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Abstract—The design of modern real-time systems not only
needs to guarantee their timing correctness, but also involves
other critical metrics such as control quality and energy con-
sumption. As real-time systems become increasingly complex,
there is an urgent need for efficient optimization techniques
that can handle large-scale systems. However, the complexity of
schedulability analysis often makes it difficult to be directly in-
corporated in standard optimization frameworks, and inefficient
to be checked against a large number of candidate solutions.
In this paper, we propose a novel optimization framework for
the design of real-time systems. It leverages the sustainability
of schedulability analysis that is applicable for a large class of
real-time systems. It builds a counterexample-guided iterative
procedure to efficiently learn from an unschedulable solution
and rule out many similar ones. Compared to the state-of-the-art,
the proposed framework may be ten times faster while providing
solutions with the same quality.

I. INTRODUCTION

Design optimization techniques are becoming vital and
urgent for a number of application domains for real-time
systems. For example, the automotive industry is extremely
cost sensitive yet its products are highly safety critical [13].
Unmanned aerial vehicles powered by batteries must carefully
plan and operate according to their tight energy budget [18].

There has been a rich set of research on the development of
timing and schedulability analysis over the past years. How-
ever, many of the analysis techniques are either impossible,
or too complex and inefficient, to use in well-established op-
timization frameworks (i.e., mathematical programming) [39].
As a result, the existing practice for design optimization often
has to rely on ad-hoc approaches. This typically comes with
the loss of solution quality as well as limited applicability.
Hence, an efficient and general framework that bridges the gap
between schedulability analysis and optimization is critical to
the future success of real-time systems design.

In this paper, we seek to address this urgent need and
propose a general framework for optimizing real-time systems.
We leverage the concept of sustainable schedulability analysis
that is recommended as a good engineering practice for real-
time systems [5]. Specifically, if a task system is schedulable
under a sustainable schedulability analysis, then it should
remain to be schedulable with, for example, decreased worst
case execution time (WCET), or increased period.

The design of our framework centers around the concept
of Maximal Unschedulable Assignment (MUA) to variables
that are sustainable in the schedulability analysis, including
task WCET and period. It avoids the direct formulation of

schedulability region, but uses MUAs to provide an effi-
cient abstraction of the schedulability constraints. It devel-
ops a counterexample (i.e., unschedulable solutions) guided
paradigm to learn from an unschedulable solution and rule
out many similar unschedulable ones. It also builds an MUA-
driven branching algorithm that takes advantage of the special
structure in the optimization problem.

Our framework is generally applicable to a broad range of
optimization problems for real-time systems. We use two case
studies to demonstrate the benefit of our framework. The first
is the optimization of energy consumption on platforms with
dynamic voltage and frequency scaling (DVES), where task
WCETs change based on the selected CPU frequency. The
second is the selection of task periods to optimize control
quality under schedulability constraints [24]. Compared to the
state-of-the-art, the proposed framework may be ten times
faster while providing solutions with the same quality.
Paper organization. The rest of the paper is organized as
follows. Section II summarizes the related work. Section III
presents the system model and the problem setting that fits
our framework. Section IV describes the concept of Maximal
Unschedulable Assignment (MUA). Section V develops the
framework based on MUA. Section VI discusses the appli-
cability and limitations. Section VII shows the experiments
to demonstrate the advantage of our framework. Finally, Sec-
tion VIII concludes the paper.

II. RELATED WORK

There is a rich literature for the optimization of real-time
systems. Generally speaking, the current approaches can be
classified into four categories: (i) meta heuristics such as
simulated annealing (e.g., [7], [32]) and genetic algorithm
(e.g., [17], [31]); (ii) problem specific heuristics (e.g., [29],
[34], [38]); (iii) directly applying existing optimization frame-
works such as branch-and-bound (BnB) (e.g., [35]), Mixed
Integer Linear Programming (MILP) (e.g., [26], [37]), and
convex programming (e.g., [20]); (iv) customized optimiza-
tion frameworks that are tuned for specific design variables
in real-time systems, such as the optimization of priority
assignment [40], [42], [43] and period [39]. The first two
categories either do not have any guarantee on solution quality,
or suffer from scalability issues and may have difficulty
to handle large industrial designs. For the third category,
besides the possible scalability issues, it also requires that
the schedulability analysis can be formulated in the chosen
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framework, which may not always be possible. The current
approaches in the fourth category are also limited in their
applicability. For example, unlike the proposed framework in
this paper, none of them [39], [40], [42], [43] considers task
WCETs as design variables.

The problem of task period selection has been studied in
the literature [8], [30]. In particular, Bini et al. [8] propose a
problem specific branch-and-bound technique for optimizing
task rate, but it describes the exact schedulabiltiy region in
the domain of task rates, hence it may be applicable to
problems with optimization objectives that depend only on task
periods (not on other variables such as task response times).
Mancuso et al. [24] develop a branch-and-bound algorithm,
where a linear lower bound is adopted as an approximation
to task response time. In [31], a genetic algorithm is used
for the problem to minimize the sum of end-to-end delays
in networked control systems. Davare et al. consider the
period optimization to minimize end-to-end latencies for a
set of paths, and formulate it in mixed integer geometric
programming (MIGP) framework [10]. Differently, Zhao et
al. [39] propose a customized procedure specialized for the
minimization of end-to-end latencies, which is several orders
of magnitude faster than [10]. Our approach is also to de-
velop a customized framework. However, it not only is more
generally applicable than [39], but also may run 100x faster.

There are various approaches proposed to address the
problem of optimizing energy consumption for systems with
DVFES, see a related review in [4]. However, they are all
focusing on one particular scheduling model and associated
schedulability analysis. For example, Huang et al. [20] con-
sider mixed-criticality systems scheduled with Earliest Dead-
line First with Virtual Deadline, which allows to formulate the
problem as a convex program. Instead, our framework is gen-
erally applicable to any systems as long as the schedulability
analysis is sustainable.

