
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020 2067

Schedulability Analysis of Engine Control Systems
With Dynamic Switching Speeds

Yu Liu, Chao Peng , Yecheng Zhao, Yangyang Li, and Haibo Zeng , Member, IEEE

Abstract—In cyber-physical systems, certain tasks are activated
according to a rotation source. For example, angular tasks in
engine control units are triggered whenever the engine crankshaft
reaches a specific angular position. To reduce the workload at
high speeds, these tasks also adopt different implementations
within different rotation speed intervals. However, current stud-
ies are limited to the case that the switching speeds at which task
implementations should change are configured at design time.
In this article, we propose to dynamically adjust the switching
speeds at runtime. We develop schedulability analysis techniques
for such systems, including a new digraph-based task model to
safely approximate the workload from software tasks triggered
at predefined rotation angles. We prove that such task transfor-
mation has bounded pessimism. We present exact algorithms to
find a finite number of representatives to avoid enumerating (an
infinite number of) all job sequences. Experiments on synthetic
task systems demonstrate that the proposed approach provides
substantial benefits on system schedulability.

Index Terms—Adaptive variable-rate (AVR) tasks, cyber-
physical systems, engine control, schedulability analysis.

I. INTRODUCTION

MODERN cyber-physical systems may contain tasks that
respond to external events generated by a rotation

source. Hence, their activation periods and deadlines are
dependent on the angular speed. Also, to avoid CPU overload
on the host microprocessor at high speeds, they are designed
to be self-adaptive in that they switch to simplified imple-
mentations at higher speeds. For this reason, these tasks are
often referred to as adaptive variable-rate (AVR) tasks in [2].
An example is the engine control system in internal com-
bustion vehicles, which determines the timing and amount of
fuel injection. Certain software tasks (called angular tasks)
in it are triggered at predefined rotation angles of the engine
crankshaft. It adopts different control strategies within differ-
ent engine rotation speed intervals [3]. The most complex
control strategy (e.g., with multiple fuel injections in one
engine revolution) has the best performance (with respect to

Manuscript received April 2, 2019; revised June 27, 2019 and September
28, 2019; accepted October 8, 2019. Date of publication November 11, 2019;
date of current version September 18, 2020. This work was supported by NSF
under Grant 1812963. This article was recommended by Associate Editor
S. Pasricha. (Corresponding author: Haibo Zeng.)

Y. Liu and Y. Li are with the College of Mechanical and Vehicle
Engineering, Hunan University, Changsha 410082, China.

C. Peng is with the Department of Computer Science and Technology,
National University of Defense Technology, Changsha 410073, China.

Y. Zhao and H. Zeng are with the Department of Electrical and
Computer Engineering, Virginia Tech, Blacksburg, VA 24060 USA (e-mail:
zyecheng@vt.edu; hbzeng@vt.edu).

Digital Object Identifier 10.1109/TCAD.2019.2951124

emission and fuel efficiency), but it comes with the highest
computational demand.

The existing studies on systems with AVR tasks all
assume that the switching speeds (at which AVR tasks switch
implementations) are configured offline. This means that the
optimization of switching speeds will have to be based on
design-time information, which is clearly suboptimal since
vehicle speeds (and thus engine speeds) will change at runtime.
Hence, we propose the concept of AVR tasks with dynamic
switching speeds, where the switching speeds are dynamically
adjusted according to runtime information. We term the corre-
sponding AVR tasks as dynamic AVR tasks (dAVR tasks). In
contrast, the AVR tasks in systems with statically configured
switching speeds are called static AVR tasks (sAVR tasks).

Our proposal is inspired by the upcoming era of connected
and automated vehicles (CAVs), which is envisioned to trans-
form the transportation systems. In this new era, vehicles can
access valuable information about the driving environment at
runtime, using various sensing (e.g., camera, radar, and lidar)
and communication (such as vehicle-to-vehicle and vehicle-to-
infrastructure) capabilities. This provides rich opportunities to
substantially improve vehicle operations using such real-time
information [4], including path and speed planning [5], [6],
vehicle dynamics control [7], and as a potential application of
this article, engine control [8].

Specifically, the engine control parameters including the
switching speeds are configured at design time, typically using
the distribution of engine speeds in a standard driving cycle
(i.e., data points representing the vehicle speed over time).
This may result in noticeably suboptimal engine performance,
as the standard driving cycles can be substantially differ-
ent from the actual ones, not to mention the variations of
engine speeds within a driving cycle. With the CAV techniques
making the driving cycle readily predictable [4], it becomes
possible to dynamically adjust the switching speeds accord-
ing to the upcoming engine speed. This has been shown to
provide significant control performance gain (sometimes over
80%) over static switching speeds [8] using simulation.

In this article, we study the schedulability analysis of
systems with dAVR tasks. We first review the related work.

A. Related Work

Systems with sAVR tasks are studied in a number of papers,
see a recent survey [2]. The model from Buttle [3] intro-
duced above is adopted by most researchers, with a couple of
exceptions. Kim et al. [9] proposed the rhythmic task model
and associated analysis that have a few restrictions, e.g., the
task inter-release time is shortened by a fixed ratio during
any acceleration. Pollex et al. [10], [11] assumed angular task
release and WCET are independent, which may lead to high
pessimism in the analysis. Feld and Slomka [12] considered

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0208-0270
https://orcid.org/0000-0003-1162-759X

2068 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

the rate and offset based dependencies among the engine con-
trol tasks, but the task WCET is assumed to be a continuous
function of the engine speed (instead of a number of discrete
modes as in [3]).

Below we summarize the related work that are consistent
with the model by Buttle [3]. Much of the research for the
schedulability analysis focuses on handling the major diffi-
culty that both WCET and inter-release time of an angular
task strongly depend on the engine rotation speed, and our
review reflects such a focus. We note that there are several
variations on the assumptions, task models, and naming of
angular tasks, and refer the readers to [2] for details.

For systems with fixed priority scheduling, Davis et al. [13]
presented a number of sufficient analysis techniques on the
worst-case interference from angular tasks such as quantiza-
tion of the continuous engine speed space. Biondi et al. [14]
proposed the concept of dominant speed that can represent a
range of speeds in terms of the exact worst-case interference.
This avoids quantization without loss of accuracy. An exact
response time analysis is then derived [15], [16], and a set
of design optimization techniques is proposed to optimize
the switching speeds at design time [1], [17]. Feld and
Slomka [18] improved the runtime of schedulability analysis,
which is exact if the maximum acceleration and deceleration
have the same absolute value. They also provided a sufficient
analysis considering the angular phases between tasks [19].
Huang and Chen [20] assigned each mode of an angular
task with a unique priority, and proposed a utilization-based
schedulability test.

For EDF scheduled systems, a number of sufficient
utilization-based schedulability tests are presented [21]–[23].
Differently, Biondi et al. [24], [25] proposed an exact anal-
ysis based on the concept of dominant speed as in [14].
Mohaqeqi et al. [26] proposed to partition the speed space
and transform angular tasks to digraph real-time (DRT)
tasks [27], [28]. Bijinemula et al. [29] further speeded up
the calculation of exact worst-case demand using a knapsack-
based method.

B. Our Contributions

Overall, all the previous studies assume the sAVR
task model where the switching speeds are fixed offline.
Differently, we propose the dAVR task model to allow
dynamic adjustment to the switching speeds. We focus on
the schedulability analysis of systems with dAVR tasks, under
fixed priority scheduling on a uni-processor. However, such
a new model introduces significant challenges to schedulabil-
ity analysis. In particular, unlike all prior studies on sAVR
tasks, it is no longer safe to characterize the interference
from a dAVR task with a minimum inter-release time between
its consecutive jobs, assuming the angular speeds at the job
release times are all known.

In this article, we develop novel techniques to analyze the
interference of dAVR tasks on a periodic task. Specifically,
to avoid enumerating the speed in the (continuous) speed
space, we partition it into a finite number of speed intervals,
and transform a dAVR task to a new type of digraph-based
real-time task model (called dDRT task) where each vertex
represents each of the partitioned speed intervals, and the
edges are labeled with both minimum and maximum inter-
release times. We prove that the task transformation is always
safe but sufficient only. We further quantify the pessimism and

show that theoretically the proposed analysis based on the task
transformation has a problem-dependent, but always bounded
speedup factor. Hence, the pessimism introduced by the task
transformation is always bounded in the speed of task execu-
tion compared to the exact analysis. We present algorithms
to find a finite number of representative job sequences in
the transformed dDRT task, to avoid enumerating (an infinite
number of) all job sequences.

This article is organized as follows. In Section II, we
describe the system model, including the model of dAVR
tasks. In Section III, we present the schedulability analysis
for a periodic task interfered by dAVR tasks. In Section IV,
we describe the analysis for dAVR tasks. In Section V,
we use synthetic systems to show the benefits of the
proposed model and analysis techniques in terms of system
schedulability.

II. SYSTEM MODEL

Our system model extends that of sAVR tasks (e.g., [14]
and [26]). The notations are summarized in Table I.

The rotation source, i.e., the engine, is described by its cur-
rent rotation angle θ , angular speed ω, and angular acceleration
α. Due to its physical attributes, the angular speed and accel-
eration are restricted in certain ranges, i.e., ω ∈ [ωmin, ωmax]
and α ∈ [αmin, αmax]. All these parameters are positive except
the minimum acceleration αmin, and |αmin| = −αmin is the
maximum deceleration.

We consider a real-time system � containing a set of tasks
scheduled with fixed priority on a uni-processor. A task either
is periodic or is an AVR task. For convenience, a periodic task
is denoted as τi while an AVR task is denoted as τ ∗i .

A periodic task τi is characterized by a tuple 〈Ti, Ci, Di, Pi〉,
where Ti is the period, Ci is the worst-case execution time
(WCET), Di ≤ Ti is the constrained deadline, and Pi is
the priority. The execution of the periodic tasks, and conse-
quently their parameters, are all independent from the rotation
source.

An AVR task τ ∗i is triggered at predefined crankshaft angles
θi = �i+k�i,∀k ∈ N, where N is the set of non-negative inte-
gers, �i is the angular phase (the offset from the predefined
reference angle), and �i is the angular period. Its angular
deadline is 	i = λi ·�i where λi ≤ 1 (hence τ ∗i also has a con-
strained deadline). Similar to [15], we assume that AVR tasks
share a common rotation source, and they have the same angu-
lar period and phase. Thus, we drop the task index from the
angular period and phase, and denote them as � and �. The
AVR task parameters (WCET, inter-release time, and deadline)
all depend on the dynamics of the rotation source.

