2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

Evolutionary Algorithms for Vulnerability Coverage

Shuvalaxmi Dass
Computer Science Department
Texas Tech University
shuva93.dass @ttu.edu

Abstract—We present a novel idea on adequacy testing called
“vulnerability coverage.” The introduced coverage measure ex-
amines the underlying software for the presence of certain
classes of vulnerabilities often found in the National Vulnerability
Database (NVD) website. The thoroughness of the test input
generation procedure is performed through the adaptation of
evolutionary algorithms namely Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO). The methodology utilizes
the Common Vulnerability Scoring System (CVSS), a free and
open industry standard for assessing the severity of computer
system security vulnerabilities, as a fitness measure for test inputs
generation. The outcomes of these evolutionary algorithms are
then evaluated in order to identify the vulnerabilities that match
a class of vulnerability patterns for testing purposes.

Index Terms—Software Vulnerability Testing, Vulnerability
Coverage, Genetic Algorithms, Particle Swarm Optimization

1. INTRODUCTION

The National Vulnerability Database (NVD) [3] lists over
1,644 instances of vulnerabilities identified by their unique
CVE (Common Vulnerabilities and Exposures) numbers.
Some of these vulnerabilities exist partly due to improper
settings of configuration parameters that govern the func-
tionality of the given software. Testing software applications
against these vulnerabilities can become tedious, and as a
result, infeasible if the test has to target all the possible
settings of a configuration in order to check the vulnerability
of the software against some known attacks. This calls for
a systematic configuration testing framework and mechanism
in order to mitigate the efforts put into inspecting the given
software by identifying a narrowed down set of configuration
test inputs. However, from vulnerability perspective, it is not
easy to check whether the tests generated for testing examines
the software system against certain classes of vulnerabilities.
Hence, it makes it impractical for the administrator to exercise
the given software under test against any vulnerability reported
in NVD.

To illustrate the overall mechanism of the proposed ad-
equacy coverage, consider an example for vulnerabilities in
MySQL. The “high” severity level of the MySQL CVE-2019-
12463 vulnerability is 8.8 out of 10. There are several other
vulnerabilities reported for MySQL with similar patterns as
vulnerability vector and with similar severity scores. Then the
major testing question is whether it is essential to examine
the software under test for all the reported vulnerabilities with
certain CVE numbers. It is possible to view the problem as an
instance of general software testing problem and thus develop

Akbar Siami Namin

Computer Science Department
Texas Tech University
akbar.namin @ttu.edu

a specific adequacy criterion for covering vulnerabilities and
examine the software under test (SUT) for the vulnerabilities.

This paper extends our initial idea [6] on vulnerability
coverage and thus presents the novel concept of “vulnerability
coverage,” in an analogous way to conventional adequacy
criterion in software testing. We apply evolutionary algorithms
to generate test inputs with certain patterns and use Common
Vulnerability Scoring System (CVSS) as a primary criterion
to assess the vulnerability coverage (i.r., fitness) of the SUT.
The paper makes the following key contributions:

1) We present the idea of vulnerability coverage as a test
adequacy criterion for inspecting the given software
against certain types of vulnerabilities (Section III).

2) We perform evolutionary algorithms such as genetic
algorithms (GA) and particle swarm optimisations (PSO)
to generate vulnerability vector patterns (Section IV).

3) We compare the performance of both GA and PSO in
generating such vulnerability vector patterns (Section
V). According to our results, PSO managed to generate a
more stable trend of secure vulnerability vector patterns
than that of GA in a single generation.

We provide relevant background on the Common Vulner-
ability Scoring System (CVSS) is presented in Section II.
Section III presents the idea of vulnerability coverage as an
adequacy test criterion. Section IV presents the fitness function
for the evolutionary algorithms. In Section V, we present
experimental setup and results. Section VI reviews the related
work. Section VII concludes the paper. Throughout the paper,
we will be using the words “vulnerability pattern” and “CVSS
vector pattern” interchangeably.