In summary, compared to the existing approaches, our
framework is applicable to a larger class of optimization
problems in real-time systems. It does not pertain to a partic-
ular scheduling model or schedulability analysis, but can be
used for any systems with sustainable schedulability analysis.
It applies to the optimization of various decision variables
including task WCET, period, deadline, or priority assignment.
Finally, it may still be much faster than the state-of-the-art, as
demonstrated in the experimental results.

III. SYSTEM MODEL

In this paper, we consider a general setting of real-time
systems for which the associated schedulability analysis is
sustainable [5]. It contains m tasks indexed from 1 to m.
The design optimization of a real-time system is to select the
appropriate values for design variables such that (a) a given
cost function is minimized, and (b) system schedulability is
satisfied. Mathematically it can be expressed as follows

min F(X)

s.t. system schedulability N
xj € [xé,x?LVj =1,..,n
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where X = (z1,...z,) is the vector of variables. Here we
first focus on the case that X may include the response time
R;, WCET C};, deadline D; and/or period T; for any task 7;.
In Section VI we will discuss how to handle the case where
priority assignment is also part of the decision variables. Each
variable z; in X takes integer values within a bounded range
[é, x%] (i.e., the design variables have finite resolutions). We
do not impose any particular form of schedulability analysis,
as long as it is sustainable [5].

Sustainability is proposed as a guideline for the development
of schedulability analysis techniques in real-time systems [5].
Specifically, a schedulability analysis is defined as sustainable
if any schedulable task system remains schedulable with (i)
decreased WCET C; (ii) larger period T5; (iii) larger deadline
D; for any task 7;, among others.!

Here we discuss how to leverage the sustainability with
respect to task deadlines to handle the case that response time
R; appears in the objective function. In this case, we not only
need to make sure that R; < D; (which can be satisfied by
any R; that is no larger than D;), but also a precise value
of R; in order to compare different schedulable solutions.
In this case, we replace R; with a virtual deadline DZ [42],
which can be interpreted as a safe estimation on R; (hence
R; < ﬁi < D;) when the system is schedulable. It is easy to
see any schedulability analysis that is sustainable with respect
to the deadline D; is also sustainable with respect to b,—.

For systems with sustainable schedulability analysis, with-
out loss of generality, they satisfy the following property.

Property 1. The system schedulability constraints can be
written as G(X) < 0, where each function in G(X) is
monotonically non-increasing with respect to each variable
x; in X. Hence, if a smaller assignment to x; (e.g., the period,
virtual deadline, or the additive inverse —C; of WCET C})
makes the system schedulable, then a larger assignment to x;
also does (assuming all other variables remain unchanged).

Note that some variables such as WCET C; may be oppo-
site to the above property (smaller C; corresponds to easier
schedulability). In this case, we can simply perform a variable
conversion (i.e., replacing C; with C! = —C;) to make it
conform to the assumption.

A. Examples on Sustainable Schedulability Analysis

Sustainability is a general property that applies to many
schedulability analysis techniques in real-time systems. For
example, for the classical Liu-Layland task model scheduled
with fixed priority [22], the response time based schedulability
analysis [2] is sustainable

R

J

R, =C;+ Z { -‘CjSDi 2)
Vjehp(i)

A more complicated example is mixed-criticality systems
scheduled with Adaptive Mixed-Criticality (AMC) scheduling

!For simplicity we call such a schedulability analysis sustainable, but it is
termed as self-sustainable analysis in [3], see a detailed discussion therein.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 01,2021 at 17:09:17 UTC from IEEE Xplore. Restrictions apply.



policy [6]. The proposed AMC-rtb and AMC-max schedula-
bility analyses [6] are both sustainable [16]. The two analyses
mainly differ in the estimation of interferences from higher
priority tasks during the criticality change.

AMC-rtb analysis calculates the response time of a HI-
ciriticality task 7; during the criticality change as

Ri(H
> (HI)

[R40] 6y
VjEhpH (i)

RO 0,

Ry(HI) = C;(HI) +

Vje%;L(i) {
Here C;(HI) represents the WCET of 7; in HI criticality
mode. R;(LO) is the response time of 7; in LO criticality
mode given by Equation (2). hpH (i) and hpL(i) represent
the set of HI- and LO-criticality tasks of higher priority than
T;, respectively.

Intuitively, AMC-rtb assumes that a Hl-criticality task al-
ways executes in Hl-criticality mode and LO-criticality task
may execute up to R;(LO). AMC-max improves upon AMC-
rtb by considering different specific time instants of criticality
change and dividing the workload of higher priority HI-
criticality tasks into LO-mode and HI-mode. Specifically,
given a time instant s of criticality change, AMC-max com-

putes the WCRT of 7; as follows
S
— 1) C;(LO
QTJ +1) eyeo)+

>
> M s, Ri(HI, )C;(HI)+

3

J
J

Ri(HI, s) = Ci(HI) +
Vj€hpL(t)

Vji€hpH ()
t
3 GT] - M(j7s,R¢(HLS))) ¢;(LO)
Vj€hpH (i) /

“)
where M (j, s, t) represents the maximum number of instances
of 7; that are released as HlI-criticality instances during the
time interval [s,¢], which is expressed as

o= =B 1]}

The WCRT of 7; during the criticality change can be computed
by examining all possible time instants s of criticality change

Ri(HI) = max Ry(HI. s) (6)

It is shown to be sufficient to only consider those s in the
interval [0, R;(LO)) [6].

B. Example Optimization Problems

We now provide two examples that fit our framework.
Optimizing control quality. The first problem is to optimize
control performance for a set of periodic tasks scheduled on
a uniprocessor [24]. The objective function, which represents
the control cost, are approximated as a weighted sum of task
period 7; and response time R; for each task 7; [24]

m

F(X) =Y oTi + B R; (M
=1
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where «; and (; are given constant weights. Our framework
works for any scheduling policy as long as its schedulability
analysis is sustainable. In the experiments (Section VII-B)
we assume the same as those in [24], i.e., the schedulability
analysis in Equation (2).
Energy minimization with DVFS. Platforms with DVFS
capabilities allow to adjust the CPU clock rate to save energy.
Higher clock rate gives smaller WCET, which generally helps
schedulability. However, this comes with an increased energy
consumption. The goal is to determine the clock rate f; for
executing each task 7; such that the system is schedulable
while the total energy is minimized.