A. Dynamics of Rotation Source

In this article, we assume instantaneous angular speed at
the job release time is known at runtime [14], [15], [26]. We
note that the exact knowledge of instantaneous engine speed
may be impossible, and refer the readers to a detailed discus-
sion of speed estimations in [30]. The speed after rotating θ
angles with an initial speed ω and a constant acceleration α
is calculated as [14]

�(ω, α, θ) =
√

ω2 + 2αθ. (1)

Consider two angular speeds ωk and ωk+1, such that ωk+1
is reachable from ωk after one angular period �. We denote

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SCHEDULABILITY ANALYSIS OF ENGINE CONTROL SYSTEMS WITH DYNAMIC SWITCHING SPEEDS 2069

TABLE I
LIST OF NOTATIONS

it as ωk � ωk+1, and ωk and ωk+1 shall satisfy

�
(
ωk, α

min,�
)
≤ ωk+1 ≤ �

(
ωk, α

max,�
)
. (2)

The minimum (resp. maximum) inter-release time between
them is denoted as Tmin(ωk, ωk+1) [resp. Tmin(ωk, ωk+1)],
which can be calculated following the equations in [26].

We denote an AVR job as (σ, ω) where σ is its release time
and ω is the angular speed at time σ . For any two consecutive
AVR jobs (σl, ωl) and (σl+1, ωl+1), they must satisfy

ωl � ωl+1 ∧ Tmin(ωl, ωl+1) ≤ σl+1 − σl ≤ Tmax(ωl, ωl+1).

(3)

The deadline of (σ, ω) in the time domain, denoted as Di(ω),
is the minimum time to rotate 	i = λi� angles [26].

We summarize a few useful properties from the literature.
Property 1: Tmin(ωk, ωk+1) is strictly decreasing with ωk

and ωk+1 [16].
Property 2: Tmax(ωk, ωk+1) is strictly decreasing with ωk

and ωk+1 [31].
Property 3: Di(ω) is strictly decreasing with ω [16].

B. sAVR Task Model

The sAVR task model, as proposed in the literature, assumes
fixed switching speeds. An sAVR task τ ∗i implements a set
SMi of SMi execution modes. Each mode m implements a
control strategy characterized by a WCET SCm

i , and is exe-
cuted when the angular speed at the task release time is in the
range (ςωm−1

i , ςωm
i]. Here ςω0

i = ωmin, ςω
SMi
i = ωmax, and

∀m < SMi, it is SCm
i ≥ SCm+1

i and ςωm
i < ςωm+1

i . Hence, the
set of execution modes of an sAVR task τ ∗i can be described as

SMi =
{(

SCm
i , ςωm

i

)
, m = 1, . . . , SMi

}
. (4)

The WCET of a job of τ ∗i only depends on the instantaneous
angular speed ω at its release time. Hence, we may define a
WCET function for the sAVR task τ ∗i as

SCi(ω) = SCm
i if ω ∈

(
ςωm−1

i , ςωm
i

]
. (5)

C. dAVR Task Model

We now introduce the concept of AVR tasks with dynamic
execution modes, where the switching speeds are adjusted at
runtime. We assume that the reconfiguration happens at times
T = {γ1, . . . , γT}. The reconfiguration may be triggered by
events independent from those activating the periodic or AVR
tasks. The associated AVR task τ ∗i , termed as a dAVR task,
has a series of execution mode sets defined as

Qi =
{(
Mi,k, γk

)
, k = 1, . . . , T

}
, where

Mi,k =
{(

Cm
i,k, ω

m
i,k

)
, m = 1, . . . , Mi,k

}
. (6)

The WCET of the job released at time t with instantaneous
speed ω is determined as

Ci(t, ω) = Cm
i,k if t ∈ [γk, γk+1

) ∧ ω ∈
(
ωm−1

i,k , ωm
i,k

]
. (7)

We note that an sAVR task can be regarded as a special case
of the dAVR task model, by assuming γ1 = 0 and γ2 = +∞.

Example 1: Table II shows an illustrative example of a
dAVR task τ ∗i . Within [0, 100) ms it uses an execution mode
set Mi,1 with three modes, while at time 100 ms it switches
to an execution mode set Mi,2 with four modes.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

2070 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

TABLE II
ILLUSTRATIVE EXAMPLE OF A DAVR TASK τ∗i

III. SCHEDULABILITY ANALYSIS OF PERIODIC TASKS

Let hp(i) (hp∗(i)) denote the set of periodic (dAVR) tasks
with higher priority than the periodic task τi under analysis.
With the assumption that the dAVR tasks share the same angu-
lar period and phase, we can construct a representative dAVR
task τ ∗A to model the accumulative workload of tasks from
hp∗(i). For each time interval [γk, γk+1) within which the exe-
cution modes for any task in hp∗(i) remain the same, the set of
execution modes and their WCETs for τ ∗A can be constructed
in the same way as those of sAVR tasks, i.e., with the proce-
dure in [15]. In the following, we focus on the analysis of τi
interfered by a set of periodic tasks hp(i) and a (representative)
dAVR task τ ∗A .

We first establish an exact schedulability analysis method,
based on an exhaustive enumeration of all job sequences of
τ ∗A . We define two useful concepts for a dAVR task, namely
a dAVR job sequence and its interference function.

Definition 1 (dAVR Job Sequence): A job sequence A =
[(σ1, ω1), . . . , (σn, ωn)] released by a dAVR task τ ∗A , writ-
ten as A ∈ τ ∗A , is composed of a legal sequence of jobs,
such that any two consecutive jobs (σl, ωl) and (σl+1, ωl+1),
∀l = 1, . . . , n− 1 satisfy (3).

Definition 2 (Interference Function of dAVR Job Sequence):
∀t > 0, the interference function A.I(t) of a dAVR job
sequence A = [(σ1, ω1), . . . , (σn, ωn)] in τ ∗A is its cumulative
execution request within the interval [σ1, σ1 + t). That is

A.I(t) = CA(σ1, ω1)+
n∑

l=2

δ(σ1 + t, σl) · CA(σl, ωl) (8)

where function δ(·, ·) is defined as

δ(a, b) =
{

1 if a > b
0 otherwise.

We now discuss how to calculate the response time of τi. We
note that the periodic tasks and the dAVR tasks are triggered
by independent sources. Hence, the worst-case response time
(WCRT) of τi occurs when it is released simultaneously with
all its interfering tasks. The WCRT R(τi,A) of τi interfered
by a set of periodic tasks hp(i) and a dAVR job sequence
A = [(σ1, ω1), . . . , (σn, ωn)] of τ ∗A is achieved when τi is
released together with A (i.e., at σ1), and all periodic tasks in
hp(i) are also released at σ1

1

R(τi,A) = min
t>0

⎧
⎨

⎩
t | Ci +

∑

τj∈hp(i)

⌈
t

Tj

⌉
Cj +A.I(t) ≤ t

⎫
⎬

⎭
.

(9)

1Note that in this article time 0 is assumed to be the start of the engine
operation, and the critical instant in the schedulability analysis is σ1, which
is in general nonzero. This shall not affect the soundness of the analysis.

Fig. 1. Illustration of two job sequences A and A′ released by a dAVR task,
and the corresponding interference functions.

Note in (9), under certain conditions (e.g., if the utilization is
> 100%) no such t exists, and R(τi,A) is defined as infinity.
The WCRT R(τi, τ

∗
A) of τi is the maximum over all possible

dAVR job sequences of τ ∗A
R(τi, τ

∗
A) = max

A∈τ∗A
R(τi,A). (10)

However, the analysis in (10) is obviously impractical as
the number of dAVR job sequences is infinite (due to the
continuous spaces for both job release time and angular speed).
In the following we develop a safe, but sufficient-only analysis.

Before detailing our techniques, we first highlight that
the existing methods developed for sAVR tasks are no
longer safe for dAVR tasks. Specifically, consider two job
sequences A = [(σ1, ω1), (σ2, ω2), . . . , (σn, ωn)] and A′ =
[(σ1, ω1), (σ

′
2, ω2), . . . , (σ

′
n, ωn)] from an AVR task, such that

σl ≤ σ ′l ,∀l = 2, . . . , n. In other words, A and A′ release
jobs at the same sequence of angular speeds, but jobs in A
are always released no later than A′. The analysis presented
in [15], [16], and [26] will only consider A. This is safe for
sAVR tasks, since the WCET of an sAVR job is independent
from its release time (5) and consequently

∀t,A.I(t) ≤ A′.I(t). (11)

This dominance relationship can be generalized to two job
sequences released at different angular speeds but sharing the
same sequence of job WCETs. Combining Property 1, it leads
to the concept of dominant speed, a speed that dominates a
range of smaller speeds whenever they always produce job
sequences with the same sequence of job WCETs [14]. Thus,
the dominant speed allows shorter inter-release times than the
dominated ones while matching their sequence of job WCETs.

However, as in (7) the WCET of a dAVR job also depends
on its actual release time. Hence, (11) no longer holds for
dAVR tasks, and consequently the analysis developed for
sAVR task systems [14], [26] is not directly applicable. An
illustrative example is shown below.

Example 2: Fig. 1 illustrates two dAVR job sequences A =
[(σ1, ω1), (σ2, ω2)] and A′ = [(σ1, ω1), (σ

′
2, ω2)] (σ2 < σ ′2).

Let σ−2 = σ1+Tmin(ω1, ω2) and σ+2 = σ1+Tmax(ω1, ω2). We
assume CA(σ2, ω2) < CA(σ ′2, ω2), which is possible under the
dAVR task model. The interference functions of A (denoted

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SCHEDULABILITY ANALYSIS OF ENGINE CONTROL SYSTEMS WITH DYNAMIC SWITCHING SPEEDS 2071

as solid blue line) and A′ (dashed red line) are also illustrated
in the figure, which obviously violate (11). Hence, the max-
imum job inter-release times are needed to correctly model
the execution of dAVR tasks and calculate the interference
function.

We now present our new analysis techniques. Specifically, to
avoid enumerating the speed in the (continuous) speed space,
we partition it into a finite number of speed intervals, and
transform a dAVR task to a new type of dDRT task model
where each vertex represents each of the partitioned speed
intervals, and the edges are labeled with both minimum and
maximum inter-release times (Section III-A). We then prove
the speed space partition (hence any transformation to dDRT
task) is safe but sufficient only (Section III-B). We also demon-
strate that the pessimism of the transformation is bounded
(Section III-C). Finally, to avoid exhaustive enumeration of
the job release times, we study the dominance relationship
between dDRT job sequences (Section III-D).

We note that the dominant speeds [14] implicitly partition
the speed space: they find a set of dominant speeds, each
of which represents a speed interval in terms of the worst-
case interference. In this article, we leverage the more explicit
approach of speed partition and task transformation in [26],
for its intuitive graphical representation.

A. dAVR to dDRT Transformation

The DRT task model [27], [28] uses a directed graph to
model a real-time task, where the vertices represent the types
of jobs, and the edges represent possible flows of control. As
a suitable model for sAVR tasks, each vertex vi represents a
speed interval completely contained in the speed interval of an
execution mode, hence is characterized by a constant WCET.
Each edge is labeled with a parameter p(vi, vj) that denotes
the minimum separation time between the releases of vi and
vj. By (11), this is sufficient.

