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By using an asymptotic analysis and numerical

simulations, we derive and investigate a system of

homogenized Maxwell’s equations for conducting

material sheets that are periodically arranged and

embedded in a heterogeneous and anisotropic dielectric

host. This structure is motivated by the need to

design plasmonic crystals that enable the propagation

of electromagnetic waves with no phase delay

(epsilon-near-zero effect). Our microscopic model

incorporates the surface conductivity of the two-

dimensional (2D) material of each sheet and a

corresponding line charge density through a line

conductivity along possible edges of the sheets. Our

analysis generalizes averaging principles inherent

in previous Bloch-wave approaches. We investigate

physical implications of our findings. In particular,

we emphasize the role of the vector-valued corrector

field, which expresses microscopic modes of surface

waves on the 2D material. We demonstrate how our

homogenization procedure may set the foundation

for computational investigations of: effective optical

responses of reasonably general geometries, and

complicated design problems in the plasmonics of 2D

materials.
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1. Introduction1

The advent of two-dimensional (2D) materials with controllable electronic structures has opened2

up an unprecedented wealth of optical phenomena that challenge the classical diffraction3

limit of electromagnetic waves. Notable examples of related applications range from optical4

holography [1], tunable metamaterials [2], and cloaking [3], to subwavelength focusing lenses [4].5

A striking feature of many of these applications is the possible emergence of an unusual6

parameter regime with no refraction, referred to as epsilon-near-zero (ENZ) effect [5–9].7

This effect calls for designing novel plasmonic crystals made of stacked metallic or semi-metallic8

2D material structures arranged periodically with subwavelength spacing, and embedded in a9

dielectric host [5,6,10,11]. The growing need to describe, engineer, and tune the optical properties10

of such plasmonic crystals motivates the present paper. To gain insight into their effective11

optical behavior, we utilize a homogenization procedure that systematically illuminates how such12

macroscopic properties emerge from the plasmonic microstructure.13

In this paper, our key objectives are: (i) to elucidate how effective parameter values14

of plasmonic crystals are derived from two-scale asymptotics; (ii) to demonstrate how this15

homogenization procedure can be used to compute effective optical responses of complicated16

(periodic) microstructures numerically; and (iii) to investigate physical implications of the17

resulting, effective description for a few prototypical geometries. The homogenized system can be18

controlled by tuning (microscopic) geometry, (periodic) spacing, frequency, and conductivity of19

the 2D material. This description implies precise conditions for the ENZ effect. Our work extends20

previous homogenization results for time-harmonic Maxwell’s equations [10,12–15]. In particular,21

we develop the following aspects of the homogenization of plasmonic crystals:22

– We introduce a general homogenization result for a microscopic model that incorporates23

the surface conductivity of arbitrarily curved 2D material sheets and a corresponding line24

charge density along possible edges of the sheets (see Section 2). The former may give25

rise to a 2D surface plasmon-polariton (SPP) [16,17] whereas the latter may influence the26

appearance of an edge plasmon-polariton (EPP) [18,19]. These waves are special fine-scale27

surface and edge modes, respectively. The microscopic model describes a large class of28

plasmonic crystals consisting of periodic inclusions of metallic finite-size and curved 2D29

materials in a heterogeneous and anisotropic dielectric host (Sections 2, and 3).30

– We demonstrate analytically how the combination of the complex-valued surface31

conductivity of the material sheets and the line conductivity along their edges can yield32

an ENZ effect (Section 4). In this framework, we derive precise ENZ conditions for planar33

sheets that extend results previously extracted from Bloch wave theory [5,6]. In addition,34

by numerical simulations based on the finite element method, we discuss the ENZ effect35

occurring in a few prototypical geometries consisting of nanoscale 2D structures.36

– We extend the homogenization procedure to include line charge models in37

correspondence to the line charge density of our microscopic description. This38

consideration accounts for possible edge effects. We discuss how this edge contribution39

extends known ENZ conditions (Section 4), and discuss further implications of this40

possibility in the conclusion (Section 6).41

– We introduce a computational platform based on our homogenization procedure that can42

serve as a foundation for investigating the effective optical response of (reasonably43

general) microscopic geometries (Section 5). This framework enables the systematic44

computational investigation of complicated design problems in the plasmonics of 2D45

materials [20–22] (Sections 5 and 6).46

We discuss several physical implications of our findings. For instance, we identify the physical47

role of the corrector field in our formulation: this field contains microscopic wave modes on the48

2D material. We introduce a line charge density in the modeling and homogenization procedure,49

and show how the line charge density introduced in our microscopic model alters the ENZ effect50
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of plasmonic crystals described previously [5,6]. We recover a Lorentzian function for the effective1

dielectric permittivity tensor of selected prototypical geometries that partly validates our results2

since its real and imaginary parts automatically satisfy the Kramers-Kronig relations.3

(a) Motivation: Epsilon-near-zero effect4

Recently, 2D materials such as graphene and black phosphorus have been the subject of extensive5

experimental and theoretical studies. From the viewpoint of Maxwell’s equations, the dielectric6

permittivity of a conducting 2D material may have a negative real part. As a result, SPPs of7

transverse-magnetic (TM) polarization may exist on the conducting sheet with a dispersion8

relation that allows for a transmitted wavenumber, kSPP, much larger in magnitude than the9

free-space wavenumber, k0 [23].10

Specifically, for an infinite, flat conducting sheet in an isotropic and homogeneous ambient11

space, the SPP dispersion relation is [16]12

√

k20 − k2SPP =−

(

2k0
ωµ0σ

)

k0,

where σ is the surface conductivity of the sheet, µ0 is the magnetic permeability of the ambient13

space, and ω denotes the angular frequency. Note that |kSPP| ≫ k0 if Imσ > 0 and |ωµ0σ| ≪ k0 for14

an assumed e−iωt time dependence and lossless surrounding medium. Hence, the wavelength of15

the TM-polarized SPP scales linearly with σ if dissipation is relatively small (0<Reσ≪ Imσ).16

In general, the dispersion relation of transmitted waves through given 2D materials can be17

altered dramatically by introducing different geometries of the sheet, or different arrangements18

of sheets in a dielectric host. In particular, plasmonic crystals are structures that consist of stacked,19

periodically aligned metallic layers. When the period is of the order of the SPP wavelength,20

unusual optical phenomena may occur, such as the ENZ effect and negative refraction [6,8,9,24].21

These properties can be precisely controlled by tuning the electronic structure of the 2D material,22

through chemical doping or other means, and the operating frequency, ω [25,26].23