Specifically, suppose 7; has an execution time C? measured
at a base clock rate f b then its execution time at another clock

rate f; can be estimated as C; = C? x J}—b Thus f; = f° x %b
We normalize f° to be 1 and consider that C? is given, which
makes C; a decision variable in the optimization. We adopt
the energy consumption objective formulated in [20]:
Crf° a1 1 ()~
= Tlﬁ(‘ﬂ) —Ziﬂw
Vi Vi

®)
where [ is a circuit-dependent constant. A common assump-
tion for « is 3 [27], [28]. Like the previous case, we do
not impose any constraint on the scheduling policy as long
as the associated schedulability analysis is sustainable. In the
experiments (Section VII-A), we use Equation (2) for a large
number of random systems. For an industrial case study, we
assume mixed-criticality systems scheduled with AMC, and
adopt the AMC-rtb and AMC-max schedulability analyses [6],
both of which are sustainable [16].

F(X)

IV. MAXIMAL UNSCHEDULABLE ASSIGNMENT

We now introduce the concept of Maximal Unschedulable
Assignment (MUA).

Definition 1. An assignment

X = (vl,...vn) (9)

is a valuation of each variable x; = v; in X. An assignment
X = (v1,...v,) is said to dominate another assignment X’
(vi,...v},), denoted as X > X", if X’ is component-wise no
smaller than X, i.e., v; > v}, Vi.

Definition 2. An assignment X" is said to be unschedulable
if it violates the schedulability constraints. X is a maximal
unschedulable assignment (MUA) if (a) X is unschedula-
ble and (b) there is no other unschedulable assignment that
dominates X.

We remark that the concept of MUASs is well-defined, since
by Property 1 of schedulability constraints with respect to the
variables in X, any assignment X’ that is dominated by an
MUA X must also be unschedulable. Also, any two MUASs
cannot dominate each other, otherwise one of them is not an
MUA. Note that we assume variables with integer values (or
in general discrete variables), hence the MUAs always exist.
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Fig. 1: The MUAs of the problem in Equation (10).

Example 1. Consider a hypothetical optimization problem
formulated in (10) where || denotes the logic OR operation.
The decision variables are X = (z1,x2), which take values
in the range [0,9]. The feasibility region are formed by
the disjunction of two linear constraints, which is shown in
Figure 1 as the green shadowed area.

min F(X) = x1 + a2
x1 + 622 > 36
5161+3I2 245

0 S T1,T2 S 9

In the figure, the five points A = (8,1), B = (7,3),
C = (6,4), D = (5,5), E = (0,5) marked in the figure
are all unschedulable assignments as they lie outside of the
schedulability region. E' is not an MUA, since D dominates
E. Meanwhile, A, B, C and D are all MUAs since they are
unschedulable assignments and there exists no other unschedu-
lable assignment that dominates any of them.

10)

By Property 1, any assignment dominated by an unschedu-
lable assignment is also unschedulable. Therefore, an MUA
X = (v1,...v,,) implies the following constraint that must be
satisfied by any schedulable solution

:1:121)14-1
-~
Ty >V, +1

1 < vy

an

Tp < Up

where { denotes the logic AND operation. We call (11) the im-
plied constraint by X'. Note that no matter how complicated
the schedulability analysis is, the MUA-implied constraints
will always take the form in (11), hence they are an abstract
interpretation of the schedulability constraints. The higher
the values in X, the stronger the implied constraint. In this
sense, constraints implied by MUAs are the “strongest” type
of constraints for schedulability. In Example 1, the implied
constraints by MUAs A = (8,1), B = (7,3), C = (6,4),
D = (5,5) together represent the exact schedulability region.
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Start with a problem w that leaves out
all schedulability constraints

'

Step 1: <
Solve the optimization problem w
Assignment srl Step 3:
Convert 7 to an MUA (]
I and add MUA-implied
constraints to w
Step 2:
Is & schedulable? Step 4:
Convert % to a feasible
solution and add to w T
for branch-and-bound

Optimal solution

Fig. 2: MUA-guided optimization framework.

V. OPTIMIZATION FRAMEWORK

We now present the optimization framework that builds
upon the concept of MUA. By the sustainability of schedula-
bility analysis (hence Property 1), once we find an unschedula-
ble solution, we can generalize it to MUAs to simultaneously
rule out many similar unschedulable solutions. This leads
to the following key idea for the design of our framework:
we use MUA-implied constraints as an efficient abstraction
(as opposed to a direct formulation) of the schedulability
region, and employ an iterative procedure to gradually learn
those MUAs that are critical for determining the optimal
solution (Section V-A). Furthermore, we maintain an MUA-
driven branching structure to allow incremental update of the
branching tree and efficient solution to each leaf problem
(Section V-B).

A. MUA-guided Iterative Procedure

In real-time systems, the complexity of the schedulability
analysis may prevent us from leveraging existing optimization
frameworks. For example, the most accurate schedulability
analysis for AMC, AMC-max [6], hinders a possible formula-
tion in MILP [41]. As in Equation (6), it requires to check, for
each possible time instant s of criticality change, whether the
corresponding response time is within the deadline. However,
the range of s is unknown a priori as it depends on the task
response time in LO mode.