However, as explained above, we cannot assume jobs are
released with minimum inter-release times for dAVR tasks.
Also, the WCET of a dAVR task is a function of time to
model the fact that it also depends on the job release time (7).
This is formalized in the definition below.

Definition 3 (dDRT): A dDRT τ ∗D is characterized by a
directed graph (V,E), where the set of vertices V represents
the types of jobs of τ ∗D. Each vertex vi ∈ V (or type of job) is
characterized by a WCET function vi.C(t), where t denote the
release time of the job of vi. Edges E represent possible flows
of control, i.e., the release order of the jobs of τ ∗D. Each edge
(vi, vj) ∈ E is labeled with a range [pmin(vi, vj), pmax(vi, vj)],
where pmin(vi, vj) (resp. pmax(vi, vj)) denotes the minimum
(resp. maximum) time between the releases of vi and vj.

By the definition, the dDRT task model is a generalization
of the DRT task model.

We now explain how to use dDRT to discretize the con-
tinuous space of engine speeds and capture the switch among
the control strategies. We define a speed partition and the cor-
responding task transformation where: 1) each speed interval
is mapped to a distinct vertex in the dDRT task and 2) the
control strategy (and thus WCET) of a vertex is the same for
any speed in the corresponding speed interval.

Definition 4 (Valid Speed Partition): For a dAVR task τ ∗A ,
a valid speed partition B defines a set of speed intervals
{(β0, β1], . . . , (βB−1, βB]} (∀i ≤ B, βi−1 < βi) that satisfy the
following.

Fig. 2. Transformed dDRT task for the dAVR task in Table II with the speed
partition B = {500, 1500, 2500, 3500, 4500, 6500} (top). The WCET function
of each vertex (bottom).

1) They partition the complete speed range (ωmin, ωmax]
(hence β0 = ωmin, βB = ωmax).

2) For any two speeds ω and ω′ belonging to the same
speed interval, the WCET functions are the same, i.e.,
∀i ≤ B, ∀ω ∈ (βi−1, βi], ω′ ∈ (βi−1, βi], ∀t ≥
0, CA(t, ω) = CA(t, ω′).

For convenience, we also use the ordered set of boundary
speeds to denote B, i.e., B = {β0, β1, . . . , βB}. By the second
condition in Definition 4, the smallest valid speed partition for
τ ∗A consists of all switching speeds and the two speed limits

B = {ωm
A,k|∀k = 1 · · · T, ∀m = 1 · · ·MA,k

} ∪
{
ωmin, ωmax

}
.

(12)

Given a valid speed partition B = {β0, β1, . . . , βB}, the
dDRT task τ ∗D(B) = (V,E) can be constructed as follows
(in case there is no confusion, we also drop the partition B
from the notation of dDRT task and simply denote it as τ ∗D).

1) V is composed of a set of B vertices {v1, . . . , vB},
where the speed interval (βi−1, βi] is mapped to vertex
vi. Each vertex vi is labeled with the WCET function
CA(t, ω), i.e., vi.C(t) = CA(t, ω), where ω is any speed
in (βi−1, βi].

2) For each two vertices vi and vj (which may be the same),
if βj−1 < �(βi, α

max,�) and βj > �(βi−1, α
min,�),

then there must exist β ′i ∈ (βi−1, βi] and β ′j ∈ (βj−1, βj]
such that β ′i � β ′j . In this case, we add an edge (vi, vj)

to the set E, and label it with [pmin(vi, vj), pmax(vi, vj)]
where

⎧
⎪⎪⎨

⎪⎪⎩

pmin(vi, vj) = min
∀β ′i�β ′j

{
Tmin(β ′i , β ′j)

}

pmax(vi, vj) = max
∀β ′i�β ′j

{
Tmax(β ′i , β ′j)

}
.

(13)

These two parameters can be efficiently calculated as in [26].
Example 3: Considering the dAVR task in Table II and

the speed partition B = {500, 1500, 2500, 3500, 4500, 6500}
revolutions per minute (rpm). B is the smallest valid speed
partition, and Fig. 2 gives the transformed dDRT task,
where vertices v1, . . . , v5 represent the intervals (500, 1500],
(1500, 2500], (2500, 3500], (3500, 4500], (4500, 6500],
respectively. The minimum and maximum inter-release times
are labeled along the edges. For example, the inter-release
time from v4 to v5 must be within [10, 17] ms. The WCET
function of each vertex is shown in the table. The inter-release
times are simplified for illustration purposes and may not
match the actual rotational dynamics.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

2072 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Since there is a total order among the (nonoverlapping)
speed intervals in the partition, we can use it to define an
order among vertices in the transformed dDRT.

Definition 5 (Vertex Order): For any two distinguished ver-
tices vi and vj in the dDRT task τ ∗D which, respectively,
correspond to the speed intervals (βi−1, βi] and (βj−1, βj], if
βi−1 ≥ βj, we say vi is larger than vj, denoted as vi � vj; if
βi ≤ βj−1, we say vi is smaller than vj, denoted as vi ≺ vj.

We now provide a useful property on the dDRT task.
Lemma 1: For any three vertices vi, vj and vk in the dDRT

task τ ∗D = (V,E) where vi ≺ vj ≺ vk, if (vi, vk) ∈ E, then it
must be that (vj, vk) ∈ E and pmin(vi, vk) > pmin(vj, vk).

Proof: Let the speed intervals (βi−1, βi], (βj−1, βj] and
(βk−1, βk], respectively, correspond to vi, vj and vk. Since
(vi, vk) ∈ E, by the construction procedure of τ ∗D, there must
exist ωi ∈ (βi−1, βi] and ωk ∈ (βk−1, βk], such that ωi � ωk.
Note that βi < βj ≤ βk−1 (due to vi ≺ vj ≺ vk), it is
ωi ≤ βi < βj ≤ βk−1 ≤ ωk. By (2), we have βj � ωk
and consequently (vj, vk) ∈ E. In addition, by Property 1, it
also holds that pmin(vi, vk) > pmin(vj, vk).

We now study how the shortest path in the dDRT task can
be constructed. Lemma 2 provides the special case (vi, vj) ∈ E

before considering the general case in Theorem 1.
Definition 6 (Path Length): Given a path (v1, . . . , vn) in

τ ∗D = (V,E), the path length of (v1, . . . , vn) is defined as
the cumulative minimum inter-release time of all edges in the
path, denoted as l(v1, . . . , vn) =∑n−1

l=1 pmin(vl, vl+1).
Definition 7 (Shortest Path): Given two vertices vi and vj

in τ ∗D = (V,E), the shortest path from vi to vj is defined as
the path with a length no larger than any other path from vi
to vj. The length of such a path is denoted as lmin(vi, vj).

Lemma 2: Given the transformed dDRT task τ ∗D = (V,E),
for any edge (vi, vj) ∈ E, edge (vi, vj) is the shortest path from
vi to vj, i.e., lmin(vi, vj) = pmin(vi, vj).

Proof: Assume the intervals for vi and vj are (βi−1, βi] and
(βj−1, βj], respectively. For convenience, we denote

�m = �
(
βi−1, α

min,�
)
=
√

β2
i−1 + 2αmin�

�M− = �
(
βi, α

min,�
)
=
√

β2
i + 2αmin�

�M+ = �
(
βi, α

max,�
) =

√
β2

i + 2αmax�.

We now discuss the following four cases.
Case 1 (�M+ ≤ βj−1 or �m > βj): This implies that there

are no speeds ωi ∈ (βi−1, βi] and ωj ∈ (βj−1, βj] such that
ωi � ωj, which contradicts the fact that (vi, vj) ∈ E.

Case 2 (βj−1 < �M+ ≤ βj): This means �M+ ∈ (βj−1, βj]
is the maximum speed that βi can accelerate to in one angular
period, and there is no vertex vk such that (vi, vk) ∈ E and
vk � vj. By Property 1, no other outgoing edge of vi has a
smaller minimum inter-release time than pmin(vi, vj). Hence,
any other path from vi to vj must be longer than pmin(vi, vj).

Case 3 (�m < βj ≤ �M−): Thus, the minimum speed that
any speed ω > βi can decelerate to in one angular period is
higher than βj. That is, there is no vertex vk such that (vk, vj) ∈
E and vk � vi. By Property 1, no other incoming edge of vj
has a smaller minimum inter-release time than pmin(vi, vj), and
any other path has a longer length than pmin(vi, vj).

Case 4 (�M− ≤ βj ≤ �M+): This means that βi can reach
βj in one angular period, thus pmin(vi, vj) = Tmin(βi, βj). By
the definition of Tmin(βi, βj) [26], the minimum inter-release

Algorithm 1 Constructing Shortest Path From vi to vj

C1: if vi = vj, then return the path (vi, vj).
C2: if vi ≺ vj, then

1) ν0 ← vi, k = 0.
2) k = k + 1; if (νk−1, vj) ∈ E, then νk ← vj and return the path

(ν0, . . . , νk); else νk ← arg min
ν:(νk−1,ν)∈E

pmin(νk−1, ν); repeat Step 2).

C3: if vi � vj, then
1) ν0 ← vj, k = 0.
2) k = k + 1; if (vi, νk−1) ∈ E, then νk ← vi and return the path

(νk, . . . , ν0); else νk ← arg min
ν:(ν,νk−1)∈E

pmin(ν, νk−1); repeat Step 2).

time by rotating only one angular period is smaller than that
of multiple periods. Hence, any other path, which has to reach
from vi to vj through multiple edges (thus taking multiple
periods) has a length larger than pmin(vi, vj).

Combining the above four cases, also noting that (vi, vj) is
a path from vi to vj, we have lmin(vi, vj) = pmin(vi, vj).

For any pair of vertices vi and vj, we construct a path with
Algorithm 1. Intuitively, when vi ≺ vj, the path is constructed
forward from vi, by accelerating from vi at the maximum
acceleration until reaching vj. When vi � vj, it is constructed
similarly but backward from vj. Theorem 1 shows that indeed
Algorithm 1 constructs the shortest path from vi to vj.

Theorem 1: For any two vertices vi and vj in the trans-
formed dDRT task τ ∗D = (V,E), the path constructed in
Algorithm 1 must be the shortest from vi to vj.

Proof: According to the algorithm, we discuss three cases.
C1: Obviously (vi, vj) ∈ E and hence by Lemma 2, (vi, vj)

is the shortest path.
C2: Suppose the returned path is (ν0 = vi, . . . , νk = vj).

For any l = 1, . . . , k−1, since edge (νl−1, νl) has the smallest
minimum inter-release time among the outgoing edges from
νl−1, νl is reached from νl−1 by accelerating with the maxi-
mum acceleration. Hence, the shortest path from vi to vj has
at least k edges and k + 1 vertices.

