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Abstract

We discuss analytically and numerically the propagation and energy transmis-
sion of electromagnetic waves caused by the coupling of surface plasmon po-
laritons (SPPs) between two spatially separated layers of 2D materials, such as
graphene, at subwavelength distances. We construct an adaptive finite-element
method to compute the ratio of energy transmitted within these waveguide
structures reliably and efficiently. At its heart, the method is built upon a goal-
oriented a posteriori error estimation with the dual-weighted residual method
(DWR).

Furthermore, we derive analytic solutions of the two-layer system, compare
those to (known) single-layer configurations, and compare and validate our nu-
merical findings by comparing numerical and analytical values for optimal spac-
ing of the two-layer configuration. Additional aspects of our numerical treat-
ment, such as local grid refinement, and the utilization of perfectly matched
layers (PMLs) are examined in detail.

Keywords: Waveguide configurations, time-harmonic Maxwell’s equations,
adaptive finite-element methods, surface plasmon-polariton

1. Introduction

Graphene is a two-dimensional carbon allotrope with one-atomic thickness
that is arranged in a honeycomb lattice structure [1]. It has a wide potential
for applications in nanophotonics due to a number of desirable electronic and
optical features, such as extreme confinement, low losses, and tunability [1, 2].
In the infrared regime, the electric surface conductivity of such a 2D material is
characterized by being complex-valued with a dominant positive imaginary part.
This allows for the propagation of surface plasmon polaritons (SPPs), which are
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highly confined to the 2D material and slowly decaying electromagnetic waves.
Within the frequency domain of interest, the wavelength of a SPP is up to two
orders of magnitude smaller than that of the exciting ambient light.

Waveguide structures that enable subwavelength confinement of the optical
modes are of great importance in nanophotonics [3, 4, 5, 6]. Traditionally, waveg-
uides have been implemented through local modulation of the shape and/or
refractive index profile of the optical dielectric medium [7]. These dielectric
waveguides, however, are restricted by the diffraction limit of light, λ0/n, where
λ0 is the wavelength in free space and n is the refractive index [4]. SPPs, on the
other hand, can be confined within a very small area beyond the diffraction limit
of light, and can be used as an information carrier for highly-integrated photonic
circuits [8]. Thus, a number of plasmon-based waveguides have been proposed
in the past decade, such as metallic nanowires [9, 10], metallic nanoparticle
arrays [5, 11], hybrid plasmonic waveguides [6], and gain assisted plasmonic
waveguides [12].

Although some studies that investigated the plasma modes and optical SPP
modes of a double-layer graphene were published [13, 14, 15], the majority of
research on graphene has been on a single-layer systems consisting of a single,
planar sheet of graphene [16, 17, 18]. By introducing a second, parallel sheet,
placed at a small but finite distance to the other sheet, it is possible to drastically
change the confinement and propagation characteristics of SPPs. The purpose
of this paper is two-fold.

First, we numerically investigate an infinite 2D waveguide by computing
a finite element approximation for the solution of the corresponding scatter-
ing problem governed by time-harmonic Maxwell’s equations. This prototyp-
ical geometry is motivated by proposed waveguide configurations that include
graphene layers, or carbon nanotubes as an integral part of their design [19]. By
adjusting the confinement of the two-layer system, we find an optimal spacing
for which the coupling of the SPPs is maximal. To this end, a goal-oriented
mesh refinement strategy and a perfectly matched layer are utilized.

Secondly, we derive and discuss an integral equation describing the time-
harmonic electromagnetic field of a double-layer system. We examine the con-
tributions from a pole of the scattered field solution, which are responsible for
the generation of SPPs. We demonstrate that our findings are in accordance
with those from a single-layer system by observing the evolution of the scat-
tered field under different interlayer spacings. In conclusion, we note that the
maximal spacing found in the numerics is in agreement with the value found in
the analytical expressions.

1.1. Related works

The SPP dispersion of a single graphene layer and a single graphene layer
deposited on dielectric substrates has been extensively investigated by many
authors [20, 16, 18]. Additional confinement and a change of propagation
characteristics can be achieved by stacking another layer of these 2D mate-
rials on top of a single-layer [21]. By extension, theoretical aspects of bilayer
graphene [15, 22, 13], multilayer graphene [23], and intercalated graphite [24]
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have been studied recently. For example, [15] finds a frequency for which reflec-
tion in a double-layer graphene system, with both equal and different surface
conductivities, is zero, leading to exponentially amplified transmitted modes.

