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Abstract—The design of modern real-time systems not only
needs to guarantee their timing correctness, but also involves
other critical metrics such as control quality and energy con-
sumption. As real-time systems become increasingly complex,
there is an urgent need for efficient optimization techniques
that can handle large-scale systems. However, the complexity of
schedulability analysis often makes it difficult to be directly in-
corporated in standard optimization frameworks, and inefficient
to be checked against a large number of candidate solutions.
In this paper, we propose a novel optimization framework for
the design of real-time systems. It leverages the sustainability
of schedulability analysis that is applicable for a large class of
real-time systems. It builds a counterexample-guided iterative
procedure to efficiently learn from an unschedulable solution
and rule out many similar ones. Compared to the state-of-the-art,
the proposed framework may be ten times faster while providing
solutions with the same quality.

I. INTRODUCTION

Design optimization techniques are becoming vital and

urgent for a number of application domains for real-time

systems. For example, the automotive industry is extremely

cost sensitive yet its products are highly safety critical [13].

Unmanned aerial vehicles powered by batteries must carefully

plan and operate according to their tight energy budget [18].

There has been a rich set of research on the development of

timing and schedulability analysis over the past years. How-

ever, many of the analysis techniques are either impossible,

or too complex and inefficient, to use in well-established op-

timization frameworks (i.e., mathematical programming) [39].

As a result, the existing practice for design optimization often

has to rely on ad-hoc approaches. This typically comes with

the loss of solution quality as well as limited applicability.

Hence, an efficient and general framework that bridges the gap

between schedulability analysis and optimization is critical to

the future success of real-time systems design.

In this paper, we seek to address this urgent need and

propose a general framework for optimizing real-time systems.

We leverage the concept of sustainable schedulability analysis

that is recommended as a good engineering practice for real-

time systems [5]. Specifically, if a task system is schedulable

under a sustainable schedulability analysis, then it should

remain to be schedulable with, for example, decreased worst

case execution time (WCET), or increased period.

The design of our framework centers around the concept

of Maximal Unschedulable Assignment (MUA) to variables

that are sustainable in the schedulability analysis, including

task WCET and period. It avoids the direct formulation of

schedulability region, but uses MUAs to provide an effi-

cient abstraction of the schedulability constraints. It devel-

ops a counterexample (i.e., unschedulable solutions) guided

paradigm to learn from an unschedulable solution and rule

out many similar unschedulable ones. It also builds an MUA-

driven branching algorithm that takes advantage of the special

structure in the optimization problem.

Our framework is generally applicable to a broad range of

optimization problems for real-time systems. We use two case

studies to demonstrate the benefit of our framework. The first

is the optimization of energy consumption on platforms with

dynamic voltage and frequency scaling (DVFS), where task

WCETs change based on the selected CPU frequency. The

second is the selection of task periods to optimize control

quality under schedulability constraints [24]. Compared to the

state-of-the-art, the proposed framework may be ten times

faster while providing solutions with the same quality.

Paper organization. The rest of the paper is organized as

follows. Section II summarizes the related work. Section III

presents the system model and the problem setting that fits

our framework. Section IV describes the concept of Maximal

Unschedulable Assignment (MUA). Section V develops the

framework based on MUA. Section VI discusses the appli-

cability and limitations. Section VII shows the experiments

to demonstrate the advantage of our framework. Finally, Sec-

tion VIII concludes the paper.

II. RELATED WORK

There is a rich literature for the optimization of real-time

systems. Generally speaking, the current approaches can be

classified into four categories: (i) meta heuristics such as

simulated annealing (e.g., [7], [32]) and genetic algorithm

(e.g., [17], [31]); (ii) problem specific heuristics (e.g., [29],

[34], [38]); (iii) directly applying existing optimization frame-

works such as branch-and-bound (BnB) (e.g., [35]), Mixed

Integer Linear Programming (MILP) (e.g., [26], [37]), and

convex programming (e.g., [20]); (iv) customized optimiza-

tion frameworks that are tuned for specific design variables

in real-time systems, such as the optimization of priority

assignment [40], [42], [43] and period [39]. The first two

categories either do not have any guarantee on solution quality,

or suffer from scalability issues and may have difficulty

to handle large industrial designs. For the third category,

besides the possible scalability issues, it also requires that

the schedulability analysis can be formulated in the chosen
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framework, which may not always be possible. The current

approaches in the fourth category are also limited in their

applicability. For example, unlike the proposed framework in

this paper, none of them [39], [40], [42], [43] considers task

WCETs as design variables.

The problem of task period selection has been studied in

the literature [8], [30]. In particular, Bini et al. [8] propose a

problem specific branch-and-bound technique for optimizing

task rate, but it describes the exact schedulabiltiy region in

the domain of task rates, hence it may be applicable to

problems with optimization objectives that depend only on task

periods (not on other variables such as task response times).

Mancuso et al. [24] develop a branch-and-bound algorithm,

where a linear lower bound is adopted as an approximation

to task response time. In [31], a genetic algorithm is used

for the problem to minimize the sum of end-to-end delays

in networked control systems. Davare et al. consider the

period optimization to minimize end-to-end latencies for a

set of paths, and formulate it in mixed integer geometric

programming (MIGP) framework [10]. Differently, Zhao et

al. [39] propose a customized procedure specialized for the

minimization of end-to-end latencies, which is several orders

of magnitude faster than [10]. Our approach is also to de-

velop a customized framework. However, it not only is more

generally applicable than [39], but also may run 100× faster.

There are various approaches proposed to address the

problem of optimizing energy consumption for systems with

DVFS, see a related review in [4]. However, they are all

focusing on one particular scheduling model and associated

schedulability analysis. For example, Huang et al. [20] con-

sider mixed-criticality systems scheduled with Earliest Dead-

line First with Virtual Deadline, which allows to formulate the

problem as a convex program. Instead, our framework is gen-

erally applicable to any systems as long as the schedulability

analysis is sustainable.

In summary, compared to the existing approaches, our

framework is applicable to a larger class of optimization

problems in real-time systems. It does not pertain to a partic-

ular scheduling model or schedulability analysis, but can be

used for any systems with sustainable schedulability analysis.