The ENZ effect implies that at least one eigenvalue of the effective dielectric permittivity of the24

plasmonic structure is close to zero. This effect causes surprising optical features, which have not25

been obtained by traditional photonic systems. These features include decoupling of spatial and26

temporal field variations, tunneling through very narrow channels, constant phase transmission,27

strong field confinement, diffraction-free propagation, and ultrafast phase transitions [9,27].28

Many novel functional devices based on plasmonic crystals have been proposed, indicating the29

broad prospects of photonics based on the ENZ effect [6,8,9,24,25,27].30

Motivated by this perspective, in this paper we develop a general homogenization procedure31

for plasmonic crystals. In addition, we investigate the possibility for emergence of the ENZ effect32

in prototypical geometries with, e.g., graphene layers, nanoribbons, and nanotubes.33

(b) Microscopic model and geometry34

The geometry is shown in Figure 1. It consists of periodically stacked, possibly curved sheets,35

Σd, of a 2D material with surface conductivity σd(x). We assume that a charge accumulation36

may occur via a line conductivity, λd(x), on the edges ∂Σd of the sheets. The sheets are37

embedded in a dielectric with heterogeneous permittivity εd(x). At the microscale, we invoke time-38

harmonic Maxwell’s equations for the electromagnetic field (Ed,Hd) in domain Ω; see (2.1). The39

conductivities σ and λ are responsible for the induced current density40

JΣd = δΣdσ
d
E

d + δ∂Σdλ
d
E

d.

Here, δΣd denotes the Dirac delta function associated with the (possibly curved) surface of Σd,41

and δ∂Σd is the Dirac delta function associated with the boundaries of Σd. The induced current42

density JΣd will lead to jump conditions of electromagnetic field components over Σd and ∂Σd.43
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Detailed discussions and derivations of the governing equations and jump conditions are given1

in Section 2.2

(c) Homogenized theory3

We will demonstrate by a formal asymptotic analysis that in the case of scale separation, meaning4

if d is sufficiently small compared to the free-space wavelength, 2π/k0, the above problem5

manifesting the microstructure can be expressed by the following homogenized system:6

∇× E = iωµ0H, ∇×H=−iωεeff
E + Ja, (1.1)

in which the dependence on (microscale) spacing d is eliminated. Here, Ja is a current-carrying7

source, (E,H) describes an effective electromagnetic field, and εeff is an effective permittivity tensor.8

We assume that the functions ε, σ and λ depend on a slow scale and are periodic and rapidly9

oscillating on a (fast) scale proportional to the scaling parameter d; typically, d≪ 2π/k0:10

εd(x) = ε(x,x/d), σd = d σ(x,x/d), λd = d2 λ(x,x/d).

This scaling assumption leads to an effective permittivity tensor, viz.,11

εeff
ij :=

∫
Y

ε(x,y)
(

ej +∇yχj(x,y)
)

· ei dy −
1

iω

∫
Σ

σ(x,y)
(

ej +∇yχj(x,y)
)

· ei doy

−
1

iω

∫
∂Σ

λ(x,y)
(

ej +∇yχj(x,y)
)

· ei ds.

In the above equation, Y denotes the unit cell with embedded boundaryΣ whose edge is ∂Σ (see12

Figure 1); ei is the unit vector in the i-th direction; and ∇yχ is the Jacobian of the corrector, χ,13

that solves the associated cell problem which encodes the microscopic details, cf. (3.2). A crucial14

property of εeff is that it manifests an interplay, and possible mutual cancellation, of three distinct15

averages. Thus, by tuning geometry, (periodic) spacing, frequency and conductivities of the 2D16

material, we can force one or more eigenvalues of εeff to be close to zero. This ENZ effect is17

detailed in Section 4.18

(d) Past works19

The derivation presented in this paper is based on a formal asymptotic analysis in the spirit of [28].20

Note that in [10] a rigorous approach invoking two-scale convergence is applied to plasmonic21

crystals without a line charge density along edges. In the framework of homogenization theory for22

time-harmonic Maxwell’s equations, we should also mention a number of other related, rigorous23

or formal, results [12–15,29]. In particular, in [15] a formal asymptotic analysis is applied to finite24

photonic crystals; and in [29] the authors homogenize Maxwell’s equations in the presence of25

rough boundaries (see also [30]).26

Broadly speaking, the design of structures with unusual optical properties is a highly active27

direction of research. For recent advances in photonics, we refer the reader to [31,32]. In fact, the28

computation of effective material parameters in Maxwell’s equations has a long history in physics29

and engineering. It is impossible to exhaustively list the related bibliography here. In regard to the30

homogenization of periodic and heterogeneous systems, we mention as examples [11,30,33,34].31

Notably, homogenization results for Maxwell’s equations can be related to approaches32

based on Bloch theory for waves in periodic structures. In Section 4, we demonstrate that our33

homogenization result readily generalizes an averaging principle that was previously found in34

particular Bloch-wave solutions constructed for simple settings [5,6]. In the context of layered35

structures usually only a few Bloch waves effectively contribute to the macroscopic field [35]. In36

contrast, our approach relies entirely on periodic upscaling principles and is thus independent of37

the choice of particular solutions. In fact, we derive effective equations and material parameters38

that are valid for a wide range of geometries without choosing any particular solutions a priori.39
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see Figure 1. These hypersurfaces are generated from the inscribed hypersurface Σ via scaling1

with a length scale, d, and periodically repeating a unit cell, Y = [0, 1]3. More precisely, we define2

Σd =
{

d z + d ς : z ∈ Z
3, ς ∈Σ

}

,

where Z denotes the set of integers. Note that we make no specific assumption about Σ, except3

that it is smooth (in Y and when periodically continued) so that it admits a well-defined surface4

normal. This property does neither imply that Σ has to be a connected manifold, nor that Σ has5

to have an intersection with the boundary of Y ; see Section 5 for examples.6

The relevant material parameters can be heterogeneous and tensor-valued. We assume that7

the ambient medium, which is contained in Ω \Σd, is described by a dielectric permittivity,8

εd(x). Furthermore, the plasmonic sheets Σd have the associated surface conductivity σd(x). In9

addition, we allow for a line conductivity λd(x) on the edges, ∂Σd, of the sheets.10

To derive a physically appealing homogenization limit, we assume that the spatial dependence11

of the material parameters can be separated into a slowly oscillating macroscale behavior and a12

(locally) periodic microscale behavior with structural period d [28,36], viz.,13

εd(x) = ε
(

x,x/d
)

, σd(x) = d σ
(

x,x/d
)

, λd(x) = d2 λ
(

x,x/d
)

.