Now we consider any other path P′ where the first k ver-
tices are vi, ν

′
1, . . . , ν

′
k−1. By Property 1, since pmin(vi, ν1) ≤

pmin(vi, ν
′
1), it must be ν′1 � ν1. By induction, we have

ν′k−1 � νk−1. If νk−1 = ν′k−1, by Lemma 2

l
(
vi, ν1, . . . , νk−1, vj

) = l(vi, ν1, . . . , νk−1)+ pmin(νk−1, vj
)

≤ l
(
vi, ν

′
1, . . . , ν

′
k−1

)+ lmin(ν′k−1, vj
)

= l
(
vi, ν

′
1, . . . , ν

′
k−1, vj

)
.

Otherwise νk−1 � ν′k−1. There are two cases: 1) (ν′k−1, vj) ∈
E, by Lemma 1 we have pmin(νk−1, vj) < pmin(ν′k−1, vj) and
2) (ν′k−1, vj) /∈ E, that is, vj is not reachable from ν′k−1, and
the minimum inter-release time of any edge from ν′k−1 must
be > pmin(νk−1, vj). Both 1) and 2) imply

l(vi, ν1, . . . , νk−1) < l
(
vi, ν

′
1, . . . , ν

′
k−1

)

pmin(νk−1, vj
)

< lmin(ν′k−1, vj
)
.

Hence, P′ must be longer than the path from Algorithm 1.
C3: This can be proved similarly as the case C2.

B. Transformation to dDRT Is Sufficient-Only

Before studying the properties of the task transformation, we
first establish how the schedulability analysis can be performed
with the transformed dDRT task.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SCHEDULABILITY ANALYSIS OF ENGINE CONTROL SYSTEMS WITH DYNAMIC SWITCHING SPEEDS 2073

Definition 8 (dDRT Job Sequence): A job of a dDRT task
τ ∗D is denoted as (πl, νl) where πl and νl are the job release
time and vertex (type of job), respectively. A dDRT job
sequence D = [(π1, ν1), . . . , (πn, νn)] of τ ∗D is composed of a
sequence of jobs (πl, νl) such that ∀l < n

(νl, νl+1) ∈ E ∧ pmin(νl, νl+1) ≤ πl+1 − πl ≤ pmax(νl, νl+1).

For convenience, we also denote D ∈ τ ∗D, and regard τ ∗D as
the set of all its job sequences.

Definition 9 (Interference Function of dDRT
Job Sequence): For a dDRT job sequence D =
[(π1, ν1), . . . , (πn, νn)] of τ ∗D, the cumulative execution
request within the time window [π1, π1 + t) is defined as its
interference function D.I(t), i.e.,

∀t ≥ 0, D.I(t) = ν1.C(π1)+
n∑

l=2

δ(π1 + t, πl) νl.C(πl).

(14)

With these two definitions, similar to (9) and (10), the
WCRT of a periodic task τi interfered by a dDRT task τ ∗D
and a set of higher priority periodic tasks hp(i) is

R(τi, τ
∗
D) = max

D∈τ∗D
R(τi,D), where

R(τi,D) = min
t>0

⎧
⎨

⎩
t | Ci +

∑

τj∈hp(i)

⌈
t

Tj

⌉
Cj +D.I(t) ≤ t

⎫
⎬

⎭
. (15)

We now study the task transformation in terms of the
following two desired properties.

Definition 10 (Safe Transformation): The transformation is
safe if for any dAVR task system the schedulability based on
the transformed dDRT task entails that of the original system.

Definition 11 (Exact Transformation): The transformation
is exact if the schedulability of any dAVR task system and
that of its transformed dDRT task system entail each other.

Intuitively, if for any dAVR job sequence A, we can find a
job sequence D in the transformed dDRT task such that their
interference functions satisfy ∀t,D(t) ≥ A(t), then the task
transformation must be safe. For a safe transformation, if for
any job sequence D in the transformed dDRT task, we can
find a dAVR job sequence A such that ∀t,A(t) ≥ D(t), then
the task transformation must be exact. These properties are
leveraged in the following two theorems.

Theorem 2: The task transformation with any valid speed
partition is safe.

This theorem demonstrates that the analysis with the trans-
formed dDRT task provides an upper bound on the WCRT of
τi interfered by the dAVR task. However, the proposed trans-
formation is not exact, as shown in Theorem 3. The proofs of
Theorems 2 and 3 are omitted and can be found in [32].

Theorem 3: The task transformation with any valid speed
partition is inexact for any rotation source with ωmax > ωt =√

(25/12) · ([−αmaxαmin�]/[αmax − αmin]).
Remark 1: We remark that the condition ωmax > ωt =√
(25/12) · ([−αmaxαmin�]/[αmax − αmin]) in Theorem 3

is satisfied by typical engine dynamics. According to [15],
the maximum acceleration/deceleration are typically selected
to be able to accelerate/decelerate between the minimum
and maximum speeds in about 35 revolutions. By (1),
ωmax = √

(ωmin)2 + 70αmax� ≥ √70αmax�. Meanwhile,
ωt = √

(25/12) · ([−αmaxαmin�]/[αmax − αmin]) ≤√
(25/12)αmax�. Hence, ωmax > 5.79 ωt.

C. Bounded Pessimism of Task Transformation

Theorem 3 essentially states that the analysis with the trans-
formed tasks is always pessimistic (under the typical engine
dynamics). This means that there is always a price we need
to pay if we use dDRT tasks to approximate the dAVR tasks.
Such a price is necessary since we cannot afford to enumerate
the (infinitely many) speeds in the continuous speed space.
However, Theorem 3 does not quantify how large the pes-
simism is. This section will provide an answer to that with
the metric of speedup factor [33], a popular method for eval-
uating the accuracy of a schedulability analysis in real-time
systems. A schedulability analysis S has a speedup factor of
u ≥ 1 if the task set schedulable on a processor of speed 1
will be deemed schedulable by S when the processor’s speed is
increased to u [33]. This means that to adopt the (pessimistic)
analysis S, the resources shall be augmented such that the task
WCETs are all shortened by a factor of u. Hence, a bounded
speedup factor u means that the price of adopting S is bounded
in term of the required resource augmentation.

We prove two significant theoretical results in this sec-
tion. First, we show that the task transformation has a
problem-dependent speedup factor that is always bounded,
hence the task transformation always has bounded pessimism
(Theorem 6). Second, we prove that the analysis on the trans-
formed dDRT task system with a finer speed partition is at least
as accurate (Theorem 5). This implies a tradeoff between the
analysis runtime and accuracy: the finer the speed partition,
the better the analysis accuracy; on the other hand, however,
a task transformation with finer speed partition also results in
a larger dDRT task and consequently longer analysis runtime.
We will experimentally study this tradeoff in Section V.

Below we first study two valid speed partitions where one
is completely contained in the other.

Definition 12 (Subset Relation of Speed Partition): Given
two valid speed partitions B and B′, we say B is a subset of
B′ (denoted as B ⊆ B′), if ∀β ∈ B it is β ∈ B′.

Any two speed partitions B and B′ with B ⊆ B′ should
have the following properties.

Lemma 3: If B ⊆ B′, for any speed interval (β ′k−1, β
′
k] ∈

B′, there must exist a speed interval (βk−1, βk] ∈ B, such that
βk−1 ≤ β ′k−1 < β ′k ≤ βk.

Proof: We construct such a speed interval by letting

βk−1 = max
{
β | β ∈ B, β ≤ β ′k−1

}

βk = min
{
β | β ∈ B, β ≥ β ′k

}
. (16)

We prove (βk−1, βk] is indeed a speed interval in B, by
showing that no other speed β in the partition B satisfies
βk−1 < β < βk. For any β ∈ B, if βk−1 < β, it must
be β ′k−1 < β. Otherwise, it violates the definition of βk−1.
Likewise, if βk > β, it must be β ′k > β. Hence, any
speed β ∈ B that satisfies βk−1 < β < βk also satisfies
β ′k−1 < β < β ′k. However, as β ∈ B ⊆ B′, this contradicts the
fact that (β ′k−1, β

′
k] is a speed interval in B′.

Lemma 3 directly implies a uni-directional mapping from
vertices in B′ to those in B if B ⊆ B′, as stated below.

Lemma 4: If B ⊆ B′, for any vertex v′k in the dDRT task
τ ∗D(B′) with a corresponding speed interval (β ′k−1, β

′
k], there

exists a vertex vk in τ ∗D(B) whose speed interval (βk−1, βk] is
constructed as in (16).

The mapping can be generalized to the edges in B′ and B.
Lemma 5: If B ⊆ B′, for any edge (v′i, v′j) in the dDRT

task τ ∗D(B′), define the corresponding vertices of v′i and v′j in

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

2074 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

τ ∗D(B) as vi and vj, respectively. Then there must exist an edge
(vi, vj) in τ ∗D(B) with

pmin(vi, vj
) ≤ pmin

(
v′i, v′j

)
< pmax

(
v′i, v′j

)
≤ pmax(vi, vj

)
.

Proof: Let (β ′i−1, β
′
i] and (β ′j−1, β

′
j] be the intervals corre-

sponding to v′i and v′j, respectively. By Lemma 4, the intervals
(βi−1, βi] and (βj−1, βj] corresponding to vi and vj, respec-
tively, satisfy (β ′i−1, β

′
i] ⊆ (βi−1, βi], (β ′j−1, β

′
j] ⊆ (βj−1, βj].

Since (v′i, v′j) is an edge in τ ∗D(B′), there must exist a pair
of speeds ω′i ∈ (β ′i−1, β

′
i] ⊆ (βi−1, βi], ω′j ∈ (β ′j−1, β

′
j] ⊆

(βj−1, βj], such that ω′i � ω′j. Hence, vj contains the speed ω′i
that can reach ω′j contained in vj in one angular period, and
τ ∗D(B) must contain the edge (vi, vj).

Further, assume the pair ω′i � ω′j such that pmin(v′i, v′j) =
Tmin(ω′i, ω′j). Since ω′i ∈ (βi−1, βi], ω′j ∈ (βj−1, βj], it is

pmin
(

v′i, v′j
)
= Tmin

(
ω′i, ω′j

)

≥ min∀ωi�ωj,

ωi∈(βi−1,βi],
ωj∈(βj−1,βj]

{
Tmin(ωi, ωj

)} = pmin(vi, vj
)
.

Likewise, we can prove pmax(vi, vj) ≥ pmax(v′i, v′j).
We now prove that a speed partition B′ provides an analysis

at least as accurate as any of its subsets B ⊆ B′, i.e., the system
which is deemed schedulable by the analysis based on B must
also be schedulable by adopting the analysis based on B′.

Theorem 4: Given two valid speed partitions B and B′ with
B ⊆ B′, B′ provides an analysis that is at least as accurate as
B, i.e., R(τi, τ

∗
D(B′)) ≤ R(τi, τ

∗
D(B)).

