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1. Introduction. The objective of this paper is to present a fully-discrete approximation
technique for the compressible Navier-Stokes equations that is implicit-explicit, second-order ac-
curate in time and space, and guaranteed to be invariant domain preserving. The restriction on
the time-step size is the standard hyperbolic CFL condition, i.e., τ . O(h)/V , where V is some
reference velocity scale and h is the typical meshsize. To the best of our knowledge, this method
is the first one that is guaranteed to be invariant domain preserving under the standard hyperbolic
CFL condition and be second-order accurate in time and space.

Of course there are countless papers in the literature describing techniques to approximate the
time-dependent compressible Navier-Stokes equations, but there are very few papers establishing
invariant domain properties. Among the latest results in this direction we refer the reader to
Grapsas et al. [12] where a first-order method using upwinding and staggered grid is developed (see
Eq. (3.1) therein). The authors prove positivity of the density and the internal energy (Lem. 4.4
therein). Unconditional stability is obtained by solving a nonlinear system involving the mass
conservation equation and the internal energy equation. One important aspect of this method is
that it is robust in the low Mach regime. A similar technique is developed in Gallouët et al. [10]
for the compressible barotropic Navier-Stokes equations (see §3.6 therein). We also refer to Zhang
[30] where a fully explicit dG scheme is proposed with positivity on the internal energy enforced by
limiting. The invariant domain properties are proved there under the parabolic time step restriction
τ . O(h2)/µ, where µ is some reference viscosity scale.

The key idea of the present paper is to build on [14, 15] and use an operator splitting technique
to treat separately the hyperbolic part and the parabolic part of the problem. The hyperbolic
sub-step is treated explicitly and the parabolic sub-step is treated implicitly. This idea is not new
and we refer for instance to Demkowicz et al. [7] for an early attempt in this direction. The novelty
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of our approach is that each sub-step is guaranteed to be invariant domain preserving. In addition,
the scheme is conservative and fully-computable (e.g. the method is fully-discrete and there are
no open-ended questions regarding the solvability of the sub-problems). One key ingredient of
our method is that the parabolic sub-step is reformulated in terms of the velocity and the internal
energy in a way that makes the method conservative, invariant domain preserving, and second-order
accurate (see §5).

The remainder of the paper is organized as follows. We recall the compressible Navier-Stokes
model and introduce the notation in §2. The overall principle of the method is summarized in §3.3.
As usual, the devil is in the details: we discuss technical aspects of the hyperbolic substep and the
parabolic substep in §4 and §5, respectively. The key results of the two sections are Theorem 4.2
and Theorem 5.5. We discuss the full method in §6. The main statement summarizing the results
of the paper is Theorem 6.1. The method is illustrated numerically in §7. Some conclusions and
open problems are reported in §8.

2. The compressible Navier-Stokes equation. In this section we define the notation and
recall the Navier-Stokes equations.

2.1. Notation. The fluid occupies a bounded, polyhedral domain D in R
d. The space dimen-

sion d is either 2 or 3 for simplicity. The dependent variable is u := (ρ,m, E)T ∈ R
d+2, where ρ is

the density, m the momentum, E the total mechanical energy. In this paper u is considered to be
a column vector. The velocity is given by v := ρ−1m. The quantity e(u) := ρ−1E − 1

2‖v‖2ℓ2 is the
specific internal energy.

Given some Lipschitz flux ❢ : Rd+2 → R
(d+2)×d, ❢(u(x)) is a matrix with entries ❢ij(u(x)), 1 ≤

i ≤ d+2, 1 ≤ j ≤ d and∇·❢(u(x)) is a column vector with entries (∇·❢(u))i =
∑

1≤j≤d ∂xj
❢ij(u(x)).

For any n = (n1 . . . , nd)
T ∈ R

d, we denote by ❢(u)n the column vector with entries
∑

1≤l≤d ❢il(u)nl,
where i ∈ {1:d + 2}. Given two integers m ≤ n, the symbol {m:n} represents the set of integers
{m,m + 1, . . . , n}. Given two second-order tensors s and ❡ in R

d×d, we denote the full tensor
contraction operation by s:❡ :=

∑
i,j∈{1:d} sij❡ij . As usual a·b :=

∑
i∈{1:d} aibi denotes the

Euclidean inner-product in R
d, and a ⊗ b is the second-order tensor with entries (aibj)i,j∈{1:d}.

For any smooth vector field a : D 7→ R
d, ∇a is the second-order tensor with entries (∂jai)i,j∈{1:d}.

The Euclidean norm in R
d and the Frobenius norm in R

d×d are denoted by ‖·‖ℓ2 .
2.2. Model description. Given some initial time t0 with initial data u0 := (ρ0,m0, E0), we

look for u(t) := (ρ,m, E)(t) solving the compressible Navier-Stokes system in some weak sense:

∂tρ+∇·(vρ) = 0,(2.1a)

∂tm+∇·
(
v ⊗m+ p(u)I− s(v)

)
= f ,(2.1b)

∂tE +∇·
(
v(E + p(u))− s(v)v + k(u)

)
= f ·v,(2.1c)

where p(u) is the pressure, I ∈ R
d×d is the identity matrix, f is a prescribed external force, s(v)

is the viscous stress tensor and k(u) is the heat-flux. We assume that the fluid is Newtonian and
that the heat-flux follows Fourier’s law, that is to say:

s(v) := 2µ❡(v) + (λ− 2
3µ)∇·vI, ❡(v) := ∇sv := 1

2

(
∇v + (∇v)T

)
,

k(u) := −c−1
v κ∇e.

The constants µ > 0 and λ ≥ 0 are the shear and the bulk viscosities, respectively. The constant
κ is the thermal conductivity and cv is the heat capacity at constant volume. We will assume
throughout that the coefficient c−1

v κ is constant and does not depend on the state u(t).
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For the sake of completeness we recall the following standard result regarding the viscous stress
tensor s(v).

Lemma 2.1. Let k := max(0, d
3 (1− 3λ

2µ )) ∈ [0, 1). Then the following holds true for all smooth

vector fields v in R
d:

(2.2) s(v):∇v ≥ 2µ(1− k)‖❡(v)‖2ℓ2 .
Proof. We have s(v):∇v = 2µ∇sv:∇sv + (λ− 2

3µ)(∇·v)2 and

∇sv:∇sv =
∑

i,j∈{1:d}|❡(v)ij |2 ≥
∑

i∈{1:d}|❡(v)ii|2 =
∑

i∈{1:d} |∂ivi|2 ≥ 1
d
(∇·v)2.

The result follows readily.

We assume that the pressure p(u) is derived from a complete equation of state. That is
to say, introducing the specific volume v := ρ−1, there exists a specific entropy σ(v, e) where
σ : R+×R

+ → R is concave. We assume that the differential of σ(v, e) is consistent with the Gibbs
identity T dσ = de + p dv; therefore, setting s(ρ, e) := σ(v, e), we have T−1 := ∂s

∂e
, p := −ρ2T ∂s

∂ρ
,

see Menikoff and Plohr [24], Harten et al. [16] for more details.
The admissible set of (2.1) is

(2.3) A :=
{
u = (ρ,m, E) ∈ R

d+2 | ρ > 0, e(u) > 0
}
.

