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By using an asymptotic analysis and numerical
simulations, we derive and investigate a system of
homogenized Maxwell’s equations for conducting
material sheets that are periodically arranged and
embedded in a heterogeneous and anisotropic dielectric
host. This structure is motivated by the need to
design plasmonic crystals that enable the propagation
of electromagnetic waves with no phase delay
(epsilon-near-zero effect). Our microscopic model
incorporates the surface conductivity of the two-
dimensional (2D) material of each sheet and a
corresponding line charge density through a line
conductivity along possible edges of the sheets. Our
analysis generalizes averaging principles inherent
in previous Bloch-wave approaches. We investigate
physical implications of our findings. In particular,
we emphasize the role of the vector-valued corrector
field, which expresses microscopic modes of surface
waves on the 2D material. We demonstrate how our
homogenization procedure may set the foundation
for computational investigations of: effective optical
responses of reasonably general geometries, and
complicated design problems in the plasmonics of 2D
materials.
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1. Introduction

The advent of two-dimensional (2D) materials with controllable electronic structures has opened
up an unprecedented wealth of optical phenomena that challenge the classical diffraction
limit of electromagnetic waves. Notable examples of related applications range from optical
holography [1], tunable metamaterials [2], and cloaking [3], to subwavelength focusing lenses [4].
A striking feature of many of these applications is the possible emergence of an unusual
parameter regime with no refraction, referred to as epsilon-near-zero (ENZ) effect [5-9].

This effect calls for designing novel plasmonic crystals made of stacked metallic or semi-metallic
2D material structures arranged periodically with subwavelength spacing, and embedded in a
dielectric host [5,6,10,11]. The growing need to describe, engineer, and tune the optical properties
of such plasmonic crystals motivates the present paper. To gain insight into their effective
optical behavior, we utilize a homogenization procedure that systematically illuminates how such
macroscopic properties emerge from the plasmonic microstructure.

In this paper, our key objectives are: (i) to elucidate how effective parameter values
of plasmonic crystals are derived from two-scale asymptotics; (ii) to demonstrate how this
homogenization procedure can be used to compute effective optical responses of complicated
(periodic) microstructures numerically; and (iii) to investigate physical implications of the
resulting, effective description for a few prototypical geometries. The homogenized system can be
controlled by tuning (microscopic) geometry, (periodic) spacing, frequency, and conductivity of
the 2D material. This description implies precise conditions for the ENZ effect. Our work extends
previous homogenization results for time-harmonic Maxwell’s equations [10,12-15]. In particular,
we develop the following aspects of the homogenization of plasmonic crystals:

— We introduce a general homogenization result for a microscopic model that incorporates
the surface conductivity of arbitrarily curved 2D material sheets and a corresponding line
charge density along possible edges of the sheets (see Section 2). The former may give
rise to a 2D surface plasmon-polariton (SPP) [16,17] whereas the latter may influence the
appearance of an edge plasmon-polariton (EPP) [18,19]. These waves are special fine-scale
surface and edge modes, respectively. The microscopic model describes a large class of
plasmonic crystals consisting of periodic inclusions of metallic finite-size and curved 2D
materials in a heterogeneous and anisotropic dielectric host (Sections 2, and 3).

— We demonstrate analytically how the combination of the complex-valued surface
conductivity of the material sheets and the line conductivity along their edges can yield
an ENZ effect (Section 4). In this framework, we derive precise ENZ conditions for planar
sheets that extend results previously extracted from Bloch wave theory [5,6]. In addition,
by numerical simulations based on the finite element method, we discuss the ENZ effect
occurring in a few prototypical geometries consisting of nanoscale 2D structures.

— We extend the homogenization procedure to include line charge models in
correspondence to the line charge density of our microscopic description. This
consideration accounts for possible edge effects. We discuss how this edge contribution
extends known ENZ conditions (Section 4), and discuss further implications of this
possibility in the conclusion (Section 6).

— We introduce a computational platform based on our homogenization procedure that can
serve as a foundation for investigating the effective optical response of (reasonably
general) microscopic geometries (Section 5). This framework enables the systematic
computational investigation of complicated design problems in the plasmonics of 2D
materials [20-22] (Sections 5 and 6).

We discuss several physical implications of our findings. For instance, we identify the physical
role of the corrector field in our formulation: this field contains microscopic wave modes on the
2D material. We introduce a line charge density in the modeling and homogenization procedure,
and show how the line charge density introduced in our microscopic model alters the ENZ effect
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of plasmonic crystals described previously [5,6]. We recover a Lorentzian function for the effective
dielectric permittivity tensor of selected prototypical geometries that partly validates our results
since its real and imaginary parts automatically satisfy the Kramers-Kronig relations.

(a) Motivation: Epsilon-near-zero effect

Recently, 2D materials such as graphene and black phosphorus have been the subject of extensive
experimental and theoretical studies. From the viewpoint of Maxwell’s equations, the dielectric
permittivity of a conducting 2D material may have a negative real part. As a result, SPPs of
transverse-magnetic (TM) polarization may exist on the conducting sheet with a dispersion
relation that allows for a transmitted wavenumber, kspp, much larger in magnitude than the
free-space wavenumber, kg [23].

Specifically, for an infinite, flat conducting sheet in an isotropic and homogeneous ambient
space, the SPP dispersion relation is [16]

2ko
JiE— K2y = — (WOU) Ko,

where o is the surface conductivity of the sheet, 1o is the magnetic permeability of the ambient
space, and w denotes the angular frequency. Note that |kspp| > ko if Im o > 0 and |wpuoo| < ko for
an assumed e~ time dependence and lossless surrounding medium. Hence, the wavelength of

the TM-polarized SPP scales linearly with ¢ if dissipation is relatively small (0 < Reos <« Imo).

In general, the dispersion relation of transmitted waves through given 2D materials can be
altered dramatically by introducing different geometries of the sheet, or different arrangements
of sheets in a dielectric host. In particular, plasmonic crystals are structures that consist of stacked,
periodically aligned metallic layers. When the period is of the order of the SPP wavelength,
unusual optical phenomena may occur, such as the ENZ effect and negative refraction [6,8,9,24].
These properties can be precisely controlled by tuning the electronic structure of the 2D material,
through chemical doping or other means, and the operating frequency, w [25,26].

The ENZ effect implies that at least one eigenvalue of the effective dielectric permittivity of the
plasmonic structure is close to zero. This effect causes surprising optical features, which have not
been obtained by traditional photonic systems. These features include decoupling of spatial and
temporal field variations, tunneling through very narrow channels, constant phase transmission,
strong field confinement, diffraction-free propagation, and ultrafast phase transitions [9,27].
Many novel functional devices based on plasmonic crystals have been proposed, indicating the
broad prospects of photonics based on the ENZ effect [6,8,9,24,25,27].