Here, ε(x, .), σ(x, .), and λ(x, .) are Y -periodic and tensor-valued, i.e., ε
(

x,y + ei
)

= ε
(

x,y
)

,14

σ
(

x,y + ei
)

= σ
(

x,y
)

, and λ
(

x,y + ei
)

= λ
(

x,y
)

, for any unit vector ei and x∈Ω, y ∈R
3.15

The surface conductivity σ(x,y) and line conductivity λ(x,y) deserve particular attention.16

The former describes the linear optical response of the (possibly curved) hypersurface Σ, or17

induced surface current along Σ, due to an incident electric field. Similarly, λ describes the linear18

response of the edges, ∂Σ, ofΣ, or induced line current along ∂Σ, due to an incident electric field.19

These considerations imply that both tensors, σ(x,y) and λ(x,y), are rank deficient with one, or20

two zero eigenvalues, respectively. More precisely, by fixing (x,y) and expressing the tensors21

σ(x,y) and λ(x,y) in local coordinates (τ ,n,ν), where τ is a vector field parallel to the edge22

∂Σ, ν is the (interior) normal on Σd, and n denotes the outward-pointing unit vector orthogonal23

to τ and ν, we have24

σd =







σ11 σ12 0

σ21 σ22 0

0 0 0






, λd =







λ11 0 0

0 0 0

0 0 0






.

Since we will apply a formal asymptotic analysis, our assumptions on the related parameters25

are not too restrictive. Consequently, we use arbitrary tensor-valued functions ε and σ. A26

mathematically rigorous convergence result typically requires more restrictive assumptions [10].27

(a) On the scaling of conductivities28

Our particular choice of scalings of the surface and line conductivities with d, viz.,29

σd ∼ d , λd ∼ d2 ,

deserves some explanation. We recall that the wavenumber, kSPP, of the desired, fine-scale SPP on30

an infinite conducting sheet scales inversely proportional to the surface conductivity (Section 1).31

Hence, our choice of scaling of σd distinctly separates two scales: one related to the free-space32

wavenumber k0 (k0 ∼ 1), determined by the average of εd, and another for the SPP wavenumber,33

kSPP ∼ 1/σd ∼ 1/d, on the conducting sheets [24]. By our scaling, the interaction range of the SPP34

on each sheet is of the order of d. More precisely, in the limit d→ 0 the strength with which SPPs35

on one sheet influence neighboring sheets remains constant. In addition, our choice of scaling36

implies that the total surface current on the sheets remains finite. In a similar vein we scale the37

line conductivity, λd, with d2. In the limit d→ 0, this assumption yields a finite total line current38

on the edges of the conducting sheets.39

It is worth mentioning that other scaling scenarios may lead to different homogenization40

results. For example, the assumption σd ∼ 1 corresponds to a resonance which in turn yields an41
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effective permeability tensor [37]. Such a configuration can exhibit a respective mu-near-zero effect.1

A variety of structures, e.g., nanorings, that exhibit a mu-near-zero effect are studied in [38].2

(b) Heterogeneous Maxwell’s equations3

The time-harmonic Maxwell equations for the electromagnetic field (Ed,Hd) in Ω \Σd are:4







∇×E
d = iωµ0H

d , ∇×H
d =−iωεdEd + Ja ,

∇ · (εdEd) =
1

iω
∇ · Ja , ∇ ·Hd = 0 .

(2.1)

The surface conductivity, σd, is responsible for the appearance of the current density JΣd =5

δΣdσdEd, on Σd. Accordingly, we must impose the following jump conditions on Σd (away6

from the boundaries ∂Σd):7











[

ν ×E
d
]

Σd
= 0 ,

[

ν ×H
d
]

Σd
= σdEd ,

[

ν · (εdEd)
]

Σd
=

1

iω
∇ · (σdEd) ,

[

ν ·Hd
]

Σd
= 0 .

(2.2)

Here, [ . ]Σd denotes the jump over Σd with respect to a chosen normal ν, viz.,8

[F ]Σd (x) := lim
αց0

(

F (x+ αν)− F (x− αν)
)

x∈Σd.

Equations (2.1) and (2.2) are supplemented with the following internal boundary conditions on9

the edges of the plasmonic sheets, Σd, due to the line conductivity λd:10







{

n×H
d
}

∂Σd
= λdEd,

n ·
(

σdEd) = ∇ ·
(

λdEd) on ∂Σd,
(2.3)

where n denotes the outward-pointing unit vector tangential to the 2D sheet Σd and normal to11

curve ∂Σd. In (2.3), the symbol { . }∂Σd denotes a singular jump over the edge, ∂Σd, viz.,12

{F }∂Σd (x) := lim
αց0

∫ α

−α

(

F (x+ α2
n+ ζν)− F (x− α2

n+ ζν)
)

dζ x∈ ∂Σd. (2.4)

The jump condition in (2.3) stems from the property that, by virtue of the Ampère-Maxwell law,13

the line current λdEd creates a singular magnetic field, H ∼ (1/r) eϕ as r→ 0, where r denotes14

the distance to the edge, ∂Σd, and eϕ is the unit vector in the azimuthal direction of the local15

cylindrical coordinate system. In this sense, jump (2.4) measures the strength of the singularity of16

the magnetic field H at any point x∈ ∂Σd. We refer the reader to Section ?? of the supplementary17

material for a detailed discussion including a derivation of the jump { . }∂Σd .18

The second compatibility condition in (2.3) is a direct consequence of charge conservation19

along the edges, ∂Σd, in view of the fact that σd vanishes identically outside the sheets. Let us20

explain. The line charge accumulation at the edges is related to the jump of the electric displacement21

field in the n-direction over the edge, ∂Σd. This jump is in turn equal to (iω)−1n ·
(

σdEd
)

, since22

σd ≡ 0 outsideΣd. The corresponding line conductivity must be balanced by the divergence of the23

line current λdEd. Alternatively, compatibility conditions (2.3) can be derived from a variational24

formulation; see Section ?? of the supplementary material.25

Equations (2.1)–(2.3) form a closed system if they are complemented by suitable boundary26

conditions on ∂Ω. We can impose either absorbing conditions, or periodic conditions, or, in the27

case with an unbounded domain, Ω, Silver-Müller radiation conditions at infinity [16,39]. We28

make the important assumption that the domain, Ω, and the chosen boundary conditions on ∂Ω29

are compatible with the microstructure in the sense of the following simultaneous requirements:30

(i) the microstructure is bounded, that is σ(x, .) = 0 and ε(x, .) = ε0 for |x| ≥C for some C > 0;31

and (ii) the microstructure only touches those parts of the boundary ∂Ω with periodic boundary32

conditions. These requirements ensure that the formal homogenization result derived in this33
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paper remains valid everywhere. If any one of these requirements is not satisfied, a boundary1

layer might occur, which necessitates a subtle homogenization procedure near ∂Ω [36].2

3. Two-scale expansions and asymptotics3

In this section, we provide a derivation of effective system (1.1) by means of a formal asymptotic4

analysis. For the sake of brevity, we summarize the derivation here and refer the reader to5

Appendix A for details.6

We start with the microscale description of (2.1), (2.2) and (2.3). Consider the two-scale7

expansions [28,36]8

E
d →E

(0)(x,y) + dE(1)(x,y) + d2E(2)(x,y) + . . . ,

H
d →H

(0)(x,y) + dH(1)(x,y) + d2H(2)(x,y) + . . . ,

with the corresponding substitutions9

∇→∇x +
1

d
∇y, εd → ε(x,y), σd → dσ(x,y), λd → d2λ(x,y).

