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Network Utility Maximization Under Maximum
Delay Constraints and Throughput Requirements

Qingyu Liu

Abstract— We consider a multi-path routing problem of max-
imizing the aggregate user utility over a multi-hop network,
subject to link capacity constraints, maximum end-to-end delay
constraints, and user throughput requirements. A user’s utility is
a concave function of the achieved throughput or the experienced
maximum delay. The problem is important for supporting real-
time multimedia traffic and is uniquely challenging due to the
need of simultaneously considering maximum delay constraints
and throughput requirements. In this paper, we first show that it
is NP-complete either (i) to construct a feasible solution strictly
meeting all constraints, or (ii) to obtain an optimal solution after
relaxing either the maximum delay constraints or the throughput
requirements. We then develop a polynomial-time approximation
algorithm named PASS. The design of PASS leverages a
novel understanding between non-convex maximum-delay-aware
problems and their convex average-delay-aware counterparts,
which can be of independent interest and suggests a new
avenue for solving maximum-delay-aware network optimization
problems. We prove that PASS always obtains approximate
solutions (i.e., with theoretical performance guarantees), at the
cost of violating both the maximum delay constraints and the
throughput requirements by up to constant ratios. We also
develop two variants of PASS, named PASS-M and PASS-T,
to generate approximate solutions at the cost of violating either
the maximum delay constraints or the throughput requirements
by up to problem-dependent ratios. We evaluate our solutions
using extensive simulations on Amazon EC2 datacenters sup-
porting video-conferencing traffic. Compared to the existing
algorithms and a conceivable baseline, our solutions obtain up
to 100% improvement of utilities, by meeting the throughput
requirements but relaxing the maximum delay constraints to the
extent acceptable for practical video conferencing applications.

Index Terms—Delay-sensitive multiple-unicast network flow,
delay-aware multi-path routing, network utility maximization.

I. INTRODUCTION
E CONSIDER a multiple-unicast communication sce-
Wnario where there exist multiple network users, each
of which streams a network flow from its source to its
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destination over a multi-hop network, possibly using multiple
paths. We study the problem of maximizing the aggregate user
utility, subject to link capacity constraints, maximum delay
constraints, and user throughput requirements. A user’s utility
is a concave function of the achieved throughput or the experi-
enced maximum delay. The maximum delay of a user denotes
the maximum Source-to-Destination (S2D) delay, or equiva-
lently the delay of the slowest S2D path that carries traffic.

Our study is motivated by the increasing interests of sup-
porting delay-critical traffic in various applications, e.g., video
conferencing [14]-[16]. It is reported that 51 million users
per month attend WebEx meetings [17], and 3 billion minutes
of calls per day use Skype [18]. Low S2D delay is vital for
such video conferencing applications. As recommended by the
International Telecommunication Union (ITU) [19], a delay
of less than 150ms can provide transparent interactivity while
delays above 400ms are unacceptable for video conferencing.
We note that the maximum S2D delay, instead of the average
one, is a critical concern for provisioning low delay services,
since there may exist traffic which experiences an arbitrarily
large S2D delay even for the solution that minimizes average
S2D delay performance [10], [11]. In sharp contrast, all the
traffic can be timely streamed from its source to its destination
following any solution that has an acceptable maximum S2D
delay performance, because the maximum S2D delay is
defined as an upper bound of S2D delays of all traffic.

We consider a delay model where data transmission rate
over a link is upper bounded by the link capacity, and data
experiences a constant delay in traversing a link. End-to-end
networking delay is known to be composed of processing
delay, queuing delay, and propagation delay. Our constant
delay model well captures the traffic-independent propagation
delay, but does not consider the traffic-dependent processing
delay or queuing delay. Although our constant delay model
is special, our study under this model has both practical and
theoretical significance, due to the following concerns:

(i) The constant delay model is suitable for a number
of important real-world applications, particularly the rout-
ing of video conferencing traffic over inter-datacenter net-
works. According to recent reports from Google [20] and
Microsoft [21], for most real-world inter-datacenter networks,
cloud providers typically over-provision inter-datacenter link
capacity by 2 — 3 times on a dedicated backbone [20], and
the average link-capacity utilization even for busy links is
30—60% [21]. As such, most inter-datacenter flows can always
be accommodated at their target rates [15]. The objective
of flow assignment is thus to optimize many other critical
performance metrics, e.g., network utility and delay, according
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TABLE I
COMPARE OUR WORK WITH EXISTING STUDIES

Maximization Objective Constraints Networking Setting
Aggregate Throughput- | Aggregate Maximum- Throughput Maximum Delay . .
Based Utilities Delay-Based Utilities | Requirements Constraints Multiple-Unicast
Many, e.g., [2]-[5] v X v X v
[6]-[11] X v v X X
[12], [13] 4 X X v v
Our Work v v v v v

Note. *: The objective of [6]-[T1] is to minimize maximum delay, which 1s a special case of maximizing maximum-delay-based utility functions.
**: The objective of [12], [13] is to maximize throughput, which is a special case of maximizing throughput-based utility functions.

to their throughput needs. For these inter-datacenter networks,
link data transmission rate cannot exceed link capacity, and the
constant propagation delay dominates the delay for the data to
traverse a link (it is practically justified by a real-world imple-
mentation on globally distributed Amazon EC2 datacenters in
Section VI-A of [15]). These observations justify our delay
model for the critical problem of routing video-conferencing
traffic over real-world inter-datacenter networks.

(i1) The constant delay model is a first-step of modeling net-
works and helps obtain flows which do not congest links (link
queuing delay remains negligible), by setting the link capacity
lower than the link bandwidth. As the first study on net-
work utility maximization with throughput requirements and
maximum delay constraints, we assume a traffic-independent
delay model to establish fundamental understandings of the
problem. This delay model is not uncommon in the literature,
e.g., it is used in [6], [7], [12], [13], [15]. Later in Section V,
we generalize our results to the general traffic-dependent delay
model and illustrate the challenges.

In this paper, we study a fundamental multiple-unicast
network flow problem of maximizing the aggregate user
utility subject to link capacity constraints, maximum delay
constraints, and user throughput requirements. We summarize
existing studies in Table I, and present detailed discussions
in Section II. Briefly speaking, our study is the first work
on the general network utility maximization problem under
maximum delay constraints and user throughput requirements.
In our problem, a user’s utility is either a function of its
achieved throughput or a function of its experienced maximum
delay. For this general problem, we derive many fundamental
results, which we believe can advance state-of-the-art and
serve as benchmarks for future research in the area. Specifi-
cally, we make the following contributions for our problem.

> We prove that it is NP-complete either (i) to con-
struct a feasible solution meeting all constraints, or (ii) to
obtain an optimal solution after we relax maximum delay
constraints or throughput requirements, due to the need of
simultaneously considering maximum delay constraints and
user throughput requirements. Thus, it is non-trivial to develop
polynomial-time approximation algorithms even after we relax
the maximum delay constraints or the throughput require-
ments.

> We design an algorithm named PASS (Polynomial-
time Algorithm Supporting utility-maximal flows Subject to
throughput/delay constraints). We leverage a novel understand-
ing between non-convex maximum-delay-aware problems and

their convex average-delay-aware counterparts, which suggests
a new avenue for solving maximum-delay-aware network
optimization problems. PASS obtains an approximate solution
in polynomial time, after relaxing both maximum delay con-
straints and throughput requirements by up to constant ratios.
(i) For the approximation ratio of PASS, we show that it
is a constant for maximizing the throughput-based utilities,
but it depends on the utility functions for maximizing the
delay-based utilities; (ii) For the derived violation ratios of
constraints of PASS, we show that there exist instances where
solutions of PASS will violate constraints by ratios that are
close to our derived ratios.

> By slightly modifying PASS, we design two other
algorithms PASS-M and PASS-T. PASS-M (resp. PASS-
T) obtains an approximate solution with a problem-dependent
approximation ratio in polynomial time, after only relaxing
throughput requirements (resp. maximum delay constraints)
by up to problem-dependent ratios. We further prove that
there does not exist either a constant ratio that can bound
the violation of constraints, or a constant approximation ratio
which can bound the performance gap as compared to the
optimal, for PASS-M and PASS-T, for all problem instances
in theory. Therefore, problem-dependent ratios are the best
possible results for PASS-M and PASS-T.