II. VULNERABILITY SCORING SYSTEM

The Common Vulnerability Scoring System (CVSS) is an
open-standard industry framework, which helps cyber-security
professionals to seek out information regarding ranking mech-
anism for the severity of vulnerabilities. CVSS captures the
principle characteristics of the vulnerability by assigning a
Base score rating ranging from 0 to 10 which is representative
of the ease of exploitation and the damaging effect of the con-
cerned vulnerability where 10.0 is the most easily exploitable
vulnerability. The numerical scores have a qualitative assess-
ment (low, medium, high, and critical) to provide organizations
with better understanding and assessment of vulnerabilities.
Some vulnerability are also given temporal and environmental
scores that may modify the base score. As a proof of concept

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.00049

1795

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

JKCVE-2019-14389 Detail

Current Description
cPanel before 82.0.2 allows local users to discover the MySQL root password (SEC-510).

Source: MITRE
+View Analysis Description

Severity [SEJEETERS CvsS Version 2.0

CVSS 3.x Severity and Metrics:

" NIST: NVD

Vector: CVSS:3.0/AV:L/AC:L/PRL/ULN/S:U/C:H/:H/AH

Base Score: [FNIEH]

Fig. 1: The description of CVE-2019-14389 for MySQL.

in generating CVSS patterns, the GA and PSO optimization
algorithms are applied to the Base metrics. The Base metric
consists of three sub-main metrics where each metric group
comprises of a set of vector fields and the associated values
it takes:

Exploitability Sub-Metric: It addresses how the attack
is captured. Table I lists down the vector fields.

Impact Sub-Metric: It reflects the “characteristics” of
the impacted components as shown in Table 1.

Scope Sub-Metric: It is a vector field acting as a separate
metric which describes the change in the scope of the
attack by determining whether other components are
affected along with the original vulnerability. It accepts
only two values: Unchanged (U) and Changed (C).

Base score formula is calculated as follows [1]:

Impact Sub — Score(ISS)=1—[(1-C)x=(1—=1)x(1—A)] (1)

6.42 % ISS
7.52 % (ISS — 0.029)
—3.25 % (ISS — 0.02)'®

if Scope is Unchanged
Impact(IM) = 2)

if Scope is Changed
(3)
0

Round(Min[(IM + EX), 10])
Round(Min[1.08 x (IM + EX), 10])

if Impact <=0

Ezploitability(EX) = 8.22 % AV * AC «x PR UI
if Scope is Unchanged
if Scope is changed

Base Score = {
)

Every known vulnerability’s severity can be represented as
a vulnerability/CVSS vector pattern, which comprises all the
aforementioned vector fields. For instance, Figure 1 shows the
CVSS score and the vulnerability pattern vector for CVE-
2019-14389 [3]. As shown in the figure, the score for this
vulnerability is high and is quantified as 7.8 out of 10. The
generated representation of the vulnerability/CVSS vector is
[AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H]. Table
II lists the vector pattern description for this vulnerability.

III. VULNERABILITY COVERAGE AS ADEQUACY TESTING

In an analogous way to the conventional definition given
for “code coverage” in software testing, the vulnerability
coverage is a measurement of how many known and reported
vulnerabilities of the system under test (SUT) are inspected
against. Similarly, the vulnerability coverage (VC) for a soft-
ware system (S) can be measured as follows:

(#vulnerabilities inspected) s

VCs = * 100

5
(Total # of vulnerabilities reported)s ©

Where (#vulnerabilities inspected)s is the num-
ber of vulnerabilities inspected for the system S, and

(Total # of vulnerabilities reported)g is the total number
of vulnerabilities reported for system S. Without loss of
generality, this paper uses vulnerability patterns provided by
CVSS score to measure the adequacy testing of vulnerabilities
give for a software system.

It is important to note that vulnerabilities of the same
pattern might be found in CVE database directly. However,
given the evolutionary search algorithms presented in this
paper, it is possible to identify vulnerabilities of different
patterns but similar CVSS score. Hence, the use of CVSS
score, as a fitness function, enables us to identify various
forms and patterns of vulnerabilities within the specific level
of CVSS score. Therefore, given the desired level of CVSS
score, the problem of adequacy testing for vulnerability testing
will be exercising the vulnerabilities with different patterns
but equal CVSS scores. In following sections, we adopt two
evolutionary algorithms that enable us search the input space
(i.e., vulnerability pattern) that achieve a certain level of CVSS
score (i.e., the fitness value).