It applies to the optimization of various decision variables

including task WCET, period, deadline, or priority assignment.

Finally, it may still be much faster than the state-of-the-art, as

demonstrated in the experimental results.

III. SYSTEM MODEL

In this paper, we consider a general setting of real-time

systems for which the associated schedulability analysis is

sustainable [5]. It contains m tasks indexed from 1 to m.

The design optimization of a real-time system is to select the

appropriate values for design variables such that (a) a given

cost function is minimized, and (b) system schedulability is

satisfied. Mathematically it can be expressed as follows

min F (X)
s.t. system schedulability

xj ∈ [xl
j , x

u
j ], ∀j = 1, ..., n

(1)

where X = (x1, ...xn) is the vector of variables. Here we

first focus on the case that X may include the response time

Ri, WCET Ci, deadline Di and/or period Ti for any task τi.
In Section VI we will discuss how to handle the case where

priority assignment is also part of the decision variables. Each

variable xj in X takes integer values within a bounded range

[xl
j , x

u
j ] (i.e., the design variables have finite resolutions). We

do not impose any particular form of schedulability analysis,

as long as it is sustainable [5].

Sustainability is proposed as a guideline for the development

of schedulability analysis techniques in real-time systems [5].

Specifically, a schedulability analysis is defined as sustainable

if any schedulable task system remains schedulable with (i)

decreased WCET Ci; (ii) larger period Ti; (iii) larger deadline

Di for any task τi, among others.1

Here we discuss how to leverage the sustainability with

respect to task deadlines to handle the case that response time

Ri appears in the objective function. In this case, we not only

need to make sure that Ri ≤ Di (which can be satisfied by

any Ri that is no larger than Di), but also a precise value

of Ri in order to compare different schedulable solutions.

In this case, we replace Ri with a virtual deadline D̂i [42],

which can be interpreted as a safe estimation on Ri (hence

Ri ≤ D̂i ≤ Di) when the system is schedulable. It is easy to

see any schedulability analysis that is sustainable with respect

to the deadline Di is also sustainable with respect to D̂i.

For systems with sustainable schedulability analysis, with-

out loss of generality, they satisfy the following property.

Property 1. The system schedulability constraints can be

written as G(X) ≤ 0, where each function in G(X) is

monotonically non-increasing with respect to each variable

xj in X. Hence, if a smaller assignment to xj (e.g., the period,

virtual deadline, or the additive inverse −Cj of WCET Cj)

makes the system schedulable, then a larger assignment to xj

also does (assuming all other variables remain unchanged).

Note that some variables such as WCET Ci may be oppo-

site to the above property (smaller Ci corresponds to easier

schedulability). In this case, we can simply perform a variable

conversion (i.e., replacing Ci with C ′i = −Ci) to make it

conform to the assumption.

A. Examples on Sustainable Schedulability Analysis

Sustainability is a general property that applies to many

schedulability analysis techniques in real-time systems. For

example, for the classical Liu-Layland task model scheduled

with fixed priority [22], the response time based schedulability

analysis [2] is sustainable

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
Cj ≤ Di (2)

A more complicated example is mixed-criticality systems

scheduled with Adaptive Mixed-Criticality (AMC) scheduling

1For simplicity we call such a schedulability analysis sustainable, but it is
termed as self-sustainable analysis in [3], see a detailed discussion therein.
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policy [6]. The proposed AMC-rtb and AMC-max schedula-

bility analyses [6] are both sustainable [16]. The two analyses

mainly differ in the estimation of interferences from higher

priority tasks during the criticality change.

AMC-rtb analysis calculates the response time of a HI-

ciriticality task τi during the criticality change as

Ri(HI) = Ci(HI) +
∑

∀j∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI)+

∑
∀j∈hpL(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO)

(3)

Here Ci(HI) represents the WCET of τi in HI criticality

mode. Ri(LO) is the response time of τi in LO criticality

mode given by Equation (2). hpH(i) and hpL(i) represent

the set of HI- and LO-criticality tasks of higher priority than

τi, respectively.

Intuitively, AMC-rtb assumes that a HI-criticality task al-

ways executes in HI-criticality mode and LO-criticality task

may execute up to Ri(LO). AMC-max improves upon AMC-

rtb by considering different specific time instants of criticality

change and dividing the workload of higher priority HI-

criticality tasks into LO-mode and HI-mode. Specifically,

given a time instant s of criticality change, AMC-max com-

putes the WCRT of τi as follows

Ri(HI, s) = Ci(HI) +
∑

∀j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO)+

∑
∀j∈hpH(i)

M(j, s, Ri(HI, s))Cj(HI)+

∑
∀j∈hpH(i)

(⌈
t

Tj

⌉
−M(j, s, Ri(HI, s))

)
Cj(LO)

(4)

where M(j, s, t) represents the maximum number of instances

of τj that are released as HI-criticality instances during the

time interval [s, t], which is expressed as

M(j, s, t) = min

{⌈
t− s− (Tj −Dj)

Tj

⌉
+ 1,

⌈
t

Tj

⌉}
(5)

The WCRT of τi during the criticality change can be computed

by examining all possible time instants s of criticality change

Ri(HI) = max
∀s

Ri(HI, s) (6)

It is shown to be sufficient to only consider those s in the

interval [0, Ri(LO)) [6].

B. Example Optimization Problems

We now provide two examples that fit our framework.

Optimizing control quality. The first problem is to optimize

control performance for a set of periodic tasks scheduled on

a uniprocessor [24]. The objective function, which represents

the control cost, are approximated as a weighted sum of task

period Ti and response time Ri for each task τi [24]

F (X) =

m∑
i=1

αiTi + βiRi (7)

where αi and βi are given constant weights. Our framework

works for any scheduling policy as long as its schedulability

analysis is sustainable. In the experiments (Section VII-B)

we assume the same as those in [24], i.e., the schedulability

analysis in Equation (2).

Energy minimization with DVFS. Platforms with DVFS

capabilities allow to adjust the CPU clock rate to save energy.