Motivated by this perspective, in this paper we develop a general homogenization procedure
for plasmonic crystals. In addition, we investigate the possibility for emergence of the ENZ effect
in prototypical geometries with, e.g., graphene layers, nanoribbons, and nanotubes.

(b) Microscopic model and geometry

The geometry is shown in Figure 1. It consists of periodically stacked, possibly curved sheets,
»?, of a 2D material with surface conductivity (rd(ac). We assume that a charge accumulation
may occur via a line conductivity, A (z), on the edges X% of the sheets. The sheets are
embedded in a dielectric with heterogeneous permittivity =% (). At the microscale, we invoke time-
harmonic Maxwell’s equations for the electromagnetic field (E?, H?) in domain £2; see (2.1). The
conductivities o and X are responsible for the induced current density

Jsa=06510"E? + 5,5\ E°.

Here, ¢ 5,0 denotes the Dirac delta function associated with the (possibly curved) surface of 2,
and 0,54 is the Dirac delta function associated with the boundaries of £?. The induced current
density J y.a will lead to jump conditions of electromagnetic field components over X% and 2.
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Detailed discussions and derivations of the governing equations and jump conditions are given
in Section 2.

(c) Homogenized theory

We will demonstrate by a formal asymptotic analysis that in the case of scale separation, meaning
if d is sufficiently small compared to the free-space wavelength, 27/kg, the above problem
manifesting the microstructure can be expressed by the following homogenized system:

V x € =iwpuoH, V x H=—iwee + T4, (1.1)

in which the dependence on (microscale) spacing d is eliminated. Here, J is a current-carrying
source, (€, #) describes an effective electromagnetic field, and =" is an effective permittivity tensor.
We assume that the functions ¢, o and A depend on a slow scale and are periodic and rapidly

oscillating on a (fast) scale proportional to the scaling parameter d; typically, d < 27 /ko:
el(x) =e(w,x/d), ol = do(x,x/d), A =d* ANz, z/d).

This scaling assumption leads to an effective permittivity tensor, viz.,

1
= | s@mle + Vo w) - edi— | o wle; + V(@) - eidoy

1
-S| e+ Vi) - eds

In the above equation, Y denotes the unit cell with embedded boundary X’ whose edge is 92 (see
Figure 1); e; is the unit vector in the i-th direction; and Vyx is the Jacobian of the corrector, x,
that solves the associated cell problem which encodes the microscopic details, cf. (3.2). A crucial
property of *ff is that it manifests an interplay, and possible mutual cancellation, of three distinct
averages. Thus, by tuning geometry, (periodic) spacing, frequency and conductivities of the 2D
material, we can force one or more eigenvalues of e to be close to zero. This ENZ effect is
detailed in Section 4.

(d) Past works

The derivation presented in this paper is based on a formal asymptotic analysis in the spirit of [28].
Note that in [10] a rigorous approach invoking two-scale convergence is applied to plasmonic
crystals without a line charge density along edges. In the framework of homogenization theory for
time-harmonic Maxwell’s equations, we should also mention a number of other related, rigorous
or formal, results [12-15,29]. In particular, in [15] a formal asymptotic analysis is applied to finite
photonic crystals; and in [29] the authors homogenize Maxwell’s equations in the presence of
rough boundaries (see also [30]).

Broadly speaking, the design of structures with unusual optical properties is a highly active
direction of research. For recent advances in photonics, we refer the reader to [31,32]. In fact, the
computation of effective material parameters in Maxwell’s equations has a long history in physics
and engineering. It is impossible to exhaustively list the related bibliography here. In regard to the
homogenization of periodic and heterogeneous systems, we mention as examples [11,30,33,34].

Notably, homogenization results for Maxwell’s equations can be related to approaches
based on Bloch theory for waves in periodic structures. In Section 4, we demonstrate that our
homogenization result readily generalizes an averaging principle that was previously found in
particular Bloch-wave solutions constructed for simple settings [5,6]. In the context of layered
structures usually only a few Bloch waves effectively contribute to the macroscopic field [35]. In
contrast, our approach relies entirely on periodic upscaling principles and is thus independent of
the choice of particular solutions. In fact, we derive effective equations and material parameters
that are valid for a wide range of geometries without choosing any particular solutions a priori.

10000000 V 208 4 2014 Bio-BuiysiandAieroseforeds:



]
1 2
: ed(a) >
DA Y T, o’ (x
p o TR ()
'\:_/—‘
]
0y e 6 R OO
Y3 L’ z3
()

Figure 1: Schematic of geometry. (a) The unit cell, Y = [0, 1}3, with microstructure X, a conducting
sheet. (b) Computational domain {2 with rescaled periodic layers X ¢ and spatially dependent
surface conductivity o4 (). The ambient medium has a heterogeneous permittivity, ¢4 ().

(e) Limitations

Although the homogenization results presented in this paper are fairly general, our analysis bears
limitations. We should mention the following issues:

— Our analysis leaves out boundary effects in the homogenization procedure due to the
interaction of the microstructure (conducting sheet) with boundaries of the domain.
This simplification restricts the homogenization result either to layered microstructures
immersed in a scattering domain, or to domains with periodic boundary conditions.

— Our asymptotic analysis relies on a strong periodicity assumption for the microstructure.
Even though we allow material parameters to also depend on a slow scale, we do not
account for a slowly varying geometry of the microstructure.

— We assume a scale separation between the free-space wavenumber, kg, which we treat
as of the order of unity (kg ~ 1), and the SPP wavenumber, kspp, with kgpp ~1/d. This
assumption rules out resonance effects, if the period (spacing), d, is close to the free-space
wavelength. In this vein, we do not discuss the case with resonant scaling, kgpp ~ 1.

(f) Paper organization

The remainder of the paper is organized as follows. In Section 2, we introduce the microscale
model and scaling assumptions. In Section 3, we derive a system of homogenized equations and
the corresponding cell problem, which determine the effective material parameters. Section 4
provides a detailed discussion of the ENZ effect from our homogenization. In Section 5, we
complement our analytical findings by a demonstration via examples of how the homogenization
results can serve as a platform for computing the effective optical response of various microscopic
geometries. Section 6 concludes the paper with a summary of the key results and an outline of
open problems. In the appendix we provide detailed analytical derivations needed in the main
text, for the sake of brevity. The supplementary material contains some additional analytical
derivations that are not essential for our paper. We use the e~ time dependence throughout.

2. Microscopic theory and geometry

In this section, we give a detailed description of the (full) microscale model and geometry. We
also describe our scaling assumptions and discuss the rationale underlying them.