IV. FITNESS FUNCTION: CVSS SCORE

This section explains the genetic and optimization algo-
rithms developed in which CVSS scores are used as fitness
functions. For the ease of naming convention and under-
standing, we considered each CVSS pattern as a separate
configuration in these algorithms.

A. Genetic Algorithm (GA)

1796

Genetic Algorithms are based on the biological process of
evolution. The idea is that over time, a pool of chromosomes
will evolve to be even better (i.e., better fitness value) than
the previous generation. A new generation (equal to the pool
size) of chromosomes (i.e., configurations) is created with any
iteration of the algorithm. This is achieved by the processes of
selection, crossover, and mutation [9]. A fitness score metric
is adopted as a measure to select the two fittest chromosomes
from the pool that are called parent chromosomes. Then
crossover takes place between the parents to produce a new
child chromosome, which will have the best traits from both
the parents followed by mutating of some of the characteristics
of the child to introduce new traits. This process is repeated
until an entirely new generation gets created.

B. GA implementation for secure configuration pool

We implemented the algorithm in Python. We first created
a CVSS vector pool with the fitness score of 2.0 (i.e., the
best and more secure fitness score). We refer to vector as
a “string” in our implementation. We set the number of
iteration/generation as 50. The entire algorithm (Algorithm
1) is divided into five parts: 1) configuration generation ,
2) fitness score, 3) breeder’s Selection, 4) crossover, and 5)
mutation. These parts are explained below in-depth.

1) Initial Configuration Generation: As shown on lines
1 — 9 of Algorithm 1, we created a pool of 100 possible
CVSS vector strings by randomly choosing corresponding
permissible values from the ‘val’ list to produce the initial
pool of vector strings.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Sub-Metric Fields Description Values Score
Exploitability Network(N) 0.85
Reflects the proximity of the attacker to attack Adjacent(A) 0.62
Attack Vector (AV) the vulnerable component. Local (L) 0.55
Physical (P) 0.2
. Reflects the resources and conditions required to Low(L) 0.77
Attack Complexity (AC) conduct the exploit on the vulnerable component. High(H) 0.44
0.62
or 0.68 if Scope is Change
Low@) 1 (or 0.68 if Scope is Changed)
- . Represents the level of privileges required by an . 0.27
Privileges Required (PR) attacker to successfully launch an exploit. High(H) (or 0.5 if Scope is Changed)
None(N) 0.85
. Reflects whether the participation of the user is None(N) 0.85
User Interaction (UT) required for launching a successful attack. Required (R) | 0.62
mpact vailability Impact easures the severity of the attack on the availabilit OW .
Imp Availability Impact (A) M h ity of th k on th ilability Low(L) 0.00
of the impacted component.
Integrity Impact (I) Measures the severity of the attack on the integrity High(H) 0.22
of the impacted component.
Confidentiality Impact (C) | Measures the severity of the attack on the confiden- None(N) 0.56
tiality of the impacted component.
TABLE I: Sub-Metrics.
Parameter Description
AV: L Denotes the vulnerability is exploited by the attacker through produced different pool of CVSS vector strings with different
accessing the target system locally (L). : :
AC: L Represents that the vulnerability has a Low (L) complexity of number and combinations of vector of fitness score 2.0.
being attacked.
PR: L Shows that a Low (L) number of Privileges are required for C. Particle Swarm Optimiza[ion (PSO) Alg()ri[hm
successfully exploiting this vulnerability.
UL N Denotes that no (N) User Interaction and involvement is required PSO is a w1dely used swarm-based optimization technique.

to launch a successful attack.

S: U Shows the Scope (S) of the attack is Unchanged (U).
C: H Total loss (High) of confidentiality.
IH
A H

Total loss (high) of integrity, or a complete loss of protection.
Total loss (High) of availability, full access denial to resources in
the impacted component.