Higher clock rate gives smaller WCET, which generally helps

schedulability. However, this comes with an increased energy

consumption. The goal is to determine the clock rate fi for

executing each task τi such that the system is schedulable

while the total energy is minimized.

Specifically, suppose τi has an execution time Cb
i measured

at a base clock rate f b, then its execution time at another clock

rate fi can be estimated as Ci = Cb
i × fb

fi
. Thus fi = f b× Cb

i

Ci
.

We normalize f b to be 1 and consider that Cb
i is given, which

makes Ci a decision variable in the optimization. We adopt

the energy consumption objective formulated in [20]:

F (X) =
∑
∀τi

Cb
i f

b

Ti
· β · (fi)α−1 =

∑
∀τi

1

Ti
· β · (Cb

i )
α

(Ci)α−1

(8)

where β is a circuit-dependent constant. A common assump-

tion for α is 3 [27], [28]. Like the previous case, we do

not impose any constraint on the scheduling policy as long

as the associated schedulability analysis is sustainable. In the

experiments (Section VII-A), we use Equation (2) for a large

number of random systems. For an industrial case study, we

assume mixed-criticality systems scheduled with AMC, and

adopt the AMC-rtb and AMC-max schedulability analyses [6],

both of which are sustainable [16].

IV. MAXIMAL UNSCHEDULABLE ASSIGNMENT

We now introduce the concept of Maximal Unschedulable

Assignment (MUA).

Definition 1. An assignment

X = (v1, ...vn) (9)

is a valuation of each variable xi = vi in X. An assignment

X = (v1, ...vn) is said to dominate another assignment X ′ =
(v′1, ...v

′
n), denoted as X � X ′, if X is component-wise no

smaller than X ′, i.e., vi ≥ v′i, ∀i.
Definition 2. An assignment X is said to be unschedulable

if it violates the schedulability constraints. X is a maximal
unschedulable assignment (MUA) if (a) X is unschedula-

ble and (b) there is no other unschedulable assignment that

dominates X .

We remark that the concept of MUAs is well-defined, since

by Property 1 of schedulability constraints with respect to the

variables in X, any assignment X ′ that is dominated by an

MUA X must also be unschedulable. Also, any two MUAs

cannot dominate each other, otherwise one of them is not an

MUA. Note that we assume variables with integer values (or

in general discrete variables), hence the MUAs always exist.
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Fig. 1: The MUAs of the problem in Equation (10).

Example 1. Consider a hypothetical optimization problem

formulated in (10) where || denotes the logic OR operation.

The decision variables are X = (x1, x2), which take values

in the range [0, 9]. The feasibility region are formed by

the disjunction of two linear constraints, which is shown in

Figure 1 as the green shadowed area.

min F (X) = x1 + x2

s.t.

∥∥∥∥∥
x1 + 6x2 ≥ 36

5x1 + 3x2 ≥ 45

0 ≤ x1, x2 ≤ 9

(10)

In the figure, the five points A = (8, 1), B = (7, 3),
C = (6, 4), D = (5, 5), E = (0, 5) marked in the figure

are all unschedulable assignments as they lie outside of the

schedulability region. E is not an MUA, since D dominates

E. Meanwhile, A, B, C and D are all MUAs since they are

unschedulable assignments and there exists no other unschedu-

lable assignment that dominates any of them.

By Property 1, any assignment dominated by an unschedu-

lable assignment is also unschedulable. Therefore, an MUA

X = (v1, ...vn) implies the following constraint that must be

satisfied by any schedulable solution

¬

⎧⎪⎨
⎪⎩
x1 ≤ v1

...

xn ≤ vn

⇔

∥∥∥∥∥∥∥
x1 ≥ v1 + 1

...

xn ≥ vn + 1

(11)

where { denotes the logic AND operation. We call (11) the im-
plied constraint by X . Note that no matter how complicated

the schedulability analysis is, the MUA-implied constraints

will always take the form in (11), hence they are an abstract

interpretation of the schedulability constraints. The higher

the values in X , the stronger the implied constraint. In this

sense, constraints implied by MUAs are the “strongest” type

of constraints for schedulability. In Example 1, the implied

constraints by MUAs A = (8, 1), B = (7, 3), C = (6, 4),
D = (5, 5) together represent the exact schedulability region.

Fig. 2: MUA-guided optimization framework.

V. OPTIMIZATION FRAMEWORK

We now present the optimization framework that builds

upon the concept of MUA. By the sustainability of schedula-

bility analysis (hence Property 1), once we find an unschedula-

ble solution, we can generalize it to MUAs to simultaneously

rule out many similar unschedulable solutions. This leads

to the following key idea for the design of our framework:

we use MUA-implied constraints as an efficient abstraction

(as opposed to a direct formulation) of the schedulability

region, and employ an iterative procedure to gradually learn

those MUAs that are critical for determining the optimal

solution (Section V-A). Furthermore, we maintain an MUA-

driven branching structure to allow incremental update of the

branching tree and efficient solution to each leaf problem

(Section V-B).

A. MUA-guided Iterative Procedure

In real-time systems, the complexity of the schedulability

analysis may prevent us from leveraging existing optimization

frameworks. For example, the most accurate schedulability

analysis for AMC, AMC-max [6], hinders a possible formula-

tion in MILP [41]. As in Equation (6), it requires to check, for

each possible time instant s of criticality change, whether the

corresponding response time is within the deadline. However,

the range of s is unknown a priori as it depends on the task

response time in LO mode.

Our key observation is that sustainability of schedulability

analysis (hence Property 1) allows to generalize from one un-

schedulable solution to MUAs, which can simultaneously rule

out many similar unschedulable solutions. This is leveraged

to develop the iterative optimization framework guided by

counterexamples (i.e., unschedulable solutions), as illustrated

in Figure 2. Initially, it starts with an optimization problem

ω that leaves out all the schedulability constraints. It then

enters an iterative procedure that contains four steps. The first
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(a) Iteration 1
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(b) Iteration 2

G(8, 1)

G(7, 3)

X(0, 4)
G(6, 4)
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0
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(c) Iteration 3

G(8, 1)

G(7, 3)

G(6, 4)

X(0, 5)
G(5, 5)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x2

(d) Iteration 4

G(8, 1)

G(7, 3)

G(6, 4)

G(5, 5)

X(0, 6)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x2

(e) Iteration 5

Fig. 3: The iterative procedure applied to the problem in Equation (10). The yellow shadowed area is the pruned unschedulability

at the end of the iteration.

step is to solve ω using an MUA-driven branching algorithm.

