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ABSTRACT

Plasmonic crystals are a class of optical metamaterials that consist

of engineered structures at the sub-wavelength scale. They exhibit

optical properties that are not found under normal circumstances

in nature, such as negative-refractive-index and epsilon-near-zero

(ENZ) behavior. Graphene-based plasmonic crystals present linear,

elliptical, or hyperbolic dispersion relations that exhibit ENZ be-

havior, normal or negative-index diffraction. The optical properties

can be dynamically tuned by controlling the operating frequency

and the doping level of graphene. We propose a construction ap-

proach to expand the frequency range of the ENZ behavior. We

demonstrate how the combination of a host material with an optical

Lorentzian response in combination with a graphene conductivity

that follows a Drude model leads to an ENZ condition spanning a

large frequency range.
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1 INTRODUCTION

The control of electromagnetic (EM) properties of optical materials

on the nanoscale has opened the door for designing novel devices

and applications that include nano-antennas with extremely short

wavelength resonance [4], optical holography [27], and wireless

nanocommunication [8, 13]. Controlling the structure of materials

at the sub-wavelength scale enables the design of metamaterials
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that possess properties that are not found under normal circum-

stances in nature such as negative refraction [9] and epsilon-near-

zero (ENZ) behavior [24]. One of the key ingredients for designing

such metamaterials is the creation of EM waves with much shorter

wavelengths than those of the incident light. These sub-wavelength

waves involve electronic motion (plasmons) coupled with EM sur-

face waves and are referred to as surface plasmon polaritons [7, 12].

Plasmonic crystals are a class of metamaterials that is of particu-

lar interest. They consist of metallic layers arranged periodically

with sub-wavelength distance in a dielectric host. This class of meta-

materials offers fine control of EM properties and can serve as ENZ

[17, 19] and negative refractive index media [26]. ENZ metamate-

rials exhibit properties which cannot be obtained by traditional

photonic systems. These features include wave propagation with

no phase delay and diffraction, decoupling of spatial and tempo-

ral field variations, propagation through very narrow channels,

and ultra fast phase transitions [15, 19, 24]. Many novel optical

devices have been proposed indicating the broad prospects of the

ENZ effect such as systems with ultrafast and very large nonlinear

response [11], bent EM waveguides with and without embedded

obstacles [1], propagation through extremely narrow optical chan-

nels [5, 24], tailoring of the phase of radiation patterns [2]; as well

as optical cloaking, focusing, and unidirectional transmission of

EM waves [22]. However, novel metals have the unfortunate side

effect that their use in plasmonic platforms restricts the frequency

range where above exotic optical effects occur. In addition, the re-

sulting plasmonic device regularly suffers from high optical losses

and construction defects yield non perfect planar layers which also

negatively affect the optical properties. All of these issues may no

longer be critical due to the discovery of truly two-dimensional

(2D) materials, such as graphene, black phosphorus, hexagonal

boron nitride, and molybdenum disulfide. They promise a new era

of control of optical properties of photonic and plasmonic devices

[3, 16, 20, 25, 28]. In particular, graphene supports plasmons with

ultra-sub-wavelength behavior, ranging from terahertz (THz) to

infrared frequencies. Due to the confining of electrons in two di-

mensions, the quantum effects are very pronounced and thus 2D

materials pose exceptional optical properties and high quantum

efficiency for light-matter interaction [7, 12].

Graphene is a quite interesting material because it enables the

control of electronic and, in turn, plasmonic properties by changing
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the density of the free charge carriers through an external gate field,