Our key observation is that sustainability of schedulability
analysis (hence Property 1) allows to generalize from one un-
schedulable solution to MUAs, which can simultaneously rule
out many similar unschedulable solutions. This is leveraged
to develop the iterative optimization framework guided by
counterexamples (i.e., unschedulable solutions), as illustrated
in Figure 2. Initially, it starts with an optimization problem
w that leaves out all the schedulability constraints. It then
enters an iterative procedure that contains four steps. The first
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(c) Tteration 3

(d) Iteration 4

(e) Iteration 5

Fig. 3: The iterative procedure applied to the problem in Equation (10). The yellow shadowed area is the pruned unschedulability

at the end of the iteration.

step is to solve w using an MUA-driven branching algorithm.
Here w maintains to be a relaxed version of the original
problem in Equation (1), since it only includes the implied
constraints from a subset of all MUAs (and hence only part
of the schedulability constraints). The second step is to use
the associated (sustainable) schedulability analysis to check if
the returned solution X" from Step 1 is schedulable or not. If
yes, then X must also be an optimal solution to the original
problem (Theorem 1). Otherwise, it performs two operations,
Steps 3 and 4, that can be executed in parallel. In Step 3, it
converts X to an MUA and adds the implied constraints (11)
to w. In this way, the counterexample (i.e., the unschedulable
solution X’ returned in Step 1) is generalized as much as
possible, such that many similar unschedulable solutions can
be ruled out together. In Step 4, it converts X’ to a feasible
solution and adds it to w, which allows both efficient branch-
and-bound and early termination of the algorithm. These steps
will be explained from Section V-C to Section V-E, after we
present the MUA-driven tree structure (Section V-B).

We now discuss two important properties of the framework,
as stated in the following theorem.

Theorem 1. The algorithm in Figure 2 guarantees to ter-
minate. If Step 1 in each iteration is solved optimally w.r.t.
the added constraints, the algorithm guarantees to return an
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optimal solution upon termination.

Proof. During each iteration, the procedure has to find
a solution X that satisfies the constraints implied by all
the previously added MUAs. This means that if X" is still
unschedulable, then it must correspond to MUAs that are
different from the known ones. Since the total number of
MUAEs is clearly finite and bounded by Q(Ily; (2% — 2! + 1)),
the algorithm guarantees to terminate.

The implied constraint (11) only cuts away unschedulable
decision space. Since the problem starts with no MUAs in
w, at any point during the optimization, the feasibility region
defined by the added MUA-implied constraints maintains to be
an over-approximation of the exact feasibility region. Hence
the optimization problem w in Step 1 has the same objec-
tive function but a larger feasibility region than the original
problem (1). This implies that upon termination, where the
algorithm finds a schedulable solution, the solution must also
be optimal to (1). [

Example 2. As an example, we apply the framework to the
problem (10). Here we focus on how the framework prunes
the unschedulable solutions, and ignore the step of finding
feasible solutions.

Iteration 1. The algorithm initially ignores all schedu-
lability constraints. Optimizing F'(X) gives the assignment
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X = (z1,22) = (0,0). Since X is clearly unschedulable, the
algorithm proceeds to convert X into an MUA. Depending on
the strategy for MUA computation (which will be discussed
in Section V-C), the algorithm may obtain any one of points
A=(8,1),B=(7,3),C = (6,4), or D = (5,5) in Figure 1.
Suppose A is returned as the converted MUA.

Iteration 2. The feasibility region is updated to Figure 3(b),
where the area colored in yellow represents the region cut
away by the constraints implied by the MUA A. Optimizing
F(X) gives the assignment X = (0,2). Since X is not
schedulable, the algorithm proceeds to convert X into an
MUA. Suppose B = (7, 3) is returned as the converted MUA.

Iteration 3. The feasibility region is updated to Figure 3(c).
Optimizing F'(X) returns the assignment X = (0, 4). Suppose
C = (6,4) is returned as the computed MUA.

Iteration 4. The feasibility region is updated to Figure 3(d).
Optimizing F'(X) returns the assignment X = (0, 5). Now the
only possible MUA that can be computed is D = (5, 5).

Iteration 5. The feasibility region is updated to Figure 3(e).
Optimizing F(X) gives the assignment X' = (0,6). This
assignment is now schedulable and the algorithm terminates
with an optimal solution (z1,z2) = (0,6).

B. MUA-driven Branching Tree

As in Figure 2, the above procedure requires to solve an
instance of w during each iteration, which may only be slightly
different from the previous iterations since the procedure only
adds a handful of new MUAs to w. Directly calling mathemat-
ical programming solvers to solve w is not necessarily efficient
since many solvers do not support incremental solving, i.e.,
they have to solve each instance of w from scratch.?

Hence we build a branching tree structure to represent the
MUA-implied constraints. It allows incremental updating of
the tree, as well as efficiently solving each subproblem at
the leaf nodes. Initially (i.e., before entering the iteration in
Figure 2) the tree only contains one (root) node. Each time
a new MUA X is added to the problem w, we add a new
layer in the tree to represent the disjunction (i.e., logic OR)
of the constraints implied by X', where each branch (edge) in
the new layer is a constraint in the disjunction. Each node N/
in the tree represents the set of conjunctive (i.e., logic AND)
constraints along the path from the root node to this node V.
Since the constraint on each branch takes the particular form
x; > uy; for some value u;, the constraint represented by a
node A can be simplified as

(12)

For simplicity, we denote the node as N = [uy, ..., uy).

2The only known exception is the MILP solver CPLEX [21], which
provides an interface for building customized branching tree. But the price is

that it can no longer run in parallel on multiple cores, which actually makes
the whole procedure slower.
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Some nodes in the tree are redundant, in the sense that the
corresponding constraints may have already been satisfied by
constraints along the path from the root. These nodes can be
pruned to make the tree structure more compact.

Example 3. Consider the branching tree after Iteration 2 in
Example 2, i.e., after adding the constraints implied by MUAs
A = (8,1) and B = (7,3). The left hand side of Figure 4
shows the resulted tree. The constraint corresponding to A is
x1 > 9V e > 2, and the constraint corresponding to B is
x1 > 8V 2 > 4, where V denotes the logic OR operation.
Hence, the root node (node 1) is first branched to two children,
nodes 2 and 3, where the branch to node 2 represents the
constraint 1 > 9, and the branch to node 3 represents the
constraint zo > 2. When adding the constraints for MUA
B = (7,3), each of nodes 2 and 3 is branched to two children.
Node 6, for example, represents the constraints along the path
from the root node, i.e., x5 > 2 A x; > 8, where A denotes
the logic AND operation.