This is to say, we expect any reasonable solution u(t) of (2.1) to stay inA. Following the terminology
of Chueh et al. [4] we say that A is an invariant domain of (2.1). Important properties we want to
maintain at the discrete level are thus the positivity of the density ρ ≥ 0 and the positivity of the
specific internal energy e(u) = ρ−1E − 1

2‖v‖2ℓ2 .
That the pressure p(u) is defined by a complete equation of state is essential for the splitting

technique that we are going to used later. We insist again that the source term f is assumed to be
prescribed. If f were to depend on the density (which would be the case for gravity in a star) or
on the temperature (which would be the case of the gray-radiation equations), then the handling of
the source term would have to be modified accordingly and this would entail additional difficulties.
This type of problem is out of the scope of the present paper.

We conclude the section by briefly commenting on boundary conditions for system (2.1). For
the sake of simplicity and to avoid analytical technicalities we assume that the no-slip and the
thermally insulating boundary conditions are enforced on the entire boundary ∂D:

(2.4) v|∂D = 0, k(u)·n|∂D = 0.

Notice that (2.4) closes the system (2.1), i. e., no further boundary condition has to be enforced. We
refer the reader to [14, §3.5], as well as §4 and §5 for additional details. In principle it is possible to
enforce numerous other boundary conditions. A careful analysis of all of these alternative boundary
conditions is beyond the scope of the present paper.

3. Strang splitting and stability properties of the hyperbolic and parabolic limits.
We will separate the parabolic part and the hyperbolic part of the compressible Navier-Stokes
system (2.1) by using Strang’s splitting. To this end, we first identify a hyperbolic (§3.1) and a
parabolic (§3.2) limit, then define the corresponding continuous solution operators S1 and S2, and
finally identify associated stability properties. Both operators are then combined to form a solution
operator for (2.1); see §3.3. We make no claim of originality about the operator splitting technique.
The idea is not new and has been applied in the context of the compressible Navier–Stokes equation
by Demkowicz et al. [7] among others. The novel contribution of the present work is the following:
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(i) The construction of discrete solution operators S1,h and S2,h that when sequentially com-
pounded yields conservation, preservation of the invariant domain properties of the con-
tinuous operators (stated Assumptions 3.1 and 3.2 in §3.1 and §3.2), and satisfaction of a
discrete energy balance.

(ii) Specific choice of transformation of variables at the intermediate step making the analysis
and an efficient implementation possible.

3.1. Hyperbolic limit. The first asymptotic limit of (2.1) that we discuss is the vanishing
viscosity limit, i.e., µ, λ → 0, with vanishing external forces f . In this case the governing equations
for u(t) reduce to

∂tρ+∇·(vρ) = 0,(3.1a)

∂tm+∇·(v ⊗m+ p(u)I) = 0,(3.1b)

∂tE +∇·(v(E + p(u))) = 0,(3.1c)

v·n|∂D = 0.(3.1d)

Here, in the vanishing viscosity limit, the no-slip boundary condition (2.4) is replaced by the slip
condition (3.1d). We assume in the following that there exists some Banach space B1 with sufficient
smoothness so that, provided u0 ∈ B1 ∩A, some reasonable notion of entropy/viscosity solution of
(3.1) can be established for some time interval (t0, t

∗). Giving a precise definition of the functional-
space B1 is beyond the scope of this manuscript and somewhat irrelevant for our purpose. The
reader is referred to Lions [21], Feireisl [9] for further insights on this very difficult question. Here,
by slight abuse of notation B1 ∩ A shall mean {v ∈ B1 | v(x) ∈ A for a.e. x ∈ D}. Let S1(·, t0)
denote the solution map to (3.1); that is, S1(t, t0)(u0) = u(t) for a.e. t ∈ (t0, t

∗). We introduce a
stability notion for the solution map S1(·, t0):

Assumption 3.1 (Stable hyperbolic solution operator). Let u0 ∈ B1 ∩ A. Recalling that s
denotes the specific entropy, we set smin := ess infx∈D s(ρ0(x), e(u0(x))) and introduce the set:

(3.2) C(u0) =
{
u = (ρ,m, E) | ρ > 0, e > 0, s(e, ρ) ≥ smin

}
.

We make the following assumptions:
(i) The set C(u0) is invariant under S1(., t0) for all u0 ∈ A∩B1, i.e., we have S1(t, t0)(u0)(x) ∈

C(u0) for a.e. x ∈ D and a.e. t ∈ (t0, t
∗). We say C(u0) is an invariant domain of (3.1).

(ii) There exists a family of entropy pairs (η, q) (for instance a subset of generalized entropies,
cf. Harten et al. [16]) such that the following inequality holds in the distribution sense in
D×(t0, t

∗):
∂tη(S1(t, t0)(u0)) +∇·(q(S1(t, t0)(u0))) ≤ 0.

3.2. Parabolic limit. The second asymptotic regime of interest in this manuscript is the
diffusive or parabolic regime. The limit is formally obtained by assuming dominant diffusive terms
and dominant external forces in (2.1). Then, the governing equations for u(x, t) reduce to

∂tρ = 0,(3.3a)

∂tm−∇·(s(v)) = f ,(3.3b)

∂tE +∇·(k(u)− s(v)v) = f ·v,(3.3c)

v|∂D = 0, k(u)·n|∂D = 0.(3.3d)



Invariant domain approximation of the compressible Navier–Stokes equations 5

Since (3.3a) implies ρ(x, t) = ρ0(x) for all x ∈ D, (3.3b) is equivalent to ρ∂tv − ∇·(s(v)) = f .
Taking the dot product of (3.3b) and v and subtracting the result from (3.3c) gives ∂t(E− 1

2ρv
2)+

∇·k(u)− s(v):∇v = 0. Consequently, (3.3) is equivalent to solving

ρ0∂tv −∇·(s(v)) = f , v|∂D = 0,(3.4a)

ρ0∂te− c−1
v κ∆e = s(v):❡(v), ∂ne = 0,(3.4b)

E := ρ0e+
1
2ρ0v

2.(3.4c)

Notice that ∂t
∫
D
E dx =

∫
D
f ·v dx; i.e., the variation of the total energy is equal to the power of

the external sources. Existence and uniqueness of (3.4) can be established via standard parabolic
solution theory, Gilbarg and Trudinger [11]. For the sake of argument we will simply assume
that there exists two Banach spaces B2 and B3 such that the above problem is well-posed for
all u0 ∈ B2 and all f ∈ B3. Similarly to the hyperbolic case, we introduce the solution map
S2(t, t0)(u0,f) = u(t) to (3.3). Although the following assumption could easily be formulated
rigorously in form of a theorem by specifying B2 and B3, we prefer to make it an assumption to
stay general and avoid distracting technicalities.

Assumption 3.2 (Stable parabolic solution operator). Let u0 ∈ A ∩ B2 and f ∈ B3. We
define emin = ess infx∈D e(u0(x)) and set

(3.5) D(u0) :=
{
u = (ρ,m, E) | ρ > 0, e ≥ emin

}
.

By possibly making t∗ smaller we assume that:
(i) The set D(u0) is invariant under S2(., t0) for all u0 ∈ A ∩ B2 and all f ∈ B3, i.e.,

S2(t, t0)(u0,f)(x) ∈ D(u0) for a.e. x ∈ D and a.e. t ∈ (t0, t
∗). We say D(u0) is an

invariant domain for (3.3).
(ii) The functional setting defining S2(t, t0) is smooth enough such that

∫

D

E(t) dx =

∫

D

E(t0) dx+

∫ t

t0

∫

D

f ·v dx.(3.6)

Our goal in the remainder of the paper is to construct a space and time approximation that is
formally second-order accurate and complies in some reasonable sense with the stability properties
stated in Assumption 3.1 and in Assumption 3.2.