[25, 26] shows that for plasmonic crystals, which consist of stacked metallic
layers arranged periodically with subwavelength distance, embedded in a dielec-
tric medium, the TM polarized waves experience an effective dielectric function
that combines a bulk energy of the microstructure of the ambient dielectric
medium and surface average of the surface conductivity of each sheet. Homog-
enization of layered structures and extension to a general hypersurface are also
discussed.

However, a rigorous numerical and analytical treatment of waveguide config-
urations involving time-harmonic Maxwell’s equations is not of primary interests
in these publications. This paper aims to address three points. First, we intro-
duce a reliable and efficient numerical method to readily compute propagation
characteristics of the SPPs in a double-layer structure. Second, we validate the
numerical findings against an analytical solution. Third, we demonstrate that
our numerical approach is easily extensible to different computational domains.

1.2. Paper organization

The paper is organized as follows. In Section 2, we derive the variational
formulation that serves as the basis for our numerical and analytical investiga-
tion. In Section 3 we develop the numerical framework, including a goal-oriented
mesh adaptation based on the dual weighted residual (DWR) method, and a
perfectly matched layer (PML). We perform a direct numerical simulation of
a prototypical two-layer system in Section 4, and identify optimal spacings of
two-layer systems for maximal transmission. In Section 5, we derive analytic
solutions for the two-layer system and validate our numerical findings against
them. Finally, Section 6 concludes the paper with a summary of our results and
an outlook.

2. Variational formulation

In this section, we lay out the variational formulation for time-harmonic
Maxwell’s equations with an interface condition. We introduce a rescaling for
time-harmonic Maxwell’s equations that will ease the numerical computation of
SPPs [27].

2.1. Preliminaries: Maxwell’s equations

Time-harmonic Maxwell’s equations with an electric current density read
[28, 29]:



























−iωB(x) +∇×E(x) = 0,

∇ ·B(x) = 0,

iωε(x)E(x) +∇×
(

µ(x)−1B(x)
)

= Ja(x),

∇ ·
(

ε(x)E(x)
)

=
1

iω
∇ · Ja(x).

(1)
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Here, E(x) and B(x) denote the electric and magnetic field, respectively. µ(x)
and ε(x) are complex-valued rank 2 tensor quantities, where µ(x) denotes the
magnetic permeability and ε(x) denotes the electric permittivity. The vector-
valued quantity Ja(x) is an externally applied, electric current density. We
assume a general x dependence of all quantities with some (weak) regularity
conditions to ensure unique solvability that will be stated later. The (constant)
temporal frequency ω > 0 arises from the time-harmonic nature of the solution
fields, i. e., a solution of (1) is a special solution of the general time-dependent

Maxwell’s equations by rewriting all vector-valued components F by

F(x, t) = Re
(

e−iωt
F(x)

)

. (2)

We are interested in simulating waveguide configurations that feature 2D
material sheets. The sheets are modeled as an idealized hypersurface Σ with
an effective surface conductivity σ(x) defined on Σ [30, 31, 2]. In general, Σ
shall consist of two parallel, possibly curved, conducting sheets separated by
a fixed distance d; see Figure 1. The discontinuity along the surface due to
the conductivity leads to a jump condition in the tangential component of the
magnetic field [30, 28, 2]:







[

ν × (µ−1B)
]

Σ
= σ(x)ET

∣

∣

∣

Σ
,

[

ν ×E
]

Σ
= 0,

(3)

where ν is a fixed normal vector field associated with Σ; the symbol [ . ]Σ denotes
the jump over Σ with respect to ν,

[

F
]

Σ
(x) := lim

sց0

(

F(x+ sν)−F(x− sν)
)

, (4)

and the subscript T denotes the tangential part of the respective vector, FT =
(ν×F)×ν. Under appropriate conditions on σ(x), jump condition (3) generates
SPPs on the interface [31, 2].

We make the assumption that ε(x) and µ(x) become homogeneous and
isotropic for large |x| and impose the Silver-Müller radiation condition at infin-
ity [27], viz.,

lim
|x|→∞

{B × x− c−1|x|E} = 0, lim
|x|→∞

{E × x+ c|x|B} = 0, x 6∈ Σ. (5)

Here, c = 1/
√
εµ denotes the speed of light. The explicit inclusion of this

condition is omitted in our numerical simulation by incorporating an appropriate
boundary condition and a PML.