Proof: Consider an arbitrary dDRT job sequence of τ ∗D(B′),
D′ = [(π1, ν

′
1), . . . , (πn, ν

′
n)] ∈ τ ∗D(B′). For each (πk, ν

′
k) ∈

D′, suppose the speed interval of ν′k is (β ′k−1, β
′
k]. Since

B ⊆ B′, by Lemma 4, in τ ∗D(B) there are a vertex νk
and its corresponding speed interval (βk−1, βk] such that
(β ′k−1, β

′
k] ⊆ (βk−1, βk].

Since ∀j = 2 . . . n, pmin(ν′j−1, ν
′
j) ≤ πj − πj−1 ≤

pmax(ν′j−1, ν
′
j), by Lemma 5, it is pmin(νj−1, νj) ≤ πj−πj−1 ≤

pmax(νj−1, νj). Hence, D = [(π1, ν1), . . . , (πn, νn)], composed
of the same job release times as D′ but those correspond-
ing vertices in τ ∗D(B), is a valid dDRT job sequence of
τ ∗D(B). Combining that νj.C(πj) = ν′j .C(πj) (∀j = 1, . . . , n),
it holds R(τi,D) = R(τi,D′). As a result, R(τi, τ

∗
D(B′)) ≤

R(τi, τ
∗
D(B)).

This theorem demonstrates the dominance relationship
between two valid speed partitions B and B′ satisfying B ⊆ B′
in terms of the analysis accuracy, but in a qualitative way. In
the following, we will quantify this relationship. We first define
the vertex subset relationship.

Definition 13 (Subset Relation on Vertices’ Speed Interval):
Given two valid speed partitions B and B′ with B ⊆ B′ and
two vertices vi ∈ τ ∗D(B) and v′i ∈ τ ∗D(B′) as well as the cor-
responding speed intervals (βi−1, βi) and (β ′i−1, β

′
i], we say

the interval of v′i is a subset of that of vertex vi (denoted as
v′i ⊆ vi) if (β ′i−1, β

′
i] ⊆ (βi−1, βi].

We note that for two valid speed partitions B ⊆ B′, any
vertex vi ∈ τ ∗D(B) may correspond to multiple vertices v′i ∈
τ ∗D(B′) such that v′i ⊆ vi. We introduce the following definition
to obtain the maximum among them.

Fig. 3. Transformed dDRT task τ∗D(B′) for the dAVR task in Table II with the
speed partition B′ = {500, 1500, 2500, 2800, 3200, 3500, 4000, 4500, 6500}
(top). The WCET function of each vertex (bottom).

Definition 14 (Maximum Subset Vertex): Given two valid
speed partitions B and B′ with B ⊆ B′ and one vertex
vi ∈ τ ∗D(B), we say v′i ∈ τ ∗D(B′) is the maximum subset vertex
of vi, if v′i ⊆ vi and for any v′j ∈ τ ∗D(B′) and v′j ⊆ vi, it holds
that v′i � v′j (i.e., v′i � v′j or v′i = v′j).

Example 4: For the dAVR task in Table II, consider the
speed partition which is a superset of B in Example 3:
B′ = {500, 1500, 2500, 2800, 3200, 3500, 4000, 4500, 6500}
(rpm). Fig. 3 gives the transformed dDRT task τ ∗D(B′), where
vertices v′1, v′2, ϑ ′3, ν′3, v′3, ν′4, v′4, and v′5, respectively, rep-
resent the intervals (500, 1500], (1500, 2500], (2500, 2800],
(2800, 3200], (3200, 3500], (3500, 4000], (4000, 4500], and
(4500, 6500].

For v3 in τ ∗D(B), there are three vertices in τ ∗D(B′) such that
v′3, ν′3, ϑ ′3 ⊆ v3. Since v′3 � ν′3 � ϑ ′3, v′3 is the maximum
subset vertex of v3.

Next, we introduce the concepts to measure the ratio of path
lengths between two speed partitions B ⊆ B′.

Definition 15 (Edge Factor and Partition Factor): Consider
two dDRT tasks τ ∗D(B) = (V,E) and τ ∗D(B′) = (V′,E′) with
B ⊆ B′. For any edge (vi, vj) ∈ E, assume v′i and v′j, respec-
tively, are the maximum subset vertices of vi and vj, the edge
factor fB/B′(vi, vj) is defined as the ratio between the lengths
of their shortest paths, i.e.,

fB/B′
(
vi, vj

) =
lmin

(
v′i, v′j

)

lmin
(
vi, vj

) =
lmin

(
v′i, v′j

)

pmin
(
vi, vj

) .

The partition factor f max
B/B′ is defined as the maximum edge

factor over all the edges in E, i.e.,

f max
B/B′ = max

(vi,vj)∈E
fB/B′

(
vi, vj

)
.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SCHEDULABILITY ANALYSIS OF ENGINE CONTROL SYSTEMS WITH DYNAMIC SWITCHING SPEEDS 2075

Example 5: Consider v2 and v3 in Fig. 2. The correspond-
ing maximum subset vertices are v′2 and v′3 in Fig. 3. By
Theorem 1, lmin(v′2, v′3) = 23 + 21 + 19 = 63. Since
pmin(v2, v3) = 23, it is fB/B′(v2, v3) = 63/23. Likewise

fB/B′(v1, v2) = fB/B′(v2, v1) = 1

fB/B′(v2, v3) = fB/B′(v3, v2) = 63/23

fB/B′(v3, v4) = fB/B′(v4, v3) = 15/8

fB/B′(v4, v5) = fB/B′(v5, v4) = 1.

Also, for any v, fB/B′(v, v) = 1. Hence, f max
B/B′ = 63/23.

In the above example, we may observe that the relative edge
factor is always no smaller than 1. This can be generalized to
any such partitions, as demonstrated in the following lemma.

Lemma 6: Given two dDRT tasks τ ∗D(B) = (V,E) and
τ ∗D(B′) = (V′,E′) with B ⊆ B′, for any edge (vi, vj) ∈ E,
it holds that fB/B′(vi, vj) ≥ 1. Thus, f max

B/B′ ≥ 1.
Proof: Assume v′i and v′j are the corresponding maximum

subset vertices. Consider the shortest path P′ = (v′i, . . . , v′j)
from v′i to v′j. For each vertex v′l in P′, by Lemma 4 we can
find a corresponding vertex vl in V. By Lemma 5, for any edge
(v′l−1, v′l) in P′, there exists a corresponding edge (vl−1, vl) in
E. Hence, we can construct a valid path (vi, . . . , vj) in τ ∗D(B)
corresponding to P′. Furthermore, by Lemma 5, l(vi, . . . , vj) ≤
l(v′i, . . . , v′j) = lmin(v′i, v′j). Since (vi, vj) is an edge in E,
by Lemma 2, pmin(vi, vj) = lmin(vi, vj) ≤ l(vi, . . . , vj) ≤
lmin(v′i, v′j). Hence, fB/B′(vi, vj) ≥ 1.

We now define a metric to quantify the maximum variation
of WCET in the dAVR task (and the transformed dDRT task).

Definition 16 (WCET Factor): For a dAVR task, the
WCET factor f max

C is defined as the maximum ratio between
the maximum and minimum WCETs over any speed ω, i.e.,

f max
C = max

ω

maxt C(t, ω)

mint C(t, ω)
.

By definition, f max
C ≥ 1. The following lemma shows the

WCET factor applies to the transformed dDRT tasks.
Lemma 7: Consider two dDRT tasks τ ∗D(B) = (V,E) and

τ ∗D(B′) = (V′,E′) with B ⊆ B′. For any vertex v ∈ V and v′ ∈
V
′ where v′ ⊆ v, for any t, t′, we have v.C(t) ≤ v′.C(t′) · f max

C
and v′.C(t′) ≤ v.C(t) · f max

C .
Proof: Since B is a valid partition, and v′ ⊆ v, we have

v.C(t) = v′.C(t),∀t. This, combined with the definition of
WCET factor, implies that the lemma is correct.

Example 6: Consider the dAVR task in Table II as an
example, f max

C is 2, achieved at any speed ω ∈ (2500, 3500].
We now extend the concept of speedup factor [33], to mea-

sure the approximation quality of a valid speed partition B
compared to another one B′ with B ⊆ B′ as well as the exact
analysis.

Definition 17 (Speedup Factor): Considering any dAVR
task τ ∗A and its two valid speed partitions B and B′ with
B ⊆ B′, B has a relative speedup factor of u compared to
B′, if the response time of τi estimated by using τ ∗D(B) on
a speed-u processor, denoted as Ru(τi, τ

∗
D(B)), is bounded by

R(τi, τ
∗
D(B′)), i.e., Ru(τi, τ

∗
D(B)) ≤ R(τi, τ

∗
D(B′)). We say B

has a speedup factor of u if Ru(τi, τ
∗
D(B)) ≤ R(τi, τ

∗
A).

The following theorem upper bounds the relative speedup
factor of a valid speed partition comparing to its superset.

Theorem 5: Given two valid speed partitions B and B′ with
B ⊆ B′, B has a relative speed factor compared to B′ that is
upper bounded by f max

B/B′ · f max
C .

Proof: Consider a periodic task τi interfered by the higher-
priority periodic task set hp(i) and a dAVR task τ ∗A . Let
τ ∗D(B) = (V,E) and τ ∗D(B′) = (V′,E′). Denote u1 = f max

B/B′ ,
u2 = f max

C , and u = u1 · u2. Hence, u ≥ u1 and u ≥ u2.
For an arbitrary job sequence D = [(π1, v1) . . . (πn, vn)] of

τ ∗D(B), we denote Ru(τi,D) as the response time of τi inter-
fered by D on a speed-u processor. Without loss of generality,
let Ru(τi,D) > πn−π1 (otherwise we can always find such a
subsequence of D). We now prove there exists another dDRT
job sequence D′ ∈ τ ∗D(B′) such that Ru(τi,D) ≤ R(τi,D′),
which is sufficient to yield Ru(τi, τ

∗
D(B)) ≤ R(τi, τ

∗
D(B′)).

Let v′l be the maximum subset vertex of vl (l = 1, . . . , n).
We construct D′ by iteratively replacing each job (πl, vl) with:

if l = 1: job (π ′1 = π1, v′1);
if l > 1: a sequence of jobs following the shortest path

(v′l−1, ν
′
1, . . . , ν

′
m, v′l) from v′l−1 to v′l, i.e.,

(
χ ′1 = π ′l−1 + pmin(v′l−1, ν

′
1

)
, ν′1
)

(
χ ′2 = χ ′1 + pmin(ν′1, ν′2

)
, ν′2
)
, . . .

(
χ ′m = χ ′m−1 + pmin(ν′m−1, ν

′
m

)
, ν′m

)

(
π ′l = χ ′m + pmin(ν′m, v′l

)
, v′l
)
.

This gives π ′l = π ′l−1 + lmin(v′l−1, v′l). Hence π ′1 = π1 and
∀2 ≤ l ≤ n, π ′l = π1 +∑l

k=2 lmin(v′k−1, v′k). Obviously, the
resultant job sequence D′ is valid in τ ∗D(B′).