Remark 3.3 (Vacuum). In this paper we assume that no vacuum forms. It has been established
in Hoff and Serre [17, Thm. 2] that the compressible Navier-Stokes equation may lose continuous
dependency with respect to the initial data when vacuum occurs. It is shown therein that one can
construct initial data in one dimension such that continuous dependency is actually lost. �

Remark 3.4 (Lp estimates). Using ρ > 0 and the entropy η(u) = ρ in Assumption 3.1 we
infer the estimate ‖ρ‖L∞(t0,t∗;L1(D)) ≤ ‖ρ0‖L∞(t0,t∗;L1(D)). Using ρ > 0, e > 0, (3.6) implies

‖ρe‖L∞(t0,t∗;L1(D)) +
1
2‖ρv2‖L∞(t0,t∗;L1(D)) = ‖ρ0e0‖L1(D) +

1
2‖ρ0v2

0‖L1(D) +
∫ t

t0

∫
D
f ·v dx. �

3.3. Stability of Strang splitting. We propose to approximate (2.1) in time by using
Strang’s operator splitting. To be able to do that without going too much into the functional
analysis details, we add one more assumption which can always be shown to hold true if u0 is
smooth enough and t∗ is small enough.

Assumption 3.5 (Smoothness compatibility). The following holds true for a.e. t ∈ (t0, t
∗):
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(i) For all u0 ∈ B1 ∩ A, S1(t, t0)(u0) ∈ B2.
(ii) For all u0 ∈ B2 ∩ A and all f ∈ B3, S2(t, t0)(u0,f) ∈ B1.

Let τ ∈ (0, t∗−t0] be some time step and let u0 ∈ B1∩A be some admissible initial data at time
t0. The version of Strang’s splitting technique we consider in this paper consists of approximating
the solution to (2.1) at t := t0 + τ as follows:

(3.7) S1(t0 + τ, t0 +
1
2τ) ◦ S2(t0 + τ, t0) ◦ (S1(t0 +

1
2τ, t0)(u0),f).

The above operations are well-posed by virtue of Assumption 3.5. The following result is elementary
but is essential since it is the template for the approximation technique that we propose.

Lemma 3.6. The following holds true for all u0 ∈ B1 ∩ A, all f ∈ B3, all τ ∈ (0, t∗ − t0], and
a.e. x ∈ D:

S1(t0 + τ, t0 +
1
2τ) ◦ S2(t0 + τ, t0) ◦ (S1(t0 +

1
2τ, t0)(u0),f)(x) ∈ A.

Proof. By Assumption 3.1(i) and of Assumption 3.5(i) we have S1(t0 + 1
2τ, t0)(u0) ∈ B2 ∩

C(u0) ⊂ B2 ∩ A. Similarly, by Assumption 3.2(i) and Assumption 3.5(ii) it follows that S2(t0 +
τ, t0) ◦ (S1(t0 +

1
2τ, t0)(u0),f) ∈ B1 ∩ D(u0) ⊂ B1 ∩ A. Finally, the result follows by repeating the

first argument.

We now discuss the space and time approximation of the evolution operators S1 and S2. The
two key difficulties to overcome are to ensure that C(u0) remains invariant under the fully discrete
version of S1, and D(u0) remains invariant under the fully discrete version of S2. We describe the
discretization of the hyperbolic step (3.1) in §4, then we describe the discretization of the parabolic
step (3.3) in §5.

4. Explicit hyperbolic step. In this section we describe the discrete setting that is used
to approximate (3.1). The reader who is familiar with the theory developed in Guermond et al.
[14, 15] is invited to skip this section and move on to §5.

4.1. Discrete setting for the space approximation. For the explicit hyperbolic step we
use the exact same setting as described in [14, 15]. The method is discretization agnostic and can
be implemented with finite volumes, discontinuous finite elements, and continuous finite elements.
To avoid technicalities when approximating the parabolic problem, we are going to restrict the
presentation to continuous finite elements. We assume to have at hand a sequence of shape-regular
meshes (Th)h∈H, where H is the index set of the sequence. One may think of h as being the typical
mesh-size. Given some mesh Th, we denote by P (Th) a scalar-valued finite element space with
basis functions {ϕi}i∈V . We assume that P (Th) ⊂ C0(D;R). We restrict ourselves to continuous
Lagrange finite elements for the sake of simplicity and we assume that ϕi ≥ 0 for all i ∈ V. We
denote by V∂ the set of the degrees of freedom that are located on the boundary ∂D. The set V◦

is composed of all the interior degrees of freedom. We introduce the vector-valued approximation
space P (Th) := (P (Th))d+2. We set

mij =

∫

D

ϕiϕj dx, cij =

∫

D

ϕi∇ϕj dx, nij :=
cij

‖cij‖ℓ2
, mi =

∫

D

ϕi dx.

The definitions of the coefficients mij , cij and mi for the case of finite volumes and discontinuous
finite element discretizations can be found in [15, §4].
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4.2. Hyperbolic update. Let tn be some time and un := u(tn). We now explain how we
approximate the update S1(tn+1, tn)(u

n). First, let un
h :=

∑
i∈V U

n
i ϕi ∈ P (Th) be a corresponding

finite element approximation of un. We assume that un
h is an admissible state, i.e.,

U
n
i ∈ A, ∀i ∈ V.

Let τ be the current time step size and set tn+1 := tn + τ . Note that τ has to be chosen for each
time step tn subject to a suitable hyperbolic CFL condition; see (4.3)–(4.4) and Theorem 4.2. We
now construct an approximation un+1

h :=
∑

i∈V U
n+1ϕi ∈ P (Th) for the new time step tn+1 by

combining a low-order approximation and a high-order approximation through a convex limiting
technique described in [14, 15].

The low order update is obtained as follows:

U
L,n+1
i := U

n
i +

τ

mi

∑

j∈I(i)

−❢(Un
i )cij +

τ

mi

∑

j∈I(i)\{i}

dL,nij (Un
j −U

n
i ),

where dL,nij is defined by

(4.1) dL,n
ij := max

(
λ̂max(nij ,U

n
i ,U

n
j )‖cij‖ℓ2 , λ̂max(nji,U

n
j ,U

n
i )‖cji‖ℓ2

)
.

Here, λ̂max(n,UL,UR) is any upper bound on the maximum wave speed in the Riemann problem
with left data U

n
i , right data U

n
j , and flux ❢(v)nij . One can use for instance the two rarefaction

approximation discussed in Guermond and Popov [13, Lem. 4.3] (see also Toro [27, Eq. (4.46)]) or
any other guaranteed upper bound. For all j ∈ I(i)\{i} we introduce the auxiliary states

U
n

ij :=
1

2
(Un

i +U
n
j )− (❢(Un

j )− ❢(Un
i ))

cij

2dL,nij

.(4.2)

The following statement is a key result on which the convex limiting strategy is based.

Lemma 4.1 (Invariance of the auxiliary states). Let U ⊂ A be any convex invariant domain

for (3.1) such that Un
i ,U

n
j ∈ U . Then the state U

n

ij defined in (4.2) with dL,nij as defined in (4.1)
belongs to U .

