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ABSTRACT

Plasmonic crystals are a class of optical metamaterials that consist
of engineered structures at the sub-wavelength scale. They exhibit
optical properties that are not found under normal circumstances
in nature, such as negative-refractive-index and epsilon-near-zero
(ENZ) behavior. Graphene-based plasmonic crystals present linear,
elliptical, or hyperbolic dispersion relations that exhibit ENZ be-
havior, normal or negative-index diffraction. The optical properties
can be dynamically tuned by controlling the operating frequency
and the doping level of graphene. We propose a construction ap-
proach to expand the frequency range of the ENZ behavior. We
demonstrate how the combination of a host material with an optical
Lorentzian response in combination with a graphene conductivity
that follows a Drude model leads to an ENZ condition spanning a
large frequency range.
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1 INTRODUCTION

The control of electromagnetic (EM) properties of optical materials
on the nanoscale has opened the door for designing novel devices
and applications that include nano-antennas with extremely short
wavelength resonance [4], optical holography [27], and wireless
nanocommunication [8, 13]. Controlling the structure of materials
at the sub-wavelength scale enables the design of metamaterials
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that possess properties that are not found under normal circum-
stances in nature such as negative refraction [9] and epsilon-near-
zero (ENZ) behavior [24]. One of the key ingredients for designing
such metamaterials is the creation of EM waves with much shorter
wavelengths than those of the incident light. These sub-wavelength
waves involve electronic motion (plasmons) coupled with EM sur-
face waves and are referred to as surface plasmon polaritons [7, 12].

Plasmonic crystals are a class of metamaterials that is of particu-
lar interest. They consist of metallic layers arranged periodically
with sub-wavelength distance in a dielectric host. This class of meta-
materials offers fine control of EM properties and can serve as ENZ
[17, 19] and negative refractive index media [26]. ENZ metamate-
rials exhibit properties which cannot be obtained by traditional
photonic systems. These features include wave propagation with
no phase delay and diffraction, decoupling of spatial and tempo-
ral field variations, propagation through very narrow channels,
and ultra fast phase transitions [15, 19, 24]. Many novel optical
devices have been proposed indicating the broad prospects of the
ENZ effect such as systems with ultrafast and very large nonlinear
response [11], bent EM waveguides with and without embedded
obstacles [1], propagation through extremely narrow optical chan-
nels [5, 24], tailoring of the phase of radiation patterns [2]; as well
as optical cloaking, focusing, and unidirectional transmission of
EM waves [22]. However, novel metals have the unfortunate side
effect that their use in plasmonic platforms restricts the frequency
range where above exotic optical effects occur. In addition, the re-
sulting plasmonic device regularly suffers from high optical losses
and construction defects yield non perfect planar layers which also
negatively affect the optical properties. All of these issues may no
longer be critical due to the discovery of truly two-dimensional
(2D) materials, such as graphene, black phosphorus, hexagonal
boron nitride, and molybdenum disulfide. They promise a new era
of control of optical properties of photonic and plasmonic devices
[3, 16, 20, 25, 28]. In particular, graphene supports plasmons with
ultra-sub-wavelength behavior, ranging from terahertz (THz) to
infrared frequencies. Due to the confining of electrons in two di-
mensions, the quantum effects are very pronounced and thus 2D
materials pose exceptional optical properties and high quantum
efficiency for light-matter interaction [7, 12].