Here, y ∈ Y denotes the fast variable, a now independent coordinate for the microscale. The small10

parameter, d, is treated as non-dimensional since it is scaled with 1/k0 which is set to unity.11

The application of the above formal expansions to (2.1) and (2.2) and the subsequent dominant12

balance need to be carried out to the two lowest orders in the small parameter, d. This procedure13

results in eight equations and eight boundary conditions ((A 1)–(A 3) in Appendix A), as well as14

two interface conditions on ∂Σ ((A 4)–(A 5) in Appendix A). We now use the expanded equations15

to describe E(0) and H(0) (see (A 6)–(A 7) in Appendix A; cf. [10]). Thus, we find16











E
(0)(x,y) = E(x) +∇yϕ(x,y) , ϕ(x,y) =

3
∑

j=1

χj(x,y)Ej(x) ,

H
(0)(x,y) =H(x) ,

(3.1)

where χj(x, . ) are the correctors and assumed to be Y -periodic (j = 1, 2, 3).17

Next, we focus on the functions E(x), H(x) and χj(x,y) (j = 1, 2, 3). For this purpose, we18

resort to the corresponding cell problem (see Section A(b) in Appendix A). Each χj(x,y) satisfies19







































∇y ·
(

ε(x,y)
(

ej +∇yχj(x,y)
)

)

= 0 in Y \Σ ,

[

ν × (ej +∇yχj(x,y))
]

Σ
= 0 on Σ ,

[

ν ·
(

ε(x,y)
(

ej +∇yχj(x,y)
)

)]

Σ
=

1

iω
∇y ·

(

σ(x,y)
(

ej +∇yχj(x,y)
)

)

on Σ ,

n ·
(

σ(x,y)
(

ej +∇yχj(x,y)
)

)

=∇y ·
(

λ(x,y)
(

ej +∇yχj(x,y)
)

)

on ∂Σ \ ∂Y .

(3.2)

Equations (3.2) along with the condition that χj(x, . ) be Y -periodic form the desired, closed cell20

problem. Notice that x plays the role of a parameter. Hence, the above cell problem uniquely21

describes χj(x, . ) for any given (macroscopic) point x.22

A remark on the two jump conditions in (3.2) is in order. The first jump condition ensures23

that the tangential part of ej +∇yχj(x,y) on Σ is single valued. In regard to the second jump24

condition, recall that σ(x,y) only acts on the tangential part of a vector field (to return a tangential25

vector). Thus, the right-hand side of the respective jump condition consists of the divergence of26

tangential field components, which in turn implies that this term is also single valued.27

Similarly, we recover the homogenized system that fully describes E and H, viz.,28







∇× E = iωµ0H , ∇×H=−iωεeff
E + Ja ;

∇ · (εeff
E) =

1

iω
∇ · Ja , ∇ ·H= 0 ,

(3.3)
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with the effective permittivity tensor εeff given by1

εeff
ij (x) :=

∫
Y

ε(x,y)
(

ej +∇yχj(x,y)
)

· ei dy −
1

iω

∫
Σ

σ(x,y)
(

ej +∇yχj(x,y)
)

· ei doy

−
1

iω

∫
∂Σ\∂Y

λ(x,y)
(

ej +∇yχj(x,y)
)

· ei ds . (3.4)

For the sake of brevity, we give the derivation of this formula to Section A(c) of Appendix A.2

Equations (3.1)–(3.4) summarize our main homogenization results. In conclusion, system (3.3)3

describes the large-scale optical response of the periodic medium in terms of the macroscopic4

electromagnetic field (E,H) via the effective permittivity tensor εeff given by (3.4) with (3.2).5

4. Epsilon-near-zero effect6

A crucial feature of the averaging for the effective permittivity, εeff(x), as implied by (3.4), is7

the interplay of three distinct averages: one for the bulk permittivity, ε; another for the surface8

conductivity, σ; and a third one for the line conductivity, λ. Each of these averages has a positive9

real part. This interplay can be exploited as follows. By tuning the microscopic geometry, periodic10

spacing, frequency, or surface or line conductivity, we can in principle force at least one eigenvalue11

of εeff(x) to be close to zero. In the case with an x-independent εeff, this condition amounts to the12

ENZ effect in the direction of propagation determined by the respective eigenvector(s) [5,6].13

In the remainder of this section, we discuss the simplified case with a vanishing corrector, χ. In14

this case, we derive an explicit formula for the special spacing, d= dc, called the critical spacing,15

that implies the ENZ effect in the presence of the line conductivity, λ. We show how our present16

averaging procedure is related to results of a Bloch-wave approach [5]. Lastly, we discuss in some17

detail the character and physical role of the corrector, χ.18

(a) Case with vanishing corrector χ: Formalism19

In principle, the corrector, χ, implicitly depends on the geometry and material parameters such as20

σ and λ. Accordingly, the derivation of closed, analytical formulas for χ may be possible only in a21

limited number of situations. We now restrict attention to the particular yet physically appealing22

case with a vanishing corrector, χ. Our goal is to better understand the emerging ENZ effect.23

Technically speaking, the solution, χ, of cell problem (3.2) vanishes whenever the forcing term24

in this problem is identically zero. This term may not be immediately obvious by inspection25

of (3.2). In order to gain some insight into its character, we invoke the weak formulation of the26

cell problem. To this end, we multiply the first equation in (3.2) with a smooth and Y -periodic27

test function, ψ, and integrate over Y (see also Section ?? of the supplementary material). Two28

subsequent integrations by parts, and use of the requisite jump and boundary conditions, yield29

0 =

∫
Y

ε(x,y)
(

ej +∇yχj(x,y)
)

· ∇yψ(y) dy

−
1

iω

∫
Σ

σ(x,y)
(

ej +∇yχj(x,y)
)

· ∇yψ(y) doy

−
1

iω

∫
∂Σ\∂Y

λ(x,y)
(

ej +∇yχj(x,y)
)

· ∇yψ(y)ds .