> We evaluate the empirical performance of our algorithms
in simulations of supporting video-conferencing traffic across
Amazon EC2 datacenters. Compared to the existing algorithms
as well as a conceivable baseline, our solutions can obtain
up to 100% improvement of utilities, by meeting throughput
requirements but relaxing maximum delay constraints to the
extent acceptable for video conferencing applications.

II. RELATED WORK

There exist many network utility maximization studies with
throughput concerns, e.g., [2]-[5], but only a few consider
maximum delays. Since the maximum delay of a single-
unicast flow is non-convex in the flow decision variables,
even maximum-delay-aware problems under simple settings
are usually NP-hard, e.g., the single-unicast maximum delay
minimization problem, and challenging to solve [6].

Misra et al. [6] study the single-unicast maximum delay
minimization problem subject to a throughput require-
ment, and design a Fully-Polynomial-Time Approximation
Scheme (FPTAS). Zhang et al. [7] generalize the FPTAS
of [6] and develop an FPTAS to minimize maximum delay
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subject to throughput, reliability, and differential delay con-
straints also in the single-unicast scenario. Both FPTASes
require to solve flow problems iteratively in time-expanded
networks, by employing a binary-search based idea applicable
only in the single-unicast setting. It is thus unclear how
to extend their techniques to our general multiple-unicast
scenario.

Cao et al. [12] develop an FPTAS that can maximize
throughputs subject to maximum delay constraints in a
multiple-unicast setting. This FPTAS is generalized by Yu
et al. [13] to solve other throughput maximization prob-
lems. To satisfy maximum delay constraints while optimizing
throughputs, FPTASes of [12], [13] require to solve flow
problems iteratively in time-expanded networks, which is
time-consuming. Moreover, the design of FPTASes in [12],
[13] leverages the primal-dual algorithm, where their primal
problems and associated dual problems need to be cast as
linear programs. It is unclear how to extend their techniques
to our general scenario where the utility of a unicast can be a
concave function of the throughput.

We note that there exist other maximum-delay-aware stud-
ies in the literature. However, they only develop heuristic
approaches. For example, Liu et al. [15] target the multi-
cast maximum delay optimization problem. Their heuristic
approach suffers from two limitations: (i) the running time
could be high because the number of variables increases
exponentially with the network size, and (ii) there is no
theoretical performance guarantee of the achieved solution.

Overall, with the constant link delay model, existing
maximum-delay-aware studies focus on either the throughput-
constrained maximum delay minimization problem or the
maximum-delay-constrained throughput maximization prob-
lem, which are just special cases of our problem. To design
approximation algorithms, they rely on a technique of
iteratively solving problems in expanded networks, lead-
ing to impractically high time complexities (e.g., at least
O(JEP|V|*L) to minimize single-unicast maximum delay
where |V| is the number of nodes, | E| is the number of links,
and L is the input size of the given problem instance [6]). It is
unclear how to generalize their techniques to our multiple-
unicast utility maximization scenario, where the utility of a
unicast is a concave function of the achieved throughput or the
experienced maximum delay. In sharp contrast, we develop an
approximation algorithm for our problem of maximizing utili-
ties, by leveraging a novel understanding between non-convex
maximum-delay-aware problems and their convex average-
delay-aware counterparts, resulting in a small time complexity
(e.g., O(|E|>L) to minimize single-unicast maximum delay in
a dense network (Theorem 2)).

Instead of modeling link delay as a constant as in [6], [7],
[12], [13], [15], there exist studies which model the link delay
as a traffic-dependent function. For example, Correa et al. [8],
[9] minimize maximum delay with delay-function-dependent
approximation ratios. Liu et al. [10], [11] minimize maximum
delay with constant approximation ratios. Our delay model is
the same as those in [6], [7], [12], [13], [15] but different
from [8]-[11]. We remark that maximum-delay-aware prob-
lems are fundamentally different with different delay models.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

For example, to minimize the single-unicast maximum delay,
it is APX-hard (hence no PTAS exists unless P = NP) with
the traffic-dependent delay model [9], but an FPTAS! exists
with the constant delay model [6].

In the literature there also exist many studies which consider
unreliable links where data transmission over a link only
succeeds with a probability: (i) in a single-hop network,
Hou et al. [23] propose scheduling policies for a set of
sources to be feasible with respect to delay constraints and
throughput requirements. In [24], Hou er al. extend their
previous work and study the utility maximization problem.
Deng et al. [25] further conduct a study on a similar problem
but assuming a more general traffic pattern; (ii) in a multi-hop
network, Hou [26] develops scheduling policies with delay and
throughput taken into account. Singh and Kumar [27] study a
similar problem of maximizing throughput subject to delay
constraints. Those studies [23]-[27] are of little relevance
with ours, because they assume the route is pre-determined,
while we optimize route for maximizing network utility. Deng
et al. [28] study a joint routing and scheduling problem which
requires a small amount of link capacity redundancy to satisfy
delay constraints and throughput requirements. Their focus
is on designing online policies with good performance in
terms of competitive ratio, which is very different from ours.
Singh and Kumar [29] study a joint routing, scheduling, and
power control problem of maximizing throughput under delay
constraints, and in [30], Singh et al. consider a similar prob-
lem further subject to wireless link interference constraints.
Studies [29], [30] both focus on designing distributed policies,
and they leverage stochastic frameworks to take all random-
ness, e.g., the unreliability of links, into account. Hence they
fundamentally differ from our study where no probabilistic
information is involved.

III. PRELIMINARY
A. System Model

We consider a multi-hop network modeled as a directed
graph G £ (V, E) with |V| nodes and |E| links. Each link
e € F has a constant capacity ¢, > 0 and a constant delay
d. > 0. For each link e € E, data streamed to e experiences a
delay of d., and the rate of streaming data to e must be within
the capacity c.. We are given K users, where for each user 1,
a source s; € V needs to stream a single-unicast network flow
to a destination ¢; € V'\{s;}, possibly using multiple paths.

We denote P; as the set of simple paths2 from s; to t;, and
P = UK | P, For any p € P, its path delay d” is defined as

e de,

ecE:ecp

We denote a multiple-unicast network flow solution as f £
{fi,;i=1,2,..., K}, where a single-unicast flow f; is defined
as the assigned flow rate over P, i.e., f; e {zP :2? > 0,p €

1'Unless P = NP, it holds that FPTAS C PTAS in that the runtime of a
PTAS is required to be polynomial in problem input but not 1/e, while the
runtime of an FPTAS is polynomial in both the problem input and 1/¢ [22].

2A simple path is a path which does not have repeating nodes.
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P;}. For f;, we define
ey

pEP;:e€p

X

as the aggregate link rate of e € E of the unicast ¢ (or the user
1 equivalently). Similarly, we denote x. as the total aggregate
link rate of link e € E, and

K
A
Te = E =
i=1

We further denote the flow rate, or the throughput equiv-
alently, achieved by a single-unicast flow f; by |fi|,

il &) ar= > af= ) af

peEP; ecOut(s;) e€ln(t;)

Z aP.

peP:ecp

where Out(v) (resp. In(v)) is the set of outgoing (resp.
incoming) links of v. The maximum delay experienced by
fi is defined as

M(f) 2

max dP,
peEP;:xP>0

i.e., the delay of the longest (slowest) path with positive rates
from s; to ¢;.> The total delay of f; is

T(f) 2 Y @ d) = S (- do).
peP; eclE
i.e., the summation of delays experienced by all flow units
from s; to ¢;. With 7 (f;), we can define the average delay
experienced by f; as A(fi) = 7 (f:)/|fi], i-e., the total delay
normalized by the amount of flow. We let A(f;) = 0if | f;| =
0. Our definitions of throughput, maximum delay, and average
delay are the same as those in related studies [6]-[10].