We now prove by contradiction that R(τi,D′) > π ′n − π ′1.
Assume R(τi,D′) ≤ π ′l − π ′1 where 2 ≤ l ≤ n. This implies
there exists t0 ≤ π ′l − π ′1 such that

Ci +
∑

τj∈hp(i)

⌈
t0
Tj

⌉
Cj +

l−1∑

k=1

v′k.C
(
π ′k
)

≤ Ci +
∑

τj∈hp(i)

⌈
t0
Tj

⌉
Cj +D′.I(t0) = t0. (17)

Further, by the definition of u1 (partition factor), it is

t0/u1 ≤
(
π ′l − π ′1

)
/u1 =

(
l∑

k=2

lmin(v′l−1, v′l
)
)

/u1

≤
l∑

k=2

pmin(vl−1, vl) ≤ πl − π1.

Hence, D.I(t0/u1) ≤∑l−1
k=1 vk.C(πk). This enables to derive

1

u
·
⎛

⎝Ci +
∑

τj∈hp(i)

⌈
t0/u1

Tj

⌉
Cj +D.I(t0/u1)

⎞

⎠

≤ 1

u
·
⎛

⎝Ci +
∑

τj∈hp(i)

⌈
t0/u1

Tj

⌉
Cj +

l−1∑

k=1

vk.C(πk)

⎞

⎠

(a)≤ 1

u1
·
⎛

⎝Ci +
∑

τj∈hp(i)

⌈
t0
Tj

⌉
Cj + 1

u2

l−1∑

k=1

vk.C(πk)

⎞

⎠

(b)≤ 1

u1
·
⎛

⎝Ci +
∑

τj∈hp(i)

⌈
t0
Tj

⌉
Cj +

l−1∑

k=1

v′k.C
(
π ′k
)
⎞

⎠ (c)≤ t0/u1.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

2076 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Here (a) is due to u2 ≥ 1, (b) is because of Lemma 7, and
(c) comes from (17). The above equation implies Ru(τi,D) ≤
t0/u1 ≤ πn − π1, which contradicts Ru(τi,D) > πn − π1. As
a result, it must be R(τi,D′) > π ′n − π ′1.

Now we compare the total workloads for calculating
Ru(τi,D) and R(τi,D′). For any t > π ′n − π ′1

Ci +
∑

τj∈hp(i)

⌈
t

Tj

⌉
Cj +D′.I(t)

= Ci +
∑

τj∈hp(i)

⌈
t

Tj

⌉
Cj +

n∑

k=1

v′k.C
(
π ′k
)

≥ Ci +
∑

τj∈hp(i)

⌈
t

Tj

⌉
Cj + 1

u2
·

n∑

k=1

vk.C(πk)

≥ 1

u
·
⎛

⎝Ci +
∑

τj∈hp(i)

⌈
t

Tj

⌉
Cj +

n∑

k=1

vk.C(πk)

⎞

⎠

= 1

u
·
⎛

⎝Ci +
∑

τj∈hp(i)

⌈
t

Tj

⌉
Cj +D.I(t)

⎞

⎠

this inequality yields that Ru(τi,D) ≤ R(τi,D′).
Given the above theorem, we can conclude that the pes-

simism introduced in any valid speed partition is bounded.
Theorem 6: For any valid speed partition B, its speedup

factor must be finite.
Proof: We consider B′ which partitions the speed space

evenly with size ε, where ε is sufficiently small such that
B ⊆ B′. Obviously when ε → 0, B′ provides an exact analysis.

For any edge (vi, vj) in τ ∗D(B), if the vertices vi and vj in V

correspond, respectively, to the speed intervals (βi−1, βi] and
(βj−1, βj], then the two maximum subset vertices v′i and v′j in
τ ∗D(B′) correspond, respectively, to (βi−ε, βi] and (βj−ε, βj].
When ε → 0, it holds that

fB/B′
(
vi, vj

) =
lmin

(
v′i, v′j

)

pmin
(
vi, vj

) → lmin
(
βi, βj

)

pmin
(
vi, vj

)

where lmin(βi, βj) represents the minimum time from βi to βj
after rotating an integer number of angular periods. Thus, by
Theorem 5, the speedup factor of B must be bounded by

max
(vi,vj)∈E

fB/B′
(
vi, vj

) · f max
C = max

(vi,vj)∈E
lmin

(
βi, βj

)

pmin
(
vi, vj

) · f max
C

which is finite as lmin(βi, βj) for any βi and βj is finite.

D. Finding Critical dDRT Job Sequences

We now discuss how to efficiently analyze the system
schedulability based on the transformed dDRT task system.
We note that (15) still requires to enumerate all the (infinitely
many) job sequences of the dDRT task, which is obviously
impractical. In the following, we develop techniques to find a
finite set of representative dDRT job sequences without losing
any accuracy. The idea is that, if two dDRT job sequences
share the same sequence of job WCETs, then the one always
with a shorter inter-release time will dominate the other in
terms of their interference functions. Hence, we may partition
the space of dDRT job release times such that the WCET of
each vertex is constant in each release time interval. We note
that it is sufficient to have each release time interval within

two consecutive reconfigurations. This idea is captured with
the following definitions and algorithms.

Definition 18 (Common-WCET dDRT Job Sequence Set):
For a dDRT task τ ∗D = (V,E), a common-WCET dDRT job
sequence set, denoted as C = [(c−1 , c+1 , ν1), . . . , (c−n , c+n , νn)],
is a sequence of release time ranges [c−l , c+l] and vertices νl
that satisfies:

1) ∀1 ≤ l ≤ n, c−l ≤ c+l ;
2) the WCET of νl ∈ V is the same within [c−l , c+l], i.e.,
∀t1, t2 ∈ [c−l , c+l], νl.C(t1) = νl.C(t2);

3) ∀1 ≤ l < n, (νl, νl+1) ∈ E, c−l+1 ≥ c−l + pmin(νl, νl+1)

and c+l+1 ≤ c+l + pmax(νl, νl+1).
In Definition 18, the second condition is satisfied if [c−l , c+l]

is in [γk, γk+1), i.e., it is contained in the interval between two
consecutive reconfigurations. The third condition means that
(νl, νl+1) is an edge of τ ∗D, and [c−l+1, c+l+1] shall be reachable
from [c−l , c+l].

Definition 19 (Job Sequence of C): D = [(π1, ν1),
. . . , (πn, νn)] is called a job sequence of C =
[(c−1 , c+1 , ν1), . . . , (c−n , c+n , νn)], denoted as D ∈ C, if:

4) D has the same sequence of vertices as C;
5) ∀1 ≤ l ≤ n, πl ∈ [c−l , c+l], i.e., each job is released in

the corresponding range in C.
Definition 20 (Critical Job Sequence of C): Dc =

[(πc
1 , ν1), . . . , (π

c
n , νn)] ∈ C is called a critical job sequence

of C if:
6) Dc ∈ τ ∗D, i.e., it is a job sequence of τ ∗D according to

Definition 8.
7) ∀D ∈ C∩ τ ∗D,∀1 ≤ l ≤ n, πc

l −πc
1 ≤ πl−π1. (18)

With these definitions, we first claim that the length n of
the job sequence set C is always well bounded for check-
ing the schedulability of a periodic task τi with deadline Di.
Specifically, it is sufficient to consider all job sequence sets
C = [(c−1 , c+1 , ν1), . . . , (c−n , c+n , νn)] satisfying c−n − c+1 ≤ Di.
For those C with c−n −c+1 > Di, there is no job sequence D ∈ C

such that the inter-release time between the last and first jobs
is no larger than Di, and τi will not suffer interferences from
all jobs in D if it is schedulable.

We now explain how to enumerate all necessary job
sequence sets. By Definition 18, this involves: 1) generating all
valid paths (i.e., valid sequences of types of jobs) in the dDRT
with limited length n and 2) finding all suitable release time
ranges. The former follows that of a generic digraph such as
the DRT tasks [27]. Given a path (ν1, . . . , νn), the algorithm
to generate all the related common-WCET job sequence sets
can be found in [32, Algorithm 1]. Below we give an exam-
ple on constructing a collection of common-WCET dDRT job
sequence sets for a given path (ν1, . . . , νn).

Example 7: Given the dDRT task τ ∗D in Fig. 2, we consider
one path (v1, v2, v2) with an initial tuple (0, 100, v1). For the
next vertex v2 where the edge (v1, v2) is labeled as [32, 65], the
release time of v2 is in the range [32, 165]. However, it should
be partitioned into two intervals [32, 100) and [100, 165) since
γ2 = 100 is a reconfiguration time.2 As edge (v2, v2) is labeled
with [25, 50], the last vertex has two possible release time
ranges [57, 150) and [125, 215] since there are two intervals
for its preceding vertex. Likewise, these release time intervals
will be further partitioned by the reconfiguration times (γ2 =
100 and γ3 = 200): [57, 150) is split into [57, 100) and

2In Examples 7 and 8, for simplicity we treat closed and half-open intervals
the same.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SCHEDULABILITY ANALYSIS OF ENGINE CONTROL SYSTEMS WITH DYNAMIC SWITCHING SPEEDS 2077

(a)

(b)

Fig. 4. Illustrative example of common-WCET dDRT job sequence sets in
the dDRT task τ∗D of Fig. 2, for a given path (v1, v2, v2) and an initial range
c−1 = 0, c+1 = 100.

[100, 150), and [125, 215] is divided into [125, 200) and
[200, 215]. Thus, we obtain four common-WCET dDRT job
sequence sets, as shown in Fig. 4(b).

In Definition 20, (18) implies that the interference func-
tion of Dc is always no smaller than that of D, i.e., ∀t ≥
0,Dc.I(t) ≥ D.I(t). This is because Dc and D share the same
job WCETs, but jobs in Dc are always released tighter than
D. Hence, for the purpose of schedulability analysis we can
use a critical job sequence Dc of C to represent C, and ignore
all other sequences in C. Finding such a Dc for a given C is
detailed in Algorithm 2.

Specifically, Algorithm 2 first constructs a new job sequence
set C̃ (lines 2–6). We term this process as “legalization,” since
any D ∈ C but D /∈ C̃ must be D /∈ τ ∗D (i.e., D is ille-
gal) [32, Lemma 7]. Such illegal regions in C is from the
necessary splitting of release time ranges by the configuration
times.

The legalization starts with setting all vertices of C̃ to be
those of C (line 2). It initializes the release time range of
the last vertex as that in C (line 3). The iteration in lines 4–6
performs a backward pass on the other vertices, to shorten their
release time ranges such that jobs released outside of these
ranges are always illegal. Given (c̃−l , c̃+l , νl), lines 5 and 6 will
obtain the valid release time range of its previous vertex νl−1
by considering the minimum/maximum inter-release times and
satisfying the time constraint on νl−1 in C.

Then Algorithm 2 constructs a critical job sequence Dc of
C̃ (and consequently of C) in lines 7–10. It sets the vertices
of Dc as those of C̃ (line 7), and the release time of the first
job as late as possible (line 8). Subsequently, it does a forward
pass (lines 9 and 10) to release other jobs as early as possible,
subject to the requirement that Dc ∈ C̃.