Our objective is to study Maxwell’s equations in the (not necessarily bounded) domain
2 C R? that contains microstructures with periodically aligned, plasmonic hypersurfaces Ed;
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see Figure 1. These hypersurfaces are generated from the inscribed hypersurface X' via scaling
with a length scale, d, and periodically repeating a unit cell, ¥ = [0, 1]3. More precisely, we define

Ed:{dz+dc : zeZg,g‘EE},

where Z denotes the set of integers. Note that we make no specific assumption about X, except
that it is smooth (in Y and when periodically continued) so that it admits a well-defined surface
normal. This property does neither imply that X has to be a connected manifold, nor that ¥ has
to have an intersection with the boundary of Y; see Section 5 for examples.

The relevant material parameters can be heterogeneous and tensor-valued. We assume that
the ambient medium, which is contained in €2\ X9, is described by a dielectric permittivity,
?(x). Furthermore, the plasmonic sheets ¢ have the associated surface conductivity o%(). In
addition, we allow for a line conductivity \%(x) on the edges, 0%, of the sheets.

To derive a physically appealing homogenization limit, we assume that the spatial dependence
of the material parameters can be separated into a slowly oscillating macroscale behavior and a
(locally) periodic microscale behavior with structural period d [28,36], viz.,

Ed(:c)zs(w,m/d), Jd(m):da(m,w/d), Ad(m):dz/\(m,m/d) .

Here, e(z,.), o(x,.), and A(z,.) are Y-periodic and tensor-valued, i.e., e(m,y + ei) zs(ac,y),
o(z,y+e;)=oc(z,y),and A(x,y + ;) = A\(, y), for any unit vector e; and ¢ € 2, y € R3.
The surface conductivity o(x,y) and line conductivity A(x,y) deserve particular attention.
The former describes the linear optical response of the (possibly curved) hypersurface X, or
induced surface current along Y, due to an incident electric field. Similarly, A describes the linear
response of the edges, 0%, of X, or induced line current along X, due to an incident electric field.
These considerations imply that both tensors, o(x, y) and A(x, y), are rank deficient with one, or
two zero eigenvalues, respectively. More precisely, by fixing (x,y) and expressing the tensors
o(x,y) and A(x,y) in local coordinates (7,m,v), where T is a vector field parallel to the edge
0X, v is the (interior) normal on X7 d , and n denotes the outward-pointing unit vector orthogonal
to 7 and v, we have
o11 o012 0 A1 0 0
ol = 1091 o9 0|, X=]0 0 0
0 0 0 0 0 0

Since we will apply a formal asymptotic analysis, our assumptions on the related parameters
are not too restrictive. Consequently, we use arbitrary tensor-valued functions ¢ and o. A
mathematically rigorous convergence result typically requires more restrictive assumptions [10].

(a) On the scaling of conductivities
Our particular choice of scalings of the surface and line conductivities with d, viz.,
oclnd, AN~d?,

deserves some explanation. We recall that the wavenumber, kspp, of the desired, fine-scale SPP on
an infinite conducting sheet scales inversely proportional to the surface conductivity (Section 1).
Hence, our choice of scaling of o distinctly separates two scales: one related to the free-space
wavenumber kg (ko ~ 1), determined by the average of e%, and another for the SPP wavenumber,
kspp ~ 1/0 ~ 1/d, on the conducting sheets [24]. By our scaling, the interaction range of the SPP
on each sheet is of the order of d. More precisely, in the limit d — 0 the strength with which SPPs
on one sheet influence neighboring sheets remains constant. In addition, our choice of scaling
implies that the total surface current on the sheets remains finite. In a similar vein we scale the
line conductivity, A%, with d2. In the limit d — 0, this assumption yields a finite total line current
on the edges of the conducting sheets.

It is worth mentioning that other scaling scenarios may lead to different homogenization
results. For example, the assumption ol corresponds to a resonance which in turn yields an
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effective permeability tensor [37]. Such a configuration can exhibit a respective mu-near-zero effect.
A variety of structures, e.g., nanorings, that exhibit a mu-near-zero effect are studied in [38].

(b) Heterogeneous Maxwell’s equations
The time-harmonic Maxwell equations for the electromagnetic field (E?, H?) in 2\ X< are:

V x B =iwpgH?, vV x H = —iwe’E + 7,
2.1)
V~(sdEd):%V-Ja, v.H =0,

The surface conductivity, 0%, is responsible for the appearance of the current density J s =
o EdUdEd, on %< Accordingly, we must impose the following jump conditions on » d (away
from the boundaries (")L‘d):

[VXEd] =0, [ude} =o'E?,
d sd

1 (2.2)
voEY) = LB, vl =0,

Here, [.] s denotes the jump over £ with respect to a chosen normal v, viz.,

— T _ _ d
[Flya (x) = ah{‘no (F(a: +av)— F(z oa/)) rcl”.
Equations (2.1) and (2.2) are supplemented with the following internal boundary conditions on
the edges of the plasmonic sheets, Ed, due to the line conductivity A4

{n x Hd} — g7,
o (2.3)
n-(0’EY = v.(\'E?) onox?,

where n denotes the outward-pointing unit vector tangential to the 2D sheet ¢ and normal to
curve 3%, In (2.3), the symbol { . } axa denotes a singular jump over the edge, x4, viz.,

[e%
{F}ysa () := lim J (F(m+a2n+{u) —F(m—aQn—l—Cv)) d¢ xzcox?. (2.4)
—x

The jump condition in (2.3) stems from the property that, by virtue of the Ampére-Maxwell law,
the line current A E? creates a singular magnetic field, H ~ (1/r) e, as r — 0, where r denotes
the distance to the edge, BZJd, and ey, is the unit vector in the azimuthal direction of the local
cylindrical coordinate system. In this sense, jump (2.4) measures the strength of the singularity of
the magnetic field H at any point 2 € 9. We refer the reader to Section ?? of the supplementary
material for a detailed discussion including a derivation of the jump {. } 5.

The second compatibility condition in (2.3) is a direct consequence of charge conservation
along the edges, 9X%, in view of the fact that o vanishes identically outside the sheets. Let us
explain. The line charge accumulation at the edges is related to the jump of the electric displacement
field in the n-direction over the edge, X% This jump is in turn equal to (iw) " !n - (adEd), since
0% = 0 outside 3. The corresponding line conductivity must be balanced by the divergence of the
line current A E?. Alternatively, compatibility conditions (2.3) can be derived from a variational
formulation; see Section ?? of the supplementary material.

