122 × 10−8 328

Table 18. Vehicle Properties for the Multiple-Stage Launch Vehicle

Ascent Problem

Quantity Solid Boosters Stage 1 Stage 2

mtot (kg) 19290 104380 19300
mprop (kg) 17010 95550 16820
T (N) 628500 1083100 110094
Isp (s) 283.3 301.7 467.2

Number of Engines 9 1 1
Burn Time (s) 75.2 261 700

In each phase, the quantities r = (x ,y, z) and v = (vx ,vy ,vz ) respectively represent the geocentric
position measured relative to an inertial reference frame and the inertial velocity measured in
Earth-centered inertial (ECI) coordinates, μ is the gravitational parameter,T is the vacuum thrust,
m is the vehicle mass, д0 is the acceleration due to gravity at sea level, Isp is the specific impulse
of the engine, u = (ux ,uy ,uz ) is the thrust direction (and is the control), and D = (Dx ,Dy ,Dz ) is
the drag force. It is noted that the drag force is given as

D = − 1
2CDSρ‖vrel‖vrel, (72)

where CD is the drag coefficient, S is the vehicle reference area, ρ = ρ0 exp(−h/H ) is the atmo-

spheric density, ρ0 is the sea level density, h = r − Re is the altitude, r = ‖r‖2 =
√

x2 + y2 + z2

is the geocentric radius, Re is the equatorial radius of the Earth, H is the density scale height,
vrel = v −ω × r is the velocity as viewed by an observer fixed to the Earth expressed in ECI coordi-
nates, andω = (0, 0,Ω) is the angular velocity of the Earth as viewed by an observer in the inertial
reference frame expressed in ECI coordinates. Furthermore, mdry is the dry mass of phases 1, 2,
and 3 and is defined asmdry =mtot −mprop, wheremtot andmprop are respectively the total mass
and propellant mass of phases 1, 2, and 3. Finally, the quantities a, e , i , θ , and ϕ are respectively the
semi-major axis, eccentricity, inclination, longitude of ascending node, and argument of periapsis.
The vehicle data for this problem and the numerical values for the physical constants can be found
in Tables 18 and 19, respectively.
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Table 19. Constants Used in the Multiple-

Stage Launch Vehicle Ascent Problem

Constant Value

Payload Mass 4164 kg
S 4π m2

CD 0.5
ρ0 1.225 kg/m3

H 7200 m
t1 75.2 s
t2 150.4 s
t3 261 s
Re 6378145 m
Ω 7.29211585 × 10−5 rad/s
μ 3.986012 × 1014 m3/s2

д0 9.80665 m/s2

The multiple-stage launch vehicle ascent optimal control problem was solved using CGPOPS

with an initial mesh in each phase consisting of 10 uniformly spaced mesh intervals with four
LGR points per mesh interval. The NLP solver and mesh refinement accuracy tolerances were
set to 10−7 and 10−6, respectively. The initial guess of the solution was constructed such that the
initial guess of the position and the velocity in phases 1 and 2 was constant at (r(0), v(0)) as
given in Equation (68), whereas in phases 3 and 4, the initial guess of the position and velocity
was constant at (r̃, ṽ), where (r̃, ṽ) are obtained via a transformation from orbital elements to ECI
coordinates using the five known orbital elements of Equation (70) and a true anomaly of zero.
Furthermore, in all phases, the initial guess of the mass was a straight line between the initial

and final mass,m(t
(p )
0 ) andm(t

(p )

f
) (p ∈ [1, . . . , 4]). Finally, in all phases, the guess of the control

was constant at u = (0, 1, 0). The CGPOPS solution is shown in Figure 15. In this example, the
mesh refinement accuracy tolerance of 10−6 is satisfied on the initial mesh using both CGPOPS

and GPOPS − II, so no mesh refinement is necessary. The solution obtained using CGPOPS

matches closely with the solution obtained using the software GPOPS − II [52], where it is
noted that the optimal objective obtained using CGPOPS and GPOPS − II are 7547.9729 and
7547.9739, respectively, agreeing to six significant figures. Finally, the computation time required
byCGPOPS andGPOPS − II to solve the optimal control problemwas 2.9466 and 18.9401 sec-
onds, respectively.