2.2. Rescaling and variational formulation

Numerical values in SI units for solutions of (1) are many orders of mag-
nitude apart. Further, the typical length scale of SPP is one to two orders of
magnitude smaller than the free-space wavelength k0 [2]. These discrepancies
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for ϕ ∈ X(Ω) = {ϕ ∈H(curl; Ω) : ϕT |Σ ∈ L2(Σ)3,ϕT |∂Ω ∈ L2(∂Ω)3} and with
the bilinear form

A(ψ,ϕ) =

∫

Ω

(µ−1
r ∇×ψ) · (∇× ϕ̄)− (εr ψ) · ϕ̄ dx

− i

∫

Σ

(σrψ) · ϕ̄ dox − i

∫

∂Ω

√

µ−1
r εr (ψ) · ϕ̄ dox. (10)

In the above, L2(·)3 denotes the space of vector-valued square integrable func-
tions, and H(curl) is the subspace of L2(·)3 consisting of square integrable
functions whose (distributive) curl admits a representation by a square inte-
grable function. Equation (9) will serve as a starting point for a finite element
discretization. For elementary results on existence and uniqueness, we refer
to [27, 28, 32, 33].

3. Numerics: Computational domain and discretization scheme

In this section, we briefly present the geometry and numerical tools used in
the computations. A PML is introduced and its role in negating the undesired
effects of the absorbing boundary condition of the plasmon modes is described.
Additionally, a local adaptive mesh refinement strategy is presented that cap-
tures the highly oscillatory behaviors of the plasmons near the interfaces. The
variational formulation (9) is discretized on a non-uniform quadrilateral mesh
with higher-order, curl-conforming Nédélec elements [34]. Such a choice is ideal
where the weak jump condition is naturally treated by aligning with the mesh.
Let Xh(Ω) ⊂X(Ω) be a finite element subspace spanned by Nédélec elements.
Then under a sufficiently refined initial mesh, the variational formulation

A(Eh,ϕ) = i

∫

Ω

Ja · ϕ̄ dx.

is uniquely solvable for Eh ∈Xh(Ω) and for all ϕ ∈Xh(Ω).

3.1. Geometry

In this paper we will study a prototypical geometry consisting of two flat,
conducting layers in a square domain. The two layers are arranged parallel
to each other with distance d apart; see Figure 3. This prototypical geometry
is motivated by proposed waveguide configurations that include for example
concentrically arranged carbon nanotubes as integral part of their design [19]
(see Figure 2. Even though our waveguide configuration is quite simple in
comparison, we make the claim that due to the dominance of the SPP interaction
of the two layers we actually capture the quantitative behavior of the two-layer
interaction quite well. Our computational framework has thus the potential of
guiding the design of more complicated waveguide structures in the future.

Two different current sources are considered: a single vertical Hertzian dipole
placed at the midpoint of the two sheets (see Figure 3b); and a double dipole
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this reason, we will primarily focus on numerical results obtained with double
dipole excitation, 2(b).

The values xtr and xre are the transmission and reception locations, respec-
tively, at which the tangential component of the energy is to be measured. In
principle, a number of choices for the quantity of interest, J (E), are possible.
In the following, we use a non-linear quantity of interest given by an energy

transmission ratio:

J (E) =

∫ R

−R
cos2

(

πy
2R

)

|ET |2(x = xre, y) dy
∫ R

−R
cos2

(

πy
2R

)

|ET |2(x = xtr, y) dy
. (11)

The numerator computes the transmitted energy, measured at a vertical strip
located sufficiently far from the source, and the denominator calculates the
received energy. The integrands in J (E) are modified by weight functions that
localize the integral to a vertical strip where we measure the field intensity for
transmission and reception. The choice (11) for the quantity of interest leads to
a localized right-hand side J of the dual problem that is sensitive to the highly
oscillatory SPPs associated with the electric field, E.

Remark. The functional J (E) is continuously differentiable as long as the
denominator is different from zero. This is indeed the case for the solution E
and all approximations Eh for our choice of geometry and dipole excitation.

3.2. Perfectly Matched Layer

A perfectly matched layer (PML) is a truncation procedure motivated from
electromagnetic scattering problem in the time domain. The underlying idea of
a PML is to surround the computational domain with an artificial sponge layer
such that all outgoing electromagnetic waves decay exponentially with minimal
artificial reflection [35, 36, 28].

As outlined in [27, 28], we carry out a change of coordinates from the compu-
tational domain with real-valued coordinates to a domain with complex-valued
coordinates. Projecting back to the real coordinates yields again system (1)
with (3), but with modified material parameters (εr , µ

−1
r , σr) inside the PML.