TABLE II: CVSS vector pattern description.

2) Fitness Score: As shown on lines 11 — 20 of Algorithm
1, the fitness score of the initial population of the vector strings
is evaluated. We imported the cvss [2] python library and
thus utilized the base metric score method CVSS3. The CVSS
scores were considered as the fitness scores. The scores were
valid if they were in the range of [2.0,5.5]. Anything outside
of that range was assigned the score as 100. We chose score
5.5 to be the upper limit since it is roughly the average score
a configuration can take to be deemed reasonably secure.

3) Breeder’s Selection: As shown on lines 21 — 32 of Algo-
rithm 1, we then used Breeder’s selection method. This method
selects a combination of the best solutions generated by the
algorithm (i.e., vectors with the low score). Furthermore, in
order to avoid the problem of falling into local minima, the
algorithm also picks some lucky few vectors with random
vector scores.

4) Crossover: For crossover, As shown on lines 33 — 44
of Algorithm 1, we randomly swapped the values of metrics
among the two parent vectors. We used a random value
generator to select which parent vector to use for crossover.
If value < 0.5, parent 1 is chosen, otherwise parent 2 would
be the choice.

5) Mutation: As shown on lines 45 — 53 of Algorithm 1, the
algorithm performs mutation on the CVSS vector strings by
random selection of vector field whose value is also randomly
selected from its permissible set of values.

We ran the GA script 100 times. Each run of the algorithm

It draws its inspiration from bee swarm, and bird flocking
social behavior of particles. PSO and GA, both being different
forms of evolutionary computation techniques, share some
similarities. Both techniques start off with a random set of
initial population/solutions and keep updating generations until
it reaches an optimum solution space with respect to the fitness
function. In case of PSO, it is a swarm consisting of various
particles, where each particle represents a solution. Unlike GA,
PSO does not make use of crossover and mutation operators
to update the particles. Instead, these techniques are directed
towards the global optimum by their personal best position
along with the swarm’s best position in the search space. PSO
is also easier to implement than GA and has comparatively
fewer parameters to adjust [7].

D. PSO implementation for secure pool configuration

We compared the performance of GA in generating a set
of best configurations with that of PSO. We implemented
the PSO algorithm in Python 3.6. To make the comparison
meaningful and fair, the number of iterations and population
size (swarm size) were kept similar to GA, which are 50 and
100, respectively.

The PSO algorithm is described in Algorithm 2. The algo-
rithm takes two list as parameters: 1) pbest_fitness and
2) particle_vel. These lists maintain the initial pbest
fitness and velocity values associated to every particle in
a swarm. We defined swarm as a collection (list) of 100
initial particles whose implementation (line 2) is similar to the
procedure configuration in GA. The algorithm returns
a pool of particles with varied scores in each iteration and
also stores the count of particles with score = 2.0 in every
iteration in order to check how many most secure particles
(configurations) are generated by PSO. We also focus only

1797

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Genetic Alg. for generation of configurations.

1: > Generating initial pool of configuration vectors.

2: procedure CONFIGURATION

3. val = [IH/7/ L/7/ N/,/ A/7/ Pl,, U/7/ C/,/ N/7/ R/]

4 vector_field = ['AV'/ AC'/ PR/ UI'/ S'/C'/T'/ A

5 for each vf in vector_field do

6 vf = random.choice[val) > ’val’ takes
permissible set of values based on vf chosen.

7: end for

8: return vector

9: end procedure

10: > Assigning fitness score based on Best score.

11: procedure FITNESS(BestScore, vector)
12: score = C'V . §S3(vector).score()
13: if (score <= BestScore & score <=5.5) then

14: fit = score
15: else

16: fit =100
17: end if

18: Return fit

19: end procedure

20: > Breeder’s Selection: Select best vector samples.

21: procedure SELECTION(population, best_sample, lucky_few

22: nextGen = [|

23: sortedPop = Sorted(population) > descending
order of fitness values = low cvss score to high

24: for ¢ in range(best_sample) do

25: nextGen.append(sortedPopli]) > first 1" # of
best configurations selected

26: end for

27: for 7 in range(lucky_few) do

28: nextGen.append(random.choice(sorted Pop))

29: end for

30: Return nextGen

31: end procedure

32: > Creating new vector from 2 parent vectors.