6 CAPABILITIES OF CGPOPS

The five examples provided in Section 5 demonstrate the various capabilities of CGPOPS. First,
the capabilities of the hp mesh refinement methods were demonstrated on the hyper-sensitive
problem where the mesh was refined in the segments where the solution changed rapidly. Addi-
tionally, the ability of the hp methods to maintain a small mesh while satisfying a specified accu-
racy tolerance was shown in the reusable launch vehicle entry problem. Second, the flexibility of
the software to achieve better performance by modifying the default settings of the mesh initial-
ization and/or refinement process is demonstrated by the space station attitude control problem
and free-flying robot problem. Third, all five examples demonstrate the increased computational
efficiency of implementing the optimal control framework developed in Sections 2 and 3 in C++
as compared with the previous MATLAB software GPOPS − II. In particular, the space station
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Fig. 15. Solution of Example 5 using CGPOPS and GPOPS − II.
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attitude control example shows the computational benefits of using an exact NLP Lagrangian Hes-
sian sparsity pattern (obtained by identifying the derivative dependencies using either hyper-dual
or bicomplex-step derivative approximations as described in Section 4.5) as compared to the over-
estimated Hessian sparsity pattern employed inGPOPS − II. Next, becauseCGPOPS includes
a newly developedmesh refinement method for problemswhose solutions have a bang-bang struc-
ture, it is possible using CGPOPS to obtain an accurate solution to bang-bang optimal control
problems much more efficiently than when using previously developed hp methods. In addition,
the examples demonstrate the generality of the optimal control problem that can be formulated
and solved usingCGPOPS. The fact thatCGPOPS is capable of solving the challenging bench-
mark optimal control problems shown in this article shows the general utility of the software on
problems that may arise in different application areas.

7 LIMITATIONS OF CGPOPS

As with any software, CGPOPS has limitations. First, it is assumed that all functions used to
formulate an optimal control problem of interest have continuous first and second derivatives. It
is noted, however, that for some applications, the functions may have discontinuous derivatives
while the functions themselves are continuous. In cases where the derivatives are discontinuous
CGPOPS may have difficulty obtaining a solution because the NLP solver operates under the
assumption that all first and second derivatives are continuous. Second, because CGPOPS is a
direct collocation method, the ability to obtain a solution depends upon the NLP solver that is
used. In particular, although the NLP solver IPOPT [12] used with CGPOPS may be effective
for some examples, other NLP solvers (e.g., SNOPT [26] or KNITRO [13]) may be more effective
than IPOPT for certain problems. Moreover, for problems with high-index path constraints, the
constraint qualification conditions may not be satisfied when the mesh becomes extremely fine. In
such cases, unique NLP Lagrange multipliers may not exist or, in some cases, these Lagrange mul-
tipliers may be unbounded. Furthermore, it may be difficult to obtain a solution to a poorly scaled
problem. Finally, as is true for any optimal control software, optimal control problems whose solu-
tions lie on a singular arc can create problems due to the inability to determine the optimal control
along the singular arc. Moreover, the problems associated with a singular optimal control problem
are exacerbated with mesh refinement. Thus, when solving a singular optimal control problem, it
may be necessary to modify the original problem by including the higher-order optimality condi-
tions that define the control on the singular arc.

8 CONCLUSION

A general-purpose C++ software program called CGPOPS has been described for solving
multiple-phase optimal control problems using adaptive direct orthogonal collocation methods.
In particular, the software employs an LGR quadrature orthogonal collocation where the continu-
ous control problem is transcribed to a large sparse NLP. The software implements five previously
developed adaptive mesh refinement methods that allow for flexibility in the number and place-
ment of the collocation and mesh points to achieve a specified accuracy. In addition, the software
is designed to compute all derivatives required by the NLP solver using one of four derivative esti-
mation methods for the optimal control functions. The key components of the software have been
described in detail, and the utility of the software is demonstrated on five benchmark optimal con-
trol problems. The software described in this article provides researchers a transitional platform
upon which to solve a wide variety of complex constrained optimal control problems for real-time
applications.
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