Graphene is a quite interesting material because it enables the
control of electronic and, in turn, plasmonic properties by changing
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the density of the free charge carriers through an external gate field,
chemical deposition, or intercalation [7, 23, 28]. It was demonstrated
that graphene plasmonic crystals can serve as an ingredient in a
tunable metamaterial [17, 19, 26]. In particular, a plasmonic crystal
consisting of periodically stacked graphene layers embedded in a
dielectric host leads to negative refraction and ENZ behavior in
the THz and infrared frequencies, and allows one to tune optical
properties by controlling the operation frequency or the doping
amount [19]. Furthermore, It has been shown that the ENZ con-
dition coincides with a plasmonic Dirac cone in the wavenumber
space, where the plasmonic Dirac cone is formed by two asymptot-
ically linear, intersecting dispersion bands [11, 15, 17, 19]. Such a
graphene-based plasmonic crystal design, however, has the major
shortcoming that ENZ behavior can only be observed for a very
small frequency range. This is due to the fact that a plasmonic
crystal with a dielectric host that has frequency independent op-
tical properties admits only a single plasmonic Dirac point which
restricts the ENZ effect to a very narrow frequency range. This is
disadvantageous for a number of optical applications involving a
continuous spectrum of EM waves. In this study we introduce a
further degree of freedom in controlling the optical properties of
graphene plasmonic crystals by using Lorentz dispersive dielectric
host materials [14]. The dielectric function of this family of mate-
rials depends on the operating frequency. We find that by using
an appropriate Lorentz host we obtain multiple plasmonic Dirac
points resulting in a wide frequency range exhibiting an ENZ ef-
fect. For a particular host material that we examine, Magnesium
Oxide, we demonstrate that (a) two Dirac points emerge in the THz
band; and (b) that for a large frequency interval containing the
two Dirac points the ENZ condition is fulfilled. As a second design
example, we propose a hypothetical dielectric with two Lorentz
resonances leading to three Dirac points and an even wider fre-
quency spectrum of ENZ behavior. This example is motivated by
the significant progress that was made in (atomistic) material engi-
neering recently, that has the prospect of enabling the engineering
of materials with desirable electronic properties. For instance, Van
der Waals heterostructures are comprised of different 2D materials
that are stacked in a particular way to provide desirable electronic
and optical features [6, 21].

The remainder of this paper is organized as follows. In Section 2
we review the graphene-based plasmonic crystal by using Bloch the-
ory and discuss the mathematical relation between the plasmonic
Dirac point and ENZ effect. In Section 3 we extend the frequency
range of the ENZ effect by introducing Lorentz materials as the
ambient material of the graphene layers. The paper concludes in
Section 4 with a summary of the key ideas introduced in this study
and an outlook.

2 BLOCH-WAVE THEORY

We consider a plasmonic crystal that consists of a dielectric host
surrounding flat in which periodic 2D metallic sheets that are par-
allel to the yz-plane located at x = nd, for integer n. Here, d de-
notes the structural period. The metallic sheets are described by
an isotropic surface conductivity o. The dielectric host is consid-
ered to be an anisotropic material described by a uniaxial dielectric
tensor diag(ex, £y, £z) with out-of-plane component £; = const and
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x-dependent in-plane components £y (x) = £2(x); the vacuum per-
mittivity is set to unity, g = 1. We examine transverse-magnetic
(TM), time-harmonic waves with electric and magnetic field com-
ponents E = (Ey,0,E;) and H = (0, Hy, 0), respectively. Imposing
rotational symmetry of the crystal and TM polarization results in
EM fields that are guided modes in z-direction, and translation
invariant along the y-direction [19], hence

E;(x,2) = &(x)elk=7 |

where k; is the wavenumber along z direction. The above assump-
tions allow us to simplify the system of time dependent Maxwell
equations to a one dimensional eigenvalue problem [17] with the
Helmbholtz type governing equation
9 kZ - kiex
— — (k) ()| E(x) =0, x(ks) = ———, (1)
ox Ex
where ko = w/c, w = 2z f is the angular operating frequency and f
denotes the ordinary operating frequency, c is the free space speed
of light. The metallic 2D sheets carry a surface current J; = ¢&
that acts as a boundary. Maxwell equations dictate that on the
boundaries that are defined by the metallic sheets at x = nd, the
tangential electric field & must be continuous with discontinuous
derivative with a jump discontinuity due to the surface currents on
the metallic plates, hence the transmission conditions are [17]:
& -& =0,
7] 7] ioc
—&Y - —& = —«(k)E",
ox ox 0]

)

where (-)* denotes the limit above (+) and below (—) of a metallic
boundary. We can get a closed system of equations by using the
Bloch-wave ansatz [17, 19] in the x direction with ky indicating the
real Bloch number:

E(x) = e*dg(x - d). 3)
The combination of the transmission conditions (2) and Bloch ansatz
(3) yields a closed system of boundary conditions, viz.,
S(d_) _ eikxd 1 0 8(0+) (4)
E'd)| —io/wk(k;) 1| |&E(0T)|"
Here, &’ denotes the derivative of & with respect to x. In order to
solve the differential equation (1) with boundary conditions (4) we

introduce the two fundamental solutions & ;) and &) of (1) that
fulfill the initial conditions:

8 (0) =1, 8, (0) =0, E(0) =0, &, (0) = 1.

we obtain
[61] B
2) —i(o/w)k(ky) 1 co|

By substituting a linear combination & = ¢1 &(q) + c2 E(y) into (4)
En(d) S @] ik 1 0
E(yd) &, @] "¢
(1)
This system admits a nontrivial solution (with ¢; # 0, or ¢z # 0)
whenever

DJ|k] = det

[8(1) (d) &
& (@ 8

ikyd 1 01 _
e [—i(a/w)x(kz) 1])‘0' ©)
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Equation (5) now forms a dispersion relation between kyx and k. It
is convenient to work in a 2D wavenumber space k = (ky, kz). In
Ref. [17] formula (5) is used to determine the dispersion relation for
several examples of dielectric functions, &, (x), including constant,
parabolic, double-well, and nonsymmetric dielectric profiles. The
plasmonic crystal has the character of an ENZ medium for values
k in the vicinity of the Dirac point k* = (k¥, k3) = (0, £ko+/ex)
[17], that occurs at the center of the Brillouin zone [19]. It has been
shown that the occurence of the plasmonic Dirac point is a universal
behavior of 2D plasmonic crystals with any spatial dependence on
the dielectric host along the x direction [17].

At k* the effective in-plane permittivity component, £, of the
metamaterial becomes zero, hence in the neighborhood of k* we
observe ENZ behavior. For the purpose of examining ENZ frequency
bands in the following, we make the heuristic definition of speaking
of an ENZ behavior whenever |€§ff| < 0.25. In this work we focus on
the frequency-dependent response of a plasmonic crystal assuming
that the host material is described by a constant in space but
possibly w dependent permittivity. Thus, as a last preparatory step
we solve the dispersion relation explicitly for the special case of
spatially constant ¢x and ¢,. In this case the fundamental solutions
of the differential equation (1) are given by

&(1) = cosh (Viezx), &z = sinh (Vk&;x) .

Kez
Substituting both solutions into dispersion relation (5) yields

Eoxez

cos(kxd) = cosh(y/kezd) — 5

sinh(vkezd),  (6)

where
io
fo=—— ™)
wez
is the plasmonic thickness that determines the length scale of plas-
monic structures perpendicular to the 2D material sheets [17, 19, 26].
For k close to k* the dispersion relation (6) reduces to
£ LR
5+t =k
& &x
This implies that up to first order the effective permittivity £ is
given by

et = ( - %) &z ®)

It can be shown by a refined argument that equation (8) is uni-
versal [18]: An EM wave traveling through the plasmonic crystal
sees an effective homogeneous medium with effective permittiv-

ity ¢ = diag (sx, egff, E;ff). Therefore, three distinct cases of wave

propagation are possible: elliptic propagation (R sgﬂ > 0), hyper-
bolic propagation (R £ < 0), and ENZ behavior (R £ ~ 0). The
elliptical dispersion bands yield propagating waves with normal
diffraction, whereas the hyperbolic bands correspond to negative
refraction. The ENZ case is described by a linear Dirac dispersion
and corresponds to propagation without dispersion and phase delay
[19].