For each f;, we denote its throughput-based utility as
UL(|f:]), which is a function that rewards f; based on the
achieved throughput. We assume that U} (| f;|) is concave, non-
negative, and non-decreasing with | f;| > 0. Our assumptions
on U!(|fi]) are realistic, as it is practically reasonable that
the rate of increase in the throughput-based utility shall
decrease with the throughput increasing rate, considering that
larger the throughput is, more severely the network will be
congested. As discussed in Section II, in the literature there
exist many works of optimizing throughput-based network
utility, e.g., [2]-[5], where their utility functions satisfy our
assumptions.

For each f;, we denote its maximum-delay-based utility as
—UL(M(fi)), where the disutility U?(M(f;)) is a function
that penalizes f; based on the experienced maximum delay.
We assume that U (M(f;)) is convex, non-negative, and non-
decreasing with M(f;) > 0. Our assumptions on U (M(f;))
are realistic, as it is practically reasonable that the rate of
increase in the delay-based disutility (the rate of decrease in
the delay-based utility) shall increase with the delay increasing
rate, considering that in real world our tolerance of com-
munication delay becomes less as the delay becomes larger.
To our best knowledge, we are the first to optimize delay-
based network utility with the user’s utility to be a general
function of the experienced maximum delay.

3We call a path p € P; with 2P > 0 as a flow-carrying path of f;.
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B. Problem Definition

We study the following problem of Maximizing aggregate
user Utilities subject to link capacity constraints, maximum
Delay constraints, and Throughput requirements (MUDT),

K
(MUDT) : obj: either max ZZ/{Z(|fl|), (1a)
i=1
K
or max —ZUf(M(fi)), (1b)
i=1
st. |fi| > Ry, Vi=1,2,... K, (I¢)
M(f) < Dy, ¥i=1,2,.. K, (id)
f:{f17f25---7fK}€X7 (le)

where X' defines a feasible multiple-unicast flow f meeting
flow conservation constraints and link capacity constraints, i.e.,
Sooai=|fil, VI<i<K;

eef ¥ -
e€Out(s;) e€ln(t;)

Z xy = Z xf, Yo e V\{si, t;}, V1 <i< K
e€Out(v) e€ln(v)
K
fo < ¢e, Ve € E; vars: xf > O,VG,W}.
i=1

In formula (1), the objective (la) (resp. (1b)) maximizes
the aggregate throughput-based utility (resp. maximum-delay-
based utility), the throughput requirements (lc) ensure that
the throughput achieved by each user i is no smaller than
R;, the maximum delay constraints (1d) restrict the max-
imum delay experienced by each user ¢ to be no greater
than D;, and the feasibility constraint (le) defines a feasible
multiple-unicast network flow solution, meeting link capacity
constraints.

C. A Generalization to Popular Communication Problems

MUDT is fundamentally critical as it generalizes several
popular communication settings. Two representative settings
are the Throughput-Constrained maximum Delay Minimiza-
tion problem (TCDM) and the maximum-Delay-Constrained
Utility Maximization (DCUM) problem.

TCDM aims to find a network flow to minimize the
weighted summation of maximum delays of all users, subject
to link capacity constraints and throughput requirements.

K
(TCDM) : min » _ (w; - M(f;)) (2a)
=1
st. |fi|>Ri, Yi=1,2,...,K, (2b)
f:{flvaa"'afK}er (20)

where in the objective (2a), a non-negative weight w; is associ-
ated with the maximum delay of f; foreach i =1,2,... K.
TCDM is NP-hard, since as its special case when K = 1,
the problem has been proven to be NP-hard [6]. Maximum
delay minimization problems that are special cases of TCDM
have been studied in [6], [8]-[10].
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DCUM aims to find a network flow to maximize aggregate
user utility, subject to link capacity constraints and maximum
delay constraints. It has the following formulation.

K
(DCUM) : max Y U} (|fi])

(3a)

i—1
st. M(f) <Di, Yi=1,2,...,K, (3b)
f=A{fi,fas. ... [} EX. (3¢)

DCUM is NP-hard, because as its special case when K = 1
and U] (|f1|) = |f1], the problem can be proven to be NP-hard
following a similar proof as introduced in the Appendix of [6].
As an example, [12] studies a throughput maximization
problem that is a special case of DCUM.

By extending existing NP-hardness analysis on problems
that are special cases of MUDT, in the following we give
a theorem, which suggests that it is non-trivial to develop
polynomial-time approximation algorithms for MUDT even
subject to relaxed constraints.

Theorem 1: For MUDT, it is NP-complete (i) to construct
a feasible solution that meets all constraints, or (ii) to obtain
an optimal solution that meets throughput requirements but
relaxes maximum delay constraints, or (iii) to obtain an
optimal solution that meets maximum delay constraints but
relaxes throughput requirements.

Proof: The proof is an easy adoption of Appendix of [6],
and we refer it to Part A of supplementary materials. [ ]

IV. PROPOSED APPROXIMATION ALGORITHMS

We design an algorithm PASS to solve MUDT approxi-
mately in a polynomial time, at the cost of violating both
throughput requirements and maximum delay constraints by
constant ratios. We slightly modify PASS to get another
two algorithms PASS-M and PASS-T, to obtain approxi-
mate solutions that can either strictly satisfy maximum delay
constraints or strictly satisfy throughput requirements. Note
again that in sharp contrast, existing maximum-delay-aware
studies either minimize throughput-constrained maximum
delay or maximize maximum-delay-constrained throughput,
which are special cases of our problem MUDT. They rely on
a time-consuming technique of solving problems iteratively
in the time-expanded network to provide approximate solu-
tions. Our PASS leverages a novel understanding between
non-convex maximum-delay-aware problems and their convex
average-delay-aware counterparts, which can be of indepen-
dent interest and suggest a new avenue for solving maximum-
delay-aware network optimization problems.

A. Algorithmic Structure of PASS

We note that the non-convex maximum delays bring dif-
ficulties for solving MUDT. The key idea of PASS is to
replace the non-convex maximum delays in MUDT by the
convex average delays, and solve the average-delay-aware
counterpart instead. (i) We denote the average-delay-aware
counterpart of the MUDT that maximizes throughput-based
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utilities, i.e., problem (1) with an objective of (1a), as MUAT-
T. MUAT-T has the following formulation:

K
(MUAT-T) : obj: max > Ul (|fil),

(4a)

i=1
st |fi| >Ry, Vi=1,...,K, (4b)
f:{flana"'afK}GX' (4’d)

(i) We denote the average-delay-aware counterpart of
the MUDT that maximizes maximum-delay-based utilities,
i.e., problem (1) with an objective of (1b), as MUAT-M.
MUAT-M has the following formulation:

K
(MUAT-M) : obj: max — Y U (T(f:)/1£il) .

(5a)

1=1
S.t. |f1| =R;, Vi=1,..., K, (5b)
f=A{fi.fas-. ., fx}eX. (5d)

Note that in our formulation of MUAT-M, the through-
put requirements (5b) are equality constraints. However,
the throughput requirements (1c) of MUDT are inequality con-
straints. The motivation of using equality constraints instead
of inequality ones in MUAT-M is as follows. If the throughput
requirements are equality constraints, |f;| of each user 7 is a
constant of R;. This allows to replace the variable |f;| with
the constant R;, and makes the objective in (5a) a concave
function of the variables. Otherwise, | f;| is a variable, and (5a)
is no longer concave. In the following lemma, we prove that
MUAT-M is the average-delay-aware counterpart of MUDT
that maximizes maximum-delay-based utilities.

Lemma 1: MUAT-M is the average-delay-aware counterpart
of MUDT that maximizes the maximum-delay-based utilities,
in the sense that (i) it is the average-delay-aware counterpart
of the following problem:

K

obj: max — Y U (M(f)), (6a)
i=1

S.L. |fz| = Ri, Vi = 1,...,K, (6b)

M(fi) <Dy, Vi=1,...,K, (6¢)

f:{flana---afK}GXa (6d)

(i) and the above problem formulated in (6) is equivalent to
MUDT formulated in (1) with an objective of (1b).
Proof: Refer to Appendix A. [ ]
Algorithm 1 presents PASS. It solves the average-delay-
aware counterpart of MUDT and obtains the corresponding
multiple-unicast flow solution f = {f;;i = 1,...,K}
(Line 5). Then for each 7 = 1,..., K, we delete a rate of
€ - | fi] iteratively from the slowest flow-carrying paths of f;
(Line 8). In the end, the remaining flow is the solution of

PASS.