The forcing term corresponds to the following contribution:30

∫
Y

ε(x,y) ej · ∇yψ(y) dy −
1

iω

∫
Σ

σ(x,y) ej · ∇yψ(y) doy −
1

iω

∫
∂Σ\∂Y

λ(x,y) ej · ∇yψ(y)ds .

(4.1)
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Thus, the requirement of having a vanishing corrector means that (4.1) must vanish identically1

for every possible choice of ψ. One more integration by parts converts expression (4.1) to2

iω

∫
Y

∇y ·
(

ε(x,y)ej
)

ψ(y) dy +

∫
∂Σ

n ·
(

σ(x,y)ej
)

ψ(y)ds

−

∫
Σ

∇y ·
(

σ(x,y)ej
)

ψ(y) doy −

∫
∂Σ\∂Y

∇y ·
(

λ(x,y)ej
)

ψ(y)ds .

Thus, the forcing is necessarily zero whenever the following conditions hold simultaneously:3











∇y · ε(x,y) = 0 in Y ,

∇y · σ(x,y) = 0 on Σ ,

n · σ(x,y)−∇y · λ(x,y) = 0 on ∂Σ \ ∂Y .

(4.2)

Note that σ and λ encode information about the curvature ofΣ and ∂Σ, respectively. This implies4

that for a non-flat surface Σ, or for a surface with (arbitrarily shaped) internal edges, σ(x,y)5

and λ(x,y) are in principle y-dependent with non-vanishing divergence. Under the assumption6

that (4.2) holds, formula (3.4) for the effective permittivity simply reduces to7

εeff =

∫
Y

ε(x,y) dy −
1

iω

∫
Σ

σ(x,y) doy −
1

iω

∫
∂Σ\∂Y

λ(x,y)ds . (4.3)

By this simplified (geometric) average, one may directly influence the effective permittivity tensor8

by either adjusting the operating frequency, ω, or by tuning the parameters σ(x,y) and λ(x,y).9

We add a remark on the above formalism. A natural question at this point concerns the10

existence of suitable configurations that obey (4.2). More precisely, it is of interest to specify11

configurations that allow for a vanishing corrector while two or all three of the distinct averages in12

(4.3) are nonzero. We give three related examples in this section. First, consider the geometry with13

parallel, planar sheets of constant σ and no edges, ∂Σ = ∅, embedded in a homogeneous dielectric14

host with uniform ε; see Figure 2a. In this case, χ≡ 0, and we can have a nonzero contribution15

from the average of σ in (4.3). The second geometry consists of parallel and periodically aligned16

nanoribbons embedded in a homogeneous, dielectric host; see Figure 2b. In this case, we can17

achieve χ≡ 0 through (4.2) and a nonzero contribution of the line average of λ in (4.3) by setting18

σd = 0 and choosing a constant λd. Further, in the same geometry, by choosing a constant σ19

and the y3-dependent line conductivity λ= σ y3, all three averages in (4.3) are nonzero while20

condition (4.2) holds; thus, χ≡ 0. An example with a geometry that always has a nonzero21

corrector (in the presence of a nonzero conductivity σ) consists of parallel and periodically aligned22

nanotubes; see Figure 2c. For this third case, the corrector χ is obtained numerically. (For further23

discussion on the computational framework for χ, the interested reader is referred to Section 5.)24

(b) Vanishing corrector: A notion of critical spacing25

In this subsection, we further simplify average (4.3) in order to derive an explicit formula for the26

critical spacing, dc. Recall the ansatz27

σd(x) = d σ(x,x/d), λd(x) = d2 λ(x,x/d) ;

see Section 1 (a). Although this choice of scaling is convenient for the asymptotic analysis28

(Section 3), it introduces two parameters, σ and λ, that couple the physical conductivities, σd and29

λd, with the spacing, d. This coupling may obscure the physical insight possibly gained by the30

averaging in (4.3). A reason is that, in realistic settings, the parameters d, σd and λd are controlled31

independently by tuning of the geometry and the electronic structure of the 2D material [6].32

As a remedy, consider the following rescaled quantities33

σd(x,y) := d σ(x,y) , λd(x,y) := d2 λ(x,y) ,



11

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................
where the microscale variable, y, is singled out and treated as independent in the actual1

conductivities, σd(x) and λd(x). The averages of interest therefore are2

ε̄ (x) =

∫
Y

ε (x,y) dy , σ̄d(x) =

∫
Σ

σd(x,y) doy , λ̄d(x) =

∫
∂Σ\∂Y

λd(x,y)ds .

For slowly varying parameters, these averages simply reduce to the original parameters. We3

assume that ε̄ (x), σ̄d(x) and λ̄d(x) have the same eigenvectors, or principal axes, ri (i= 1, 2, 3).4

Let ε̄i, σ̄
d
i , and λ̄di , denote the corresponding eigenvalues of the averaged tensors. (Only two5

eigenvalues of σ̄d and one eigenvalue of λ̄d are possibly nonzero.) After some algebra, (4.3) gives6

εeff
i

ε̄i
=
(

1−
ξ0,i
d

)(

1 +
λ̄di

iωε̄i ξ0,i d

)

, (4.4)

for all directions ri with nonzero σ̄di , or λ̄di . Here, we define the generalized plasmonic thickness [5]7

ξ0,i =
σ̄di

2 iωε̄i
+

√

√

√

√

(

σ̄di
2 iωε̄i

)2

+
λ̄di
iωε̄i

, (4.5)

which accounts for the line conductivity. Evidently, εeff
i ≃ 0 if the spacing, d, is close to the critical8

value dc = ξ0,i for some i and suitable ranges of values for σ̄di and λ̄di (e.g., Im σ̄di > 0, Im λ̄di > 0).9

We stress that for |σ̄di | ≫ |λ̄di | (4.4) with (4.5) reduces to the known result10

εeff
i

ε̄i
∼
(

1−
ξ0,i
d

)

, ξ0,i ≈
σ̄di
iωε̄i

,

which is also obtained via a Bloch-wave approach for planar sheets [5]. In contrast, if |λ̄di | ≫ |σ̄di |,11

(4.4) reduces to12

εeff
i

ε̄i
∼
(

1−
ξ0,i
d

)

, ξ0,i ≈

√

λ̄di
iωε̄i

.