Equations (2.1)—(2.3) form a closed system if they are complemented by suitable boundary
conditions on 9f2. We can impose either absorbing conditions, or periodic conditions, or, in the
case with an unbounded domain, {2, Silver-Miiller radiation conditions at infinity [16,39]. We
make the important assumption that the domain, {2, and the chosen boundary conditions on 942
are compatible with the microstructure in the sense of the following simultaneous requirements:
(i) the microstructure is bounded, that is o(x,.) =0 and e(x,.) = ¢¢ for || > C for some C > 0;
and (ii) the microstructure only touches those parts of the boundary 042 with periodic boundary
conditions. These requirements ensure that the formal homogenization result derived in this

!
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paper remains valid everywhere. If any one of these requirements is not satisfied, a boundary
layer might occur, which necessitates a subtle homogenization procedure near 942 [36].

3. Two-scale expansions and asymptotics

In this section, we provide a derivation of effective system (1.1) by means of a formal asymptotic
analysis. For the sake of brevity, we summarize the derivation here and refer the reader to
Appendix A for details.

We start with the microscale description of (2.1), (2.2) and (2.3). Consider the two-scale
expansions [28,36]

EC S EO(x,y) +dEY (z,y) + PEP (z,y) + ...,
H' 5 HO(2,y) + dHY (2,y) + PH® (z,9) + ...,
with the corresponding substitutions

V=V + év% ad—>5(w,y), 0d—>da(ar:,'y)7 )\d—>d2)\(m,y).
Here, y € Y denotes the fast variable, a now independent coordinate for the microscale. The small
parameter, d, is treated as non-dimensional since it is scaled with 1/kg which is set to unity.

The application of the above formal expansions to (2.1) and (2.2) and the subsequent dominant
balance need to be carried out to the two lowest orders in the small parameter, d. This procedure
results in eight equations and eight boundary conditions ((A 1)-(A 3) in Appendix A), as well as
two interface conditions on 02 ((A 4)-(A 5) in Appendix A). We now use the expanded equations
to describe E(©) and H(® (see (A 6)—(A 7) in Appendix A; cf. [10]). Thus, we find

3
BV (@,y)=E@) + Vye(@,y), ¢@y) =D x(@y)&@), 3.1)
Jj=1
HO (2,y) =H(x), ]
where x;(z, .) are the correctors and assumed to be Y-periodic (j =1, 2, 3).

Next, we focus on the functions £(x), H(x) and x;(=,y) (j =1,2,3). For this purpose, we
resort to the corresponding cell problem (see Section A(b) in Appendix A). Each x; (x, y) satisfies

V- (s@ ) (e; + Vyxs(a, ))) = Y\,
[V x (ej + Vyxj(z,y))] s on Y,
(3.2)
v+ (c@y)(e; + Vyx;(@y) )]E *Vy (o@.y)(e; + Vyx;(@:y)) onx,
n- ( (z, y)(eJ + Vyx;(z, ))) ( (m,y)(ej+Vyxj(m,y))) on9X\ 9y .

Equations (3.2) along with the condition that x;(, . ) be Y-periodic form the desired, closed cell
problem. Notice that « plays the role of a parameter. Hence, the above cell problem uniquely
describes x;(z, .) for any given (macroscopic) point .

A remark on the two jump conditions in (3.2) is in order. The first jump condition ensures
that the tangential part of e; + Vyx;(x,y) on X' is single valued. In regard to the second jump
condition, recall that o (, y) only acts on the tangential part of a vector field (to return a tangential
vector). Thus, the right-hand side of the respective jump condition consists of the divergence of
tangential field components, which in turn implies that this term is also single valued.

Similarly, we recover the homogenized system that fully describes € and H, viz.,

V x € =iwuoH , VX?-L:—iwaeffg—i—Ja;
(3.3)

V'(seﬁg):$V~Ja, V-H=0,

10000000 V 208 4 001d B0 BuysiandAieioseforeds:



20

21

22

23

24

25

26

27

28

29

30

with the effective permittivity tensor eft given by

1
sle;-f(m) = JY e(x,y) (ej + Vyx; (=, y)) -e;dy — o JL‘ o(z,y) (ej + Vyx; (=, y)) - e; doy

1

: Az, L Vyxi(z,y) -eids. (34
WLE\BY (z,y)(ej + Vyx;(z,y)) - e;ds. (34)

For the sake of brevity, we give the derivation of this formula to Section A(c) of Appendix A.
Equations (3.1)—(3.4) summarize our main homogenization results. In conclusion, system (3.3)

describes the large-scale optical response of the periodic medium in terms of the macroscopic

electromagnetic field (£, ) via the effective permittivity tensor ecft given by (3.4) with (3.2).

4. Epsilon-near-zero effect

A crucial feature of the averaging for the effective permittivity, % (x), as implied by (3.4), is
the interplay of three distinct averages: one for the bulk permittivity, ¢; another for the surface
conductivity, o; and a third one for the line conductivity, A. Each of these averages has a positive
real part. This interplay can be exploited as follows. By tuning the microscopic geometry, periodic
spacing, frequency, or surface or line conductivity, we can in principle force at least one eigenvalue
of 5eff(ac) to be close to zero. In the case with an x-independent £, this condition amounts to the
ENZ effect in the direction of propagation determined by the respective eigenvector(s) [5,6].

In the remainder of this section, we discuss the simplified case with a vanishing corrector, x. In
this case, we derive an explicit formula for the special spacing, d = d., called the critical spacing,
that implies the ENZ effect in the presence of the line conductivity, \. We show how our present
averaging procedure is related to results of a Bloch-wave approach [5]. Lastly, we discuss in some
detail the character and physical role of the corrector, x.

(a) Case with vanishing corrector x: Formalism

In principle, the corrector, x, implicitly depends on the geometry and material parameters such as
o and A. Accordingly, the derivation of closed, analytical formulas for x may be possible only in a
limited number of situations. We now restrict attention to the particular yet physically appealing
case with a vanishing corrector, x. Our goal is to better understand the emerging ENZ effect.
Technically speaking, the solution, X, of cell problem (3.2) vanishes whenever the forcing term
in this problem is identically zero. This term may not be immediately obvious by inspection
of (3.2). In order to gain some insight into its character, we invoke the weak formulation of the
cell problem. To this end, we multiply the first equation in (3.2) with a smooth and Y -periodic
test function, 1), and integrate over Y (see also Section ?? of the supplementary material). Two
subsequent integrations by parts, and use of the requisite jump and boundary conditions, yield

0= Jy e(x,y)(e; + Vyx;(z,y)) - Vyd(y) dy

- % L”(w,y)(ey‘ + Vyx;j (@, 9)) - Vyih(y) doy
- % Jaz\ay Mz, y)(ej + Vyx;(e,y)) - Vy(y)ds .