B. Performance Guarantee of PASS

Lemma 2: In Algorithm 1 with an arbitrary ¢ € (0,1),
suppose f = {fi,i = 1,2,...,K} is the solution to the
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Algorithm 1 Our Proposed Algorithm PASS

1: input: Problem (1), € € (0,1)

2: output: f={f,i=1,2,...,K}

3: procedure

4:  Formulate either problem (4) or problem (5) that
is the average-delay-aware counterpart of prob-

lem (1)
5:  Solve the average-delay-aware problem and get the

solution f = {f;, 1=1,2,..., K}

6:  adel —c.|f], Vi=1,2,...,K
7. fori=1,2,..., K do
8: while z%¢* > 0 do
9: Find the slowest flow-carrying path p; € B;
10: if 2P > x9e® then
. i — P delete delete _
11: Pt = xPi — 7%} =0
12: else
. delete __ ,.delete i P —
13: x; =z; — P, 2Pt =0

14:  return the remaining flow f = {f;,i=1,2,..., K}

average-delay-aware counterpart of MUDT (Line 5), and f =

{fi,i = 1,2,...,K} is the solution returned in the end
(Line 14). We have

e- M(f)) < A(fi), Vi=1,2,...,K. (7

Proof: Refer to Appendix B. [ |

Different from the proof in Appendix B, we remark that
our Lemma 2 can be proved by Markov inequality as well.
Lemma 2 suggests that the maximum delay of each single-
unicast flow after deleting rate is bounded by a constant ratio
as compared to the average delay of the corresponding single-
unicast flow before deleting rate. This is a critical observation
that theoretically relates the non-convex maximum delays with
the convex average delays. In fact, by following our proof, it is
easy to verify that Lemma 2 holds for any f and £, as long as
f is the flow before deleting e-fraction rate from each single-
unicast and f is the remaining flow after deleting e-fraction
rate from each single-unicast. The reason why PASS solves
the average-delay-aware counterpart of MUDT to get the flow
f is to provide the theoretical performance guarantee on the
maximum delay constraint in a polynomial time.

Theorem 2: Given a feasible problem (1), suppose we use
PASS (Algorithm 1) with an arbitrary € € (0, 1) to solve it.
Then PASS must return a solution f = {f;,i =1,..., K} in
polynomial time, meeting the following relaxed constraints

fi| > (1 —e R Yi=12,...,K,  (8a)
M (fi) < Dife, Vi=1,2,....K, (8b)
f={fi,fo,-..,.fx} € X. (8c)

Suppose f* = {fF,i=1,2,..., K} is the optimal solution to
problem (1). If the throughput-based utility maximization (1a)
is the objective, f provides the following approximation ratio

K K
Sut(f) = a-eo- Y u (£ ©)
=1 i=1
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If the max{mum—delay—based utility maximization (1b) is the
objective, f provides the following approximation ratio

K K
SUHM(F) < a@- YUl (M), (0)
=1 i=1

where «/(e) is defined as follows

max 7
i€{l,...K}, 0<z<D; \ U (x)

Proof: Refer to Appendix C. [ ]
It is clear that PASS obtains an approximate solution, at the
cost of violating throughput requirements (Ic) by a constant
ratio of (1 —e€), and violating maximum delay constraints (1d)
by a constant ratio of (1/¢). If the objective is to maximize
throughput-based utilities, the approximation ratio is (1 — €)
which is a constant; otherwise if the objective is to maximize
delay-based utilities, it is «(e) which depends on the input
delay-based utility functions. As an example, consider the n-
order polynomial functions, i.e., Ul (M(f;)) = D7 g cij -
(M(f:))? where {c;j,j = 0,1,...,n} are non-negative
weights. We have «a(e) = (1/€)™ for such polynomial utility
functions, given any € € (0,1) and any D; > 0:

Ul(z/e)  DjoCii - (@/e)!
Uf(z) Do Cij - @
1\" XjgCiy-al e
Z?:O Civj : SC]

€
N\N" Yo 2 (1\"
e/ Yigcial '

€

To obtain an approximate solution, according to Theorem 2,
theoretically PASS needs to either violate delay constraints
severely if throughput requirements are only allowed to be
violated mildly, or violate throughput requirements severely if
delay constraints are only allowed to be violated mildly. In
fact, we remark that our derived ratios (1 — ¢) and (1/¢) of
violating constraints have high quality and hence are useful
for PASS. This is because they are constants independent of
instances. Although they appear to be loose in some instances,
in the following lemma we show that for any € € (0, 1), there
always exists an instance where the solution of PASS violates
constraints by ratios that are very close to them.

Lemma 3: Given any € € (0,1), there exists an MUDT
instance, where the following holds for the solution f =
{fi,i=1,2,..., K} of PASS (Algorithm 1)

|fil <1 -e-Ri, Vi=1,2... K,
M(f;) > ([1/e] =1)- Dy, Vi=1,2,...,K.

ale) &

ug(x/e)) |

IN

Proof: Refer to Part B of supplementary materials. |
We explain why there is a tradeoff between the ratio (1/¢)
of violating maximum delay constraints and the ratio (1 — €)
of violating throughput requirements over the next a few
sentences. PASS resorts to solving the average-delay-aware
counterpart to find a useful solution to the maximum-delay-
aware problem MUDT. However, the proof of Lemma 3 sug-
gests that there is an instance where the average-delay-optimal
solution violates the maximum delay constraints severely,
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(a) Approximation ratio for maxi- (b) Approximation ratio for maxi-
mizing throughput-based utilities. ~ mizing delay-based utilities.

Fig. 1. Approximation ratio of our PASS (z-axis), given a minimum violation
ratio on the throughput requirements (x-axis) and a maximum violation ratio
on the maximum delay constraints (y-axis).

satisfying throughput requirements. This is because the delays
of paths of the solution vary severely. To reduce the violation
of maximum delay constraints, for this instance we need to
delete a huge amount of flow rate from the average-delay-
optimal solution, leading to a severe violation of throughput
requirements.

C. Applications of PASS

According to Theorem 2, we can control € € (0,1) to use
PASS to obtain a solution with an approximation ratio of
either (1 — €) or a(e), at the cost of violating throughput
requirements by a ratio of (1—¢) and violating maximum delay
constraints by a ratio of (1/¢). Now we look at PASS from a
different perspective. Instead of controlling an approximation
parameter ¢, suppose we can separately control a minimum
violation ratio « € (0,1) of throughput requirements and a
maximum violation ratio y € (1,+00) of maximum delay
constraints. We restrict that an acceptable solution f should
satisfy the following:

We remark that we can use PASS to figure out such a solution:
let us assume € to be the input approximation parameter of
PASS. Based on Theorem 2, the following holds for the
solution f of PASS:

|fi|>(1—=€)- Ri, M (f;) <Di/e, Vi=1,2,....K. (12)

By comparing (12) with (11), it is clear if the following holds,
f will satisfy the constraints in (11):

1l—€e >z 1/e <y,

implying that 1/y < € < 1 — . Therefore when 1/y <
1 — x, (i) PASS can figure out a solution meeting the
constraints in (11), with an approximation ratio of (1 —1/y)
for maximizing throughput-based utilities, by setting € =
1/y; (ii) and PASS can figure out a solution meeting the
constraints in (11), with an approximation ratio of a(l — x)
for maximizing delay-based utilities, by setting ¢ = 1 — x.
If 1/y > 1 —x, PASS cannot obtain a solution to satisfy the
constraints in (11). Considering an example with linear delay-
based utilities, i.e., UL(M(f;)) = w;- M(fi),i = 1,2,..., K,
we have o(1—x) = 1/(1—x). We illustrate the approximation
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Algorithm 2 PASS-M: Modify PASS to Strictly Meet Max-
imum Delay Constraints
1: input: Problem (1)
2: output: f={f,i=1,2,...,
3: procedure
4:  Solve the average-delay-aware counterpart of
problem (1), and get the solution f = {f;,i =
1,2,...,K}
fori=1,2,..., K do
while M(f;) > D; do
Find the slowest flow-carrying path p; € P;
Let 2P: =0
return the remaining flow f = {f;,1=1,2,...,

K}

R A

K}

ratio of (1 — 1/y) (resp. 1/(1 — x)) of this example with the
x and y in Figure 1(a) (resp. in Figure 1(b)).