We refer the reader to [27] for details.
The PML can be implemented by suitably replacing (εr , µ

−1
r , σr) within the

PML. For a spherical absorption layer we define the matrices

A = T−1
exer

diag
( 1

d̄2
,
1

dd̄
,
1

dd̄

)

Texer
, B = T−1

exer
diag

(

d, d̄, d̄
)

Texer
, (12)

C = T−1
exer

diag
(1

d̄
,
1

d̄
,
1

d

)

Texer
,

d = 1 + i s(r), d̄ = 1 + i/r

∫ r

ρ

s(τ) dτ. (13)

Here, r denotes the distance to the origin, s(τ) is an appropriate nonnegative
scaling function that will be defined later, Texer

is the rotation matrix that
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rotates er onto ex. The material parameters are hence transformed inside the
PML as follows:







µ−1
r −→ Bµ−1

r A,

εr −→ A−1εr B
−1,

σr −→ C−1σrB
−1.

(14)

3.3. A posteriori error estimation and local refinement

One of the computational challenges of our problem is the need for a much
finer mesh refinement near the interfaces Σ12 and Σ23 in order to resolve all small
scale SPP structures. We discuss now an efficient adaptive refinement scheme
utilizing an a posteriori error estimator based on the dual weighted residual

(DWR) method [37].
Consider the following dual problem: Find a solution Z ∈ H(curl; Ω) such

that

∫

Ω

[

(µ−1
r ∇×ϕ) · (∇× Z̄)− εr ϕ · Z̄

]

dx

−
∫

Σ

σrϕT · Z̄ dox +

∫

∂Ω

√

µ−1
r εr ϕ · Z̄ dox = DEJ (E)[ϕ], (15)

for all ϕ ∈X(Ω), where J (E) is a quantity of interest mapping

J :H(curl; Ω) → C. (16)

The dual solution Z encodes how the target error quantity depends on local
properties of the data [37]. Next, we define local error indicators with the help
of the solutions E and Z of the primal problem (9) and dual problem (15),
respectively [27], [37, Prop. 2.1]:

∣

∣J (E)− J (Eh)
∣

∣ ≤
∑

Q∈TH

ηQ +R, with ηQ :=
1

2

∣

∣

∣
ρQ + ρ∗Q

∣

∣

∣
. (17)

Here, ρQ and ρ∗Q denote the primal and dual cell-wise residual, respectively,
associated with variational equations (9) and (15):

ρQ = i

∫

Ω

Ja ·
(

(Z̄ − Z̄h)χQ

)

dx−A
(

Eh, (Z −Zh)χQ

)

, (18)

ρ∗Q = DEJ (Eh)[(E −Eh)χQ]−A
(

(E −Eh)χQ,Zh

)

, (19)

where A( . ) is given in (10). Here, χQ denotes the indicator function associated
to Q, that is, χQ(x) is 1 inside the cell Q, and 0 otherwise. The local error indi-
cator ηQ given by (17) can now be approximated and used in a local refinement
strategy [37].

Remark. The remainder term R is cubic in the error ‖E − Eh‖ and can
therefore generally be neglected [37]. More precisely, for our particular choice
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of quantity of interest (11) a lengthy calculation reveals

|R| =
∣

∣

∣

1

2

∫ 1

0

D3
E
J (EH + s(E −EH))[E −Eh]

3s(s− 1)ds
∣

∣

∣

.
( 1

R

∫ R

−R

cos2
( πy

2R

)

|ET |2(x = xtr, y) dy
)−3

∥

∥E −Eh

∥

∥

3
,

provided that the numerator in (11) is smaller than the denominator (which is
true for our choice of geometry). Given the fact that we place the measurement
position xtr close to the source we conclude that |R| is well controlled and small
in our case.

Our goal is an optimal local refinement for the numerical simulation of energy
propagation of the SPPs at the location of our choosing. Consequently, the
weight Z − Zh in residual (18) is generally large near the interface and at
points where the influence of the solution on quantity (11) is high.

In practice, the numerical evaluation of (18) and (19) is typically done with
the use of a higher-order approximation for the dual solution Z and the primal
solution E. However, such a calculation of a higher-order approximation is

computationally costly. We therefore use a patch-wise projection π
(2)
2HZh to a

higher-order space on a coarser mesh level [38]:

Z −Zh ≈ π
(2)
2HZh −Zh, E −Eh ≈ π

(2)
2HEh −Eh. (20)

4. Direct numerical simulation

In this section we present computational results for the two-layer system
that was introduced above. We demonstrate numerically how the (effective)
wavenumber of SPP structures depends on the interlayer distance d and in-
vestigate the functional relationship of the energy transmission ratio to the
interlayer distance d. We determine the optimal spacing, which will later be
used to compare against the analytical findings from Section 5. We validate
our local refinement strategy by comparing the convergence rates with uniform
refinement, and demonstrate the effectiveness of the numerical tools discussed
in Section 3. All numerical computations are carried out with the finite element
library deal.II [39].