Equation (8) provides a systematic way to design plasmonic crys-
tals with ENZ properties. We observe that we obtain eﬁﬁc = 0 when
& = d, hence for a given d we can tune the plasmonic thickness, &,
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Figure 1: Dispersion relation ky (k;) as function of frequency
for a graphene plasmonic crystal with silica glass as dielectric
host. The Dirac cone is marked in red and also shown in inset.

to be equal to d, and vice versa. This also explains why graphene is
such an exceptional plasmonic platform. The surface conductivity
of graphene depends on the operating frequency as well as the
doping, hence we can dynamically tune the surface conductivity
o to achieve & =~ d. More precisely, the surface conductivity of
graphene is given by Kubo’s formula which includes both inter-
band and intraband electronic transitions. Nevertheless, in THz and
infrared frequencies the intraband transitions dominate and thus,
Kubo’s formula is simplified to Drude model [7, 12]:

ie’E F
mh?(w+i/7)’
where EF is the Fermi level associating with the density of electric
carriers and corresponding to the electronic doping; the Er can
be dynamically tuned by an external gate field or can be fixed by
chemical deposition or intercalation [7, 23, 28]. The electron charge
is denoted by e, 7i is the reduced Planck constant, and 7 is electronic
relation time accounting for optical losses with a typically value of
7 =0.5ps.

As a first example we study a plasmonic crystal that consists
of doped graphene layers in a silica glass host with constant and
equal permittivity components of ¢x = &, = 2. In Figure 1 we
show the dispersion relation kyx (k;) calculated by equation (6) for
different values of frequency f in the range [40, 140] THz. The
structural period and the Fermi level are kept constant at d = 20
nm and Er = 0.5 eV, respectively. We observe one plasmonic Dirac
point that appears at f = 65 THz (highlighted by red and shown
in inset diagram of Figure 1), where the dispersion bands change
from elliptical to hyperbolic.

©)

o(w) =

3 LORENTZ HOST MATERIAL

In the previous section we saw how a (single) plasmonic Dirac point
can appear in the dispersion of a 2D metal-based plasmonic crystal
that then—in the vicinity of the Dirac point—behaves as an ENZ
medium. The ENZ effect is, however, restricted to a narrow range
of frequencies. This is an issue for real applications that typically
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involve a range of operating frequencies forming a wavepacket.
We now introduce a Lorentz host material into the plasmonic crys-
tal. We demonstrate how this leads to multiple Dirac points in
the dispersion relation and consequently a significantly expanded
frequency range with ENZ behavior.

The Drude model takes only intraband electronic transition into
account that model free electrons in a metal response to an EM
field. Dielectric materials, however, do not have free charge carriers
(electrons). Here, the optical response due to an external EM field
is mainly caused by bound charges in the dielectric material where
radiation can be absorbed due to interband electronic transitions.
The Lorentz model is a phenomenological model that takes these
interband electronic transitions into account. Dielectrics described
by this model are called Lorentz dispersive materials [14]. The con-
tribution of the interband transition leads to a frequency dependent
permittivity that reads

(&5 — Eoo)(ug

2

. (10)
Wy~ w2 +iTw

(W) = 0o +

Here, wo denotes the resonance (natural) angular frequency of the
bound electrons, T is the electron damping rate, e, and €5 are the
high and low frequency limits of the permittivity, respectively.

A concrete example for a plasmonic crystal with a Lorentz disper-

sive host material that shows an extended ENZ band is Magnesium
Oxide (MO). MO’s parameters for the Lorentz model read: e, = 11.2,
& = 2.6, wg = 1eV (f = 241.8 THz), and I’ = 0 [10]. We point out
that MO is considered to be a lossless dielectric and hence can be
used for optical devices. We compute the dispersion relation (6) of
the plasmonic crystal for this case by setting the host permittivity to
&z = &x = £(w). The resulting dispersion relation involving (ky, k)
and the operating frequency f are shown in Figure 2 (upper). We
indeed observe two Dirac points at frequencies fi = 67 THz and
f2 = 99 THz. The two Dirac cones are marked in red in the diagrams
and pointed out in the inset of Figure 2.
Since we are interested in the ENZ range, we calculate the in-plane
effective dielectric permittivity given by equation (8). The results
are shown in the lower panel of Figure 2. In particular, we compute
the ngf as a function of the frequency for our example of a plasmonic
crystal with MO host. For the sake of comparison we plot the ngf
for a plasmonic crystal that was studied in previous sections, that it,
with silica glass as dielectric host instead of MO. The shaded area
represents the ENZ range (|£§ff| < 0.25). We observe that indeed the
ENZ band of the plasmonic crystal with Lorentz dispersive host is
significantly extended, about four times, compared to the previous
example of a constant permittivity host material.