Notice the distinctly different scaling of ξ0,i with the conductivity parameter in this regime.13

(c) On the physical role of corrector χ14

Let us return to cell problem (3.2). We now provide a physical interpretation of its solution, the15

corrector χ. In particular, we solve cell problem (3.2) for the three prototypical configurations16

shown in Figure 2 (see also Section 4 (a)). In all three geometries, we set the permittivity and17

surface conductivity equal to nonzero constants, ε(x,y) = ε, σ(x,y) = σ, while we take λ(x,y) =18

0. By the discussion in Section 4 (a), we conclude that for the geometry of planar sheets with19

no edges (Figure 2(a)) χ≡ 0. For the geometry of nanoribbons (Figure 2(b)), χ2 ≡ χ3 ≡ 0. The20

remaining geometry (Figure 2(c)) has only one vanishing corrector component, χ3 ≡ 0. The real21

and imaginary parts of the nontrivial corrector component χ1 for the last two geometries are22

shown in Figure 3. The SPP excited by the edge discontinuity is evident in these settings; cf. [24].23

Motivated by these numerical results, we develop an argument that the corrector, χ, encodes24

the microscale response of the system to the macroscopic electromagnetic field, (E(x),H(x)).25

We start by noting that our scalings σd(x) = d σ(x,x/d) and λd(x) = d2 λ(x,x/d) imply that26

the typical length scales of surface and line waves (such as SPPs and EPPs) scale with d and d2,27

respectively. Accordingly, we can identify the forcing in cell problem (3.2) due to ej . This forcing28

corresponds to a (normalized) asymptotically slow planar wave. In this sense, the cell problem29

describes the local response of the microstructure to all possible excitations by local plane waves.30

This interpretation has an important consequence in light of the discussion in Section 4 (a): All31

cases of vanishing correctors are indeed characterized by conditions (4.2). In fact, conditions (4.2)32

characterize exactly all microscale geometries that do not permit the excitation of SPPs by plane33

waves.34
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Ω

Ja

(a) (b)

(c) (d) (e)

Figure 4: (a) Geometry of a plasmonic-crystal slab of height 1 with corrugated layers of 2D

material, where the corrugation is sinusoidal and the period is equal to the spacing, d (in

the schematic d = 2−3). (b) Real part of electric field in the y-direction in the corresponding

homogenization limit (as d→ 0), via solution of cell problem (3.2) and computation of the

homogenized solution given by (3.3). (c-e) Real part of electric field in the y-direction, based on

direct numerical simulations of (2.1)–(2.3) (see [41]), for decreasing spacing , d (i. e., increasing

degree of scale separation): (c) d = 2−4; (d) d = 2−5; (e) d = 2−6.

described by cell problem (3.2), and subsequently evaluating (3.4) with a suitable1

numerical quadrature rule. This is done with the same finite element toolkit [40] that2

we use for effective problem (3.3).3

We make the remark that using a finite element discretization is particularly advantageous4

for approximating cell problem (3.2) that contains a jump condition over smooth, curved5

hypersurfaces. For the sake of brevity we omit algorithmic details but refer the reader to [10] for6

a discussion of the variational form of equations (3.3) and (3.2), as well as to [40] for algorithmic7

details on curved boundary approximations, numerical quadrature, and numerical linear algebra.8

We demonstrate the applicability of our computational platform by use of a prototypical9

scattering configuration. It consists of a dipole situated in close proximity to a plasmonic crystal10

(slab) of height 1 consisting of many layers of corrugated 2D sheets at distance d; see Figure 4.11

The sheet corrugation is described by a sine curve of amplitude d/4 and period d (Figure 4a).12

The computational result of our proposed scheme involving the homogenized system is shown in13

Figure 4b. In addition, Figures 4c-e show the results of a direct numerical simulation of the electric14

field E described by (2.1) and (2.2) for an increasing level of scale separation (d = 2−4, 2−5,15

2−6, respectively). The direct numerical computations shown in Figure 4b-d require a very fine16

resolution that results in linear systems with up to 1.6 × 107 unknowns. In contrast, our proposed17

computational framework can be efficiently implemented by use of a moderate resolution in the18

approximation scheme of around 3.2× 104 unknowns, a number smaller by a factor of about 50019

than the one for the direct numerical simulation. This comparison demonstrates that already for20
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a moderate scale separation of d= 2−6, the computational platform leads to a significant saving1

of computational resources.2

Our example demonstrates in addition that the predictive quality of the homogenized solution3

improves with increasing scale separation: Typically, we have a good agreement between the4

electromagnetic field {E,H} that is described system (2.1) and (2.2) and the homogenized field5

{E,H} given by (3.3) for a scale separation of d≈ 1/64 and less, even for scattering configuration6

with dominant near field character as shown in Figure 4. In general, the upper limit of d for which7

the homogenized system (3.3) has some predictive quality heavily depends on the geometry and8

the location of sources.9

We should add the remark that our homogenization result remains valid also for current-10

carrying sources, Ja, situated inside the geometry provided the function Ja(x) is square11

integrable. This claim would typically require that dipole sources have to be regularized, as in12

our computational example. In the case with (perfect, unregularized) point sources the emerging13

near field might not be captured in its entirety by our computational framework.14

(b) Effective permittivity tensors in prototypical geometries15

In order to relate numerical results obtained by solving cell problem (3.2) to the averaging in (3.4)16

and compute physical quantities as a function of frequency, ω, it is necessary to use a suitable17

model for the material parameters. If λd = 0, the only modeling parameters that enter (3.2) are18

ε(x,y) and 1
iωσ(x,y). We assume that ε(x,y) = ε is constant and that the tangential parts of19

σ(x,y) = σ(y) are given by spatially constant values. Thus, the only microscale (y-) parameter20

dependence to be accounted for is the one in 1
iωσ(x,y); cf. Figure 2 for geometries of interest.21

The surface conductivity, σd, of doped graphene can plausibly be described by the Kubo22

formula, which takes into account electronic excitations and temperature effects [17]. However,23

in a suitable parameter regime that includes terahertz frequencies, in which fine-scale SPPs24

on graphene can typically be generated, it has been shown that the Kubo formula reduces to25

the (much simpler) Drude model [42]. By this model, the tangential components of a spatially26

constant σd are given by the formula27

σd =
i e2 EF

ε0 π~2
(

ω + i/τ
) .