When adding the constraint 1 > 8 V x5 > 4 implied by
MUA B to node 2, this constraint is already satisfied by the
constraint z; > 9 represented by node 2, i.e., (z1 > 9)A(z1 >
8V xg >4) =1 > 9. The right hand side of Figure 4 shows
the tree structure after pruning the redundant nodes.

The special form of MUA-implied constraints make it easy
to check the redundancy of nodes.

Theorem 2. Assume N = [uq, ..., u,] is an existing node in
the tree. If an MUA X = (v1,...,v,) to be added satisfies

that 3¢ : u; > v; + 1, then the constraints implied by X* are
redundant.
Proof. This is easy to see by checking the represented

constraints of A in (12) and those of MUA X in (11).

T1 > Uy 1> v+ 1
:>1:12u1:>m12v1+1=>

Ty 2 Up Tp 2 Up +1

O

In the following we explain how the steps in Figure 2 are

handled. For Step 2, it can use any schedulability analysis as
long as it is sustainable.

C. Step 1: Solving w

For Step 1, it requires to solve the following optimization
problem at each leaf node N = [uy, ..., u,] in the tree:

iy FX)

constraints of form (12)
x; € [xé—,mﬂ,Vj =1,...,n

s.t. (13)

The constraints in (13) are of a particularly simple form:
there are no coupled constraints for any pair of variables x;
and z;. This means that the overall optimization can be done
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Fig. 4: Branching tree at the end of Iteration 2 of Example 2: original tree (left); after pruning (right).

by optimizing each variable in sequence [9]. In other words,
(13) can be transformed to

min min...min F(X)
@ Tn

s.t. constraints of form (12) (14)
xj € [xé—,x;-‘},Vj =1,...,n

For example, if F(X) is convex with respect to the vari-
ables, then solving (14) amounts to solving a series of single-
variable convex programs, which is a lot easier than those with
coupled constraints.

In addition, even if F'(X) is not convex (hence in general
difficult to solve [9]), we may still be able to provide a simple
solution to it. In real-time systems, often times there exists
some tradeoff between schedulability and the metrics in the
objective function. For example, when the CPU frequency is
increased, the task WCET is lower, but the energy consump-
tion will be higher. Similarly, increasing the task periods will
make the task system easier to schedule, but the control quality
and stability will be worsened. In component-based design,
modularity (i.e., the number of exposed interfaces) is a critical
metric, but better modularity may lead to larger code size and
longer WCET [33]. We leverage this observation to derive
the following corollary, which is a direct consequence from
Equation (14). In fact, Corollary 3 applies to both problems
in the experiments.

Corollary 3. If F'(X) is monotonically non-decreasing with
respect to each of the variables in X, then the optimal solution
to (13) is &1 = U1, ..oy Ty = Upy.

This corollary is intuitive since the objective function will
push each variable x; to its lowest possible value u;.

D. Step 3: Converting an Unschedulable Assignment to MUA

In this section, we discuss the algorithm for converting
an unschedulable assignment X" into an MUA . It utilizes
Property 1, i.e., the schedulability analysis is sustainable with
respect to the variables, to maximally increase each entry
in X while maintaining its unschedulability. The procedure
is summarized in Algorithm 1. It uses binary search to
sequentially find the maximal value that each entry in U
can be increased to while maintaining unschedulability. The
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algorithm requires O(nlog x™?*) number of schedulability
analysis where £™** = max{z¥,...,z%}.

Algorithm 1 Conversion to MUA
1: function ConNvErRTToOMUA(Unschedulable Assignment
X)
U= (ug,.yuy) =X
3: for each entry w; in & do

»

4: Use binary search to maximally increase u; while
keeping the system unschedulable

5: end for

6: return U

7: end function

This step is critical in the efficiency of the overall algorithm.
Unlike typical counterexample guided algorithms, once we
find an unschedulable solution, in the next iteration we rule
out not only this solution but also many similar ones. Here the
concept of MUA is critical: it is essentially a generalization
from one unschedulable solution to many, which is a key in
allowing a fast convergence rate of the framework.

Example 4. Using Algorithm 1 on Example 1 yields the
exact trace of iterations shown in Figure 3 in Example 2. For
instance, in the first iteration, when a solution X = (0,0) is
returned, Algorithm 1 first increases u; to 8 since that is the
largest value of x; that still makes the system unschedulable.
It then increases ug from 0 to 1 to get the MUA U = (8,1).

E. Step 4: Finding Feasible Solutions

The branching tree structure (as in Figure 4) allows to
implement a typical branch-and-bound algorithm, i.e., to use
the known best solution X to cut the branches that are certainly
no better than X and hence are surely suboptimal. Getting
a feasible solution also allows returning useful results for
designers even if they are not necessarily the global optimal
solution. This facilitates the possible early termination of the
overall procedure, otherwise it will not be able to get any
feasible solution until the optimal solution is found.

Our main idea is to make use of the assignment returned in
Step 1 and convert it heuristically into a good-quality schedula-
ble assignment. The conversion can be performed concurrently
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with the rest of the optimization process (Steps 1 and 3).
Specifically, in Step 2, if the assignment X = (vq,...,vy)
is unschedulable, we simply scale each variable x; by a factor
a € [0,1], until X becomes schedulable

5)

When a = 1, z; takes the upper-bound value z}. We use
binary search to find the minimum a such that the assignment
X becomes schedulable after scaling.

x; = v; +alzy —v;)

VI. APPLICABILITY AND EFFICIENCY

In this section, we discuss the applicability and expected

efficiency of the proposed techniques.
Applicability to Optimizing Priority Assignment. As men-
tioned earlier, the framework is applicable to optimizing task
response time, period, WCETs or deadline, as long as the
schedulability analysis is sustainable with respect to these
variables. Regarding task priority assignment as part of the
decision variables, this comes with two cases: (a) the objective
function is independent from the task priorities; (b) it is
sensitive to task priority assignments, such as the memory
consumption in the software implementation that preserves the
semantics of the synchronous reactive models [36].