The forcing term corresponds to the following contribution:

1 1
Jy e vt a5 | otemes v do - [

4.1)

A, y)e; - Vyd(y)ds.
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Thus, the requirement of having a vanishing corrector means that (4.1) must vanish identically
for every possible choice of 1. One more integration by parts converts expression (4.1) to

| Yy ve)vw) ayt | (o ye)uiy)ds
Y ox

_ Lv Vy - (U(m,y)ej)w(y) doy — Jaz‘\ay Vy - ()\(m,y)ej)w(y) ds.

Thus, the forcing is necessarily zero whenever the following conditions hold simultaneously:

Vy-e(xz,y) =0 inY,
Vy-o(z,y) =0 onX, 4.2)
n-o(x,y) —Vy - ANz,y) =0 ondX\9Y .

Note that o and A encode information about the curvature of X' and 0%, respectively. This implies
that for a non-flat surface X, or for a surface with (arbitrarily shaped) internal edges, o(x,y)
and A(zx, y) are in principle y-dependent with non-vanishing divergence. Under the assumption
that (4.2) holds, formula (3.4) for the effective permittivity simply reduces to

et :J e(a, y)dy — ij o(a.y)doy — — A, y)ds . *3)
Y wly

iw J dZ\OY
By this simplified (geometric) average, one may directly influence the effective permittivity tensor
by either adjusting the operating frequency, w, or by tuning the parameters o(x, y) and A(z, y).
We add a remark on the above formalism. A natural question at this point concerns the
existence of suitable configurations that obey (4.2). More precisely, it is of interest to specify
configurations that allow for a vanishing corrector while two or all three of the distinct averages in
(4.3) are nonzero. We give three related examples in this section. First, consider the geometry with
parallel, planar sheets of constant o and no edges, X = ), embedded in a homogeneous dielectric
host with uniform ¢; see Figure 2a. In this case, x =0, and we can have a nonzero contribution
from the average of o in (4.3). The second geometry consists of parallel and periodically aligned
nanoribbons embedded in a homogeneous, dielectric host; see Figure 2b. In this case, we can
achieve x =0 through (4.2) and a nonzero contribution of the line average of X in (4.3) by setting
0% =0 and choosing a constant A%. Further, in the same geometry, by choosing a constant
and the y3-dependent line conductivity A = o y3, all three averages in (4.3) are nonzero while
condition (4.2) holds; thus, x =0. An example with a geometry that always has a nonzero
corrector (in the presence of a nonzero conductivity o) consists of parallel and periodically aligned
nanotubes; see Figure 2c. For this third case, the corrector x is obtained numerically. (For further
discussion on the computational framework for x, the interested reader is referred to Section 5.)

(b) Vanishing corrector: A notion of critical spacing

In this subsection, we further simplify average (4.3) in order to derive an explicit formula for the
critical spacing, dc. Recall the ansatz

cl(@)=do(x,x/d), \(z)=d*\z, z/d);

see Section 1(a). Although this choice of scaling is convenient for the asymptotic analysis
(Section 3), it introduces two parameters, o and ), that couple the physical conductivities, o and
A4, with the spacing, d. This coupling may obscure the physical insight possibly gained by the
averaging in (4.3). A reason is that, in realistic settings, the parameters d, o and A? are controlled
independently by tuning of the geometry and the electronic structure of the 2D material [6].

As a remedy, consider the following rescaled quantities

ol(x,y):=do(z,y), N\(z,y)=d\z,y),
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where the microscale variable, y, is singled out and treated as independent in the actual
conductivities, o () and A4(x). The averages of interest therefore are

E(m):J e(x,y)dy, 5d(w):J ad(m,y) doy , Xd(a:):J )\d(:t:7y) ds.
Y = 9Z\oY

For slowly varying parameters, these averages simply reduce to the original parameters. We
assume that £ (z), 3 (x) and \%(x) have the same eigenvectors, or principal axes, r; (i=1,2, 3).
Let &;, 6?, and ;\f, denote the corresponding eigenvalues of the averaged tensors. (Only two
eigenvalues of 7% and one eigenvalue of A% are possibly nonzero.) After some algebra, (4.3) gives

eff yd

=M
- =(1- 1+ ——M 4.4
g d + TWE; 5071‘ d/’ (44)
for all directions r; with nonzero 5¢, or A%. Here, we define the generalized plasmonic thickness [5]

2 —

~d sd d

g; 9; Al
— 4.5
04 = Fig; T <2iw6i> T ieE *3)

which accounts for the line conductivity. Evidently, sjff ~~ 0 if the spacing, d, is close to the critical

value dc = §p ; for some i and suitable ranges of values for ol and X¢ (e.g., Im ad>0,Tm X > 0).
We stress that for |58 > |AZ| (4.4) with (4.5) reduces to the known result

ecff £0,i &t
— ~ (1- ’ §O,i ~ T
&; d TWE;

which is also obtained via a Bloch-wave approach for planar sheets [5]. In contrast, if |]A¢| > |52,
(4.4) reduces to

ngf

: | X
i (1 _ 50,%) 7 50@ ~ i
& d WE;

Notice the distinctly different scaling of £y ; with the conductivity parameter in this regime.

(c) On the physical role of corrector x

Let us return to cell problem (3.2). We now provide a physical interpretation of its solution, the
corrector x. In particular, we solve cell problem (3.2) for the three prototypical configurations
shown in Figure 2 (see also Section 4 (a)). In all three geometries, we set the permittivity and
surface conductivity equal to nonzero constants, e(x, y) =¢, o(x, y) = o, while we take A\(x, y) =
0. By the discussion in Section 4 (a), we conclude that for the geometry of planar sheets with
no edges (Figure 2(a)) x =0. For the geometry of nanoribbons (Figure 2(b)), x2 = x3 =0. The
remaining geometry (Figure 2(c)) has only one vanishing corrector component, x3 = 0. The real
and imaginary parts of the nontrivial corrector component xi for the last two geometries are
shown in Figure 3. The SPP excited by the edge discontinuity is evident in these settings; cf. [24].

Motivated by these numerical results, we develop an argument that the corrector, x, encodes
the microscale response of the system to the macroscopic electromagnetic field, (£(x), H(x)).
We start by noting that our scalings ol (x) = do(z,z/d) and A (z) = d? A(z, z/d) imply that
the typical length scales of surface and line waves (such as SPPs and EPPs) scale with d and dz,
respectively. Accordingly, we can identify the forcing in cell problem (3.2) due to e;. This forcing
corresponds to a (normalized) asymptotically slow planar wave. In this sense, the cell problem
describes the local response of the microstructure to all possible excitations by local plane waves.