Here ω maintains to be a relaxed version of the original

problem in Equation (1), since it only includes the implied

constraints from a subset of all MUAs (and hence only part

of the schedulability constraints). The second step is to use

the associated (sustainable) schedulability analysis to check if

the returned solution X from Step 1 is schedulable or not. If

yes, then X must also be an optimal solution to the original

problem (Theorem 1). Otherwise, it performs two operations,

Steps 3 and 4, that can be executed in parallel. In Step 3, it

converts X to an MUA and adds the implied constraints (11)

to ω. In this way, the counterexample (i.e., the unschedulable

solution X returned in Step 1) is generalized as much as

possible, such that many similar unschedulable solutions can

be ruled out together. In Step 4, it converts X to a feasible

solution and adds it to ω, which allows both efficient branch-

and-bound and early termination of the algorithm. These steps

will be explained from Section V-C to Section V-E, after we

present the MUA-driven tree structure (Section V-B).

We now discuss two important properties of the framework,

as stated in the following theorem.

Theorem 1. The algorithm in Figure 2 guarantees to ter-

minate. If Step 1 in each iteration is solved optimally w.r.t.

the added constraints, the algorithm guarantees to return an

optimal solution upon termination.

Proof. During each iteration, the procedure has to find

a solution X that satisfies the constraints implied by all

the previously added MUAs. This means that if X is still

unschedulable, then it must correspond to MUAs that are

different from the known ones. Since the total number of

MUAs is clearly finite and bounded by Ω(Π∀i(xu
i − xl

i +1)),
the algorithm guarantees to terminate.

The implied constraint (11) only cuts away unschedulable

decision space. Since the problem starts with no MUAs in

ω, at any point during the optimization, the feasibility region

defined by the added MUA-implied constraints maintains to be

an over-approximation of the exact feasibility region. Hence

the optimization problem ω in Step 1 has the same objec-

tive function but a larger feasibility region than the original

problem (1). This implies that upon termination, where the

algorithm finds a schedulable solution, the solution must also

be optimal to (1).

Example 2. As an example, we apply the framework to the

problem (10). Here we focus on how the framework prunes

the unschedulable solutions, and ignore the step of finding

feasible solutions.

Iteration 1. The algorithm initially ignores all schedu-

lability constraints. Optimizing F (X) gives the assignment
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X = (x1, x2) = (0, 0). Since X is clearly unschedulable, the

algorithm proceeds to convert X into an MUA. Depending on

the strategy for MUA computation (which will be discussed

in Section V-C), the algorithm may obtain any one of points

A = (8, 1), B = (7, 3), C = (6, 4), or D = (5, 5) in Figure 1.

Suppose A is returned as the converted MUA.

Iteration 2. The feasibility region is updated to Figure 3(b),

where the area colored in yellow represents the region cut

away by the constraints implied by the MUA A. Optimizing

F (X) gives the assignment X = (0, 2). Since X is not

schedulable, the algorithm proceeds to convert X into an

MUA. Suppose B = (7, 3) is returned as the converted MUA.

Iteration 3. The feasibility region is updated to Figure 3(c).

Optimizing F (X) returns the assignment X = (0, 4). Suppose

C = (6, 4) is returned as the computed MUA.

Iteration 4. The feasibility region is updated to Figure 3(d).

Optimizing F (X) returns the assignment X = (0, 5). Now the

only possible MUA that can be computed is D = (5, 5).
Iteration 5. The feasibility region is updated to Figure 3(e).

Optimizing F (X) gives the assignment X = (0, 6). This

assignment is now schedulable and the algorithm terminates

with an optimal solution (x1, x2) = (0, 6).

B. MUA-driven Branching Tree

As in Figure 2, the above procedure requires to solve an

instance of ω during each iteration, which may only be slightly

different from the previous iterations since the procedure only

adds a handful of new MUAs to ω. Directly calling mathemat-

ical programming solvers to solve ω is not necessarily efficient

since many solvers do not support incremental solving, i.e.,

they have to solve each instance of ω from scratch.2

Hence we build a branching tree structure to represent the

MUA-implied constraints. It allows incremental updating of

the tree, as well as efficiently solving each subproblem at

the leaf nodes. Initially (i.e., before entering the iteration in

Figure 2) the tree only contains one (root) node. Each time

a new MUA X is added to the problem ω, we add a new

layer in the tree to represent the disjunction (i.e., logic OR)

of the constraints implied by X , where each branch (edge) in

the new layer is a constraint in the disjunction. Each node N
in the tree represents the set of conjunctive (i.e., logic AND)

constraints along the path from the root node to this node N .

Since the constraint on each branch takes the particular form

xj ≥ uj for some value uj , the constraint represented by a

node N can be simplified as⎧⎪⎨
⎪⎩
x1 ≥ u1

...

xn ≥ un

(12)

For simplicity, we denote the node as N = [u1, ..., un].

2The only known exception is the MILP solver CPLEX [21], which
provides an interface for building customized branching tree. But the price is
that it can no longer run in parallel on multiple cores, which actually makes
the whole procedure slower.

Some nodes in the tree are redundant, in the sense that the

corresponding constraints may have already been satisfied by

constraints along the path from the root. These nodes can be

pruned to make the tree structure more compact.

Example 3. Consider the branching tree after Iteration 2 in

Example 2, i.e., after adding the constraints implied by MUAs

A = (8, 1) and B = (7, 3). The left hand side of Figure 4

shows the resulted tree. The constraint corresponding to A is

x1 ≥ 9 ∨ x2 ≥ 2, and the constraint corresponding to B is

x1 ≥ 8 ∨ x2 ≥ 4, where ∨ denotes the logic OR operation.