A possibly invariant-domain-violating and formally high-order solution, uH,n+1
h , is obtained by

appropriately reducing the graph viscosity and replacing the lumped mass matrix by the full mass
matrix (see, e.g., [14, §3.3-§3.4] and [15, §6]). The final high-order invariant-domain-preserving

update un+1
h is obtained by applying convex limiting between the low-order solution U

L,n+1
i and

the high-order solution U
H,n+1
i with relaxed bounds. The local bounds are computed using the

auxiliary states (4.2) (see e.g., [14, §4] and [15, §7]). In the numerical illustrations reported at the
end of the paper we limit the density from above and from below and the specific entropy from
below. The relaxation technique for the bounds is explained in [14, §4.7] and [15, §7.6]. For further
reference we introduce

(4.3) τ0(u
n
h) := min

i∈V

mi

2|dL,nii |
, with dL,nii := −

∑

j∈I(i)\{i}

dL,nij .

The ratio τ/τ0(u
n
h) is henceforth denoted CFL and called Courant-Friedrichs-Lewy number:

(4.4) CFL :=
τ

τ0(un
h)

.



8

Let S1h(tn + τ, tn) : P (Th) → P (Th) denote the nonlinear operator defined by setting S1h(tn +
τ, tn)(u

n
h) := un+1

h . The key result regarding the hyperbolic update is the following.

Theorem 4.2 (Invariance). Let un
h ∈ A and let C(un

h) be as defined in (3.2).
(i) If no relaxation is applied on the entropy bounds, then S1h(tn + τ, tn)(u

n
h) ∈ C(un

h) for all
τ ≤ τ0(u

n
h). In other words, C(un

h) is invariant under S1h(tn + τ, tn) if CFL ≤ 1.
(ii) In case of relaxation of the entropy bounds in the convex limiter, there exists c(h) with

limh→0 c(h) = 1 and smin ≥ c(h)smin so that the same statement holds with the constraint
s(ρ, e) ≥ smin in (3.2) replaced by s(ρ, e) ≥ c(h)smin.

(iii) In both cases A is invariant under S1h(tn + τ, tn) provided that τ ≤ τ0(u
n
h).

Remark 4.3 (Second-order in time). In practice the method is made second-order accurate in
time by using a strong stability preserving explicit Runge Kutta method. For instance it is sufficient
to use SSPRK(2,2) (i.e., Heun’s scheme) to achieve second-order accuracy in time. This is done as
follows: one computes w1

h = S1h(tn + τ, tn)(u
n
h) and w2

h = S1h(tn + 2τ, tn + τ)(w1
h) and one sets

un+1
h = 1

2u
n
h + 1

2w
2
h. �

5. Implicit parabolic step. We now describe the discrete setting that is used to approximate
the parabolic step (3.3). We use the same finite element setting that was introduced in §4.1.

5.1. Density and velocity update. Let again un
h :=

∑
i∈V U

n
i ϕi ∈ P (Th) be a finite element

approximation of un. We assume that un
h is an admissible state, i.e.,

(5.1) U
n
i ∈ A, ∀i ∈ V.

Let τ be the chosen hyperbolic time step size (see §4) for tn. We now construct an approximation
un+1
h =

∑
i∈V U

n+1
i ϕi of S2(tn + τ, tn)(u

n,f) as follows. Since the evolution equation for the
density in (3.3) is ∂tρ = 0, the density is updated by setting

(5.2) ̺n+1
i := ̺ni , ∀i ∈ V.

Next, the velocity vn has to be updated. For this, we introduce the bilinear form associated with
viscous dissipation,

a(v,w) :=

∫

D

s(v):❡(w) dx, v,w ∈ H1
0 (D) := H1

0 (D;Rd).(5.3)

Let {ek}k∈{1:d} be the canonical Cartesian basis of Rd. For any i ∈ V and j ∈ I(i) we define the

d×d matrix Bij ∈ R
d×d by setting

(5.4) (Bij)kl := a(ϕjel, ϕiek) :=

∫

D

s(ϕjel):∇s(ϕiek) dx, ∀k, l ∈ {1:d}.

Let f
n+ 1

2

h :=
∑

j∈V F
n+ 1

2

j ϕj ∈ P (Th) be an approximation of f(tn + 1
2τ) (at least second-order

accurate in time and space). We use the Crank-Nicolson technique to compute un+1
h . More precisely

we solve for the unknown V
n+ 1

2 given by the following linear system:

(5.5a)




̺ni miV

n+ 1

2

i + 1
2τ

∑
j∈I(i) BijV

n+ 1

2

j = miM
n
i + 1

2τmiF
n+ 1

2

i , ∀i ∈ V◦

V
n+ 1

2

i = 0, ∀i ∈ V∂ ,
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where U
n
i =: (̺ni ,M

n
i , E

n
i ), and set

(5.5b) V
n+1
i := 2V

n+ 1

2

i − V
n
i , M

n+1
i := ̺n+1

i V
n+1
i , ∀i ∈ V.

We then introduce v
n+ 1

2

h :=
∑

i∈V V
n+ 1

2

i ϕi and define

(5.6) K
n+ 1

2

i :=
1

mi

∫

D

s(vn+ 1

2 ):❡(vn+ 1

2 )ϕi dx, ∀i ∈ V.

Notice that
∑

i∈V miK
n+ 1

2

i = a(vn+ 1

2 ,vn+ 1

2 ) owing to the partition of unity property. The main
properties of the above definitions are summarized in the following result.

Lemma 5.1 (Velocity update). (i) For every i ∈ V we have K
n+ 1

2

i ≥ 0. (ii) The following global
energy balance holds true:

(5.7)
∑

i∈V

1
2mi̺

n
i (V

n+1
i )2 + τa(vn+ 1

2 ,vn+ 1

2 ) =
∑

i∈V

1
2mi̺

n
i (V

n
i )

2 +
∑

i∈V

τmiF
n+ 1

2

i ·Vn+ 1

2

i .

Proof. (i) The inequality K
n+ 1

2

i ≥ 0 is a consequence of (2.2) and ϕi ≥ 0. (ii) We take the dot

product of (5.5a) with 2V
n+ 1

2

i and recalling that Vn+ 1

2 = 1
2 (V

n+1
i +V

n
i ) we obtain for every i ∈ V◦

1
2mi̺

n
i (V

n+1
i )2 + τa(vn+ 1

2 ,V
n+ 1

2

i ϕi) =
1
2mi̺

n
i (V

n
i )

2 + τmiF
n+ 1

2

i ·Vn+ 1

2

i .

For every i ∈ V∂ we have V
n+ 1

2

i = 0, which in turn implies that Vn+1
i = −V

n
i , i.e., (V

n+1
i )2 = (Vn

i )
2.

Moreover, we have a(vn+ 1

2 ,V
n+ 1

2

i ϕi) = 0 and F
n+ 1

2

i ·Vn+ 1

2

i = 0. Hence, for every i ∈ V∂ we have

1
2mi̺

n
i (V

n+1
i )2 + τa(vn+ 1

2 ,V
n+ 1

2

i ϕi) =
1
2mi̺

n
i (V

n
i )

2 + τmiF
n+ 1

2

i ·Vn+ 1

2

i .

Summing over i ∈ V and using the partition of unity property (
∑

i∈V ϕi = 1) yields (5.7).