This interpretation has an important consequence in light of the discussion in Section 4 (a): All
cases of vanishing correctors are indeed characterized by conditions (4.2). In fact, conditions (4.2)
characterize exactly all microscale geometries that do not permit the excitation of SPPs by plane
waves.

ey
-
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Figure 2: Prototypical examples of microscopic geometries with conducting sheets for cell
problem (3.2). (a) Infinite planar sheet, with no edges. (b) Planar strip (nanoribbon). (c) Sheet
forming circular cylinder (nanotube). The corrector, x, can be characterized as follows: (a) x =0;
(b) x2 = x3 =0 while x; is nontrivial; and (c) x3 =0 while x; and x2 are nontrivial.

-
A '..‘;

(a) Re x1, ribbons (b) Im x1, ribbons (¢) Re x1, tubes (d) Im 1, tubes

Figure 3: Real and imaginary parts of corrector component y1 for geometries of Figures 2b,c in
y1y2-plane. It is evident that internal edges in nanoribbons and curvature in nanotubes create
SPPs.

5. Computational platform and examples of effective permittivity

In this section, we introduce a computational platform that serves as a foundation for
investigating the effective optical response of (sufficiently general) microscopic geometries. We
implement the computational framework with the help of the finite element toolkit deal.Il [40]
and demonstrate its effectiveness on a prototypical and somewhat realistic example of a
plasmonic crystal consisting of corrugated graphene sheets. In addition, we present a number
of computational results concerning the frequency response of effective permittivity (3.4) by use
of cell problem (3.2) for the geometries of nanoribbons and nanotubes (Figure 2b,c).

(a) Computational framework

Building on computational methods that we developed for plasmonic problems [24,41], we
propose the following computational approach for present purposes:

— We compute approximations for solution {£€,#} of homogenized problem (3.3) by use
of an adaptive finite element scheme. Typically, for such a scheme to be efficient there
is a need for advanced computational techniques, such as the construction of a perfectly
matched layer for treatment of absorbing boundary conditions, and strategies for adaptive
local refinement of meshes. We refer the reader to [41] for details.

— During the finite element computation of (3.3) we reconstruct the effective permittivity
tensor ¢!t when needed by first approximating the corrector x; (i =1,2,3) that is
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(a) (b)
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Figure 4: (a) Geometry of a plasmonic-crystal slab of height 1 with corrugated layers of 2D
material, where the corrugation is sinusoidal and the period is equal to the spacing, d (in
the schematic d = 273). (b) Real part of electric field in the y-direction in the corresponding
homogenization limit (as d — 0), via solution of cell problem (3.2) and computation of the
homogenized solution given by (3.3). (c-e) Real part of electric field in the y-direction, based on
direct numerical simulations of (2.1)—(2.3) (see [41]), for decreasing spacing , d (i.e., increasing
degree of scale separation): (c) d = 274 () d =277 ()d =275

described by cell problem (3.2), and subsequently evaluating (3.4) with a suitable
numerical quadrature rule. This is done with the same finite element toolkit [40] that
we use for effective problem (3.3).

We make the remark that using a finite element discretization is particularly advantageous
for approximating cell problem (3.2) that contains a jump condition over smooth, curved
hypersurfaces. For the sake of brevity we omit algorithmic details but refer the reader to [10] for
a discussion of the variational form of equations (3.3) and (3.2), as well as to [40] for algorithmic
details on curved boundary approximations, numerical quadrature, and numerical linear algebra.

We demonstrate the applicability of our computational platform by use of a prototypical
scattering configuration. It consists of a dipole situated in close proximity to a plasmonic crystal
(slab) of height 1 consisting of many layers of corrugated 2D sheets at distance d; see Figure 4.
The sheet corrugation is described by a sine curve of amplitude d/4 and period d (Figure 4a).
The computational result of our proposed scheme involving the homogenized system is shown in
Figure 4b. In addition, Figures 4c-e show the results of a direct numerical simulation of the electric
field E described by (2.1) and (2.2) for an increasing level of scale separation (d = 274 975,
276, respectively). The direct numerical computations shown in Figure 4b-d require a very fine
resolution that results in linear systems with up to 1.6 x 107 unknowns. In contrast, our proposed
computational framework can be efficiently implemented by use of a moderate resolution in the
approximation scheme of around 3.2 x 10% unknowns, a number smaller by a factor of about 500
than the one for the direct numerical simulation. This comparison demonstrates that already for

-y
w
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a moderate scale separation of d = 276 the computational platform leads to a significant saving
of computational resources.

Our example demonstrates in addition that the predictive quality of the homogenized solution
improves with increasing scale separation: Typically, we have a good agreement between the
electromagnetic field {E, H} that is described system (2.1) and (2.2) and the homogenized field
{€,7} given by (3.3) for a scale separation of d ~ 1/64 and less, even for scattering configuration
with dominant near field character as shown in Figure 4. In general, the upper limit of d for which
the homogenized system (3.3) has some predictive quality heavily depends on the geometry and
the location of sources.

We should add the remark that our homogenization result remains valid also for current-
carrying sources, Jg, situated inside the geometry provided the function J.(x) is square
integrable. This claim would typically require that dipole sources have to be regularized, as in
our computational example. In the case with (perfect, unregularized) point sources the emerging
near field might not be captured in its entirety by our computational framework.

(b) Effective permittivity tensors in prototypical geometries

In order to relate numerical results obtained by solving cell problem (3.2) to the averaging in (3.4)
and compute physical quantities as a function of frequency, w, it is necessary to use a suitable
model for the material parameters. If A% =0, the only modeling parameters that enter (3.2) are
e(x,y) and %cr(m, y). We assume that e(x,y) = ¢ is constant and that the tangential parts of
o(x,y) =o(y) are given by spatially constant values. Thus, the only microscale (y-) parameter
dependence to be accounted for is the one in %o(m, y); cf. Figure 2 for geometries of interest.

The surface conductivity, o, of doped graphene can plausibly be described by the Kubo
formula, which takes into account electronic excitations and temperature effects [17]. However,
in a suitable parameter regime that includes terahertz frequencies, in which fine-scale SPPs
on graphene can typically be generated, it has been shown that the Kubo formula reduces to
the (much simpler) Drude model [42]. By this model, the tangential components of a spatially
constant o¢ are given by the formula

d iezEF
ol=——
g0 mh? (w +i/7)

Here, e is the electron charge, /i denotes the (reduced) Planck constant, €9 is the vacuum
permittivity, Er denotes the Fermi energy, and T is the electronic relaxation time. In this context,
an z-dependence of o may arise from spatial variations of the parameters Fr and 7.