33: procedure CREATECHILD(vectorl, vector2)

34: child_vector =77

35: for i in range(len(vectorl)) do

36: if random.random < 0.5 then

37: child_vector = child_vector + vectorl][i]

38: else

39: child_vector = child_vector + vector2][i|

40: end if

41: end for

42: Return child_vector

43: end procedure

44: > Mutating: randomly changing a value of the vector.

45: procedure MUTATION(vector)

46: vf = random.choice(vector_field)

47: modi fy = random.choice(val)

48: index = get_position(vf)

49: vector = vector[:index| + modi fy + vector|index+1:]
> inserting 'modify’ in the vector string

50: Return vector

51: end procedure

on the scores, which belong in the range [2.0, 5.0] in every
iteration.

In a nutshell, the algorithm searches for the best fitness and
velocity values for each particle until a threshold is reached
{(lines 7 — 34). In every iteration (lines 9 — 13), the algorithm
picks the pbest_fitness (i.e., particle best) values as their
CVSS scores cvss_fit with the assumption that the fitness
would be better (i.e., lesser is better) than its current pbest
fitness value. After the For loop ends, it then picks the
global best (gbest) value of the swarm by the the best
pbest value (lines 14 — 16), in this case, the least value.

The next step in the algorithm is to calculate the velocity
(lines 17 - 31) where particle_vel(particle) fetches the
velocity of the given particle. The lines 18 - 28 describe how
the velocity is evaluated for every particle. The velocity metric
measures the distance between the fitness score (pbest) and
the best score. The particle is updated whenever its current
velocity value is greater than its previous one.

The particles are updated using update_particle in a
similar manner to the configuration mutation in GA. More
specifically, any one out of the eight vector fields (i.e., AV,
AC, etc.) is constructed whose value is chosen randomly from
its) corresponding set of permissible values. For example, if
‘AV’ is selected, then any value in the list of{H, L, N, A} can
be randomly selected.

The target global best value was set to 10.0, parti-
cle_velocity in the range [0, 8] where 0 and 8 are the minimum
and maximum number of differences between two particles,
respectively. Since each particle (CVSS vector) constitutes of
only 8 vector fields (AV, AC, etc). The fitness_range is set
between the range [2,10] where 2.0 is deemed as the best
fitness score and 10.0 is the maximum CVSS score any particle
can get which means highly unfit.

V. EXPERIMENTATION AND RESULTS

We ran our Python scripts, developed for implementing the
GA and PSO algorithms, 100 times on the CVSS population
in order to evaluate the performance of the evolutionary algo-
rithms in generating the most secure patterns. The performance
was measured on the basis of three evaluation metrics:

1) Number of instances of vulnerability patterns with the

target score (e.g., score = (2.0,3.0)) in each run.

2) Mean hamming distance (diversity) of the CVSS vectors.

3) Standard deviation of the scores calculated for the set

of population produced.

1) Diversity of Vulnerability Patterns: It is important to
produce a diverse set of instances of vulnerability vector pat-
terns to ensure the thoroughness of test inputs (i.e., vulnerabil-
ity pattern) generation and thus avoid generating redundant test
inputs where test input refers to an instance of vulnerability
vector pattern produced by the algorithms. We collected the
data for the three evaluation metrics for various range of target
scores including § € 2.0, S € (2.0, 3.0], S € (2.0, 4.0] and
S € (2.0, 5.0]. As a representative example, Figure 2 shows
the plots for all the aforementioned three metrics for CVSS
vector strings falling into S € (2.0, 3.0] for both GA and PSO.

1798

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 PSO for generation of configuration.