For certain applications, the throughput requirements or the
maximum delay constraints are hard constraints that cannot
be violated. We note that one can use pre-scaled maximum
delay constraints and throughput requirements as the input to
PASS to generate feasible solutions as the output. Moreover,
in the following, by slightly modifying PASS, we respectively
develop (i) an algorithm PASS-M to achieve approximate
solutions that can strictly meet maximum delay constraints,
and (ii) an algorithm PASS-T to achieve approximate solu-
tions that can strictly meet throughput requirements.

D. Modifying PASS to Meet Maximum Delay Constraints

We introduce PASS-M in Algorithm 2. Different from
PASS that deletes €| f;| rate from slowest flow-carrying paths
of each f;, PASS-M deletes rate from slowest flow-carrying
paths of f; till its maximum delay meets the constraint D;.

Theorem 3: Given a feasible problem (1), suppose we use
PASS-M (Algorithm 2) to solve it. Then PASS-M must return
a solution f = {f;,i = 1,2,...,K} in polynomial time,
meeting the follow1ng relaxed constraints

Ifi| = (1= €emax) - Ri, Vi=1,2,...,K, (13a)
(f)<Dl, Vi=1,2,..., K, (13b)
f_*{flvaa"'va}EXv (13C)
where €.« 1S defined as follows
€max — 12%}%{(.](1 _|ﬁ|)/ f’L }7

where f = { fivi=1,2,....K } is the optimal solution to
the average-delay-aware problem in Line 4 of Algorithm 2.
Suppose f* = {fF,i=1,2,..., K} is the optimal solution to
problem (1). If the throughput-based utility maximization (1a)
is the objective, f provides the following approximation ratio

Zu;f (I£:])

If the maximum—delay—based utility maximization (1b) is the
objective f provides the following approximation ratio

Zud (f2)

K
Z (1_6max)'zuf (ifz*i)a (14)
i=1

< a(émin) Zud (fF), (5
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where €,,i, 1s defined as follows

€min = 122%{,{( fi = |ft|)/ fi }
Proof: Tt is a direct extension of Theorem 2. Detailed
proof refers to Part C of supplementary materials. [ |

Comparing Theorem 2 with Theorem 3, to solve MUDT,
(i) PASS achieves an approximate solution at the cost of
violating both throughput requirements and maximum delay
constraints by constant ratios, while (ii) PASS-M obtains an
approximate solution and strictly meets maximum delay con-
straints, but at the cost of violating throughput requirements
by a problem-dependent ratio. We highlight that although our
derived problem-dependent ratios of PASS-M can be figured
out only after we use PASS-M to solve MUDT, and can be
arbitrarily bad for certain problem instances, they are the best
effort for PASS-M as shown in the lemma below.

Lemma 4: Suppose f = {f;,i = 1,2,..., K} is the solu-
tion of PASS-M (Algorithm 2). Given any positive number o
that is arbitrarily close to 0, there exists an MUDT instance,
where the following holds for f:

fi| < o-Ri, Yi=1,2,...,K.

Suppose f* = {f*,i=1,2,..., K} is the optimal solution to
MUDT. Given any positive number o that is arbitrarily close
to 0, there also exists an MUDT instance where the following
holds for f: If the throughput-based utility maximization is
the objective, we have the following in this instance:

K ~ K
Su(|f) < o Y ul (£
=1 i=1

If the maximum-delay-based utility maximization is the objec-
tive, we have the following in this instance:

K 1 K
DU (M(] — D U Mf)
i=1 1=1

Proof: Refer to Part D of supplementary materials. [ |
Lemma 4 suggests that there exist instances where the
throughput of PASS-M is arbitrarily small and the utility of
PASS-M is arbitrarily far from optimal. Therefore, we cannot
derive a constant approximation ratio or a positive constant to
bound the throughput requirements violation of PASS-M for
all instances of MUDT. Our derived problem-dependent ratios
are thus the best possible results for PASS-M.

(16)

A7)

(18)

E. Modifying PASS to Meet Throughput Requirements

In order to strictly meet throughput requirements, our
PASS-T uses the optimal solution to the average-delay-aware
counterpart of MUDT directly as a solution to the maximum-
delay-aware problem MUDT, i.e.,

> PASS-T: directly solve the average-delay-aware counter-
part of problem (1).

Theorem 4: Given a feasible problem (1), we denote g =
{91,392, ...,k } as the solution returned if we use PASS
(Algorithm 1) to solve it with an ¢ € (0,1). Now suppose
we use PASS-T to solve problem (1). Then PASS-T must

2139

return a solution f = {f;,;i = 1,2,..., K} in polynomial
time, meeting the following relaxed constraints

|fi| > Ri, Vi=1,2,... K, (19a)

M(ﬂ,)gé-Di, Vi=1,2,... K, (19b)
€

f=Affo- . fr} € X, (19¢)

where A is defined as follows
3 = {1 max (M(F)/M(a)) }-

Suppose f* = {f*,i=1,2,..., K} is the optimal solution to
problem (1). If the throughput-based utility maximization (1a)
is the objective, f provides the following approximation ratio

K - K
SUL(AD) = DU
i=1 i=1

If the maximum-delay-based utility maximization (1b) is the
objective f provides the following approximation ratio

Z ud z Zud 1’,*

Proof: Tt is a direct extension of Theorem 2. Detailed
proof refers to Part E of supplementary materials. [ ]
Theorem 4 suggests that we can figure out an approximation
ratio of PASS-T with the knowledge of an arbitrary solution
of PASS. Comparing Theorem 2 with Theorem 4, to solve
MUDT, (i) PASS achieves an approximate solution at the cost
of violating both throughput requirements and maximum delay
constraints by constant ratios, while (ii) PASS-T obtains an
approximate solution and strictly meets throughput require-
ments, at the cost of violating maximum delay constraints by
a problem-dependent ratio. Similar to PASS-M, although our
derived problem-dependent ratios can be figured out only after
we use PASS-T to solve MUDT, and can be unbounded for
certain problem instances, they are the best effort for PASS-T
as presented in the following lemma.
Lemma 5: Suppose f {fi,i = 1,2,...,K} is the
solution of PASS-T. Given an arbitrarily large number o, there
exists an MUDT instance, where the following holds for f :

M(fi) > oDy, Vi=12,... K. (22)

Suppose f* = {f*,i=1,2,..., K} is the optimal solution to
MUDT. Given an arbitrarily large number o, there also exists
an MUDT instance where the following holds for f: If the
maximum-delay-based utility maximization is the objective,
we have the following in this instance:

K
Zud (fi)) > o> Ut (M
i=1

Proof.' Refer to Part F of supplementary materials. |
Lemma 5 suggests that for PASS-T, we cannot derive a
constant approximation ratio for maximizing the maximum-
delay-based utility, or a positive constant to bound the maxi-
mum delay constraints violation, for all instances of MUDT.
Therefore, our derived problem-dependent ratios are the best
possible results for PASS-T.

(20)

< aof 2y

(23)
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F. Applicability to Other Maximum-Delay-Aware Problems

As shown in the formulation (1), MUDT has an objective of
either (1a) or (1b), both of which maximize the aggregate user
utility. We develop algorithms PASS, PASS-M, and PASS-T
to solve MUDT approximately in previous sections. In this
section we consider two other user-utility-sensitive objectives
which cover the objectives of MUDT as special cases. Our
algorithms PASS, PASS-M, and PASS-T can optimize the
general objectives under maximum delay constraints and user
throughput requirements approximately, too.