Remark 5.2 (Approximation order). The update Vn+1
i constructed by (5.5) is formally second-

order accurate in time and space since (5.5a) is a Crank-Nicolson time step. �

5.2. Internal energy update (first-order). The update of the internal energy entails some
subtleties regarding the minimum principle when using the second-order Crank-Nicolson time step-
ping. Therefore, we first formulate the method with the backward Euler time stepping. The
second-order extension is presented in §5.3. Let us introduce the bilinear form associated with the
thermal diffusion

b(e, w) := c−1
v κ

∫

D

∇e·∇w dx, ∀e, w ∈ H1(D).

For any i ∈ V and j ∈ I(i) we set

(5.8) βij := b(ϕj , ϕi).

Notice that the partition of unity property implies that βii = −
∑

j∈I(i)\{i} βij . This implies in

particular that for all vh :=
∑

j∈V Vjϕj ∈ P (Th) we have

(5.9) b(vh, ϕi) =
∑

j∈I(i)\{i}

βij(Vj − Vi).
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This expression will be useful to prove the minimum principle on the internal energy. We further
assume that

(5.10) βij ≤ 0, ∀i 6= j ∈ V.

This condition is known to be satisfied for meshes composed of simplices in two and three space
dimensions under the so-called acute angle condition, cf. e.g., Brandts et al. [3, §5.2], Xu and
Zikatanov [28, Eq. (2.5)]. This is in particular true for Delaunay meshes. Although it can be done,
it is not the purpose of this paper to relax this condition.

Recalling the viscous dissipation K
n+ 1

2

i defined in (5.6), we now construct a low-order update

of the internal energy e
L,n+1
i as follows. For all i ∈ V first set eni := (̺ni )

−1
E
n
i − 1

2‖V
n
i ‖2ℓ2 , then solve

the linear system

mi̺
n
i (e

L,n+1
i − e

n
i ) + τ

∑

j∈I(i)

βije
L,n+1
j = τmiK

n+ 1

2

i , ∀i ∈ V.(5.11)

Recall that the boundary conditions (3.4b) together with the partition of unity property imply that

(5.12)
∑

i∈V

mi̺
n
i (e

L,n+1
i − e

n
i ) = τ

∑

i∈V

miK
n+ 1

2

i = τa(vn+ 1

2 ,vn+ 1

2 ).

This identity is used in the proof of Theorem 5.5.

Lemma 5.3 (Minimum principle). Let Un be an admissible state. Then for all τ > 0:

min
j∈V

e
L,n+1
j ≥ min

j∈V
(enj + τ

̺n
j

K
n+ 1

2

j ) ≥ min
j∈V

e
n
j ≥ 0.

Proof. Recalling that
∑

j∈I(i) βij = 0, we infer that

mi̺
n
i (e

L,n+1
i − e

n
i ) + τ

∑

j∈I(i)\{i}

βij(e
L,n+1
j − e

L,n+1
i ) = τmiK

n+ 1

2

i ,

Let i be the index in V where eL,n+1
i is minimal. Then 0 ≥ ∑

j∈I(i)\{i} βij(e
L,n+1
j − e

L,n+1
i ) because

we have assumed that βij ≤ 0 for all j ∈ I(i)\{i}. Moreover, the definition of K
n+ 1

2

i implies that

K
n+ 1

2

i ≥ 0 since we assumed ϕi ≥ 0. All this implies that

mi̺
n
i (e

L,n+1
i − e

n
i ) ≥ mi̺

n
i (e

L,n+1
i − e

n
i ) + τ

∑

j∈I(i)\{i}

βij(e
L,n+1
j − e

L,n+1
i ) = τmiK

n+ 1

2

i ≥ 0.

In conclusion minj∈V e
L,n+1
j =: eL,n+1

i ≥ e
n
i + τ

̺n
i

K
n+ 1

2

i ≥ minj∈V

(
e
n
j + τ

̺n
j

K
n+ 1

2

j

)
.

5.3. Internal energy update (Second-order). We now explain how to approximate the
internal energy with a second-order Crank-Nicolson time stepping scheme. This is done by com-
bining the low-order update and the second-order update using flux-corrected transport limiting
(FCT); the reader is referred to e.g., Boris and Book [2], Zalesak [29], Kuzmin et al. [20].
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We start by defining the high-order update of the internal energy, eH,n+1
i , as follows: We first

compute ei
H,n+ 1

2 by solving

mi̺
n
i (ei

H,n+ 1

2 − e
n
i ) +

1
2τ

∑

j∈I(i)

βijei
H,n+ 1

2 = 1
2τmiK

n+ 1

2

i , ∀i ∈ V.(5.13)

and then set

e
H,n+1
i = 2ei

H,n+ 1

2 − e
n
i , ∀i ∈ V.

In general, positivity properties for Crank-Nicolson schemes can only be guaranteed under highly
restrictive time-step size constraints. We do not assume that such time-step conditions are met. We
just assume that the time-step size is dictated by the CFL constraints of the hyperbolic part. We
thus resort to flux-corrected transport limiting, or alternatively convex limiting, to preserve positiv-

ity properties. Rewriting (5.13) by multiplying (5.13) by 2 and replacing e
H,n+ 1

2

i by 1
2 (e

H,n+1
i + e

n
i )

gives:

mi̺
n
i (e

H,n+1
i − e

n
i ) +

1
2τ

∑

j∈I(i)

βij(e
H,n+1
j + e

n
j ) = τmiK

n+ 1

2

i , ∀i ∈ V.(5.14)

We then take the difference between (5.14) and (5.11) to obtain

mi̺
n
i (e

H,n+1
i − e

L,n+1
i ) = − 1

2τ
∑

j∈I(i)

βij(e
H,n+1
j + e

n
j − 2eL,n+1

j ).

Setting Aij := − 1
2τβij(e

H,n+1
j − e

H,n+1
i + e

n
j − e

n
i − 2eL,n+1

j + 2eL,n+1
i ), the above identity reads

mi̺
n
i (e

H,n+1
i − e

L,n+1
i ) =

∑

j∈I(i)\{i}

Aij .

Introducing e
n,min := minj∈V e

n
j we then define the FCT limiter coefficients as follows:

P−
i :=

∑

j∈I(i)\{i}

min(Aij , 0), Q−
i := mi̺

n
i (e

n,min − e
L,n+1
i ),(5.15a)

ℓ+i = 1, ℓ−i := min
(
1,

Q−

i

P−

i

)
.(5.15b)

Note that P−
i ≤ 0 and Q−

i ≤ 0 (owing to Lemma 5.3), therefore ℓ−i ≥ 0. By virtue of the definition
of ℓ−i the inequality ℓ−i P

−
i ≥ Q−

i always holds true:

ℓ−i P
−
i = min

(
1,

Q−

i

P−

i

)
P−
i = −min

(
1,

Q−

i

P−

i

)
|P−

i | = −min(|P−
i |,−Q−

i ) ≥ Q−
i(5.16)

The high-order update of the internal energy is now defined by setting

(5.17) mi̺
n
i (e

n+1
i − e

L,n+1
i ) =

∑

j∈I(i)\{i}

ℓijAij , ℓij :=

{
min(ℓ+i , ℓ

−
j ), if Aij ≥ 0,

min(ℓ−i , ℓ
+
j ), if Aij < 0.
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Lemma 5.4 (Minimum principle). The quantity e
n+1 computed in (5.17) satisfies

(5.18) min
j∈V

e
n+1
j ≥ e

n,min := min
j∈V

e
n
j .