The following example explains how Algorithm 2 works.
Example 8: Take the third common-WCET job sequence

set in Fig. 4(b) as an example, i.e., C = [(0, 100, v1),
(100, 165, v2), (125, 200, v2)]. Algorithm 2 first initializes the
release time range of the last vertex in the legalized common-
WCET job sequence set C̃ as c̃−3 = 125, c̃+3 = 200. It then
performs a backward pass on the other vertices to determine

Algorithm 2 Constructing a Critical dDRT Job Sequence Dc

for a Given Common-WCET dDRT Job Sequence Set C =
[(c−1 , c+1 , ν1), . . . , (c−n , c+n , νn)]

1: procedure CONSTRUCTCRITICALJOBSEQUENCE(C)
2: C̃← [(c̃−1 , c̃+1 , ν1), . . . , (c̃−n , c̃+n , νn)];
3: c̃−n ← c−n , c̃+n ← c+n ;
4: for l = n to 2 do // Backward Pass
5: c̃−l−1 ← max(c̃−l − pmax(νl−1, νl), c−l−1);

6: c̃+l−1 ← min(c̃+l − pmin(νl−1, νl), c+l−1);

7: Dc ← [(πc
1 , ν1), . . . , (πc

n , νn)];
8: πc

1 ← c̃+1 ;
9: for l = 1 to n− 1 do // Forward Pass

10: πc
l+1 ← max(πc

l + pmin(νl, νl+1), c̃−l+1);

11: return Dc;

TABLE III
ILLUSTRATIVE EXAMPLE ON ALGORITHM 2: CONSTRUCTION OF

CRITICAL JOB SEQUENCES FOR THE FOUR SETS IN FIG. 4(b)

their legalized release time ranges. This will find

c̃−2 = max
(
c̃−3 − pmax(v2, v2), c−2

) = max(125− 50, 100) = 100

c̃+2 = min
(

c̃+3 − pmin(v2, v2), c+2
)
= min(200− 25, 165) = 165

c̃−1 = max
(
c̃−2 − pmax(v1, v2), c−1

) = max(100− 65, 0) = 35

c̃+1 = min
(

c̃+2 − pmin(v1, v2), c+1
)
= min(165− 32, 100) = 100.

[Note that pmin(v1, v2) = 32, pmax(v1, v2) = 65,
pmin(v2, v2) = 25, pmax(v2, v2) = 50.] This legalization pro-
cess will shorten the first release time range from [0, 100] to
[35, 100]: if the first job is released in [0, 35), then the job
sequence cannot be legal as the inter-release time between the
first and second jobs are always larger than pmax(v1, v2) = 65.

Algorithm 2 then uses πc
1 = c̃+1 = 100 for the forward pass,

to get πc
2 = max(c̃−2 , πc

1 + pmin(v1, v2)) = max(100, 100 +
32) = 132 and πc

3 = max(c̃−3 , πc
2 + pmin(v2, v2)) =

max(125, 132 + 25) = 157. Table III illustrates the gener-
ated critical job sequences for the four common-WCET job
sequence sets in Fig. 4(b).

The correctness of Algorithm 2 is guaranteed by the
following theorem (the formal proof is given in [32]).

Theorem 7: Given any C, Algorithm 2 generates a critical
job sequence Dc according to Definition 20.

IV. SCHEDULABILITY ANALYSIS OF DAVR TASKS

Now consider a dAVR task τ ∗i interfered by a set of periodic
tasks hp(i) and a set of dAVR tasks hp∗(i). For a job (σ, ω)
of τ ∗i , since the dAVR tasks share the same angular period
and phase, all tasks in hp∗(i) also release a job at time σ .
Furthermore, since τ ∗i has a constrained deadline, it has to
finish before its next release [and any new job from hp∗(i)].
Hence, τ ∗i will only be interfered by one job from each task

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

2078 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

τ ∗j ∈ hp∗(i), and the response time of (σ, ω) is computed as

R(τ ∗i , σ, ω) = min
t>0

⎧
⎪⎨

⎪⎩
t | Ci(σ, ω)+

∑

τ∗j ∈hp∗(i)
Cj(σ, ω)

+
∑

τj∈hp(i)

⌈
t

Tj

⌉
Cj ≤ t

⎫
⎬

⎭
. (19)

We now reduce the set of jobs of τ ∗i to be checked for its
schedulability. First, by (7) the WCET of any dAVR job at
any speed ω only changes at the set of reconfiguration times
T = {γ1, . . . , γT}. Hence, it is sufficient to only consider T
as the set of representative release times for dAVR jobs

R(τ ∗i , ω) = max
σ∈T

R(τ ∗i , σ, ω). (20)

Second, we denote the ordered set of switching speeds from
τ ∗i itself and all higher priority dAVR tasks as

Wi =
{
ωm

j,k|j ∈ hp∗(i) ∪ {i}, k = 1 . . . T, m = 1 . . . Mj,k

}

and consider two consecutive switching speeds ωl and ωl+1 in
Wi. By (7) the WCET of a dAVR job remains the same for
any ω ∈ (ωl, ωl+1]. Also, by Property 3, the deadline Di(ω) is
monotonically decreasing with ω. Hence, we can use ωl+1 to
represent all angular speeds in (ωl, ωl+1], and it is sufficient
to only check the schedulability of jobs of τ ∗i released with
an angular speed ω in Wi. That is, τ ∗i is schedulable if the
following condition is satisfied:

∀ω ∈Wi, R(τ ∗i , ω) ≤ Di(ω). (21)

In the end, the schedulability analysis of τ ∗i in (19)–(21)
only requires to check a finite number of jobs of τ ∗i .

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the benefits of the proposed
approach on system schedulability, using randomly gener-
ated synthetic task systems. We adopt the parameters on a
practical engine in [1] and [17]: 1) the minimum/maximum
rotational speed is 500/6500 rpm and 2) the maximum accel-
eration/deceleration is 1.62×10−4 rev/ms2. Hence, the engine
needs 35 revolutions to accelerate/decelerate between the
minimum and maximum speeds.

We compare three analysis methods as follows.
1) dAVR: The analysis proposed in this article, based on

the transformation of dAVR tasks to dDRT tasks.
2) dAVR2sAVR: Since there is no existing safe anal-

ysis for dAVR task systems, we consider a simple,
sufficient-only analysis as the baseline. Specifically, we
approximate a dAVR task τ ∗i with an sAVR task τ̃ ∗i ,
where the WCET of τ̃ ∗i released at speed ω is set as
the maximum WCET of τ ∗i released at speed ω over
all configurations. We then apply the analysis for sAVR
task systems proposed in [15] and [16].

3) UB: The necessary-only analysis from [1] and [17]. It
underestimates the workload from a dAVR task τ ∗i in the
kth configuration as the maximum over a series of virtual
execution mode sets {(Cm

i,k, ω
m
i,k), (C

Mi,k
i,k , ωmax)},∀m =

1, . . . , Mi,k − 1, i.e., the mth mode with WCET Cm
i,k

Fig. 5. Schedulability ratio versus system utilization U.

executed in the speed interval (ωmin, ωm
i,k], and the sim-

plest control strategy with WCET C
Mi,k
i,k effective in

(ωm
i,k, ω

max].
For the method dAVR2sAVR, we use the speed parti-

tion in [14] and [26] that is exact for schedulability analysis
of sAVR tasks. For dAVR, we follow [26] and use k ∈
{50, 100, 200, 300, 500, 1000} to obtain speed partitions with
different granularities. Given k, the speed partition is the
union of the smallest valid partition in (12) and the set
{ωmin+i·k | i = 1, . . . , �[ωmax − ωmin]/k�}. Hence, the smaller
k is, the finer the speed partition.

A. Random Task Systems

The random task systems are generated following [15]. Each
system consists of 20 periodic tasks and one dAVR task τ ∗A .
Let UP and UA denote the total utilization of the periodic
tasks and the maximum utilization of τ ∗A , respectively, where
UA = maxt,ω(CA(t, ω)/[Tmin(ω, ω)]). The total system uti-
lization is U = UP + UA and the fraction for τ ∗A is ρu (i.e.,
UA = ρu ·U). The utilization of each periodic task is computed
by the UUnifast algorithm [34] and the period is uniformly
distributed between 3 and 100 ms. The periodic tasks have
implicit deadlines. The angular period and deadline of the
dAVR task are both equal to one revolution. The task prior-
ities are assigned with the deadline monotonic policy, where
the deadline of the dAVR task is its minimum value DA(ωmax).

The dAVR task includes a set of reconfiguration times
{γ1, . . . , γT} where γl = (l − 1) · Ts for 1 ≤ l ≤ T . We set
Ts = 500 ms, which is the sample period in most standard driv-
ing cycles [35]. Moreover, for each configuration, we generate
M execution modes as follows. We first randomly select one
mode for the maximum utilization UA, and the utilizations of
the other modes are set within the range [0.85×UA, UA]. The
switching speeds are randomly chosen from a uniformly dis-
tributed set between [1000, 6000] rpm. As a result, the WCET
of each mode m effective in the speed interval (ωm, ωm+1] is
set as the product of its utilization and minimum inter-release
time Tmin(ωm+1, ωm+1).

B. Schedulability Results

We vary one of the four parameters U, ρu, M, and
T . Since our motivation is to provide better performance
while guaranteeing schedulability, we filter out systems that
is deemed unschedulable by UB. Thus, the schedulability
ratio shown in Figs. 5–8 is a normalization with respect to
UB (hence UB is omitted). Each data point in the figures is
the average over 1000 random task sets.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SCHEDULABILITY ANALYSIS OF ENGINE CONTROL SYSTEMS WITH DYNAMIC SWITCHING SPEEDS 2079

Fig. 6. Schedulability ratio versus dAVR utilization fraction ρu.

Fig. 7. Schedulability ratio versus number of modes M.

Fig. 8. Schedulability ratio versus number of configurations T .

In the first experiment, the generated dAVR tasks have ten
configurations (i.e., T = 10) where the number of execu-
tion modes in each configuration is randomly set between
4 and 8. The total utilization U is varied from 0.3 to 0.95
with ρu = 0.4. The schedulability ratios of all methods are
always 1 when U < 0.75, hence, Fig. 5 only reports the
results for U ≥ 0.75. As shown in the figure, no matter the
value of k is, dAVR always has a higher schedulability ratio
(hence better analysis accuracy) than dAVR2sAVR. For exam-
ple, at U = 0.875, the schedulability ratio of dAVR with
k = 50 is around 20% higher than that of dAVR2sAVR.
As studied in Section III-C, dAVR with a smaller k has
a higher schedulability ratio and hence is more precise.
Finally, dAVR has substantially lower schedulability ratios
compared to the necessary-only analysis UB, which indicates
that dAVR may be significantly pessimistic. However, we
show in [8] that their experimental control performances are
always indistinguishable.