We can further generalize our approach by assuming dielectric
materials with permittivity given by a multi-oscillators Lorentz
model [14] where many interband transitions take place and drasti-
cally contribute to the dielectric function. Such a material provides
many Dirac points in the k space. Subsequently, the &I becomes
zero many times and thus, the ENZ frequency range is significantly
expanded. We propose this hypothetical scenario due to the great
progress of the material engineering where new materials with
desirable electronic properties can be designed in purpose. The
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Figure 2: Upper: Dispersion relation ky (k;) as a function of
frequency for a graphene plasmonic crystal with Magnesium
Oxide dielectric host; the two Dirac cones are marked in red
and shown in the inset. Lower: Effective dielectric permit-
tivity in frequency for a graphene plasmonic crystal with
Magnesium Oxide (solid) and silica glass (dashed) as host
materials; the shaded area represents the ENZ range.

Lorentz model that includes multiple oscillators is

e(w) = oo + Z — wz - mrl (11)
1

where N is the number of the oscillators each one has resonance
frequency wo;, damping factor I}, and strength g;. Here, we consider
a two-oscillator (N = 2) Lorentz material with the parameters:
o = 4, (gl, 92) = (0.34, —2.4), and (0)01, 0)02) = (0.59, 0.71) eV.
Thence, we calculate the dispersion relation in (k , ®) and present
the results in Figure 3 (upper) where we observe three Dirac points
at the frequencies (75, 114, 132) THz. In the lower panel of the
same figure we outline the effective permittivity in frequency where
the ENZ band has been significantly expanded in a range over than
60 THz that is approximately eight times wider range compared to
the example of a constant permittivity host material.
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Figure 3: A two-oscillator Lorentz material is used as a host
for the graphene plasmonic crystal. Upper: Dispersion rela-
tion kx (k;) as a function of frequency; the Dirac cones are
marked in red and also shown in inset. Lower: Effective per-
mittivitity; the ENZ area is shaded in grey.

4 CONCLUSION

Metamaterials are artificial structures that manipulate electromag-
netic waves on a sub-wavelength scale and provide optical prop-
erties that are not found in nature under normal conditions, such
as negative refraction and epsilon-near-zero behavior. ENZ meta-
materials exhibit exotic properties that include wave propagation
through very narrow channels without diffraction and phase delay.
Plasmonic crystals are a particular class of metamaterials that con-
sist of periodically arranged metallic layers with distances shorter
than the (free space) wavelength. Graphene-based plasmonic crys-
tals are tunable metamaterials since their optical properties can
be dynamically tuned by controlling the operating frequency and
the electronic doping in graphene. Fine tuning a graphene-based
plasmonic crystal yields ENZ behavior in terahertz and infrared
frequencies. The appearance of ENZ condition coincides with a plas-
monic Dirac cone in the wavenumber space and thus, Dirac points
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determine the neighborhood where the metamaterial behaves as
an ENZ media.

Using an ordinary dielectric as the host material of the plasmonic
crystal yields a single Dirac point restricting the ENZ effect to a
very narrow frequency range. This may be a critical issue for for
real applications that typically involve a range of operating frequen-
cies forming a wavepacket. In this paper we proposed a modified
design that expands the frequency range of the ENZ behavior. We
replaced the host dielectric in the plasmonic crystal with a Lorentz
dispersive material which has a frequency dependent permittiv-
ity. We demonstrated that the combination of doped graphene and
Lorentz materials yield multiple Dirac points and, subsequently,
achieved an ENZ effect over a relatively large frequency range.
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