Hence, the root node (node 1) is first branched to two children,

nodes 2 and 3, where the branch to node 2 represents the

constraint x1 ≥ 9, and the branch to node 3 represents the

constraint x2 ≥ 2. When adding the constraints for MUA

B = (7, 3), each of nodes 2 and 3 is branched to two children.

Node 6, for example, represents the constraints along the path

from the root node, i.e., x2 ≥ 2 ∧ x1 ≥ 8, where ∧ denotes

the logic AND operation.

When adding the constraint x1 ≥ 8 ∨ x2 ≥ 4 implied by

MUA B to node 2, this constraint is already satisfied by the

constraint x1 ≥ 9 represented by node 2, i.e., (x1 ≥ 9)∧(x1 ≥
8∨ x2 ≥ 4) = x1 ≥ 9. The right hand side of Figure 4 shows

the tree structure after pruning the redundant nodes.

The special form of MUA-implied constraints make it easy

to check the redundancy of nodes.

Theorem 2. Assume N = [u1, ..., un] is an existing node in

the tree. If an MUA X = (v1, ..., vn) to be added satisfies

that ∃i : ui ≥ vi + 1, then the constraints implied by X are

redundant.

Proof. This is easy to see by checking the represented

constraints of N in (12) and those of MUA X in (11).

⎧⎪⎨
⎪⎩
x1 ≥ u1

...

xn ≥ un

⇒ xi ≥ ui ⇒ xi ≥ vi + 1⇒

∥∥∥∥∥∥∥
x1 ≥ v1 + 1

...

xn ≥ vn + 1

In the following we explain how the steps in Figure 2 are

handled. For Step 2, it can use any schedulability analysis as

long as it is sustainable.

C. Step 1: Solving ω

For Step 1, it requires to solve the following optimization

problem at each leaf node N = [u1, ..., un] in the tree:

min
xj∈X

F (X)

s.t. constraints of form (12)

xj ∈ [xl
j , x

u
j ], ∀j = 1, ..., n

(13)

The constraints in (13) are of a particularly simple form:

there are no coupled constraints for any pair of variables xi

and xj . This means that the overall optimization can be done
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Fig. 4: Branching tree at the end of Iteration 2 of Example 2: original tree (left); after pruning (right).

by optimizing each variable in sequence [9]. In other words,

(13) can be transformed to

min
x1

min
x2

...min
xn

F (X)

s.t. constraints of form (12)

xj ∈ [xl
j , x

u
j ], ∀j = 1, ..., n

(14)

For example, if F (X) is convex with respect to the vari-

ables, then solving (14) amounts to solving a series of single-

variable convex programs, which is a lot easier than those with

coupled constraints.

In addition, even if F (X) is not convex (hence in general

difficult to solve [9]), we may still be able to provide a simple

solution to it. In real-time systems, often times there exists

some tradeoff between schedulability and the metrics in the

objective function. For example, when the CPU frequency is

increased, the task WCET is lower, but the energy consump-

tion will be higher. Similarly, increasing the task periods will

make the task system easier to schedule, but the control quality

and stability will be worsened. In component-based design,

modularity (i.e., the number of exposed interfaces) is a critical

metric, but better modularity may lead to larger code size and

longer WCET [33]. We leverage this observation to derive

the following corollary, which is a direct consequence from

Equation (14). In fact, Corollary 3 applies to both problems

in the experiments.

Corollary 3. If F (X) is monotonically non-decreasing with

respect to each of the variables in X, then the optimal solution

to (13) is x1 = u1, ..., xn = un.

This corollary is intuitive since the objective function will

push each variable xi to its lowest possible value ui.

D. Step 3: Converting an Unschedulable Assignment to MUA

In this section, we discuss the algorithm for converting

an unschedulable assignment X into an MUA U . It utilizes

Property 1, i.e., the schedulability analysis is sustainable with

respect to the variables, to maximally increase each entry

in X while maintaining its unschedulability. The procedure

is summarized in Algorithm 1. It uses binary search to

sequentially find the maximal value that each entry in U
can be increased to while maintaining unschedulability. The

algorithm requires O(n log xmax) number of schedulability

analysis where xmax = max{xu
1 , ..., x

u
n}.

Algorithm 1 Conversion to MUA

1: function CONVERTTOMUA(Unschedulable Assignment

X )

2: U = (u1, ..., un) = X
3: for each entry ui in U do
4: Use binary search to maximally increase ui while

keeping the system unschedulable

5: end for
6: return U
7: end function

This step is critical in the efficiency of the overall algorithm.

Unlike typical counterexample guided algorithms, once we

find an unschedulable solution, in the next iteration we rule

out not only this solution but also many similar ones. Here the

concept of MUA is critical: it is essentially a generalization

from one unschedulable solution to many, which is a key in

allowing a fast convergence rate of the framework.

Example 4. Using Algorithm 1 on Example 1 yields the

exact trace of iterations shown in Figure 3 in Example 2. For

instance, in the first iteration, when a solution X = (0, 0) is

returned, Algorithm 1 first increases u1 to 8 since that is the

largest value of x1 that still makes the system unschedulable.

It then increases u2 from 0 to 1 to get the MUA U = (8, 1).

E. Step 4: Finding Feasible Solutions

The branching tree structure (as in Figure 4) allows to

implement a typical branch-and-bound algorithm, i.e., to use

the known best solution X to cut the branches that are certainly

no better than X and hence are surely suboptimal. Getting

a feasible solution also allows returning useful results for

designers even if they are not necessarily the global optimal

solution. This facilitates the possible early termination of the

overall procedure, otherwise it will not be able to get any

feasible solution until the optimal solution is found.

Our main idea is to make use of the assignment returned in

Step 1 and convert it heuristically into a good-quality schedula-

ble assignment. The conversion can be performed concurrently
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with the rest of the optimization process (Steps 1 and 3).

Specifically, in Step 2, if the assignment X = (v1, ..., vn)
is unschedulable, we simply scale each variable xi by a factor

a ∈ [0, 1], until X becomes schedulable

xi = vi + a(xu
i − vi) (15)

When a = 1, xi takes the upper-bound value xu
i . We use

binary search to find the minimum a such that the assignment

X becomes schedulable after scaling.