4.1. Setup and discretization parameters

We consider a vertical electric dipole positioned at a1 = (−0.7, 0) (for single
dipole excitation), and at a2/3 = (−0.7,±d/2) (for the double dipole excitation).
The current density Ja is thus given by

Ja =

(

0

J0

)

δ(x− a1), and Ja =

(

0

J0

)

(

δ2(x− a2) + δ3(x− a3)
)

, (21)
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for single, or double dipole excitation, respectively. We use two values for the
surface conductivities, σΣ

r,12 = σΣ
r,23 = σr,

σr = 0.002 + 0.2i, and 0.002 + 0.15i,

that are within realistic parameter ranges [27]. The computational domain, Ω,
is chosen to be a square with edge length 4. A spherical PML is enforced for
ρ > 1.6. Following [28, 27], we regularize the Dirac deltas in the current density
as follows,

δi(x− ai) ≈ sgn
(

(y − d/2)(−y − d/2)
)

cos2
(

π/(2 rd) ‖(x− ai)‖2
)

(

π
2 − 2

π

)

r2d
,

for ‖x−ai‖2 < rd, and 0 otherwise. The signum function ensures that the reg-
ularized dipole changes sign whenever the regularization crosses the conducting
layer Σ12, or Σ23. We choose a fixed value of rd = 10·2−12 throughout the paper.
We set the position at which we evaluate (11) to xtr = −0.65 and xre = 0.75.
This choice maximizes the distance |xre − xtr| while ensuring that evaluation
points are sufficiently far away from the regularized dipole sources and the PML.

We use the following scaling function s(ρ) for the PML [27]

s(ρ) = s0
(ρ− 0.8R)2

(R− 0.8R)2
, (22)

and set the free parameter to s0 = 0.05 in our computations.

4.2. Validation of local refinement strategy

We validate our numerical framework by comparing values for the quantity
of interest (11) obtained by extrapolating numerical values under uniform, and
under local refinement. The computations were performed for d = 0.20. The
results are shown in Figure 4. The data is fitted to the curve f(x) = a + b xc

and extrapolated. For local refinement, the fit parameters we obtain are alocal =
0.205333, blocal = 1.25229×108, clocal = 1.57811, whereas for uniform refinement
we get aunif = 0.206216, bunif = 85.8656, cunif = 0.612326. As expected [27], we
obtain a much faster convergence rate (c ≈ 1.6) in the quantity of interest for
local refinement as opposed to uniform refinement (c ≈ 0.6). We conclude that
our computation of the energy transmission ratio with J (E) ≈ alocal is reliable
within 1%.

4.3. Optimal spacing

Next, we preform a parameter study of the energy transmition ratio for
varying interlayer spacing d ranging from dmin = 4 · 10−12 to dmax = 0.2, where
dmax corresponds to about 1/3 of the single-layer SPP wavelength, 2π/Re(km,r),
or 1/30 of the free space wavelength [27]. The (interpolated) results are shown
in Figure 5. We used a releatively coarse initial mesh for all computations
with around 20 thousand degrees of freedom. After 12 local refinement cycles
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1e-04

1e-03

1e-02

1e-01

1e+00

1e-08 1e-07 1e-06 1e-05

|J
(E

)−
J
(E

∗

)|
J
(E

∗
)

1/DoF

Convergence rate

uniform refinement
local refinement

uniform refinement fit
local refinement fit

Figure 4: Convergence of the energy tranmission ratio for uniform and local refinement for d =
0.20. The relative error of the transmission ratios obtained with both refinement strategies,
respectively, are plotted against the inverse of the number of degrees of freedom. We observe a
convergence order of about c ≈ 0.6 for uniform refinement and c ≈ 1.6 for local refinement. The
reference value JE

∗ was obtained by taking a weighted average of the asymptotic transmission
ratios, clocal and cuniform.

using the adaptive refinement procedure outlined in Section 3.3, we reached
roughly 2 million degrees of freedom on the finest mesh. We make a qualitative
comparison of three representative cases: Figure 6 shows the real part of the
computed scattered electric field in x-direction, Re(Esc

x ), for SPPs on a single-
layer system, and a two-layer system with d = d opt = 0.05245 and d = 0.1805,
respectively. In the case of optimal spacing, d = d opt, the wavenumber of
the excited SPPs is roughly twice as large as the one obtained for the single-
layer case, cf. Figures 6a and 6b. For large enough d, for example d ≈ 0.18,
we observe that the wavenumber of the excited SPP approaches the single-
layer case, cf. Figures 6a and 6c. This indicates that the two-layer system is
converging to the single-layer setting, analogous to the behavior observed for
the energy transmission ratio.