We proceed to carry out numerical computations for :fjt Using typical parameter values for
graphene [17], we set 7 = 0.510~ ?s and apply the following rescalings: Er = Ep 10719, w =
©10™Hz,d = d10nm, with 0 < Er <16, 05<®<4.0,and 0<d<20.0. The surface average
in (3.4) of the effective permittivity tensor, £ has the constant (y-independent) prefactor

1 1 4

ni=—o0 = = 829 Er

— 0 B —— 5.1
iw iwd d (& +0.021) G

eff

Utilizing definition (5.1) we conveniently express the matrix elements of € given in (3.4) as

ceff

o " J Pi(y)(ej + Vyxj(,y)) - e;doy .
g g Jy

Here, P;(y) denotes the projection onto the tangential space of ¢ at point y. This formula for sf-ﬁf
uncovers an important property: Up to a factor of €, computational results for the cell problem
only depend on the ratio 7/e. Thus, it is sufficient to compute values for sf§f by setting e = 1.

Let us now recall the discussion about vanishing correctors in Sections 4 (a),(c). For the
prototypical geometries of Figure 2, the respective effective permittivities have the matrix forms:
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Figure 5: Plots of real and imaginary parts of matrix elements of €= as a function of frequency
by (5.2) for the geometries of Figures 2b, c. (a) X, for nanoribbons; and (b) e1; or e, (e1; =¢35)

for nanotubes. The shaded area indicates the frequency regime for negative real part in each case.

£, 0 0 K00 e, 0 0
Sh-lo ¢ o, &f=lo ¢ of, =0 <L o (5.2)
0 0 e3, 0 0 & 0 0 el

Here, the subscript (S, R or T) for each matrix indicates the type of geometry: S corresponds to
the geometry with planar sheets and no edges (Figure 2a); R stands for the nanoribbons geometry
(Figure 2b); and T corresponds to the nanotubes geometry (Figure 2¢). Due to vanishing corrector
components, the matrix element 5?1 is given in closed form by (4.3), viz.,

s ) 5 R T
en1=1-—m; e11=c33=¢e33=¢e33. (5.3)

In the remaining numerical computations, we focus on the more complicated geometries with
nanoribbons and nanotubes (Figure 2b,c). To determine 51121 and 5?1 = 532, we solve cell problem
(3.2) directly and compute the average by (3.4). The computations are carried out by the finite
element toolkit deal Il [40]. To this end, we sample over the frequency range 0.5 <@ < 4.0 with
the choice Ep =1 and d = 20.72. The real and imaginary parts of X, and e}, are plotted as a
function of frequency in Figures 5a, b. The real and imaginary parts of this € satisfy the Kramers-
Kronig relations. We observe that each of these functions exhibits a strong Lorentzian resonance
at around (cX,:) ©p =2.25002(2), and (e1;:) ©p = 1.70285(3). It is of interest to note that the
ENZ effect occurs at the following (rescaled) frequencies: (5%:) Wr2.752, (5?1:) w =~ 2.755. Here,
both frequencies are determined by interpolating the computational results displayed in Figure 5
(obtained via the solution of cell problem (3.2) with a finite element method) with a Lorentzian
function. Note that (5.3) implies the critical frequency @ ~ 2 for 5?1 where 5?1 = 5:5;3 = 51333 = sgg.

6. Conclusion

In this paper, we carried out a formal asymptotic analysis to homogenize time-harmonic
Maxwell’s equations in plasmonic crystals made of conducting sheets with microscale spacing
d, in the limit as d — 0 via suitable scalings of material parameters. The homogenized system
features an effective permittivity tensor, seff, given by an averaging procedure that involves a
weighted volume average of the bulk permittivity, as well as a weighted surface average of the

surface conductivity, O'd, and a weighted line average of the line charge density, )\d, of the sheets.
g g g
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The vector-valued corrector field of this procedure solves a closed cell problem. We showed
analytically how the combination of the complex-valued 0% and A¢ yields an ENZ effect; and
defined the related critical spacing which depends on ¢ and \°.

The introduction of the line charge density, A%, in our microscale model and homogenization
procedure is an aspect that deserves particular emphasis. We believe that this feature has eluded
previous works in plasmonics. In fact, a general and precise quantitative description of the
influence of the physics at material edges on effective optical parameters of plasmonic crystals
made of 2D materials is a largely open problem. Edge effects have received significant attention
recently because of observations of EPPs [18,19]. Our discussion of a homogenization procedure
involving a line charge density on material edges contributes to this effort. For example, we
demonstrated that the (generalized) plasmonic thickness has an algebraic dependence on the line
charge density different from that on the surface conductivity of the 2D material. In addition,
our formalism suggests a few mathematical problems (regarding the well-posedness and formal
proof of homogenization results) which were not addressed here.

We also discussed how our homogenization result can be incorporated into well established
computational approaches for time harmonic Maxwell equations. This procedure involves
the computation of effective material parameters by approximation of the solution of the
corresponding cell problems and averaging. We demonstrated the feasibility of this approach
in a geometry with corrugated sheets; and computed the Lorentz-type resonance of two
prototypical microscopic geometries. The compuational framework that we introduced paves the
road for future, systematic computational investigations of complicated design problems in the
plasmonics of 2D materials [20-22].

Our results have a few limitations and point to open problems in asymptotics. For instance,
the asymptotic analysis is based on a strong periodicity assumption. Further, we do not discuss
boundary layers in the homogenization procedure due to the interaction of the microstructure
with boundaries of the (scattering) domain. It is also worth mentioning that scaling assumptions
different from the ones chosen here may lead to different homogenization results.

A. Two-scale expansion and asymptotics

In this appendix, we carry out in detail the asymptotic analysis that was outlined in Section 3. As
a first step, we apply the two-scale asymptotic expansion to (2.1) and (2.2). By collecting all terms
of the order of d~! in region 2 x Y and of the order of d on {2 x X, we obtain the equations

vy, x B =0, vy, x HO =0,
Vy - EY)=0, vy -HY =o0;
[V X E(O)] = [V X H(O)] =0 (A1)
z ’ = ’
1

[u~(aE(O))] ~Vy - (0B, [u-H(O)} =0.

2w =
In a similar vein, a second set of equations is obtained by collecting all terms of the order of d° in
2 x Y and of the order of d* on 2 x ¥, viz.,

Ve x HY 4+ v, x HY = —iweE® + J, |

Ve x B9 4+ v, x BV =iwuoH® |
(A2)
Ve (eE) + v, (eEW) = %vm Ja,

Vo HY 4+ v, HY =0,
and
[u x E(l)] -0, [u x H(l)] Y O

[u . (EE(l))] (Ve - (O’E(O)) +Vy - (O’E(l))) , [,/ . H(l)] L= 0.