VI. APPLICABILITY AND EFFICIENCY

In this section, we discuss the applicability and expected

efficiency of the proposed techniques.

Applicability to Optimizing Priority Assignment. As men-

tioned earlier, the framework is applicable to optimizing task

response time, period, WCETs or deadline, as long as the

schedulability analysis is sustainable with respect to these

variables. Regarding task priority assignment as part of the

decision variables, this comes with two cases: (a) the objective

function is independent from the task priorities; (b) it is

sensitive to task priority assignments, such as the memory

consumption in the software implementation that preserves the

semantics of the synchronous reactive models [36].

For case (a), we can leverage Audsley’s algorithm [1] that is

applicable to many task models and scheduling schemes [12]:

if there exists a schedulable priority assignment, Audsley’s

algorithm will be able to find it. Hence, we can leave out the

variables of priority assignment in the problem ω, but instead

incorporate the optimization of priority assignment in the

procedure for checking schedulability (e.g., Step 2 in Figure 2,

and Line 4 in Algorithm 1): After fixing the values of all other

variables, the existence of a schedulable priority assignment

now can be efficiently checked by Audsley’s algorithm.

For case (b), it is necessary to explicitly include those binary

variables for task priority orders in the optimization problem

ω in the framework of Figure 2. In this case, we can leverage

the concept of unschedulability core [40]. Intuitively, it is

an irreducible representation of the reason why a given total

priority order is unschedulable, in the sense that relaxing any

order will make the system schedulable. We leave the details

of this discussion to future work.

Efficiency. The proposed technique fits the best for problems

that have the following characteristics:

1) The schedulability analysis is complex.

2) The rest of the problem is relatively simple.

For the first characteristic, the exact schedulability analysis

is often NP-complete, even for the basic settings, e.g., periodic

task with fixed priority scheduling [15], or EDF scheduling

with arbitrary deadlines [14]. In this case, even if the problem

may be formulated in some standard mathematical program-

ming framework, our approach might still be better, since

it uses MUAs to abstract away the details of schedulability

analysis, and only performs such an analysis on a small

number of design choices guided by the objective function.

Of course, there are cases that the schedulability analysis

is particularly simple, such as the condition for tasks with

implicit deadlines scheduled by EDF [22], or the utilization

based bound for EDF-VD [20]. In this case, although our

framework is still applicable, it is faster to directly handle

the schedulability condition.

For the second characteristic, this is satisfied when the

objective function has some friendly properties (such as

monotonicity or convexity with respect to the variables),

and the constraints only include the system schedulability. If

the problem includes some additional constraints other than

schedulability, then the problem at each leaf node of the

branching tree (see Figure 4) is not necessarily easy to solve,

since there might be coupled constraints among the variables.

In this case, it can be more efficient to use other appropriate

solvers to directly solve ω at Step 1 of the framework.

VII. EXPERIMENT RESULT

We now use two problems to demonstrate the advantage

of our framework. The first is the minimization of energy

consumption, the second is the optimization of control quality.

A. Optimizing Energy Consumption with DVFS

In this experiment, we consider the energy consumption

model in Equation (8). We use both random systems as well

as an industrial case study to compare different approaches.

To demonstrate that our framework is applicable to various

scheduling models and schedulability analysis techniques, we

assume the periodic task model and Equation (2) in the

experiments on random systems, and use AMC-rtb and AMC-

max (Equations (3)–(6)) in the experiments on the industrial

case study. The relative simplicity of Equation (2) compared

to AMC-rtb and AMC-max also allows us to perform experi-

ments on a large number of random systems.

Random Systems. For random systems, we compare the

following methods:

• MIGP: A mixed-integer geometric programming for-

mulation, solved by the geometric programming solver

gpposy [25] with the BnB (bmi) solver in YALMIP [23].

• MUA-MILP: The proposed iterative procedure in Fig-

ure 2, but the subproblem ω with MUA-implied con-

straints is formulated as an MILP and solved using

CPLEX [21].

• MUA-incremental: The proposed technique depicted in

Figure 2 with MUA-driven branching tree for incremental

update, where each problem at the leaf node is solved

using Corollary 3.

• Minimum-single-speed: A simple heuristic that uses

binary search to find the minimum single speed at which

all tasks become schedulable.

To avoid excessive waiting, in MUA-incremental we set a

limit for the number of nodes in each iteration (i.e., the size

of each layer in the branching tree) to be K = 10000. Also,

the time limits of MUA-MILP and MUA-incremental are set

to 600 seconds for each task system. The BnB (bmi) solver in

YALMIP does not have a time limit setting and only allows

to set a limit on the number of iterations. Therefore, we set a
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Fig. 5: Runtime of minimizing energy consumption on random

systems.

maximum iteration limit of 2000. This gives roughly a similar

time limit for MIGP as those of the other methods.

The task sets are generated synthetically as follows. For

each task set, we first randomly select a system utilization

in the range [0.5, 0.9]. We then generate a period Ti for

each task according to log-uniform distribution in the range

[100, 100000], and a utilization Ui for each task using UUni-

fast algorithm [11]. The corresponding WCET Cb
i = Ti ·Ui is

treated as the execution time at the base clock rate. The range

of decision variable Ci is taken as [Cb
i , 2C

b
i ]. This means that

the clock rate can be decreased as low as half the base clock

rate. The deadline Di of each task τi is generated randomly

in the range [Cb
i , Ti]. Priorities are assigned according to the

deadline monotonic policy.

Figure 5 illustrates the average runtime over 1000 random

systems for each m, the number of tasks in the system.