chemical deposition, or intercalation [7, 23, 28]. It was demonstrated

that graphene plasmonic crystals can serve as an ingredient in a

tunable metamaterial [17, 19, 26]. In particular, a plasmonic crystal

consisting of periodically stacked graphene layers embedded in a

dielectric host leads to negative refraction and ENZ behavior in

the THz and infrared frequencies, and allows one to tune optical

properties by controlling the operation frequency or the doping

amount [19]. Furthermore, It has been shown that the ENZ con-

dition coincides with a plasmonic Dirac cone in the wavenumber

space, where the plasmonic Dirac cone is formed by two asymptot-

ically linear, intersecting dispersion bands [11, 15, 17, 19]. Such a

graphene-based plasmonic crystal design, however, has the major

shortcoming that ENZ behavior can only be observed for a very

small frequency range. This is due to the fact that a plasmonic

crystal with a dielectric host that has frequency independent op-

tical properties admits only a single plasmonic Dirac point which

restricts the ENZ effect to a very narrow frequency range. This is

disadvantageous for a number of optical applications involving a

continuous spectrum of EM waves. In this study we introduce a

further degree of freedom in controlling the optical properties of

graphene plasmonic crystals by using Lorentz dispersive dielectric

host materials [14]. The dielectric function of this family of mate-

rials depends on the operating frequency. We find that by using

an appropriate Lorentz host we obtain multiple plasmonic Dirac

points resulting in a wide frequency range exhibiting an ENZ ef-

fect. For a particular host material that we examine, Magnesium

Oxide, we demonstrate that (a) two Dirac points emerge in the THz

band; and (b) that for a large frequency interval containing the

two Dirac points the ENZ condition is fulfilled. As a second design

example, we propose a hypothetical dielectric with two Lorentz

resonances leading to three Dirac points and an even wider fre-

quency spectrum of ENZ behavior. This example is motivated by

the significant progress that was made in (atomistic) material engi-

neering recently, that has the prospect of enabling the engineering

of materials with desirable electronic properties. For instance, Van

der Waals heterostructures are comprised of different 2D materials

that are stacked in a particular way to provide desirable electronic

and optical features [6, 21].

The remainder of this paper is organized as follows. In Section 2

we review the graphene-based plasmonic crystal by using Bloch the-

ory and discuss the mathematical relation between the plasmonic

Dirac point and ENZ effect. In Section 3 we extend the frequency

range of the ENZ effect by introducing Lorentz materials as the

ambient material of the graphene layers. The paper concludes in

Section 4 with a summary of the key ideas introduced in this study

and an outlook.

2 BLOCH-WAVE THEORY

We consider a plasmonic crystal that consists of a dielectric host

surrounding flat in which periodic 2D metallic sheets that are par-

allel to the ~I-plane located at G = =3 , for integer =. Here, 3 de-

notes the structural period. The metallic sheets are described by

an isotropic surface conductivity f . The dielectric host is consid-

ered to be an anisotropic material described by a uniaxial dielectric

tensor diag(YG , Y~, YI) with out-of-plane component YG = const and

G-dependent in-plane components Y~ (G) = YI (G); the vacuum per-

mittivity is set to unity, Y0 = 1. We examine transverse-magnetic

(TM), time-harmonic waves with electric and magnetic field com-

ponents K = (�G , 0, �I) and N = (0, �~, 0), respectively. Imposing

rotational symmetry of the crystal and TM polarization results in

EM fields that are guided modes in I-direction, and translation

invariant along the ~-direction [19], hence

�I (G, I) = E(G)48:II ,
where :I is the wavenumber along I direction. The above assump-

tions allow us to simplify the system of time dependent Maxwell

equations to a one dimensional eigenvalue problem [17] with the

Helmholtz type governing equation
[

m2

mG2
− ^ (:I)YI (G)

]

E(G) = 0, ^ (:I) =
:2I − :20YG

YG
, (1)

where :0 = l/2 , l = 2c 5 is the angular operating frequency and 5

denotes the ordinary operating frequency, 2 is the free space speed

of light. The metallic 2D sheets carry a surface current �B = fE
that acts as a boundary. Maxwell equations dictate that on the

boundaries that are defined by the metallic sheets at G = =3 , the

tangential electric field E must be continuous with discontinuous

derivative with a jump discontinuity due to the surface currents on

the metallic plates, hence the transmission conditions are [17]:
{ E+ − E−

= 0,
m

mG
E+ − m

mG
E−

=
8f

l
^ (:I)E+,

(2)

where (·)± denotes the limit above (+) and below (−) of a metallic

boundary. We can get a closed system of equations by using the

Bloch-wave ansatz [17, 19] in the G direction with :G indicating the

real Bloch number:

E(G) = 48:G3E(G − 3). (3)

The combination of the transmission conditions (2) and Bloch ansatz

(3) yields a closed system of boundary conditions, viz.,
[

E(3−)
E ′(3−)

]

= 48:G3
[

1 0

−8f/l^ (:I) 1

] [

E(0+)
E ′(0+)

]

. (4)

Here, E ′ denotes the derivative of E with respect to G . In order to

solve the differential equation (1) with boundary conditions (4) we

introduce the two fundamental solutions E (1) and E (2) of (1) that
fulfill the initial conditions:

E (1) (0) = 1, E ′
(1) (0) = 0, E (2) (0) = 0, E ′

(2) (0) = 1.

By substituting a linear combination E = 21 E (1) + 22 E (2) into (4)

we obtain
(

[E (1) (3) E (2) (3)
E ′
(1) (3) E ′

(2) (3)

]

− 48:G3
[

1 0

−8 (f/l)^ (:I) 1

]

)

[

21
22

]

= 0.

This system admits a nontrivial solution (with 21 ≠ 0, or 22 ≠ 0)

whenever

� [k] = det

(

[E (1) (3) E (2) (3)
E ′
(1) (3) E ′

(2) (3)

]

− 48:G3
[

1 0

−8 (f/l)^ (:I) 1

]

)

= 0. (5)
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Equation (5) now forms a dispersion relation between :G and :I . It

is convenient to work in a 2D wavenumber space k = (:G , :I). In
Ref. [17] formula (5) is used to determine the dispersion relation for

several examples of dielectric functions, YI (G), including constant,

parabolic, double-well, and nonsymmetric dielectric profiles. The

plasmonic crystal has the character of an ENZ medium for values

k in the vicinity of the Dirac point k∗ = (:∗G , :∗I ) = (0,±:0
√
YG )

[17], that occurs at the center of the Brillouin zone [19]. It has been

shown that the occurence of the plasmonic Dirac point is a universal

behavior of 2D plasmonic crystals with any spatial dependence on

the dielectric host along the G direction [17].