The comparison between dAVR and dAVR2sAVR is the
same in the next three experiments. In the second experiment,
the generation of the dAVR tasks is similar to the first, but
the dAVR utilization fraction ρu is varied within [0.1, 0.9]
and the total utilization is fixed at U = 0.85. In the third
experiment, we vary the number of modes M of all the ten

Fig. 9. Runtime versus system utilization U.

Fig. 10. Runtime versus dAVR utilization fraction ρu.

Fig. 11. Runtime versus number of modes M.

configurations while the total utilization is U = 0.85 and the
fraction of dAVR task utilization is ρu = 0.4. In the fourth
experiment, we consider a varying number of configurations
T , where the total utilization is fixed at 0.85, each configu-
ration has 4–8 execution modes, and ρu = 0.4. The results
are illustrated in Figs. 6–8, respectively. As in these figures,
dAVR is always more precise than dAVR2sAVR regardless of
the value of k. The difference between dAVR with k = 50 and
dAVR2sAVR is typically around 6%–22%. The only excep-
tion is when ρu ≥ 0.6 in Fig. 6, where these seven methods
all have a schedulability ratio close to 1 (i.e., close to that of
UB). This is because when the dAVR task has a high workload,
most task systems are either easily unschedulable (such that
UB also deems the system unschedulable), or easily schedula-
ble (most periodic tasks have a higher priority than the dAVR
task and are not affected by its high workload).

C. Runtime Results

We also study the runtime of these methods, which are
implemented in the C++ language and executed on a machine
with an Intel Core i7 3.4-GHz CPU. The runtime results
are illustrated in Figs. 9–12. As observed in these figures,
a finer speed partition requires a longer analysis runtime but
provides a more precise analysis. Specifically, the maximum
difference in the runtime between dAVR with k = 1000 and

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

2080 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 12. Runtime versus number of configurations T .

dAVR with k = 50 is close to two orders of magnitude.
Combining the schedulability ratio results, another observation
is that the analysis runtime of one finer speed partition sig-
nificantly increases, while its analysis accuracy has relatively
small improvement. Compared with dAVR, dAVR2sAVR typ-
ically has a smaller runtime due to its lower complexity. The
obvious exceptions are in Fig. 12, e.g., when T > 40, the run-
time of dAVR2sAVR is larger than all the variations of dAVR.
This is because with more configurations T , the consolidated
sAVR task has more switching speeds and needs much longer
analysis time.

VI. CONCLUSION

In this article, we propose the dAVR task model to recon-
figure engine switching speeds at runtime. We provide a
sufficient-only response time analysis, which partitions the
speed space and approximates the workload of dAVR task with
a new type of digraph tasks. We prove that the approxima-
tion method is safe and has a bounded speedup factor (hence
bounded pessimism). Experiments show that our analysis is
substantially more accurate than simple extensions of those
for sAVR systems.

ACKNOWLEDGMENT

The authors would like to thank A. Biondi for sharing the
source code in [1].

REFERENCES

[1] A. Biondi, M. D. Natale, and G. Buttazzo, “Performance-driven design
of engine control tasks,” in Proc. IEEE/ACM Conf. Cyber Phys. Syst.,
Vienna, Austria, 2016, pp. 1–10.

[2] T. Feld, A. Biondi, R. I. Davis, G. Buttazzo, and F. Slomka, “A survey
of schedulability analysis techniques for rate-dependent tasks,” J. Syst.
Softw., vol. 138, pp. 100–107, Apr. 2018.

[3] D. Buttle, “Keynote speech: Real-time in the prime-time,” in Proc.
Euromicro Conf. Real Time Syst., 2012, pp. 12–13.

[4] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and auto-
mated vehicles: State of the art and future challenges,” Annu. Rev.
Control, vol. 45, pp. 18–40, May 2018.

[5] J. Lin, W. Yu, X. Yang, Q. Yang, X. Fu, and W. Zhao, “A real-
time en-route route guidance decision scheme for transportation-based
cyberphysical systems,” IEEE Trans. Veh. Technol., vol. 66, no. 3,
pp. 2551–2566, Mar. 2017.

[6] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annu. Rev. Control Robot. Auton.
Syst., vol. 1, pp. 187–210, May 2018.

[7] S. E. Li et al., “Dynamical modeling and distributed control of
connected and automated vehicles: Challenges and opportunities,”
IEEE Intell. Transp. Syst. Mag., vol. 9, no. 3, pp. 46–58,
Jul. 2017.

[8] C. Peng, Y. Zhao, and H. Zeng, “Dynamic switching speed recon-
figuration for engine performance optimization,” in Proc. 56th
ACM/IEEE Design Autom. Conf., Las Vegas, NV, USA, 2019,
Art. no. 11.

[9] J. Kim, K. Lakshmanan, and R. Rajkumar, “Rhythmic tasks: A new task
model with continually varying periods for cyber-physical systems,” in
Proc. IEEE/ACM Conf. Cyber Phys. Syst., 2012, pp. 55–64.

[10] V. Pollex, T. Feld, F. Slomka, U. Margull, R. Mader, and G. Wirrer,
“Sufficient real-time analysis for an engine control unit with constant
angular velocities,” in Proc. Conf. Design Autom. Test Europe, Grenoble,
France, 2013, pp. 1335–1338.

[11] V. Pollex, T. Feld, F. Slomka, U. Margull, R. Mader, and G. Wirrer,
“Sufficient real-time analysis for an engine control unit,” in Proc.
Int. Conf. Real Time Netw. Syst., Sophia Antipolis, France, 2013,
pp. 247–254.

[12] T. Feld and F. Slomka, “Sufficient response time analysis consider-
ing dependencies between rate-dependent tasks,” in Proc. Conf. Design
Autom. Test Europe, Grenoble, France, 2015, pp. 519–524.

[13] R. I. Davis, T. Feld, V. Pollex, and F. Slomka, “Schedulability tests
for tasks with variable rate-dependent behaviour under fixed priority
scheduling,” in Proc. IEEE Real Time Embedded Technol. Appl. Symp.,
Berlin, Germany, 2014, pp. 51–62.

[14] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo,
“Exact interference of adaptive variable-rate tasks under fixed-priority
scheduling,” in Proc. Euromicro Conf. Real Time Syst., Madrid, Spain,
2014, pp. 165–174.

[15] A. Biondi, M. D. Natale, and G. Buttazzo, “Response-time analysis for
real-time tasks in engine control applications,” in Proc. IEEE/ACM Conf.
Cyber Phys. Syst., Seattle, WA, USA, 2015, pp. 120–129.

[16] A. Biondi, M. Di Natale, and G. Buttazzo, “Response-time analysis of
engine control applications under fixed-priority scheduling,” IEEE Trans.
Comput., vol. 67, no. 5, pp. 687–703, May 2018.

[17] A. Biondi, M. D. Natale, G. C. Buttazzo, and P. Pazzaglia, “Selecting the
transition speeds of engine control tasks to optimize the performance,”
ACM Trans. Cyber Phys. Syst., vol. 2, no. 1, pp. 1–26, Feb. 2018.

[18] T. Feld and F. Slomka, “Exact interference of tasks with variable rate-
dependent behavior,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 5, pp. 954–967, May 2018.

[19] T. Feld and F. Slomka, “A sufficient response time analysis con-
sidering angular phases between rate-dependent tasks,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 11,
pp. 2008–2021, Nov. 2019.

[20] W.-H. Huang and J.-J. Chen, “Techniques for schedulability analysis in
mode change systems under fixed-priority scheduling,” in Proc. IEEE
Conf. Embedded Real Time Comput. Syst. Appl., Hong Kong, 2015,
pp. 176–186.

[21] G. C. Buttazzo, E. Bini, and D. Buttle, “Rate-adaptive tasks: Model,
analysis, and design issues,” in Proc. Conf. Design Autom. Test Europe,
Dresden, Germany, 2014, pp. 1–6.

[22] Z. Guo and S. K. Baruah, “Uniprocessor EDF scheduling of AVR task
systems,” in Proc. ACM/IEEE Conf. Cyber Phys. Syst., Seattle, WA,
USA, 2015, pp. 159–168.

[23] A. Biondi and G. Buttazzo, “Engine control: Task modeling and analy-
sis,” in Proc. Conf. Design Autom. Test Europe, Grenoble, France, 2015,
pp. 525–530.

[24] A. Biondi, G. Buttazzo, and S. Simoncelli, “Feasibility analysis of
engine control tasks under EDF scheduling,” in Proc. Euromicro Conf.
Real Time Syst., Lund, Sweden, 2015, pp. 139–148.

[25] A. Biondi, “Analysis and design optimization of engine control soft-
ware,” Ph.D. dissertation, Scuola Superiore Sant Anna, Pisa, Italy,
2017.

[26] M. Mohaqeqi, J. Abdullah, P. Ekberg, and W. Yi, “Refinement of work-
load models for engine controllers by state space partitioning,” in Proc.
Euromicro Conf. Real Time Syst., 2017, pp. 1–22.

[27] M. Stigge and W. Yi, “Graph-based models for real-time workload: A
survey,” Real Time Syst., vol. 51, no. 5, pp. 602–636, 2015.

[28] C. Peng and H. Zeng, “Response time analysis of digraph real-time
tasks scheduled with static priority: Generalization, approximation, and
improvement,” Real Time Syst., vol. 54, no. 1, pp. 91–131, 2018.

[29] S. K. Bijinemula, A. Willcock, T. Chantem, and N. Fisher, “An efficient
knapsack-based approach for calculating the worst-case demand of AVR
tasks,” in Proc. IEEE Real Time Syst. Symp., 2018, pp. 384–395.

[30] A. Biondi and G. Buttazzo, “Real-time analysis of engine control appli-
cations with speed estimation,” in Proc. Conf. Design Autom. Test
Europe, Dresden, Germany, 2016, pp. 193–198.

[31] C. Peng, Y. Zhao, and H. Zeng. (2018). Schedulability Analysis of
Adaptive Variable-Rate Tasks With Dynamic Switching Speeds. [Online].
Available: https://github.com/ChaoPeng13/EvaluateDynamicAVR

[32] C. Peng, Y. Zhao, and H. Zeng, “Schedulability analysis of adaptive
variable-rate tasks with dynamic switching speeds,” in Proc. IEEE Real
Time Syst. Symp., Nashville, TN, USA, 2018, pp. 396–407.

[33] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoy-
ance,” J. ACM, vol. 47, no. 4, pp. 617–643, 2000.

[34] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real Time Syst., vol. 30, nos. 1–2, pp. 129–154, 2005.

[35] T. J. Barlow, S. Latham, I. McCrae, and P. G. Boulter, “A reference book
of driving cycles for use in the measurement of road vehicle emissions,”
TRL, Crowthorne, U.K., Rep. PPR354, 2009.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:46:00 UTC from IEEE Xplore. Restrictions apply.