Here, e is the electron charge, ~ denotes the (reduced) Planck constant, ε0 is the vacuum28

permittivity, EF denotes the Fermi energy, and τ is the electronic relaxation time. In this context,29

an x-dependence of σd may arise from spatial variations of the parameters EF and τ .30

We proceed to carry out numerical computations for εeff
ij . Using typical parameter values for31

graphene [17], we set τ = 0.5 10−12s and apply the following rescalings: EF = ẼF 10−19J, ω =32

ω̃ 1014Hz, d = d̃ 10nm, with 0≤ ẼF ≤ 1.6 , 0.5≤ ω̃≤ 4.0 , and 0≤ d̃≤ 20.0. The surface average33

in (3.4) of the effective permittivity tensor, εeff, has the constant (y-independent) prefactor34

η :=
1

iω
σ =

1

iω d
σd = 82.9

ẼF

d̃ ω̃
(

ω̃ + 0.02 i
) . (5.1)

Utilizing definition (5.1) we conveniently express the matrix elements of εeff given in (3.4) as35

εeff
ij

ε
= 1 −

η

ε

∫
Σ

Pt(y)
(

ej +∇yχj(x,y)
)

· ei doy .

Here, Pt(y) denotes the projection onto the tangential space ofΣd at point y. This formula for εeff
ij36

uncovers an important property: Up to a factor of ε, computational results for the cell problem37

only depend on the ratio η/ε. Thus, it is sufficient to compute values for εeff
ij by setting ε= 1.38

Let us now recall the discussion about vanishing correctors in Sections 4 (a),(c). For the39

prototypical geometries of Figure 2, the respective effective permittivities have the matrix forms:40
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The vector-valued corrector field of this procedure solves a closed cell problem. We showed1

analytically how the combination of the complex-valued σd and λd yields an ENZ effect; and2

defined the related critical spacing which depends on σd and λd.3

The introduction of the line charge density, λd, in our microscale model and homogenization4

procedure is an aspect that deserves particular emphasis. We believe that this feature has eluded5

previous works in plasmonics. In fact, a general and precise quantitative description of the6

influence of the physics at material edges on effective optical parameters of plasmonic crystals7

made of 2D materials is a largely open problem. Edge effects have received significant attention8

recently because of observations of EPPs [18,19]. Our discussion of a homogenization procedure9

involving a line charge density on material edges contributes to this effort. For example, we10

demonstrated that the (generalized) plasmonic thickness has an algebraic dependence on the line11

charge density different from that on the surface conductivity of the 2D material. In addition,12

our formalism suggests a few mathematical problems (regarding the well-posedness and formal13

proof of homogenization results) which were not addressed here.14

We also discussed how our homogenization result can be incorporated into well established15

computational approaches for time harmonic Maxwell equations. This procedure involves16

the computation of effective material parameters by approximation of the solution of the17

corresponding cell problems and averaging. We demonstrated the feasibility of this approach18

in a geometry with corrugated sheets; and computed the Lorentz-type resonance of two19

prototypical microscopic geometries. The compuational framework that we introduced paves the20

road for future, systematic computational investigations of complicated design problems in the21

plasmonics of 2D materials [20–22].22

Our results have a few limitations and point to open problems in asymptotics. For instance,23

the asymptotic analysis is based on a strong periodicity assumption. Further, we do not discuss24

boundary layers in the homogenization procedure due to the interaction of the microstructure25

with boundaries of the (scattering) domain. It is also worth mentioning that scaling assumptions26

different from the ones chosen here may lead to different homogenization results.27

A. Two-scale expansion and asymptotics28

In this appendix, we carry out in detail the asymptotic analysis that was outlined in Section 3. As29

a first step, we apply the two-scale asymptotic expansion to (2.1) and (2.2). By collecting all terms30

of the order of d−1 in region Ω × Y and of the order of d0 on Ω ×Σ, we obtain the equations31































∇y ×E
(0) = 0 , ∇y ×H

(0) = 0 ,

∇y · (εE(0)) = 0 , ∇y ·H(0) = 0 ;
[

ν ×E
(0)
]

Σ
= 0 ,

[

ν ×H
(0)
]

Σ
= 0 ,

[

ν · (εE(0))
]

Σ
=

1

iω
∇y · (σE(0)) ,

[

ν ·H(0)
]

Σ
= 0 .

(A 1)

In a similar vein, a second set of equations is obtained by collecting all terms of the order of d0 in32

Ω × Y and of the order of d1 on Ω ×Σ, viz.,33































∇x ×H
(0) +∇y ×H

(1) =−iωεE(0) + Ja ,

∇x ×E
(0) +∇y ×E

(1) = iωµ0H
(0) ,

∇x · (εE(0)) +∇y · (εE(1)) =
1

iω
∇x · Ja ,

∇x ·H(0) +∇y ·H(1) = 0 ,

(A 2)

and34











[

ν ×E
(1)
]

Σ
= 0 ,

[

ν ×H
(1)
]

Σ
= σE(0) ,

[

ν · (εE(1))
]

Σ
=

1

iω

(

∇x · (σE(0)) +∇y · (σE(1))
)

,
[

ν ·H(1)
]

Σ
= 0 .

(A 3)
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In (A 1)–(A 3), the differential equations are valid for (x,y)∈Ω × Y ; while the jump conditions1

hold for (x,y)∈Ω ×Σ.2

So far, we used boundary conditions on the interior of the sheets,Σd ∩Ω \ ∂Σd. We now focus3

on (2.3), imposed on the edges, ∂Σd ∩Ω. First, we introduce the rescaled jump { . }∂Σ in a way4

analogous to definition (2.4) for the jump { . }∂Σd , viz.,5

{F }∂Σ (x,y) := lim
αց0

∫ α

−α

(

F (x,y + α2
n+ ζν)− F (x,y − α2

n+ ζν)
)

dζ y ∈ ∂Σ .

By carrying out the leading-order asymptotic expansion for the singular jump of (2.4), we see that6

{ . }∂Σd → d { . }∂Σ . Consequently, the first condition of (2.3) is expanded to7

{

n×H
(1)
}

∂Σ
= λE(0) on Ω ×

(

∂Σ \ ∂Y
)

. (A 4)

Furthermore, the expansion of the second one of conditions (2.3) results in the following boundary8

conditions to the two lowest orders in d:9

n ·
(

σE(0)) = ∇y ·
(

λE(0)) , n ·
(

σE(1)) = ∇x ·
(

λE(0))+∇y ·
(

λE(1)) , (A 5)

which hold on Ω ×
(

∂Σ \ ∂Y
)

.10

(a) Characterization of E(0)
and H (0)

11

We now use (A 1) to characterize E(0)(x,y) and H(0)(x,y) in more detail. Since a conservative12

periodic vector field is the sum of a constant vector and the gradient of a periodic function13

(potential), we can write the general solution to the first equation of (A 1) as14