For case (a), we can leverage Audsley’s algorithm [1] that is
applicable to many task models and scheduling schemes [12]:
if there exists a schedulable priority assignment, Audsley’s
algorithm will be able to find it. Hence, we can leave out the
variables of priority assignment in the problem w, but instead
incorporate the optimization of priority assignment in the
procedure for checking schedulability (e.g., Step 2 in Figure 2,
and Line 4 in Algorithm 1): After fixing the values of all other
variables, the existence of a schedulable priority assignment
now can be efficiently checked by Audsley’s algorithm.

For case (b), it is necessary to explicitly include those binary
variables for task priority orders in the optimization problem
w in the framework of Figure 2. In this case, we can leverage
the concept of unschedulability core [40]. Intuitively, it is
an irreducible representation of the reason why a given total
priority order is unschedulable, in the sense that relaxing any
order will make the system schedulable. We leave the details
of this discussion to future work.

Efficiency. The proposed technique fits the best for problems
that have the following characteristics:

1) The schedulability analysis is complex.

2) The rest of the problem is relatively simple.

For the first characteristic, the exact schedulability analysis
is often NP-complete, even for the basic settings, e.g., periodic
task with fixed priority scheduling [15], or EDF scheduling
with arbitrary deadlines [14]. In this case, even if the problem
may be formulated in some standard mathematical program-
ming framework, our approach might still be better, since
it uses MUAs to abstract away the details of schedulability
analysis, and only performs such an analysis on a small
number of design choices guided by the objective function.
Of course, there are cases that the schedulability analysis
is particularly simple, such as the condition for tasks with
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implicit deadlines scheduled by EDF [22], or the utilization
based bound for EDF-VD [20]. In this case, although our
framework is still applicable, it is faster to directly handle
the schedulability condition.

For the second characteristic, this is satisfied when the
objective function has some friendly properties (such as
monotonicity or convexity with respect to the variables),
and the constraints only include the system schedulability. If
the problem includes some additional constraints other than
schedulability, then the problem at each leaf node of the
branching tree (see Figure 4) is not necessarily easy to solve,
since there might be coupled constraints among the variables.
In this case, it can be more efficient to use other appropriate
solvers to directly solve w at Step 1 of the framework.

VII. EXPERIMENT RESULT

We now use two problems to demonstrate the advantage
of our framework. The first is the minimization of energy
consumption, the second is the optimization of control quality.

A. Optimizing Energy Consumption with DVFS

In this experiment, we consider the energy consumption
model in Equation (8). We use both random systems as well
as an industrial case study to compare different approaches.
To demonstrate that our framework is applicable to various
scheduling models and schedulability analysis techniques, we
assume the periodic task model and Equation (2) in the
experiments on random systems, and use AMC-rtb and AMC-
max (Equations (3)—(6)) in the experiments on the industrial
case study. The relative simplicity of Equation (2) compared
to AMC-rtb and AMC-max also allows us to perform experi-
ments on a large number of random systems.

Random Systems. For random systems, we compare the
following methods:

o MIGP: A mixed-integer geometric programming for-
mulation, solved by the geometric programming solver
gpposy [25] with the BnB (bmi) solver in YALMIP [23].
MUA-MILP: The proposed iterative procedure in Fig-
ure 2, but the subproblem w with MUA-implied con-
straints is formulated as an MILP and solved using
CPLEX [21].

MUA-incremental: The proposed technique depicted in
Figure 2 with MUA-driven branching tree for incremental
update, where each problem at the leaf node is solved
using Corollary 3.

Minimum-single-speed: A simple heuristic that uses
binary search to find the minimum single speed at which
all tasks become schedulable.

To avoid excessive waiting, in MUA-incremental we set a
limit for the number of nodes in each iteration (i.e., the size
of each layer in the branching tree) to be K = 10000. Also,
the time limits of MUA-MILP and MUA-incremental are set
to 600 seconds for each task system. The BnB (bmi) solver in
YALMIP does not have a time limit setting and only allows
to set a limit on the number of iterations. Therefore, we set a
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Fig. 5: Runtime of minimizing energy consumption on random
systems.

maximum iteration limit of 2000. This gives roughly a similar
time limit for MIGP as those of the other methods.

The task sets are generated synthetically as follows. For
each task set, we first randomly select a system utilization
in the range [0.5,0.9]. We then generate a period 7T; for
each task according to log-uniform distribution in the range
[100, 100000], and a utilization U; for each task using UUni-
fast algorithm [11]. The corresponding WCET Cf =T;-U; is
treated as the execution time at the base clock rate. The range
of decision variable C; is taken as [C?, 2C?]. This means that
the clock rate can be decreased as low as half the base clock
rate. The deadline D, of each task 7; is generated randomly
in the range [C?, T;]. Priorities are assigned according to the
deadline monotonic policy.

Figure 5 illustrates the average runtime over 1000 random
systems for each m, the number of tasks in the system.
The runtime of Minimum-single-speed is very short (a few
milliseconds), as it is simply a binary search on a single
period value. MUA-incremental is about one to two orders
of magnitude faster than MIGP. The capping of MIGP that
occurs for systems with 14 or 15 tasks is mainly due to a
large number of cases reaching the iteration limit. Meanwhile,
MUA-incremental is able to finish all the instances in the
time limit. As for MUA-MILP, it is very slow such that
even for systems with 5 tasks, most of the cases are timed
out. This is because the MILP solver CPLEX is unable to
perform efficient incremental solving of the problems. Again,
it demonstrates the benefit of designing a branching algorithm
that takes advantage of the MUA-guided framework, as in the
case of MUA-incremental.