A general extension of the function Efil UL fi])
is U'(|f1],|f2],--.,|fK|) that arbitrarily depends on the

achieved throughput | f;| of each user 4,4 = 1,2,..., K. Now
we consider the following optimization objective:

max Ut(|f1|,|f2|,...,|f}(|), (24
where U (| f1], | f2], - - -, | fx|) is non-negative, non-decreasing,

and concave with each |f;|,7 = 1,2,..., K. Following the
same proofs to Theorems 2, 3, and 4, it is easy to verify that we
can use PASS, PASS-M, and PASS-T to approximately solve
the problem with an objective of (24) subject to throughput
requirements (1c), maximum delay constraints (1d), and fea-
sibility constraints (le), in polynomial time. A representative
example of the general objective (24) which differs from the
aggregate user utility maximization objective (1a) of MUDT
is to maximize the worst utility among all users, i.e.,

min {U!(1£)}

1<i<K

max

Similarly, we also consider the following delay-aware opti-
mization objective that generalizes the aggregate user utility
maximization objective (1b) of MUDT:

UM (M(f1), M(f2),.... M(fKr)), (25

where UL(M(f1), M(f2), ..., M(fk)) is non-negative, non-
decreasing, and convex with each M(f;),i =1,2,..., K.Itis
easy to verify that we can use PASS, PASS-M, and PASS-T
to approximately solve the problem with an objective of (25)
subject to throughput requirements (1c¢), maximum delay con-
straints (1d), and feasibility constraints (le), in polynomial
time. Note that by optimizing the general objective (25),
the approximation ratio a(e) of PASS should be defined in
the following way:

ale) (Ud(xl/e,xg/e,...,xK/e)> |

= max
Vi=1,2,....K: 0<z;<D; U z1,29,...,2K)

max

A representative example of the general objective (25) is to
maximize the worst utility among all users, i.e.,

min_{ U (M(f))} .

1<i<K

max

Overall, we are the first to study the general network utility
maximization problem under maximum delay constraints and
throughput requirements, and propose algorithms with strong
theoretical performance guarantees. The design of our algo-
rithms further suggests a new avenue for solving a broad
range of maximum-delay-aware network optimization prob-
lems. We believe that our fundamental results advance state-
of-the-art, and can serve as benchmarks for future research.
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V. EXTENSION TO OTHER DELAY MODELS

In previous sections we study MUDT under a traffic-
independent constant delay model. In this section we consider
a traffic-dependent delay model where link delay is a func-
tion of link traffic. It covers the constant delay model as a
special case. We highlight that when directly extending our
algorithms from the traffic-independent delay model to the
traffic-dependent one, (i) they maintain the same theoretical
performance guarantee; however, (ii) their time complexities
become exponential instead of polynomial.

Let us assume that the delay of link e is d.(z.) which is
a function of the link aggregate traffic x.. It generalizes the
constant link delay d. in Section III. Due to practical concerns,
we assume d.(z.) to be non-negative, non-decreasing, differ-
entiable, and convex with z.. Now we focus on the MUDT
under the traffic-dependent delay model.

Note that in our assumption d.(z.) is non-decreasing with
T.. As presented in the last paragraph of Appendix B, clearly
our Lemma 2 holds under the traffic-dependent delay model.
Then following the same proof to Theorem 2 (resp. Theorem 3,
Theorem 4), it is provable that the solution of PASS (resp.
PASS-M, PASS-T) under the traffic-dependent delay model
provides the same approximation ratio satisfying the same
relaxed constraints, as compared to its performance guarantee
under the constant delay model.

However, under the traffic-dependent delay model, the time
complexities of PASS, PASS-M, and PASS-T are all expo-
nential. This is because in such a model we have

K
T(fi) =D (af de(2e)) = 3 (m de (Z x)) -
ecE ecE i=1
Here 7 (f;) becomes non-convex with xzf. Therefore,

the average-delay-aware counterpart of MUDT is a non-
convex optimization problem. None of PASS, PASS-
M, or PASS-T hence has a polynomial time complexity,
as they all rely on solving the average-delay-aware counterpart
to figure out useful solutions to MUDT.

Overall, our proposed avenue for maximum-delay-aware
network optimization can be extended to the general setting
of traffic-dependent delay, providing strong theoretical perfor-
mance guarantee. This critical observation further highlights
the theoretical significance of our results. Future directions
include (i) developing efficient polynomial-time algorithms for
MUDT under traffic-dependent delay model, by approximating
the non-convex average-delay-aware counterpart of MUDT;
and (ii) exploring real-world time-sensitive applications to
which our proposed results can be directly applied.

VI. PERFORMANCE EVALUATION

Now we simulate a delay-critical video conferencing traf-
fic over a real-world continent-scale inter-datacenter network
topology of 6 globally distributed Amazon EC2 datacenters
(see Figure 2). The network is modeled as a complete undi-
rected graph. Each undirected link is treated as two directed
links that operate independently and have identical delays and
capacities, a common way to model an undirected graph by
a directed one, e.g. in [31]. We set link delays and capacities
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Fig. 2. Topology of the 6 Amazon EC2 datacenters [15].

TABLE I

INFORMATION OF (de,ce) IN THE AMAZON EC2 NETWORK [15], [16]
(de Is IN MS AND ce Is IN MBPS) (OR: OREGON, VA: VIRGINIA, IR:
IRELAND, TO: TOKYO, SI: SINGAPORE, SP: SAO PAULO)

OR VA IR TO SI SP
OR | N/A | (41,82) | (86,86) | (68,138) | (117,74) | (104,67)
VA - N/A (54,72) | (101,41) | (127,52) (82,70)
IR - - N/A (138,56) (117,44) (120,61)
TO - - - N/A (45,166) | (151,41)
SI - - - - N/A (182,33)
SP - - - - - N/A
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(a) Delay results with ¢ of PASS, (b) Delay results with throughput re-
with R = Rg = 230. quirements, with € = 3%.

Fig. 3. Simulation results of using PASS to minimize the summation of
maximum delays under throughput requirements.

according to practical evaluations on Amazon EC2 from [15],
[16] (see Table II). We assume two unicasts ()X = 2), one
from Virginia to Singapore, the other from Oregon to Tokyo.
Linear programs are solved using CPLEX [32].

A. Minimizing Maximum Delay

We first use our algorithms to minimize maximum delay,
subject to link capacity constraints and throughput require-
ments (i.e., to solve TCDM with formula (2)). We assume
K =2, w; =ws, and Ry = Ry = R in (2).

We compare PASS with the optimal solution, a conceiv-
able greedy baseline, and PASS-T respectively. Because link
delays are all integers (see Table II), the delay of any path must
be an integer. Therefore, we can obtain the optimal solution
minimizing the summation of maximum delays, by enumer-
ating all possible maximum delays of individual unicasts to
figure out the minimal performance such that a feasible flow
exists in the time-expanded network. Note that this approach
theoretically has an exponential time complexity, and is the
foundation of the FPTAS [6] designed for the single-unicast
maximum delay minimization problem. The baseline greedily
obtains the routing solution from the unicast 1 to the unicast X
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Fig. 4. Simulation results of using PASS to maximize throughput under
maximum delay constraints with various €, where D1 = Do = 150.

one by one. In the iteration of the unicast ¢, it assigns as much
rate as possible to the shortest paths from s; to ¢; iteratively
respecting the link capacity constraints, till the throughput
requirement R; is satisfied. Similar heuristic approaches have
been used in other delay-aware network flow studies, e.g.,
in [33], yet without performance guarantee.

First, we evaluate the maximum delay of PASS with
different values of e (see Figure 3(a)). We set R = 230 and
vary € from 1% to 99% by a step of 1%. According to the
figure, (i) PASS-T obtains the optimal solution to our problem,
(ii) the delay of the baseline is strictly larger than optimal,
and (iii) the delay of PASS is a staircase function with e.
We remark that the delay of PASS can be smaller than optimal
in many instances because PASS only supports (1—¢)-fraction
of the throughput requirement, while the optimal solution
supports the full throughput requirement.