5. Analytic solution and validation

In this section, we derive an analytic solution for (1) and (3) for an (ideal-
ized) infinite two-layer system with single dipole excitation; see Figure 3b and
Figure 7). We identify the limiting behavior for the case of large interlayer
spacing d, compute the effective wavenumber of the dominant SPP mode and
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Figure 5: Energy transmission ratio as a function of interlayer spacing d computed for the
case σ = 0.002+0.2i. The computed optimal spacing for a maximal energy transmission ratio
is at d opt = 0.05245. The dashed horizontal line is the energy transmission ratio computed
for the control case of a single-layer sheet. For large d, the energy transmission ratio of the
two-layer system approaches the value for the single-layer control case asymptotically.

validate our numerical findings with these results.
For better readability and ease of comparison [30], we revert back from the

rescaled version (6) to the original form of Maxwell’s equations (1). Let us
consider two planar sheets in R

2 situated at y = 0 and y = d, respectively; see
Figure 7. The conducting sheets separate R

2 into three regions: Region 1 ({y >
d}) has wavenumber k1 and shares the boundary with region 2 ({0 < y < d}),
whose wavenumber is given by k2. Region 3 ({y < 0}) shall have wavenumber k3,
where k2j = ω2εjµ. Here, εj denotes a complex-valued permittivity (j = 1, 2, 3).
Let a vertical electric Hertzian dipole be positioned at (0, a) in between the

interfaces, viz., Ja = δ(x)δ(y − a)ey. Define the Fourier transform, F̂ (ξ, y) of
the vector-valued fields (F ≡ B,E) through the integral formula

F (x, y) =
1

2π

∫

R

dξ F̂ (ξ, y)eiξx. (23)

Applying the Fourier transform to Maxwell’s equations (1) gives



























− iξÊjy +
∂

∂y
Êjx = −iωB̂jz,

− ∂

∂y
B̂jz =

ik2j
ω

Êjx,

− iξB̂jz = −
ik2j
ω

Êjy + µδ(y).

(24)

A number of elementary algebraic manipulations of (24) yield the differential
equation

(

∂2

∂y2
+ β2

j

)

B̂jz = −iξµδ(y), (25)
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(a) Single-layer control case. (b) Two-layer configuration with d = d opt

(c) Two-layer configuration with d ≈ 0.18.

Figure 6: Plasmons observed in different configurations, with σr = 0.002+0.2i. The wavenum-
ber of the excited SPPs in the two-layer case (b) with d = d opt ≈ 0.05245 is roughly twice
as large as the one obtained in the single-layer control case (a), or the two-layer configuration
(b) with large spacing d ≈ 0.18. The strong interlayer coupling for d = d opt in (b) results in
a much higher SPP amplitude.

where we have set β2
j = k2j − ξ2. We now make the following solution ansatz for

the magnetic field obeying the Sommerfeld radiation condition [30]:

B̂jz(ξ, y) =







a1e
iβ1y, y > d,

a2e
iβ2y + b2e

−iβ2y − ξµ
2β2

eiβ2|y−a|, 0 < y < d,

b3e
−iβ3y, y < 0.

(26)

The remaining electric field components can be derived from the relations

Êjx =
iω

k2j

∂

∂y
B̂jz,

Êjy =
ω

k2j ξ

(

ξ2B̂jz − iξµδ(y)
)

.

Next, we determine closed expressions for the coefficients in (26) by matching
with boundary conditions (3) on each interface:

a1 =
β2k

2
1

β1k22

[

a2e
iβ2d − b2e

−iβ2d − ξµ

2β2
eiβ2(d−a)

]

e−iβ1d,

a2 = − ξµ

2β2

R23(e
iβ2a) +R12e

iβ2(2d−a))

1−R12R23e2iβ2d
,
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Region 3 (k3) conducting sheet (conductivity σ23)
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Figure 7: Schematic of a vertical electric dipole at a distance a from conducting sheet Σ23

in 2D. The dipole has a current density Ja = J0δ(x)δ(y − a)ey . The bottom sheet lies on
y = 0 and the top sheet lies on y = d. Sheets separate the space into region 1 ({y > d}) with
wavenumber k1, region 2 ({0 < y < d}) with wavenumber k2, and region 3 ({y < 0}) with
wavenumber k3. Each sheet is prescribed with a surface conductivity σ12 and σ23, respectively.

b2 = − ξµ

2β2

R12e
iβ2d(eiβ2(d−a) +R23e

iβ2(d+a))

1−R12R23e2iβ2d
,

b3 = −β2k
2
3

β3k22

[

a2 − b2 +
ξµ

2β2
eiβ2a

]

.