Since MUA-MILP is unable to finish for most of the
cases, we only compare the quality of solutions from MUA-
incremental, MIGP and Minimum-single-speed in terms of
relative gap. For each random system, we define the relative
gap of MIGP (or Minimum-single-speed) with respect to
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Fig. 7: Relative gap of Minimum-single-speed compared to
MUA-incremental.

MUA-incremental as the relative difference in the objective
values. Since MUA-incremental always provides a better
objective value than the other two, we define the relative gap
of MIGP (resp. Minimum-single-speed) as

Pa—pB % 100%

PB

s = (16)
where p4 is the objective value of MUA-incremental, and pp
represents that of MIGP (resp. Minimum-single-speed).
Figure 6 shows the whisker box plot of the distribution of
the relative gap for MIGP compared to MUA-incremental. On
average MUA-incremental finds 3% to 30% better solutions
(i.e., with less energy consumption) than MIGP within the
time limit. Likewise, Figure 7 shows the distribution for
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TABLE I: Flight Management System case study [19]

T 1 T2 T3 T4 T5 T6
T 5000 200 1000 1600 100 1000
C(LO) [ 15, 40] [5, 40] [5, 40] [5, 40] [5, 40] [5, 40]
HI/LO HI HI HI HI HI HI
T 7 T8 ) 710 T11
T 1000 1000 1000 1000 1000
C(LO) | [5, 40] | [50, 400] | [50, 400] | [50, 400] | [50, 400]
HI/LO HI LO LO LO LO

Minimum-single-speed. As in the figure, MUA-incremental
is on average 3% to 10% better than Minimum-single-speed.
Flight Management System. We next evaluate the techniques
on an avionics case study consisting of a subset of Flight
Management System application [19]. The system contains 11
tasks of different criticality, which implement functions such
as localization and flight planning. Each task is abstracted into
an implicit deadline sporadic task characterized by a minimum
inter-arrival time, a range of execution time that is typical in
practice, and a criticality level. 7 tasks are of HI-criticality and
the other 4 are of LO-criticality. The parameter configuration
of the case study is summarized in Table I.

We consider fixed-priority uniprocessor scheduling accord-
ing to Adaptive-Mixed-Criticality (AMC) for these tasks. For
schedulability analysis, AMC-max has much higher compu-
tational complexity comparing to AMC-rtb, but it is more
accurate and may help find better quality solutions when used
in optimization. In the following, we consider the problem of
minimizing LO-criticality energy consumption [19] given by
Equation (8). The range of the LO-criticality WCET C;(LO)
of each task 7; is determined as follows. We first take the
upper-bound C}* of the execution time range given in the case
study. Then we consider C;(LO) to be freely adjustable in
the interval [CZ ,2C#] by CPU clock rate adjustment. For HI-
criticality task, C;(HI) is obtained by scaling C;(LO) by
a fixed criticality factor v, i.e. C;(HI) = ~vC;(LO). In the
experiments, we vary 7y to take three possible values 3, 4, 5.
The optimization problem is to find a C;(LO) for each task
that minimizes Equation (8).

We compare the following four methods:

o MIGP-AMCrtb: Formulating the problem with AMC-rtb
analysis as a mixed integer geometric program, and use
the gpposy and YALMIP solvers to solve it.
MUA-MILP-AMCrtb: The iterative framework in Fig-
ure 2, where the problem w is directly solved as an MILP
program, and the schedulability analysis uses AMC-rtb.
MUA-incremental-AMCrtb: The framework in Figure 2,
where problems w are solved with the MUA-driven
branching tree, and the schedulability test is AMC-rtb.
MUA-incremental-AMCmax: The same as MUA-
incremental-AMCrtb, except that the schedulability
analysis uses AMC-max.

We let each approach run for 48 hours. The size lim-
its for MUA-incremental-AMCrtb and MUA-incremental-
AMCmax are both set to K = 50000. Note that we do
not consider AMC-max for MIGP as the analysis is too
complicated to formulate in the MIGP framework. Likewise,
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we do not apply AMC-max to MUA-MILP, since it is already
very slow under AMC-rtb: it cannot find any feasible solutions
in 48 hours.

We first assume priority assignment is given by rate mono-
tonic (ties are broken by criticality level). The results are
summarized in Table II. For v = 3, MIGP-AMCrtb gets stuck
in a suboptimal solution (about 51% worse than the optimal)
early and cannot find any better solution even after 48 hours.
MUA-MILP-AMCrtb is even worse, as it cannot find any
feasible solution in 48 hours. Comparably, MUA-incremental
performs much better: regardless of whether AMC-max or
AMC-rtb is used, it finds the best solution in about 15 minutes,
or about 200 times faster than MUA-MILP-AMCrtb and MUA-
MILP-AMCrtb.

The cases of v = 4 and v = 5 are similar. Note that the
use of the more accurate AMC-max analysis did not improve
the quality of the solution. This is mainly due to the rate-
monotonic priority assignment. For this case, LO-criticality
tasks are mostly lower in priorities than Hl-criticality tasks
(except 71, 74 which have quite loose deadlines). As a result,
most HlI-criticality tasks only suffer interference from other
HI-criticality tasks. Therefore, the worst-case scenario for the
response time calculation occurs when the system is entirely in
the Hl-criticality mode, where AMC-max and AMC-rtb give
the same response time. On the other hand, the small dif-
ference in the runtimes of MUA-incremental-AMCmax and
MUA-incremental-AMCrtb demonstrates that the efficiency
of our approach is relatively insensitive to the complexity of
the schedulability analysis.

We next consider the setting where priority assignment is
not given and need to be co-optimized with WCETs. We
omit MIGP-AMCrtb from this experiment as it is no longer
applicable. Note that for methods based on the proposed opti-
mization framework (MUA-incremental-AMCrtb and MUA-
incremental-AMCmax), including priority assignment in the
design space is rather simple: since both AMC-rtb and AMC-
max are both compatible with Audsley’s algorithm [16], in
the framework we just use a schedulability analysis procedure
that incorporates both the response time calculation (either
AMC-rtb or AMC-max) and Audsley’s algorithm for finding
a feasible priority assignment.