1: procedure PSO(pbest_fitness, particle_vel)

2: swarm = [particle() for ¢ in range(swarm_size)] >
Initialize 100 particles
3: iteration = 0

4: Threshold = 50
total_count =[] > To store count of particles with
score = 2.0 in every iteration

4

6: best_score = 2.0

7: while iteration < Threshold do

8: count = 0

9: for each particle do > Calc Fitness

10: if cuss_fit(particle) <
pbest_fitness(particle) then

11: pbest_fitness(particle) = cvss_fit(particle)

12: end if

13: end for

14: if pbest_fitness(particle) < gbest(swarm)
then

15: gbest(swarm) = pbest(particle)

16: end if

17: for each particle do > Calc Velocity

18: if pbest_fitness(particle)<best_score then

19: continue

20: else

21: velocity=pbest(particle)-best_score >
Current Velocity

22: if velocity == 0.0 then

23: count+=1 > count of particles of score
=2.0

24: end if

25: if velocity < particle_vel(particle) then

26: particle_vel(particle) = velocity

27: else

28: particle = update_particle(particle)

29: end if

30: end if

31 end for

32: iteration+ =1

33: total_count.append(count)

34: end while

35: return total_count

36: end procedure

As expected, the number of instances of the generated
vulnerability patterns for each run is smaller for the target
score of 2.0 (i.e., most secure) and it is higher when the target
fitness score is in range (2.0, 5.0] (i.e., least secure). It implies
that when a lower level of vulnerability is targeted (i.e., more
secure with CVSS score = 2.0), there are “not” too many
alternatives for patterns. On the other hand, if the vulnerability
levels and security is relaxed (i.e., CVSS score <= 5.0 then
over 60 alternatives could be produced for pattern matching.
A combination of such varying level of CVSS scores might

be beneficial to increase the search space when implementing
a moving target defense platform.

The bar plots depicted in Figure 2.(a) and 2.(d) demonstrate
the number of occurrences of CVSS patterns (i.e., y-axis)
against the number of runs (i.e., x-axis) when the target target
CVSS scores is (2.0,3.0) for GA and PSO, respectively. A
glance at the charts indicates that GA is able to generate more
instances of the CVSS patterns targeting the desired level of
security (i.e., (2.0, 3.0)).

The scatter plots given in Figure 2.(b)-(e) and Figure 2.(c)-
(f) denote distribution of the mean hamming distance and
standard deviation against the runs, respectively. To ease
comprehending the trend of the mean values, a regression
line is fitted into the scatter plots to capture the overall
trend. The Hamming distance addresses the “diversity” of the
vulnerability vector patterns generated by the algorithms based
on the count of corresponding unequal values of each vector
fields among strings. The smoothing lines for mean values of
Hamming distance demonstrate similar trends for each target
value for the fitness score.

The mean values of the hamming distance (y-axis) in all
the cases remain unchanged over the runs and are mostly
scattered between 3.0 and 3.7 for GA (i.e., a diversity of the
vulnerability vector pattern generated) and between 4.5 and
5.5 for PSO. As demonstrated in scatter plots shown in Figure
2.(b) and 2.(c), the instances generated by the GA algorithm
is less diverse compare to the instances generated by PSO.
The mean of the hamming distances between the instances
generated by GA and PSO are 3.45 and 4.93, respectively.
This indicates that even though the PSO algorithm generates
far fewer instances of CVSS patterns for the given fitness, it
produces more diverse instances of patterns.

To illustrate the variations of such vulnerability patterns
generated, plots 2.(c) and 2.(f) illustrate the trend of the values
of the standard deviations for Hamming distance over the runs.
There is a light reduction in standard deviations while running
GA for all cases. The observed standard deviations for all cases
is somewhere between 0.5 and 1.5. When combined together,
the mean and standard deviations of the hamming distance
can serve as an indication of the diversity of the vulnerability
vector patterns produced by the algorithms and thus helps in
measuring the thoroughness of test case generation and thus
vulnerability selections in which the generation of redundant
patterns (i.e., test inputs) is avoided.