The runtime of Minimum-single-speed is very short (a few

milliseconds), as it is simply a binary search on a single

period value. MUA-incremental is about one to two orders

of magnitude faster than MIGP. The capping of MIGP that

occurs for systems with 14 or 15 tasks is mainly due to a

large number of cases reaching the iteration limit. Meanwhile,

MUA-incremental is able to finish all the instances in the

time limit. As for MUA-MILP, it is very slow such that

even for systems with 5 tasks, most of the cases are timed

out. This is because the MILP solver CPLEX is unable to

perform efficient incremental solving of the problems. Again,

it demonstrates the benefit of designing a branching algorithm

that takes advantage of the MUA-guided framework, as in the

case of MUA-incremental.
Since MUA-MILP is unable to finish for most of the

cases, we only compare the quality of solutions from MUA-
incremental, MIGP and Minimum-single-speed in terms of

relative gap. For each random system, we define the relative

gap of MIGP (or Minimum-single-speed) with respect to
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Fig. 6: Relative gap of MIGP compared to MUA-incremental.

Fig. 7: Relative gap of Minimum-single-speed compared to

MUA-incremental.

MUA-incremental as the relative difference in the objective

values. Since MUA-incremental always provides a better

objective value than the other two, we define the relative gap

of MIGP (resp. Minimum-single-speed) as

s =
pA − pB

pB
× 100% (16)

where pA is the objective value of MUA-incremental, and pB
represents that of MIGP (resp. Minimum-single-speed).

Figure 6 shows the whisker box plot of the distribution of

the relative gap for MIGP compared to MUA-incremental. On

average MUA-incremental finds 3% to 30% better solutions

(i.e., with less energy consumption) than MIGP within the

time limit. Likewise, Figure 7 shows the distribution for
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TABLE I: Flight Management System case study [19]

τ τ1 τ2 τ3 τ4 τ5 τ6
T 5000 200 1000 1600 100 1000

C(LO) [5, 40] [5, 40] [5, 40] [5, 40] [5, 40] [5, 40]
HI/LO HI HI HI HI HI HI

τ τ7 τ8 τ9 τ10 τ11
T 1000 1000 1000 1000 1000

C(LO) [5, 40] [50, 400] [50, 400] [50, 400] [50, 400]
HI/LO HI LO LO LO LO

Minimum-single-speed. As in the figure, MUA-incremental
is on average 3% to 10% better than Minimum-single-speed.

Flight Management System. We next evaluate the techniques

on an avionics case study consisting of a subset of Flight

Management System application [19]. The system contains 11

tasks of different criticality, which implement functions such

as localization and flight planning. Each task is abstracted into

an implicit deadline sporadic task characterized by a minimum

inter-arrival time, a range of execution time that is typical in

practice, and a criticality level. 7 tasks are of HI-criticality and

the other 4 are of LO-criticality. The parameter configuration

of the case study is summarized in Table I.

We consider fixed-priority uniprocessor scheduling accord-

ing to Adaptive-Mixed-Criticality (AMC) for these tasks. For

schedulability analysis, AMC-max has much higher compu-

tational complexity comparing to AMC-rtb, but it is more

accurate and may help find better quality solutions when used

in optimization. In the following, we consider the problem of

minimizing LO-criticality energy consumption [19] given by

Equation (8). The range of the LO-criticality WCET Ci(LO)
of each task τi is determined as follows. We first take the

upper-bound Cu
i of the execution time range given in the case

study. Then we consider Ci(LO) to be freely adjustable in

the interval [
Cu

i

4 , 2Cu
i ] by CPU clock rate adjustment. For HI-

criticality task, Ci(HI) is obtained by scaling Ci(LO) by

a fixed criticality factor γ, i.e. Ci(HI) = γCi(LO). In the

experiments, we vary γ to take three possible values 3, 4, 5.

The optimization problem is to find a Ci(LO) for each task

that minimizes Equation (8).

We compare the following four methods:

• MIGP-AMCrtb: Formulating the problem with AMC-rtb

analysis as a mixed integer geometric program, and use

the gpposy and YALMIP solvers to solve it.

• MUA-MILP-AMCrtb: The iterative framework in Fig-

ure 2, where the problem ω is directly solved as an MILP

program, and the schedulability analysis uses AMC-rtb.

• MUA-incremental-AMCrtb: The framework in Figure 2,

where problems ω are solved with the MUA-driven

branching tree, and the schedulability test is AMC-rtb.

• MUA-incremental-AMCmax: The same as MUA-
incremental-AMCrtb, except that the schedulability

analysis uses AMC-max.

We let each approach run for 48 hours. The size lim-

its for MUA-incremental-AMCrtb and MUA-incremental-
AMCmax are both set to K = 50000. Note that we do

not consider AMC-max for MIGP as the analysis is too

complicated to formulate in the MIGP framework. Likewise,

we do not apply AMC-max to MUA-MILP, since it is already

very slow under AMC-rtb: it cannot find any feasible solutions

in 48 hours.

We first assume priority assignment is given by rate mono-

tonic (ties are broken by criticality level). The results are

summarized in Table II. For γ = 3, MIGP-AMCrtb gets stuck

in a suboptimal solution (about 51% worse than the optimal)

early and cannot find any better solution even after 48 hours.

MUA-MILP-AMCrtb is even worse, as it cannot find any

feasible solution in 48 hours. Comparably, MUA-incremental
performs much better: regardless of whether AMC-max or

AMC-rtb is used, it finds the best solution in about 15 minutes,

or about 200 times faster than MUA-MILP-AMCrtb and MUA-
MILP-AMCrtb.

The cases of γ = 4 and γ = 5 are similar. Note that the

use of the more accurate AMC-max analysis did not improve

the quality of the solution. This is mainly due to the rate-

monotonic priority assignment. For this case, LO-criticality

tasks are mostly lower in priorities than HI-criticality tasks

(except τ1, τ4 which have quite loose deadlines). As a result,

most HI-criticality tasks only suffer interference from other

HI-criticality tasks. Therefore, the worst-case scenario for the

response time calculation occurs when the system is entirely in

the HI-criticality mode, where AMC-max and AMC-rtb give

the same response time. On the other hand, the small dif-

ference in the runtimes of MUA-incremental-AMCmax and

MUA-incremental-AMCrtb demonstrates that the efficiency

of our approach is relatively insensitive to the complexity of

the schedulability analysis.