Proof. The above definitions imply

mi̺
n
i (e

n+1
i − e

L,n+1
i ) ≥

∑

j∈I(i)\{i}

ℓij min(Aij , 0) ≥ ℓ−i
∑

j∈I(i)\{i}

min(Aij , 0) = ℓ−i P
−
i ≥ Q−

i ,

where we have used that ℓij ≤ ℓ−i , the definition of P−
i , and the inequality (5.16). This shows

that the limiting enforces mi̺
n
i e

n+1
i ≥ mi̺

n
i e

n,min, i.e., en+1
i ≥ e

n,min. This in turn implies that
mini∈V e

n+1
i ≥ e

n,min = minj∈V e
n
j .

5.4. Total energy update. Once the internal energy is updated according to (5.17), the
total energy can be updated by setting

(5.19) E
n+1
i = ̺n+1

i e
n+1
i + 1

2̺
n
i ‖Vn+1

i ‖2ℓ2 , ∀i ∈ V.

The main result of §5 is the following.

Theorem 5.5 (Positivity and conservation). Let Un be an admissible state. Let Un+1 be the
state constructed by (5.2) - (5.5b) - (5.19), with the velocity update defined in (5.5) and the internal
energy update defined in (5.17). Then, Un+1 is an admissible state, i.e., Un+1

i ∈ A for all i ∈ V
and all τ , and the following holds for all i ∈ V and all τ :

̺n+1
i = ̺ni > 0, ∀i ∈ V,(5.20a)

min
j∈V

e
n+1
j ≥ min

j∈V
e
n
j > 0,(5.20b)

∑

i∈V

miE
n+1
i =

∑

i∈V

miE
n
i +

∑

i∈V

τmiF
n+ 1

2

i ·Vn+ 1

2

i .(5.20c)

Proof. (i) Since by assumption U
n
i ∈ A, we have ̺ni > 0, whence ̺n+1

i > 0.
(ii) We have proved that minj∈V en+1

j ≥ minj∈V enj ≥ 0 in Lemma 5.3.
(iii) We have established in (5.7) that

∑

i∈V

1
2mi̺

n
i (V

n+1
i )2 + τa(vn+ 1

2 ,vn+ 1

2 ) =
∑

i∈V

1
2mi̺

n
i (V

n
i )

2 +
∑

i∈V

τmiF
n+ 1

2

i ·Vn+ 1

2

i .(5.21)

Recalling that Aij = −Aji and ℓij = ℓji, we sum (5.17) over i ∈ V and obtain

∑

i∈V

mi̺
n
i e

n+1
i =

∑

i∈V

mi̺
n
i e

L,n
i .

Invoking the identity (5.12) shows

∑

i∈V

mi̺
n
i e

n+1
i =

∑

i∈V

mi̺
n
i e

n
i + τa(vn+ 1

2 ,vn+ 1

2 ).(5.22)

Adding (5.21) and (5.22) gives (5.20c).
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We introduce a discrete nonlinear solution operator S2h(tn + τ, tn) : P (Th)×P (Th) → P (Th)
by setting S2h(tn + τ, tn)(u

n
h,f

n+ 1

2

h ) := un+1
h . Theorem 5.5 can then be rephrased as follows.

Corollary 5.6 (Invariance). Let uh ∈ P (Th) ∩ A and let f
n+ 1

2

h ∈ P (Th). Then D(un
h) is

invariant under S2h(tn + τ, tn) for all τ , i.e., S2h(tn + τ, tn)(uh,f
n+ 1

2

h ) ∈ D(un
h) ⊂ A for all τ > 0.

Remark 5.7 (Definition of emin). The definition of emin in (5.15a) can be slightly strengthened.

The lower bound (5.18) holds for any number emin chosen in the interval [minj∈V e
n
j ,minj∈V e

L,n
j ].

However, selecting e
min too close to minj∈V e

L,n
j degenerates the accuracy order of the method to

O(τ) in the L∞(D)-norm. The numerical experiments reported in the paper are computed with
e
min := minj∈V e

n
j . �

Remark 5.8 (Energy). Lemma 5.4 establishes that the minimum of the internal energy grows
monotonically and Theorem 5.5 states that the temporal variation of the total energy is equal to
the power of the sources. This implies in essence that a fully discrete counterpart of (3.6) holds
true, which is exactly what one should expect. �

6. Complete method. We now put all the pieces together and state the main result of the

paper. Let S
(2)
1h be a version of S1h that is at least second-order accurate in time as discussed in

Remark 4.3. Let un
h ∈ P (Th) be an admissible state and let f

n+ 1

2

h ∈ P (Th). Let us fix some number
CFL > 0, which we call Courant-Friedrichs-Lewy number, and let τ0(u

n
h) be defined in (4.3). The

time step τ is chosen by setting

(6.1) τ := CFL×τ0(u
n
h).

The update un+1
h ∈ P (Th) is computed as follows:

(6.2) un+1
h = S

(2)
1h (tn + τ, tn + 1

2τ) ◦ S2h(tn + τ, tn) ◦ (S(2)
1h (tn + 1

2τ, tn)(u
n
h),f

n+ 1

2

h ).

Theorem 6.1 (Invariance). Let un
h ∈ P (Th)∩A and f

n+ 1

2

h ∈ P (Th). Then un+1
h ∈ A provided

CFL is small enough. Moreover, the mass is conserved
∑

i∈V mi̺
n+1
i =

∑
i∈V mi̺

n
i and, under the

assumption that f ≡ 0, the total energy is also conserved
∑

i∈V miE
n+1
i =

∑
i∈V miE

n
i .

Proof. From Theorem 4.2 we infer that S
(2)
1h (tn + 1

2τ, tn)(u
n
h) ∈ A if CFL is small enough.

For example, for the SSPRK(2,2) and SSPRK(3,3) methods this holds with CFL = 2. From

Corollary 5.6 we infer that wh := S2h(tn + τ, tn)
(
S
(2)
1h (tn + 1

2τ, tn)(u
n
h,f

n+ 1

2

h )
)
∈ A without any

further restriction on τ . Using again Theorem 4.2 we infer that S
(2)
1h (tn + τ, tn + 1

2τ)(wh) ∈ A
provided τ

2 ≤ τ0(wh), i.e., CFL ≤ 2τ0(wh)/τ0(u
n
h).

Remark 6.2 (CFL). Showing that Theorem 6.1 holds with a CFL number that is uniform with
respect to the mesh size, i.e., τ0(wh)/τ0(u

n
h) can be bounded uniformly, would necessitate to prove

some uniform bounds on wh. Except under very restrictive smallness assumptions on data, to the
best of our knowledge this is a very challenging open problem that is well beyond the scope of the
present paper. �

7. Numerical illustration. We illustrate the approximation technique with a number of
convergence tests and a computation of a shocktube benchmark problem.
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7.1. Implementation details. All the tests reported below are done with the ideal gas equa-

tion of state, s(ρ, e) = log(e
1

γ−1 ρ−1), with γ = 1.4. This in turn implies that p = (γ − 1)ρe, as well
as cp = γ

γ−1 , and cv = 1
γ−1 . We also assume that the ratio

µcp
κ

=: Pr, called Prandtl number, is

constant. Hence c−1
v κ = P−1

r
cp
cv
µ = γ

Pr
µ. The bulk viscosity λ is set to 0.