1
Y w
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In (A 1)—(A 3), the differential equations are valid for (z,y) € 2 X Y; while the jump conditions
hold for (z,y) € 2 x X.

So far, we used boundary conditions on the interior of the sheets, £¢ N 2\ d5. We now focus
on (2.3), imposed on the edges, 8% N 0. First, we introduce the rescaled jump {.}y5 in a way
analogous to definition (2.4) for the jump { . } 554, viz.,

{F}ys (z,y) == ahl\‘no Ja (F(z,y +a’n+(v) - F(z,y —a’n+(v))d( yedx.

By carrying out the leading-order asymptotic expansion for the singular jump of (2.4), we see that
{.}gxa = d {.}55- Consequently, the first condition of (2.3) is expanded to

{n x H(l)}az =AE© onx (a5\aY). (A 4)

Furthermore, the expansion of the second one of conditions (2.3) results in the following boundary
conditions to the two lowest orders in d:

n-(0EY) =v,-AE"),  n.(cEW) =v,. O\ED)+v,. AEWY), (A5)
which hold on £2 x (0X\ 9Y).

(a) Characterization of E*) and H ")

We now use (A 1) to characterize E() (z,y) and H ©) (z,y) in more detail. Since a conservative
periodic vector field is the sum of a constant vector and the gradient of a periodic function
(potential), we can write the general solution to the first equation of (A 1) as

EO(z,y)=£(z) + Vyp(,y) Zx] z,y)E (A6)

In this vein, a conservative and divergence-free periodic vector field must be constant. Hence, the
general solution to the second and fourth laws of the first group of equations in (A 1) is given by
HO(z,y) =H(x). (A7)

The functions £(x), H(x) and x;(z,y) (j = 1,2, 3) are further characterized below.

(b) Derivation of cell problem

Next, we derive a closed set of equations that fully describe the functions x;(«,y) introduced
in (A 6). These equations comprise the cell problem accounting for the microstructure details.
First, we substitute (A 6) into the respective, zeroth-order expressions in (A1) and (A5).
Specifically, we use the third law of the first group of equations in (A 1); the first and third jump
conditions in (A 1); and the first condition in (A 5). Thus, we obtain the following equations:

ZV?J ( e(z,y) eJJFVng(wy)))g( )=0 in2xY,

Z [” X (s(w,y)(ej +Vij(ﬂﬂy'y)))}E Ei(@®) =0 onN2x X,
J
> [1/. (s(ac,y)(ej + Vyxj(w,y)))]z &j(x) =
J
EZV?/ ( z,y)(ej + Vyx;(, y)))5 (£) on2x X,

> (o y)(e; + vyxj@c,y))) &(w) =

J

Zvy ( z,y)(e; + Vyx;(z, y)))S (x) on2x (0X\0Y).

-y
~
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Here, £; and x; are coupled. To simplify this description, we treat each term containing x;(x, y),
which accounts for the microscale behavior of E(®) (x,y), as independent from £;(x) (j =1, 2, 3).
Thus, the above equations decouple into three distinct problems, one for each x;, as displayed
in (3.2). Equations (3.2) along with the condition that x;(«, .) be Y-periodic form the desired,
closed cell problem. Notice that « plays the role of a parameter. Hence, the above cell problem
uniquely describes x; (x, .) for any given (macroscopic) point x.

(c) Homogenized macroscale problem

Our remaining task is to derive corresponding macroscale equations for the functions £(x) and
7 (x). We start by substituting (A 6) and (A 7) into the first equation of (A 2) and averaging (in
cell Y) over the fast variable, y. Hence, we obtain the following expression:

Vi x H(x) +J Vy x HY (2, y) dy =
Y

szJ (@, y)(e; + Vyxj(z,y)) dy E(x) + Ja(x) . (A8)

By use of the Gauss theorem and the Y-periodicity of H @) , the second term on the left-hand side
of the above equation is written as

Jrec) :_J frec) _J rec)
JY Vy % dy . [u X }2 doy - {n X }azd ds

= —J o(zx, y)E(O) doy — J Ae, y)E(O)ds
= 8X\oY

:—Z{J o(x,y)(ej + Vyx;) doy + J

OX\Y

In the above, the second equality comes from using the second jump condition of (A 3), and (A 4).
The third equality follows from (A 6). Let us now define the effective permittivity tensor eff by

1
e%%m)::jyexw,yxej+-vyxxw,y»-eidy—-a;jzo<m,yxej+-vyxxm,y»-eidoy
1

w JaE\BY ANz, y)(ej + Vyxj(a,y)) -eids. (A9)

In view of this definition of *, (A 8) takes the form
V x H=—iweME + Ja
which describes the effective Ampére-Maxwell law.

The last three equations of (A 2) can be manipulated in a similar fashion. For example, consider
the third equation. By using (A 6) and (A 7) and averaging over the fast variable, y, we obtain

2(@,y)(ej + Vyx; (@) dy £ (@)

vx~(ZJ

j Y

+J Vy : (E(wa y)E(l)(may)) dy - iV:E . Ja(m) . (A 10)
Y w

Nz, y)(e; + Vyxj)ds} Ej(x).
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Next, we manipulate the second term of the left-hand side by applying the Gauss theorem and
utilizing the second jump condition of (A 3), as follows:

JY Vy - ED)dy=— J (v (cEM)] . doy

b))
—_ JE %(vx (0EY) + v, - (0EM)) do,
= —%Vm . (Z Jx o(z,y) (ej + Vyx;(z, y)) doy £;(x) dOy)

J

- *J Vy - (O’E(l))dOy .
z

By applying the Gauss theorem and utilizing the second boundary condition in (A 5), we find

JE Vy - (UE(l))dOy = J

n- (O’E(l)) ds = J n- ((TE(l)) ds
ox

95\8Y

= J Ve AEY) +V, - (AE')ds
oX\oY

— v, ;Jaz\aym,y) (e + Vyx; () ds €; (@)

The second equality (exclusion of 9Y") exploits the fact that ocEM (z,.) is Y-periodic and, thus,
single valued on 90X N JY. Notice, however, that the normal vector n changes sign. The last
integral in the second line vanishes because X'\ Y has no boundary. Substituting the result of
these manipulations into (A 10) and utilizing (A 9), we obtain

V(e = L1v. g,
w

Similar steps can be applied to the remaining equations of (A 2). The homogenized system
finally reads

V x & =iwuoH , VX?{:—iweeff€+Ja;

1 (A11)
V. fey=—v.J., V-H=0.

iw
Data Accessibility. Detailed analytical derivations accompanying the discussion in this paper have been
made available as part of the supplementary material.
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