E
(0)(x,y) = E(x) +∇yϕ(x,y) , ϕ(x,y) =

∑

j

χj(x,y)Ej(x) . (A 6)

In this vein, a conservative and divergence-free periodic vector field must be constant. Hence, the15

general solution to the second and fourth laws of the first group of equations in (A 1) is given by16

H
(0)(x,y) =H(x) . (A 7)

The functions E(x), H(x) and χj(x,y) (j = 1, 2, 3) are further characterized below.17

(b) Derivation of cell problem18

Next, we derive a closed set of equations that fully describe the functions χj(x,y) introduced19

in (A 6). These equations comprise the cell problem accounting for the microstructure details.20

First, we substitute (A 6) into the respective, zeroth-order expressions in (A 1) and (A 5).21

Specifically, we use the third law of the first group of equations in (A 1); the first and third jump22

conditions in (A 1); and the first condition in (A 5). Thus, we obtain the following equations:23



































































































∑

j

∇y ·
(

ε(x,y)
(

ej +∇yχj(x,y)
)

)

Ej(x) = 0 in Ω × Y ,

∑

j

[

ν ×
(

ε(x,y)
(

ej +∇yχj(x,y)
)

)]

Σ
Ej(x) = 0 on Ω ×Σ ,

∑

j

[

ν ·
(

ε(x,y)
(

ej +∇yχj(x,y)
)

)]

Σ
Ej(x) =

1

iω

∑

j

∇y ·
(

σ(x,y)
(

ej +∇yχj(x,y)
)

)

Ej(x) on Ω ×Σ ,

∑

j

n ·
(

σ(x,y)
(

ej +∇yχj(x,y)
)

)

Ej(x) =

∑

j

∇y ·
(

λ(x,y)
(

ej +∇yχj(x,y)
)

)

Ej(x) on Ω ×
(

∂Σ \ ∂Y
)

.



18

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................
Here, Ej and χj are coupled. To simplify this description, we treat each term containing χj(x,y),1

which accounts for the microscale behavior of E(0)(x,y), as independent from Ej(x) (j = 1, 2, 3).2

Thus, the above equations decouple into three distinct problems, one for each χj , as displayed3

in (3.2). Equations (3.2) along with the condition that χj(x, . ) be Y -periodic form the desired,4

closed cell problem. Notice that x plays the role of a parameter. Hence, the above cell problem5

uniquely describes χj(x, . ) for any given (macroscopic) point x.6

(c) Homogenized macroscale problem7

Our remaining task is to derive corresponding macroscale equations for the functions E(x) and8

H(x). We start by substituting (A 6) and (A 7) into the first equation of (A 2) and averaging (in9

cell Y ) over the fast variable, y. Hence, we obtain the following expression:10

∇x ×H(x) +

∫
Y

∇y ×H
(1)(x,y) dy=

− iω
∑

j

∫
Y

ε(x,y)
(

ej +∇yχj(x,y)
)

dy Ej(x) + Ja(x) . (A 8)

By use of the Gauss theorem and the Y -periodicity of H(1), the second term on the left-hand side11

of the above equation is written as12

∫
Y

∇y ×H
(1) dy=−

∫
Σ

[

ν ×H
(1)
]

Σ
doy −

∫
∂Σ\∂Y

{

n×H
(1)
}

∂Σd
ds

=−

∫
Σ

σ(x,y)E(0) doy −

∫
∂Σ\∂Y

λ(x,y)E(0)ds

=−
∑

j

{∫
Σ

σ(x,y)
(

ej +∇yχj
)

doy +

∫
∂Σ\Y

λ(x,y)
(

ej +∇yχj
)

ds

}

Ej(x) .

In the above, the second equality comes from using the second jump condition of (A 3), and (A 4).13

The third equality follows from (A 6). Let us now define the effective permittivity tensor εeff by14

εeff
ij (x) :=

∫
Y

ε(x,y)
(

ej +∇yχj(x,y)
)

· ei dy −
1

iω

∫
Σ

σ(x,y)
(

ej +∇yχj(x,y)
)

· ei doy

−
1

iω

∫
∂Σ\∂Y

λ(x,y)
(

ej +∇yχj(x,y)
)

· ei ds . (A 9)

In view of this definition of εeff, (A 8) takes the form15

∇×H=−iωεeff
E + Ja ,

which describes the effective Ampére-Maxwell law.16

The last three equations of (A 2) can be manipulated in a similar fashion. For example, consider17

the third equation. By using (A 6) and (A 7) and averaging over the fast variable, y, we obtain18

∇x ·
(

∑

j

∫
Y

ε(x,y)
(

ej +∇yχj(x,y)
)

dy Ej(x)
)

+

∫
Y

∇y · (ε(x,y)E(1)(x,y)) dy=
1

iω
∇x · Ja(x) . (A 10)
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Next, we manipulate the second term of the left-hand side by applying the Gauss theorem and1

utilizing the second jump condition of (A 3), as follows:2 ∫
Y

∇y · (εE(1)) dy=−

∫
Σ

[

ν · (εE(1))
]

Σ
doy

=−

∫
Σ

1

iω

(

∇x · (σE(0)) +∇y · (σE(1))
)

doy

=−
1

iω
∇x ·

(

∑

j

∫
Σ

σ(x,y)
(

ej +∇yχj(x,y)
)

doy Ej(x) doy
)

−
1

iω

∫
Σ

∇y · (σE(1)) doy .

By applying the Gauss theorem and utilizing the second boundary condition in (A 5), we find3 ∫
Σ

∇y · (σE(1)) doy =

∫
∂Σ

n ·
(

σE(1))ds =

∫
∂Σ\∂Y

n ·
(

σE(1))ds

=

∫
∂Σ\∂Y

∇x · (λE0) +∇y · (λE1)ds

= ∇x ·





∑

j

∫
∂Σ\∂Y

λ(x,y)
(

ej +∇yχj(x,y)
)

dsEj(x)



 .

The second equality (exclusion of ∂Y ) exploits the fact that σE(1)(x, .) is Y -periodic and, thus,4

single valued on ∂Σ ∩ ∂Y . Notice, however, that the normal vector n changes sign. The last5

integral in the second line vanishes because ∂Σ \ Y has no boundary. Substituting the result of6

these manipulations into (A 10) and utilizing (A 9), we obtain7

∇ · (εeff
E) =

1

iω
∇ · Ja.

Similar steps can be applied to the remaining equations of (A 2). The homogenized system8

finally reads9







∇× E = iωµ0H , ∇×H=−iωεeff
E + Ja ;

∇ · (εeff
E) =

1

iω
∇ · Ja , ∇ ·H= 0 .

(A 11)
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