All the computations are done with continuous P1 elements. The high-order method uses the
entropy viscosity commutator described in [14, (3.15)–(3.16)] with the entropy ρs. Upper and lower
bounds on the density are enforced by using the method described in [14, §4.4]. The relaxation of
the bounds on the density is done by using the technique described in [14, §4.7]. The minimum
principle on the specific entropy exp((γ − 1)s) ≥ exp((γ − 1)smin) is enforced by proceeding as in
[14, §4.6] with the constraint Ψ(U) := ρe−̺minργ ≥ 0. The lower bound on the specific entropy for
all i ∈ V is set with ̺min

i := minj∈I(i) ρ
n
i e

n
i /(ρ

n
i )

γ and further relaxed by using [14, Eq. (4.14)]. The
positivity of the internal energy is guaranteed by the minimum principle on the specific entropy, i.e.,
no limiting on the internal energy is done. High-performance implementations of the hyperbolic
solver are available in form of open source software documented in Maier and Kronbichler [22], Maier
and Tomas [23].

The demonstration code used here has not been parallelized. The linear system are solved by
using the preconditioned CG version of PARDISO (phase=23). The solution tolerance is set to
10−10 (parm(4)=102). The reader is referred to Petra et al. [25].

7.2. 1D Convergence tests. We estimate the convergence properties of the method on a
smooth solution. We consider a one-dimensional viscous shockwave problem that has an exact
solution which is described in Becker [1]. A partial English translation of [1] and other exact
solutions are found in Johnson [18]. The Navier-Stokes system (2.1) is solved over the real line with
no source term, f = 0.

One key assumption of [1] is that the Prandtl number Pr := µcP
κ

is fixed and equal to 3
4 . Recall

that µ is the shear viscosity and κ is the thermal conductivity. The bulk viscosity λ is set to 0.
We first construct a steady state solution. Let ρ(x) be the density, v(x) the velocity, and e(x)

the internal energy. Let v0 be the velocity at infinity on the left (v0 := limx→−∞ v(x)) and let v1
be the velocity at infinity on the right (v1 := limx→+∞ v(x)). We assume that v0 > v1. We define
v01 :=

√
v0v1. Let ρ0 be the density at infinity on the left. Since the solution is time-independent,

the momentum is constant, say m0. In the context of the above assumptions, it is shown in [1,
Eq. (30.a)] (see also [18, Eq. (3.6)]) that the velocity profile R ∋ x 7→ v(x) is defined implicitly as
the solution to the following equation:

(7.1) x =
2

γ + 1

κ

m0cv

{ v0
v0 − v1

log
(v0 − v(x)

v0 − v01

)
− v1

v0 − v1
log

(v(x)− v1
v01 − v1

)}
.

This equation is solved numerically to high accuracy by using a Newton technique. Notice that by
convention, (7.1) implies that v(0) = v01. Once v(x) is known, the density and the internal energy
at x are given by

(7.2) ρ(x) =
m0

v(x)
, e(x) =

1

2γ

(γ + 1

γ − 1
v201 − v2(x)

)
.

To obtain a time-dependent solution, which is computationally more challenging than solving a
steady state solution, we construct a moving wave as follows. We first introduce the constant
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translation velocity v∞ and we define

(7.3) u(x, t) :=




ρ(x− v∞t)
ρ(x− v∞t)(v∞ + v(x− v∞t))

ρ(x− v∞t)(e(x− v∞t) + 1
2 (v∞ + v(x− v∞t))2)


 .

The field u solves (2.1) for any v∞ since the Navier-Stokes equations are Galilean invariant. This
solution is used for instance in Dumbser [8] for verification purposes.

We now compare the above solution to numerical simulations using the following parameters
γ = 1.4, µ = 0.01, v∞ = 0.2, v0 = 1, ρ0 = 1. This gives m0 = 1. Instead of enforcing v1, we

choose the pre-shock Mach number M0 = 3, which then gives v1 =
γ−1+2M−2

0

γ+1 ; see [18, Eq. (2.10)].

Notice that κ =
µcp
Pr

with Pr = 3
4 . We use the truncated domain [−1, 1.5] (the larger the domain

the higher the accuracy that can be reached on extremely fine grids). Inhomogeneous Dirichlet
boundary conditions are enforced on all conserved quantities u = (ρ,m, E) at the left and right
boundary (see §2). The simulations are run until t = 3. The distance traveled by the shock is 0.6.
For q ∈ {1, 2,∞}, we compute a consolidated error indicator at the final time by adding the relative
error in the Lq-norm of the density, the momentum, and the total energy as follows:

δq(t) :=
‖ρh(t)− ρ(t)‖Lq(D)

‖ρ(t)‖Lq(D)
+

‖mh(t)−m(t)‖Lq(D)

‖m(t)‖Lq(D)
+

‖Eh(t)− E(t)‖Lq(D)

‖E(t)‖Lq(D)
.(7.4)

We show in Table 1 the results for 7 uniform grids. The coarsest grid has 50 grid points and the
finest has 3200 grid points. The number of grid points is denoted by I. We observe second-order
convergence in time and space in all the norms, as expected.

7.3. 2D Convergence tests. We use again the exact shockwave solution described in §7.2
to verify the method in two-space dimensions. This test is also meant to verify that the method
is genuinely second-order accurate on non-uniform meshes. Here we use nonuniform Delaunay
triangulations. The convergence tests are done in the truncated domain D = (−0.5, 1)×(0, 1). In
addition to inhomogeneous Dirichlet boundary conditions on the left and right sides we enforce
periodic boundary conditions on {y = 0} and {y = 1}. The length of the domain in the x-direction
is slightly smaller than for the one-dimensional tests reported above. We do not expect to saturate
the relative error indicators δ1, δ2 and δ∞ due to boundary effects in this smaller computational
domain since we restrict the meshsize not to be smaller than 1/425. We use 5 meshes. These
meshes are not nested to eliminate the risk of observing super-convergence effects. This makes
having consistent convergence rates more difficult and therefore tests the robustness of the method.
The meshsizes for these meshes are approximately 0.02, 0.01, 0.0707, 0.05, 0.003536. The results
are reported in Table 2 for the two CFL numbers 0.4 and 0.9. We observe that the method is
second-order accurate both in time and space, for both CFL numbers, and in all error norms.

7.4. 2D shocktube test. As a final numerical test we simulate the interaction of a shock with
a viscous boundary layer. The test case we consider has been introduced in the literature by Daru
and Tenaud [5] and is further documented in Daru and Tenaud [6]. It is essentially a shocktube
problem. The tube is the square cavity D = (0, 1)2 with a diaphragm at {x = 1

2} separating
it in two parts. The fluid is initially at rest. The state on the left-hand side of the diaphragm is
ρL = 120, vL = 0, pL = ρL/γ. The right state is ρR = 1.2, vR = 0, pR = ρR/γ. We use the ideal gas
equation of state p = (γ − 1)ρe with γ = 1.4. The bulk viscosity is set to 0. The Prandtl number
is Pr = 0.73. The no-slip and the thermally insulating boundary conditions (2.4) are enforced
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Table 1: 1D Viscous shockwave, P1 uniform meshes, Convergence tests, t = 3, CFL = 0.4.

I δ1(t) rate δ2(t) rate δ∞(t) rate

50 5.85E-02 – 3.11E-01 – 8.28E-03 –
100 2.50E-02 1.23 1.91E-01 0.71 2.82E-03 1.55
200 4.83E-03 2.37 3.27E-02 2.54 5.13E-04 2.46
400 1.07E-03 2.17 9.79E-03 1.74 9.32E-05 2.46
800 2.52E-04 2.09 2.29E-03 2.10 2.02E-05 2.21

1600 6.20E-05 2.02 5.76E-04 1.99 4.89E-06 2.05
3200 1.55E-05 2.00 1.46E-04 1.98 1.23E-06 1.99

Table 2: 2D Viscous shockwave, P1 nonuniform Delaunay meshes, t = 3, CFL ∈ {0.4, 0.9}.