Second, we evaluate the maximum delay of PASS with the
throughput requirement R (see Figure 3(b)). We set ¢ = 3%
since a 3% throughput loss is very acceptable for video confer-
encing with protection/recovery capabilities [34]. We vary R
from 116Mbps to 239Mbps with a step of 1Mbps. We remark
that 116Mbps is the smallest throughput when the baseline
needs multiple paths, and 239Mbps is the largest throughput
that can be routed. Figure 3(b) suggests that PASS outputs a
smaller maximum delay compared with the baseline in most
instances. On average, the maximum delay of the baseline
(402ms) is over 11% more than that of the optimal (362ms)
and of the PASS (359ms). In the worst case (R € [116, 138]),
the maximum delay of the baseline is over 40% more than
that of the optimal and of the PASS. In addition, PASS-T
obtains the optimal solution to our problem in most instances,
except for instances where R € [212,223].

B. Maximizing Throughput

We then use our algorithms to maximize throughput, subject
to link capacity constraints and maximum delay constraints
(i.e., to solve DCUM with formula (3)). We assume K = 2,
Ui(1f1l) = If1l, Us(|f2]) = | f2|, and D1 = Dy = D in the
formula (3). We compare PASS with the optimal solution,
a conceivable baseline, and PASS-M, respectively. Similar to
the greedy approach introduced in Section VI-A, the baseline
assigns as much rate as possible to the shortest paths respecting
both link capacity constraints and maximum delay constraints
iteratively from unicast 1 to unicast 2 one by one. Besides,
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Fig. 5.  Simulation results of using PASS to maximize the weighted
summation of throughputs subject to both maximum delay constraints and
throughput requirements, with ¢ = 3%, R1 = Rz = 80 and D1 = Dy =
150.

similar to Section VI-A, we can obtain the optimal solution
by solving problems in the time-expanded network.

We set D = 150ms due to the following concerns. (i) An
end-to-end delay less than 150ms can provide a transparent
interactivity for video conferencing [19]. (ii) A delay larger
than 150ms (as long as it is less than 400ms) is still acceptable
for video conferencing [19], and hence a solution that violates
the maximum delay constraint may still be useful if it can
achieve a substantial amount of throughput improvement.

We vary e from 1% to 99% with a step of 1%. The
throughput results are illustrated in Figure 4(a), and Fig-
ure 4(b) provides the achieved maximum delay ratios,
ie., max{M(f1), M(f2)}/D where f = {fi,fo} is the
solution. In our simulations, both the baseline and PASS-
M obtain the optimal throughput while strictly meeting the
maximum delay constraints. For ¢ < 49%, the throughput
of PASS is strictly larger than the optimal, while violating
maximum delay constraints (e.g., 8% more than D when
e = 49%). For ¢ > 51%, the solution of PASS meets
maximum delay constraints, but the achieved throughput is
strictly smaller than optimal. It is impressive that with a small
€, e.g., € = 1%, the throughput of PASS is over 90% more
than the optimal, while at the same time the maximum delays
of PASS are less than 331ms which is still acceptable for
video conferencing. For instances where ¢ < 49%, when ¢ is
decreased by 1%, on average a 2.0% throughput improvement
as compared to the optimal can be achieved at the cost of a
2.2% violation to the maximum delay constraints.

C. Maximizing Network Utility

Finally we use PASS to maximize network utility sub-
ject to link capacity constraints, maximum delay constraints,
and throughput requirements (i.e., to solve MUDT with for-
mula (1)). We maximize the weighted summation of through-
puts of individual users, i.e., U} (|fi|) = w; - | fi],i = 1,2, and
we assume R, = Ry, = 80, D1 = Dy = 150.

We vary the weight w; (resp. ws) from 1 to 10 with a step
of 1, thus leading to 100 simulation instances each of which is
characterized by a specific (w1, ws),1 < w; < 10,1 < wy <
10. For each instance, we respectively run PASS, PASS-M,
PASS-T, the conceivable baseline introduced in Section VI-
B, and compare their solutions with the optimal. Note that we

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

obtain the optimal solution by solving multiple-unicast flow
problems in the time-expanded network.

We present the aggregate throughput results of different
algorithms of the 100 simulation instances in Figure 5(a).
In Figure 5(b), we give the throughput improvement of differ-
ent algorithms as compared to the optimal. Note that PASS,
PASS-M, and PASS-T can obtain utilities strictly greater than
optimal, because they all optimize utility subject to relaxed
constraints, while the optimal utility is achieved by a feasible
solution strictly meeting all the constraints.

From Figure 5 we learn that PASS and PASS-T obtain a
large improvement on the aggregate user throughput compared
to the optimal (over 100% more than the optimal), while
the aggregate user throughput achieved by PASS-M and the
baseline is close-to-optimal. According to Theorem 2, theo-
retically PASS can violate both throughput requirements and
maximum delay constraints. Empirically, (i) the throughput
achieved by PASS is 138 (resp. 302) on average for the
first unicast (resp. second unicast), both satisfying throughput
requirements Ry = Ry = 80. (ii) The maximum delay
experienced by PASS is 195 (resp. 301) on average for
the first unicast (resp. second unicast), violating maximum
delay constraints D1 = Dy = 150. But considering that
video conferencing applications can accept a delay less than
400ms [19], the solution of PASS is acceptable. According to
Theorem 3, theoretically PASS-M can meet maximum delay
constraints while violate throughput requirements. Empirically,
the throughput achieved by PASS-M is 71 (resp. 154) on
average for the first unicast (resp. second unicast). It is
clear that the first unicast flow violates throughput require-
ment. According to Theorem 4, theoretically PASS-T can
meet throughput requirements while violate maximum delay
constraints. Empirically, the maximum delay experienced by
PASS-T is 222 (resp. 322) on average for the first unicast
(resp. second unicast), violating the maximum delay con-
straints but within 400ms that is the largest acceptable delay.

VII. CONCLUSION

We consider the problem of maximizing aggregate user
utilities subject to link capacity constraints, maximum delay
constraints, and throughput requirements. A user’s utility
is a concave function of the achieved throughput or the
experienced maximum delay. We first prove that it is NP-
complete either (i) to construct a feasible solution meeting
all constraints, or (ii) to obtain an optimal solution after
we relax maximum delay constraints or throughput require-
ments. We then design the first polynomial-time approximation
algorithm named PASS to obtain an approximate solution,
at the cost of violating both maximum delay constraints and
throughput requirements by up to constant ratios. By slightly
modifying PASS, we develop two algorithms PASS-M and
PASS-T to obtain approximate solutions at the cost of
violating either maximum delay constraints or throughput
requirements by up to problem-dependent ratios. Our results
can serve as benchmarks for future research in the area.
The design of our algorithms leverages a new understanding
between maximum-delay-aware problems and their average-
delay-aware counterparts. It suggests a new avenue for solving
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a broad range of maximum-delay-aware network optimization
problems.

APPENDIX

A. Proof to Lemma 1

Proof: We prove that (6) is feasible if and only if (1)
with an objective of (1b) is feasible, and they share the same
optimal solution.

Only if part. Suppose the problem formulated in (6) is fea-
sible. Because any feasible solution to the problem formulated
in (6) must also be feasible to MUDT formulated in (1) with
an objective of (1b), it holds that MUDT formulated in (1)
with an objective of (1b) must be feasible.

If part. Suppose MUDT formulated in (1) with an objective
of (Ib) is feasible, and f = {f1,..., [k} is an arbitrary
feasible solution to it. For each unicast ¢ = {1,..., K},
if |fi| > R;, we delete flow rate from f; till |f;| = R;;
otherwise we do nothing. Then we can always obtain a
solution ¢ = {¢1,...,9x} from f such that |g;| = R;
for all ¢, meeting constraints (6b) and (6d). It is clear that
M(gi) < M(f;) because link delay is a constant, which
implies that g satisfies (6¢). Thus g is feasible to the problem
formulated in (6), implying that the problem formulated in (6)
is theoretically feasible.