The results are summarized in Table III. A number of ob-
servations can be made. First, much better solutions are found
when priority assignment is treated as decision variables. The
overall objective values reduce by as much as more than
half comparing to the results in Table II. This shows the
benefit of the proposed optimization framework: it is able
to handle the co-optimization of various variables. Second,
the difference between AMC-rtb and AMC-max analyses is
now more noticeable. For example, when the criticality factor
~ =5, the use of AMC-max provides a solution that is 23%
better than that of AMC-rtb. This demonstrates the benefit of
using a more accurate analysis for optimization. However, such
a benefit can only be achieved when the optimization algorithm
is capable of accommodating the analysis. This is difficult
for MIGP as AMC-max is too complicated to formulate
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TABLE II: Results on Flight Management System by Optimizing Task WCETs

=3 =4 =5
Method Time 7 Objective Time : Objective Time 7 Objective
MUA-MILP-AMCrtb > 48h N/A > 48h N/A > 48h N/A
MIGP-AMCrtb > 48h | 6.216e+007 > 48h | 8.379e+007 > 48h | 1.076e+008
MUA-incremental-AMCrtb 873.91s | 4.108e+007 582.06s | 5.803e+007 409.76s | 7.723e+007
MUA-incremental-AMCmax 903.10s | 4.108e+007 619.86s | 5.803e+007 406.59s | 7.723e+007

TABLE III: Results on Flight Management System by Co-optimizing Task priority

assignments and WCETs

=3 =4 =5
Method Time s Objective Time ! Objective Time s Objective
MUA-MILP-AMCrtb > 48h N/A > 48h N/A > 48h N/A

MUA-incremental-AMCrtb 2356.61s | 2.626e+007 1204.74s | 2.832e+007 517.68s | 3.415e+007

MUA-incremental-AMCmax || 2734.41s | 2.626e+007 || 2260.71s | 2.626e+007 || 2569.84s | 2.626e+007
in geometric programming framework. Our framework, on 103
the other hand, can incorporate any schedulability analysis
as long as it is sustainable. Third, the runtime noticeably 102k i
increases comparing to Table II. This is mainly because the
schedulability analysis now incorporates Audsley’s algorithm,
which has a substantially higher computation complexity than 10" ¢ E
just a plain response time calculation. >

2. 0L ]
B. Control Performance % 10
In this experiment, we consider the problem of optimizing @
control performance for a set of periodic tasks scheduled on a 107 ¢ E
uniprocessor. The problem was originally introduced in [24], MUPDA-MILP
where the objective is formulated in Equation (7). 102k —o— MIGP .
Mancuso et al. [24] proposed to relax the response time —3— MUA-incremental

analysis (2) by removing the ceiling operator (hence it uses - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

% to estimate the number of interferences from task 7; on
task 7;). Although the relaxation was claimed to be a close
approximation to the exact response time in practice, it is
possible that the relaxed analysis may give unsafe solutions.
In fact, in the randomly generated systems below, the solution
returned by [24] is always unschedulable with the exact
analysis in Equation (2). Thus, in the comparison of other
methods below, we use the exact analysis (2).

We evaluate on randomly generated synthetic task sets.
The parameters are generated using a similar setting as [24].
Specifically, in Equation (7), «; is randomly generated in
the range [1,1000], §; is randomly generated in the range
[1,10000], and the WCET of each task C; is randomly selected
from [1, 100]. The upper-bound for the task period 7; is set to
be 5 times the sum of all task WCETs, i.e., T} =5 Z?:l C;.
This sets 20% as the lower bound on system utilization. Task
priority are assigned with the rate monotonic policy.

We compare the following three methods:

o MIGP: MIGP formulation proposed in [10] for optimiz-
ing task periods. We use geometric programming solver
gpposy [25] with the BnB (bmi) solver in YALMIP [23]
for solving MIGP problems.

o« MUPDA-MILP: The proposed optimization framework
in [39], which is an iterative procedure that leverages
CPLEX solver [21] to solve a series of MILP problems.
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Fig. 8: Runtime of optimizing control performance.

o MUA-incremental: The proposed optimization frame-
work in Figure 2, where the problem w is solved using
the MUA-driven branching tree.

Like in Section VII-A, we set a maximum iteration limit of
2000 for MIGP, and the time limits of the other two methods
are set to 600 seconds for each problem instance. The size
limit for MUA-incremental is set to K = 10000.

Figure 8 plots the runtime of all the optimization meth-
ods MIGP, MUPDA-MILP and MUA-incremental. While all
methods give the same optimal solution when finishing within
the time limit, MUPDA-MILP has the worst scalability. As
discussed in [39], this confirms that it is often inefficient in
solving problems with objective that are sensitive to many
decision variables, since it takes many iterations to terminate,
and each MILP problem has to be solved from scratch (instead
of incrementally as in our approach). Meanwhile, MUA-
incremental runs about 10 times faster than MIGP. This
again demonstrates the advantage of our proposed framework
that judiciously combines the MUA-guided iterative procedure
with the incremental update of the branching tree.
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VIII. CONCLUSION

In this paper, we propose a framework for optimizing the
design of real-time system with sustainable schedulability
analysis. We propose the concept of Maximal-Unschedulable-
Assignment (MUA) and show how it can be used to abstractly
interpret the schedulability constraints. Based on the concept,

we

develop an iterative optimization procedure that uses

MUAES to iteratively refine the schedulability region. It contains
three key steps: i) an algorithm for solving the optimization
problem consisting of MUA-implied constraints, ii) an algo-
rithm for computing MUAs that leads to faster convergence,
and iii) use of MUAs to exploring good-quality schedulable
solutions. We perform experiments on two optimization prob-
lems to demonstrate the advantage of the proposed approach
in applicability and scalability.
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