CFL I δ1(t) rate δ2(t) rate δ∞(t) rate

0.4

4458 8.99E-03 – 1.49E-02 – 1.20E-01 –
17589 1.35E-03 2.76 3.04E-03 2.31 3.23E-02 1.91
34886 5.19E-04 2.80 1.47E-03 2.13 1.44E-02 2.36
69781 2.45E-04 2.17 7.20E-04 2.05 7.93E-03 1.72

139127 1.04E-04 2.47 3.71E-04 1.93 3.27E-03 2.56

0.9

4458 6.99E-03 – 2.03E-02 – 1.58E-01 –
17589 9.51E-04 2.91 3.39E-03 2.61 3.61E-02 2.15
34886 3.98E-04 2.54 1.60E-03 2.20 1.55E-02 2.47
69781 1.79E-04 2.30 7.54E-04 2.17 8.23E-03 1.83

139127 8.17E-05 2.28 3.67E-04 2.09 3.28E-03 2.67

throughout. The diaphragm is broken at t = 0. A shock, a contact and a rarefaction wave are
created. The viscous shock and the contact move to the right. The rarefaction wave moves to the
left. As the shock and the contact waves progress to the right they create thin viscous boundary
layers on the top and the bottom walls of the tube. The shock hits the right wall at approximately
t ≈ 0.2 and is then reflected. The shock interacts with the contact discontinuity on its way back
to the left. Complex interactions occur and the contact discontinuity stays stationary close to the
right wall thereafter. The shock wave then continues its motion to the left and interacts with the
viscous boundary layer which it created while moving to the right. This interaction is very strong
and a lambda shock is formed as a result. We refer to [5, §6] and [6, §5&§6] for full descriptions of
the various mechanisms at play in this problem.

The computations reported in this paper are done in the half domain (0, 1)×(0, 1
2 ). Symmetry

with respect to the horizontal axis {y = 1
2} is obtained by enforcing the slip boundary condition

instead of the no-slip boundary condition (2.4). This is achieved algebraically by simply replacing

the homogeneous Dirichlet condition V
n+ 1

2

i = 0 in (5.5) by n·Vn+ 1

2

i = 0 at {y = 1
2}. The weak

bilinear form (5.3) then enforces the tangential trace of the normal viscous stress to be zero. In
strong form these two conditions amount to enforcing the normal component of the velocity to be
zero and the normal derivative of the tangent component of the velocity to be zero at {y = 1

2}.
The CFL number used for these computations is 0.95 (see (4.4) and (6.1)). The computations are
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done with nonuniform meshes that are progressively refined. The meshes are highly nonuniform to
concentrate the grid points in the right part of the cavity. In mesh 1 the meshsize is about 0.0007
on {0.3 ≤ x ≤ 1, y = 0} and 0.0014 on {0.5 ≤ x ≤ 1, y = 0.5} (359388 grid points). The meshsize
in the second mesh is about 0.0005 on {0.3 ≤ x ≤ 1, y = 0} and 0.001 on {0.5 ≤ x ≤ 1, y = 0.5}
(684996 grid points). For mesh 3 the meshsize is about 0.0004 on {0.3 ≤ x ≤ 1, y = 0} and 0.001
on {0.5 ≤ x ≤ 1, y = 0.5} (859765 grid points).

(a) Mesh 1, t = 0.6. (b) Mesh 1, t = 0.8. (c) Mesh 1, t = 1.

(d) Mesh 2, t = 0.6. (e) Mesh 2, t = 0.8. (f) Mesh 2, t = 1.

(g) Mesh 3, t = 0.6. (h) Mesh 3, t = 0.8. (i) Mesh 3, t = 1.

Fig. 1: 2D shocktube test. Density at t ∈ {0.6, 0.8, 1} with µ = 10−3. Meshes with increasing
refinement level: Mesh 1, 359388 grid point; Mesh 2, 684996 grid point; Mesh 3, 859765 grid points.

We start by demonstrating the behavior of the method under nonuniform mesh refinement. We
show in Figure 1 the gradient of the density field at t ∈ {0.6, 0.8, 1} for the three meshes: Mesh 1 to
Mesh 3. More precisely, denoting g(x) = ‖∇ρh(x)‖ℓ2 , gmin = minx∈D g(x), gmax = maxx∈D g(x),

we visualize the quantity e
−10

g−gmin

gmax−gmin to amplify the contrast. We observe that the results at
t = 0.6 and at t = 0.8 vary very little as the grids are refined. Some local changes are noticeable for
the solution at t = 1, but the overall structure of the flow seems to be converging when the meshsize
decreases. There is some disagreement in the literature on the solution at t = 1 for µ = 10−3. For
instance various schemes are tested in Sjögreen and Yee [26] on meshes ranging from 1000×500
grid points to 4000×2000 grid points (in the half domain), but the results reported therein seem
to depend on the scheme that is chosen. It is remarkable though that our results on the finest grid
(Fig. 1i) are strikingly similar to those reported Fig. 8d in Daru and Tenaud [6] and Fig. 11l in
Zhou et al. [31] (see also Fig. 5a in [6] and Fig. 6c in [31]); these three figures are almost Xerox
copies of each other. But none of the results reported in [26] (and [19]) agree with the results
shown in Figure 1 (and Fig. 8d in [6] and Fig. 11l in [31]). In conclusion, it seems that our results
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agree very well with those reported in Daru and Tenaud [6] and Zhou et al. [31] but disagree with
those reported in Sjögreen and Yee [26] (and Kotov et al. [19]), thereby shedding some doubts on
the correctness of the computations in [26, 19]. A detailed quantitative comparisons with [6] using
extremely fine meshes is in preparation.

(a) µ = 10−3 (b) µ = 5×10−4

(c) µ = 2×10−4 (d) µ = 10−4

Fig. 2: 2D shocktube test, Mesh 3. Density at t = 1 for µ ∈ {10−3, 5×10−4, 2×10−4, 10−4}.

As a last numerical illustration we recompute the density field at t = 1 on Mesh 4 for four
increasingly smaller viscosities µ ∈ {10−3, 5×10−4, 2×10−4, 10−4}. The results are reported in
Fig. 2. We observe that for decreasing viscosity the flow field develops increasingly more pronounced
and smaller vortex structures. This confirms that the influence of the artificial graph viscosity of
the hyperbolic step (see §7.2) is well below the viscous effects introduced by the physical viscosity
µ and the thermal conductivity κ.

8. Conclusions and Outlook. A fully discrete second-order order accurate method for solv-
ing the compressible Navier-Stokes equations has been introduced. The novelty of this work lies
in the guaranteed invariant domain preservation of the fully discrete method under the usual hy-
perbolic CFL condition. The method relies on the operator-splitting strategy in order to preserve
invariant set stability properties. There is, in principle, no limitation for the accuracy in space.
We also notice that the method exhibits quite robust behavior (in the eye-ball norm) for flows
containing strong shock interactions with viscous layers. At this point in time, it is not yet clear
how to develop a third-order accurate (in-time) invariant-domain-preserving scheme.
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