At k∗ the effective in-plane permittivity component, YeffI , of the

metamaterial becomes zero, hence in the neighborhood of k∗ we
observe ENZ behavior. For the purpose of examining ENZ frequency

bands in the following, we make the heuristic definition of speaking

of an ENZ behavior whenever
�

�YeffI
�

�

< 0.25. In this work we focus on

the frequency-dependent response of a plasmonic crystal assuming

that the host material is described by a constant in space but

possibly l dependent permittivity. Thus, as a last preparatory step

we solve the dispersion relation explicitly for the special case of

spatially constant YG and YI . In this case the fundamental solutions

of the differential equation (1) are given by

E (1) = cosh
(√
^YIG

)

, E (2) =
1√
^YI

sinh
(√
^YIG

)

.

Substituting both solutions into dispersion relation (5) yields

cos(:G3) = cosh(√^YI3) −
b0
√
^YI

2
sinh(√^YI3), (6)

where

b0 = − 8f

lYI
(7)

is the plasmonic thickness that determines the length scale of plas-

monic structures perpendicular to the 2Dmaterial sheets [17, 19, 26].

For k close to k
∗ the dispersion relation (6) reduces to

:2G

YeffI
+ :2I
YG

= :20 .

This implies that up to first order the effective permittivity YeffI is

given by

YeffI =

(

1 − b0

3

)

YI . (8)

It can be shown by a refined argument that equation (8) is uni-

versal [18]: An EM wave traveling through the plasmonic crystal

sees an effective homogeneous medium with effective permittiv-

ity Y = diag
(

YG , Y
eff
I , YeffI

)

. Therefore, three distinct cases of wave

propagation are possible: elliptic propagation (ℜ YeffI > 0), hyper-

bolic propagation (ℜ YeffI < 0), and ENZ behavior (ℜ YeffI ≈ 0). The

elliptical dispersion bands yield propagating waves with normal

diffraction, whereas the hyperbolic bands correspond to negative

refraction. The ENZ case is described by a linear Dirac dispersion

and corresponds to propagation without dispersion and phase delay

[19].

Equation (8) provides a systematic way to design plasmonic crys-

tals with ENZ properties. We observe that we obtain YeffI = 0 when

b0 = 3 , hence for a given 3 we can tune the plasmonic thickness, b0,

Figure 1: Dispersion relation :G (:I) as function of frequency

for a graphene plasmonic crystal with silica glass as dielectric

host. The Dirac cone ismarked in red and also shown in inset.

to be equal to 3 , and vice versa. This also explains why graphene is

such an exceptional plasmonic platform. The surface conductivity

of graphene depends on the operating frequency as well as the

doping, hence we can dynamically tune the surface conductivity

f to achieve b0 ≈ 3 . More precisely, the surface conductivity of

graphene is given by Kubo’s formula which includes both inter-

band and intraband electronic transitions. Nevertheless, in THz and

infrared frequencies the intraband transitions dominate and thus,

Kubo’s formula is simplified to Drude model [7, 12]:

f (l) = 842��

cℏ2 (l + 8/g) , (9)

where �� is the Fermi level associating with the density of electric

carriers and corresponding to the electronic doping; the �� can

be dynamically tuned by an external gate field or can be fixed by

chemical deposition or intercalation [7, 23, 28]. The electron charge

is denoted by 4 , ℏ is the reduced Planck constant, and g is electronic

relation time accounting for optical losses with a typically value of

g = 0.5 ps.

As a first example we study a plasmonic crystal that consists

of doped graphene layers in a silica glass host with constant and

equal permittivity components of YG = YI = 2. In Figure 1 we

show the dispersion relation :G (:I) calculated by equation (6) for

different values of frequency 5 in the range [40, 140] THz. The
structural period and the Fermi level are kept constant at 3 = 20

nm and �� = 0.5 eV, respectively. We observe one plasmonic Dirac

point that appears at 5 = 65 THz (highlighted by red and shown

in inset diagram of Figure 1), where the dispersion bands change

from elliptical to hyperbolic.

3 LORENTZ HOST MATERIAL

In the previous section we saw how a (single) plasmonic Dirac point

can appear in the dispersion of a 2D metal-based plasmonic crystal

that then—in the vicinity of the Dirac point—behaves as an ENZ

medium. The ENZ effect is, however, restricted to a narrow range

of frequencies. This is an issue for real applications that typically
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