We next consider the setting where priority assignment is

not given and need to be co-optimized with WCETs. We

omit MIGP-AMCrtb from this experiment as it is no longer

applicable. Note that for methods based on the proposed opti-

mization framework (MUA-incremental-AMCrtb and MUA-
incremental-AMCmax), including priority assignment in the

design space is rather simple: since both AMC-rtb and AMC-

max are both compatible with Audsley’s algorithm [16], in

the framework we just use a schedulability analysis procedure

that incorporates both the response time calculation (either

AMC-rtb or AMC-max) and Audsley’s algorithm for finding

a feasible priority assignment.

The results are summarized in Table III. A number of ob-

servations can be made. First, much better solutions are found

when priority assignment is treated as decision variables. The

overall objective values reduce by as much as more than

half comparing to the results in Table II. This shows the

benefit of the proposed optimization framework: it is able

to handle the co-optimization of various variables. Second,

the difference between AMC-rtb and AMC-max analyses is

now more noticeable. For example, when the criticality factor

γ = 5, the use of AMC-max provides a solution that is 23%
better than that of AMC-rtb. This demonstrates the benefit of

using a more accurate analysis for optimization. However, such

a benefit can only be achieved when the optimization algorithm

is capable of accommodating the analysis. This is difficult

for MIGP as AMC-max is too complicated to formulate
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TABLE II: Results on Flight Management System by Optimizing Task WCETs

Method
γ = 3 γ = 4 γ = 5

Time Objective Time Objective Time Objective
MUA-MILP-AMCrtb ≥ 48h N/A ≥ 48h N/A ≥ 48h N/A

MIGP-AMCrtb ≥ 48h 6.216e+007 ≥ 48h 8.379e+007 ≥ 48h 1.076e+008
MUA-incremental-AMCrtb 873.91s 4.108e+007 582.06s 5.803e+007 409.76s 7.723e+007

MUA-incremental-AMCmax 903.10s 4.108e+007 619.86s 5.803e+007 406.59s 7.723e+007

TABLE III: Results on Flight Management System by Co-optimizing Task priority assignments and WCETs

Method
γ = 3 γ = 4 γ = 5

Time Objective Time Objective Time Objective
MUA-MILP-AMCrtb ≥ 48h N/A ≥ 48h N/A ≥ 48h N/A

MUA-incremental-AMCrtb 2356.61s 2.626e+007 1204.74s 2.832e+007 517.68s 3.415e+007
MUA-incremental-AMCmax 2734.41s 2.626e+007 2260.71s 2.626e+007 2569.84s 2.626e+007

in geometric programming framework. Our framework, on

the other hand, can incorporate any schedulability analysis

as long as it is sustainable. Third, the runtime noticeably

increases comparing to Table II. This is mainly because the

schedulability analysis now incorporates Audsley’s algorithm,

which has a substantially higher computation complexity than

just a plain response time calculation.

B. Control Performance

In this experiment, we consider the problem of optimizing

control performance for a set of periodic tasks scheduled on a

uniprocessor. The problem was originally introduced in [24],

where the objective is formulated in Equation (7).

Mancuso et al. [24] proposed to relax the response time

analysis (2) by removing the ceiling operator (hence it uses
Ri

Tj
to estimate the number of interferences from task τj on

task τi). Although the relaxation was claimed to be a close

approximation to the exact response time in practice, it is

possible that the relaxed analysis may give unsafe solutions.

In fact, in the randomly generated systems below, the solution

returned by [24] is always unschedulable with the exact

analysis in Equation (2). Thus, in the comparison of other

methods below, we use the exact analysis (2).

We evaluate on randomly generated synthetic task sets.

The parameters are generated using a similar setting as [24].

Specifically, in Equation (7), αi is randomly generated in

the range [1, 1000], βi is randomly generated in the range

[1, 10000], and the WCET of each task Ci is randomly selected

from [1, 100]. The upper-bound for the task period Ti is set to

be 5 times the sum of all task WCETs, i.e., Tu
i = 5

∑n
j=1 Cj .

This sets 20% as the lower bound on system utilization. Task

priority are assigned with the rate monotonic policy.

We compare the following three methods:

• MIGP: MIGP formulation proposed in [10] for optimiz-

ing task periods. We use geometric programming solver

gpposy [25] with the BnB (bmi) solver in YALMIP [23]

for solving MIGP problems.

• MUPDA-MILP: The proposed optimization framework

in [39], which is an iterative procedure that leverages

CPLEX solver [21] to solve a series of MILP problems.

Fig. 8: Runtime of optimizing control performance.

• MUA-incremental: The proposed optimization frame-

work in Figure 2, where the problem ω is solved using

the MUA-driven branching tree.

Like in Section VII-A, we set a maximum iteration limit of

2000 for MIGP, and the time limits of the other two methods

are set to 600 seconds for each problem instance. The size

limit for MUA-incremental is set to K = 10000.

Figure 8 plots the runtime of all the optimization meth-

ods MIGP, MUPDA-MILP and MUA-incremental. While all

methods give the same optimal solution when finishing within

the time limit, MUPDA-MILP has the worst scalability. As

discussed in [39], this confirms that it is often inefficient in

solving problems with objective that are sensitive to many

decision variables, since it takes many iterations to terminate,

and each MILP problem has to be solved from scratch (instead

of incrementally as in our approach). Meanwhile, MUA-
incremental runs about 10 times faster than MIGP. This

again demonstrates the advantage of our proposed framework

that judiciously combines the MUA-guided iterative procedure

with the incremental update of the branching tree.
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VIII. CONCLUSION

In this paper, we propose a framework for optimizing the

design of real-time system with sustainable schedulability

analysis. We propose the concept of Maximal-Unschedulable-

Assignment (MUA) and show how it can be used to abstractly

interpret the schedulability constraints. Based on the concept,

we develop an iterative optimization procedure that uses

MUAs to iteratively refine the schedulability region. It contains

three key steps: i) an algorithm for solving the optimization

problem consisting of MUA-implied constraints, ii) an algo-

rithm for computing MUAs that leads to faster convergence,

and iii) use of MUAs to exploring good-quality schedulable

solutions. We perform experiments on two optimization prob-

lems to demonstrate the advantage of the proposed approach

in applicability and scalability.
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