Here, the constants Rij,m are given by

Rij =
βik

2
j − βjk

2
i + ωµσijβiβj

βik2j + βjk2i + ωµσijβiβj
. (27)

By substituting back into (26) and undoing the Fourier transform, all field
components of E and B can be expressed as analytic integrals. In particular,
we are interested in E2x(x, y), the electric field component in x-direction between
the two-layers:

E2x(x, y) =
ωµ

4πk22

∫ ∞

−∞

dξ ξ

[

R23(e
iβ2a +R12e

iβ2(2d−a))

1−R12R23e2iβ2d
eiβ2y

− R12e
2iβ2d(e−iβ2a +R23e

iβ2a)

1−R12R23e2iβ2d
e−iβ2y + sgn(y − a)eiβ2|y−a|

]

eiξx. (28)

5.1. Approximation of the pole contribution

Next, we obtain the scattered electric field in x-direction, Esc
2x, observed at

y = 0 by subtracting the incident field

ωµ

4πk22

∫ ∞

−∞

dξ ξ sgn(y − a)eiβ2|y−a|eiξx.
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from (28). Some additional minor rearrangement yields

Esc
2x(x, 0) =

ωµ

4πk22

∫ ∞

−∞

dξ ξ

[

R23e
iβ2a

1−R12R23e2iβ2d
− R12e

iβ2(2d−a)

1−R12R23e2iβ2d

− R12R23e
2iβ2d(eiβ2a − e−iβ2a)

1−R12R23e2iβ2d

]

eiξx =: (I) + (II) + (III). (29)

Each term of the integrand contains SPP contributions stemming from different
conducting sheets: Term (I) and (II) arise from the SPP situated at Σ23 and
Σ12, respectively. Term (III) is a mixed term due to the interlayer coupling of
SPPs.

We now discuss the role of simple poles in the evaluation of integral (29).
For the sake of simplicity, let us now assume that k ≡ k1 = k2 = k3 and
σ ≡ σ23 = σ12. Thus, R12 = R23 ≡ R and βj ≡ β, where

R :=
ωµσβ

(2k2 + ωµσβ)
, β2 := k2 − ξ2. (30)

Waveguide modes correspond to single poles of the integrand in integral (29)
[30]. Inspecting (29) we see that these are exactly given by the condition Reiβd =
±1. The solution for the branch with the plus sign recovers even waveguide
modes, and, correspondingly, the minus sign recovers odd waveguide modes [40].

For d sufficiently small, there is only a single dominant mode. We analyze
this case further. The common prefactor of term (I) and (II) is given by

R

1−R2e2iβd
=

(2k2 + ωµσβ)ωµσβ

(2k2 + ωµσβ(1− eiβd))(2k2 + ωµσβ(1 + eiβd))
. (31)

The TM surface plasmon corresponds to the residue contribution to the electro-
magnetic field from the pole ξ = kBm, where kBm is a solution of the transcendental
relationship for the mode, 2k2 + ωµσβ(1− eiβd) = 0 [30]. Now,

2k2 + ωµσβ(1− eiβd) ≈

− (ξ − kBm)(id)kBmωµσ

(

eiβpd − 1− eiβpd

idβp

)

.
(32)

Here, the subscript p denotes evaluation at the pole. Each of I, II, III consists of
the branch-cut contribution and the pole contribution. We omit the discussion
of the branch-cut in this paper and focus only on the simple pole, ξ = kBm. This
is because for an infinite conducting sheet, the SPP is identified with the part
of the electromagnetic field equal to the contribution to the Fourier integrals of
the simple pole that solves the above transcendental relationship. For a more
thorough discussion on the branch-cut and its computation, we refer readers
to [27]. By the residue theorem,

(I) =
ωµ

4πk2

∫ ∞

−∞

dξ ξ
Reiβaeiξx

1−R2e2iβd
= (I)p + (I)b.c.; (33)

(I)p ≈ −
iωµβ2

p

2k2
2k2 + ωµσβp

2k2 + ωµσβp(1 + eiβpd)

ei(k
B
mx+βpa)

1− eiβpd(1 + iβpd)
.
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Figure 8: Convergence of the two-layer system wavenumber kBm,r to single-layer wavenumber

kMm,r numerically computed with a root solver for (37). The minimum loss is observed at

dr = d
opt
r ≈ 0.05538.