We prove that the two problems share the same optimal
solution by contradiction. Suppose g* = {g;,i =1,2,..., K}
is the optimal solution to the problem formulated in (6),
fr=A{fi=1,2,..., K} is the optimal solution to MUDT
formulated in (1) with an objective of (1b), and

K K
> Ut (M > ut(m
=1 i=1

Note that S5 UIM(gr) < 2K U M(fF)) does not
holds because g* is feasible to MUDT.

As introduced in the previous proof, we can construct a
g from f* where ¢ is feasible to the problem formulated
in (6), and M(g;) < M(f;),Vi = 1,2,..., K. Considering
that utility functions are non-decreasing, we have

S (M) > Y (M),

implying that

K K
Zuf (M(g})) ZUﬁ (M(g:))

which is contradicted with that g* is optimal to (6). Therefore,
the two problems share the same optimal solution.

After we replace the maximum delays in (6) by the average
delays, clearly we get MUAT-M formulated in (5). Because we
prove that (6) is feasible if and only if (1) with an objective
of (1b) is feasible, and they share the same optimal solution,
it holds that MUAT-M is the average-delay-aware counterpart
of MUDT that maximizes delay-based utilities. [ ]
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B. Proof to Lemma 2

Proof: According to Algorithm 1, forany:=1,2,..., K,
fi is obtained by iteratively deleting e - |f;| rate from f;.
Suppose that there are in total N; iterations to get f; by
deleting rate from fz (namely assume N; to be the number
of iterations of the while-loop of line 8). And we use f/* to
represent the flow of the unicast ¢ at the beginning of the n-th
iteration (or equivalently, at the end of the (n— 1)-th iteration).
Obviously, f! = fl fiN"'+1 = f;. We denote P! as the set
of of all flow-carrying paths in flow f*, and p}' € P as the
slowest flow-carrying path in P;*. In the n-th iteration of the
unicast 7, PASS delete some rate, say =} > 0, from p}'.
Since all link delays are non-negative constants, the path

delay cannot increase with reduced flow rate. Thus,

M(ff“)g/\/l(ff), Yn=1,2,...,N;,Vi=1,2,..., K.
(26)
For any 1 < n < N, the following held for any
T(f")
= Z [xfde] + Z 27 de]
e€E:edpy ecEeepl
= Y d]+ Y (@ —a))de + 2}d]
ecE:egpl ecEeep?
DS G+ S [ —af)de] + 2P M)
ecE:edpl ecEeepl

(c) =
QT oMy = T +af M(F) . @D

In (27), equality (a) holds because Zeep” . is the path
delay of the slowest flow-carrying path p'. Equahty (b) holds
because flow f/"*' is the flow when fJ* deletes x7 rate from
path p}. Inequality (c¢) comes from (26) and f; Nit1 _ fi.

We then do summation for (27) over n € [1, N;], and get

T =T 27 () + (et )
M (fi),

which proves our Lemma 2 since it holds that 7(f;) > 0.
Finally, note that our constant delay model is sufficient but
not necessary for our Lemma 2 to hold. Following the similar
proof, it is easy to verify that our Lemma 2 holds if for each
link we have that the link delay does not increase when the
flow rate assigned to the link decrease. |

= T[] +e |7

C. Proof to Theorem 2

Proof: First, we prove the polynomial time complexity.
Both problem (4) and (5) can be solved in polynomial time,
since (i) they are convex programs with a polynomial size,
and (ii) convex programming problems can be solved up to
an arbitrarily small additive error in polynomial time (e.g.,
see [35], [36] for details). For example, the time complexity
is O(|E|> K3L) where L is the input size of the instance of
the problem (4) or (5) if they are linear programs [37].
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After solving the average-delay-aware problem, we get
K single-unicast flows each of which is defined on edges.
By the classic flow decomposition technique [38], we can then
achieve K single-unicast flows f= {fl, i=1,2,...,K} each
of which is defined on paths within a time of O(|V|?|E|K).
Note that the flow decomposition outputs at most | E/| paths for
each f;, and hence there are at most |E| iterations to obtain
each f; by deleting rate from fz Overall, Algorithm 1 has a
polynomial time complexity that is even independent to .

Second, we prove the existence of f.

(i) Suppose (1a) is the objective of the problem (1). Because
problem (1) is feasible and f* is its optimal solution, f* must
satisfy all the constraints of problem (1), implying that f* also
satisfies the constraints (4b) and (4d) of the problem (4) that is
the average-delay-aware counterpart of the problem (1). Now
consider that we have 7 (g) < M(g)-|g| for any single-unicast
flow g, for any ¢ = 1,2,..., K, the following holds

(@)
T(f7) < MUD -1 < Di-f7l,

where the inequality (a) comes from that f* meets the con-
straints (1d). Therefore, f* is also a feasible solution to the
problem (4). Due to the existence of f*, (4) must be feasible
and hence Algorithm 1 must return a solution f.

(ii)) Suppose (1b) is the objective of the problem (1).
Because problem (1) is feasible and f* is its optimal solution,
f* must meet all the constraints of problem (1), e.g., we have
|fF] > Ri,¥i =1,2,..., K. Now we construct another net-
work flow f based on f* as follows: foreachi =1,2,..., K,
we obtain f; directly from f;°, by deleting flow rate from arbi-
trary flow-carrying paths of f/ till | f| = R;. The existence of
f* implies the existence of f. For problem (5), it is clear that
f meets the throughput requirements (5b). Since f* meets the
constraint (le), f must satisfy the constraint (5d). Since we
delete certain flow rate from f* to obtain f;, the maximum
delay does not increase, i.e., we have

M(f)) < M(ff), Vi=1,2,.... K, (28)

further implying the following for any ¢ =1,2,..., K

T(f:) < M(fi) - | fil
=M(fi) - Ri < M(f])-Ri < D;-Ry,

i.e., f meets (5¢). Therefore, f is a feasible solution to the
problem (5). Due to the existence of f, (5) must be feasible
and hence Algorithm 1 must return a solution f.

Third, we prove that f satisfies the relaxed constraints (8).
Suppose f is the solution to the average-delay-aware problem
in line 5. Clearly that f meets the following:

fil > Ri, Vi=1,2,...,K, (29a)
A(fi) <D, Vi=12,... K, (29b)
f=Affo . fr}ex. (29¢)

We know fi is the solution by deleting a rate of € - | fil
from f; foreach i =1,2,..., K. It is clear that f satisfies the
constraints (8a) and (8c). Based on Lemma 2 and the satisfied
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constraints (29b), we have the following for any ¢
M(fi) < Alfi)/e < Dife,

implying that the constraints (8b) are satisfied.
Finally, we prove the approximation ratio of f. If (la) is
the objective of problem (1), we have

K
DA
i=1 .
=Y u (-«

(a) K
> (-9 u(
=1

where the inequality (b) holds because in the second part of
this proof, we have proved that f* is a feasible solution to
the average-delay-aware problem (4), while f is its optimal
solution. Inequality (a) comes from the following inequalities
foreachi=1,2,..., K

©
ze-u;(o)+(1—e)-u;(

).

where the inequality (c) holds due to the concavity of the
function U/ (-), and the inequality (d) comes from that the
function U} (-) is non-negative.

If (1b) is the objective of problem (1), first

2

K
)2 - u ()

i=1

fi

Ut (-9 |f: fi

) :L{it(e-O—l—(l—e)-

fi

)

@ .
R

UL(x) - ale) > U (x/e), YO<x< Dy Yi=1,2,....K.
(30)

Note that the non-decreasing property of ¢¢(-) implies that
ale) > 1. We assume f is the feasible solution to the
average-delay-aware problem (5) that is constructed from f*
as discussed in the second part of this proof. Then

K
> U (M(f)
s uy -A(fi)/€)
(@) L N ®) o
< ale) - YUl (A(fi)) < a0 DU (A
’L;l . ;{:1
< a(e) - Y U (M (i) < ale) ZUf(M( i),

where the inequality (a) comes from the inequalities (30),
the inequality (b) holds since f is feasible to (5) while f
is optimal to (5), and the inequality (c) is true because of the
inequality (28) and the non-decreasing property of U4(-). M
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