And similarly for the second integrand term,

(II) = − ωµ

4πk2

∫ ∞

−∞

dξ ξ
Reiβ(2d−a)eiξx

1−R2e2iβd
= (II)p + (II)b.c.; (34)

(II)p ≈
iωµβ2

p

2k2
2k2 + ωµσβp

2k2 + ωµσβp(1 + eiβpd)

ei(k
B
mx+βp(2d−a))

1− eiβpd(1 + iβpd)
.

The interlayer pole contribution is calculated in the same fashion.

(III) = − ωµ

4πk2

∫ ∞

−∞

dξ ξ
R2e2iβd(eiβa − e−iβa)

1−R2e2iβd
eiξx = (III)p + (III)b.c.; (35)

(III)p ≈
ωµβ3

p

k2
ωµσ sin(βpa)

2k2 + ωµσβp(1 + eiβpd)

ei(k
B
mx+2βpd)

1− eiβpd(1 + iβpd)
.

5.2. Limiting behavior and effective SPP wavenumber

For d ≫ 1 and fixed dipole position a, we expect the solution of the double-
layer system to approach the solution of the single-layer system. We justify this
claim by observing that as d → ∞,

(I)p → − iωµ

2k2
β2
pe

i(βpa+kB
mx) = − iωµ

2k2
4k4

(ωµσ)2
ei(βpa+kB

mx)

= −2iωµ

(

k

ωµσ

)2

eik
B
mx−2iak2/(ωµσ),

(36)

which corresponds to the single-layer solution [27]. Further, the remaining terms
(II)p and (III)p converge to zero due to the presence of eiβpd. Under the rescaling
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introduced in Section 2, equation (31) becomes

2µr εr + σrβp,r(1− eiβp,rdr ) = 0, with βp,r =
√

µr εr − (kBm,r)
2. (37)

We numerically solve the above via a root finding algorithm and plot the real
and the imaginary part of the wavenumber kBm,r as a function of distance dr; see

Figure 8. For dr small, Im(kBm,r) is greater than the single-layer counterpart.
However, upon entering a regime where the interlayer coupling dominates, i.e.,
where kBm,r becomes less lossy than kMm,r, we observe that there is an optimal
distance, d opt

r ≈ 0.05538, at which the scattered field solution in the x-direction
attains its maxium. For dr large enough, only the contribution from the bottom
interface remains (term (II)p and (III)p vanish), and the wavenumber converges
to that of the single-layer case.

5.3. Comparison and validation of numerical results

Finally, we compare the numerical results obtained in Section 4 to the ana-
lytical solution derived above.

In particular, we expect to observe that the contribution from the interlayer
coupling term (III)p of the SPP dominates in the energy transmission ratio. In
this vein, our direct numerical simulation is performed for the double-dipole
excitation on the interfaces so that the (III)p dominates [27]; see Section 4. We
postulate that the complex-valued wavenumber kBm,r given by (37) and associ-
ated with the SPP mode (III)p describes the effective transmission behavior of
the two-layer system.

The optimal distance obtained from the analytical solution is computed to
be d opt

r ≈ 0.05538; see Figure 8. In order to test the validity of our numerical
method, we compare this value against the optimal distance, d opt = 0.05245,
obtained by numerically computed the energy transmission ratio; see Figure 5.
Both values are in very good agreement. We attribute the small discrepancy of
both values to the different current sources that were used.

6. Conclusion

In this paper, we extended a variational framework for the numerical simula-
tion of the SPPs excited by a current-carrying source on an infinite conducting
sheet to the SPPs generated by single/double excitations in a waveguide config-
uration. The conducting sheets, e.g. graphene, are modeled as idealized hyper-
surfaces that naturally takes into account the jump condition of the magnetic
field.

We demonstrate that the interlayer coupling of the SPPs present in the two-
layer system is responsible for higher confinement and less losses than the single-
layer system. We computed optimal interlayer spacings using two approaches.
First, we compute via finite element simulations with double-dipole excitation.
Second, we derive the pole contribution of the x-directed scattered field solution
and solve for the wavenumber of the SPPs (37) numerically. The computed
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values are in agreement with one another. The numerical results on the energy
transmission ratio are in very good agreement with analytic results obtained for
the SPP mode of the double-layer structure.

Our numerics admit several generalizations and extensions. In particular,
our variational framework can be readily used without modification to model
any geometric configuration that is meshable by quadrilaterals. This flexibil-
ity enables numerical simulations of curved waveguides, systems consisting of
multiple layers, or complicated optical devices in the near future.
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