2) The Contributions of Each Permissible Value in each
Vector Field: 1t is also important to investigate whether
certain settings of each vector field contributes to security
configuration differently than its counterpart. Table III shows
the frequency (i.e., in terms of percentage) of each value
permissible for each vector field, as listed in the base metrics.
As reported in Table III:

— AV: The most contributing value is P (i.e., Physical) for
GA (ranging from 45.43 to 59.22%). The PSO algorithm
highlights two values of P and L as the most contributing
to the security level of the patterns. This observation
indicates that if the severity of the vulnerability needs

1799

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Mean Analysis for score:(2.0,3.0]
CVSS SCORE = (2.0,3.0] Avg Mean:3.4569901606551383 Std for score:(2.0,3.0]

60 6.0 2.0
ss
50 - *
5.0 * * *
1s - I
- 3 45 R i T T P a7 S §
S0 5 Py * LS O 5
£ £ .0 = . St ¢ e, ,.
g 2 * i P * »
a E > . R %
2 £ P L * ”
2 £30 3 e .k TEFEL 4
£
g g 25 *
8
= 0.5
1 20
1%
[10 0.0
] 20 40 60 80 o 20 40 60 80 100 o 20 40 60 80 100
Runs Runs Runs
(a) Histogram Plot (GA) (b) Mean Hamming Distance (GA) (c) Standard Deviation (GA)
Mean Analysis for score:(2.0,3.0]
66, CVSS SCORE = (2.0,3.0] i Avg Mean:4.933166666666668 5% Std for score:(2.0,3.0]
»
5.5 * *
.
50 N Y PR TSI BIIE e At . * o
I - i £ T i 7 B o R
8 245 X x kO * wy Foaake e an Tt " T Sl
® g . T Y G T
£ F, A
8 40 - > g . * =
g £ = * oy P *
g% £35 10 & %
- £
8 £ 30
320 5
o 22s
= 0.5
- 20
JMMM""IWMMMMMW"MMM“MMMWL .
0 10 00
o 20 w0 &0 a0 100 o 2 w))) 3 2% ®)) 00
Runs Runs Runs
(d) Histogram Plot (PSO) (e) Mean Hamming Distance (PSO) (f) Standard Deviation (PSO)

Fig. 2: Histograms, Mean Hamming Distances, Standard Deviations of CVSS vectors for S € (2.0, 3.0].

to be reduced, no other values or means of attacks (i.e.,
Network (N), Adjacent (A), and somewhat Local (L) is
allowed for exploiting the vulnerability.

— AC: There is a mixed situation for attack complexity and
there is no clear winner between Low (L) and High (H)
complexity level to launch the exploitation.

— S: The dominant setting for this variable is C, except the
case for GA when the target score is 2.0.

— UI: There is a mixed situation for the level of user
involvement for exposing the vulnerability.

— C: There is also a mixed situation for confidentiality
settings among GA and PSO algorithms.

— I. A similar mixed situation for this case. However, it
is also observed that in most cases a None (N) risk to
integrity is needed to reduce the impact of exploiting the
vulnerability.

— A Furthermore, there is a a mixed situation for availabil-
ity where there is no clear dominant setting value.

— PR: The two dominant setting values for the level privi-
leges are L and H.

We also executed the GA and PSO scripts with single run
to sense their performances. Figure 3 illustrates the results
of one run with 50 generations/iterations where y-axis is
the number of vulnerability pattern produced whose score
= 2.0; whereas, the x-axis is the generation index (i.e., 50
generations). As it is observed, GA could manage to generate
two vulnerability vector patterns with score 2.0 on its 50-th
iteration along with highly unstable trend; whereas, the PSO
algorithm demonstrated a more stable trend with four pattern
generated with score 2.0.

1800

Count GENETIC ALGORITHM
.
B
1

‘Generation #
‘ 12345 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 43 50
(a) GA

Count Particle Swarm Optimization
.
2

Generation#

o

Fig. 3: # CVSS patterns with score 2.0 over 50 generations.

VI. RELATED WORK

Crouse and Fulp [4] used genetic algorithms to deploy a
Moving Target Defense (MTD) platform and make computer
systems more secure through temporal/spatial diversity in
configuration parameters that govern how a system operates.
Later on, they developed an MTD by simulating 256 virtual
machines of similarly purposed computers where each com-
puter was initially configured with an extremely vulnerable
configuration making them prone to all sorts of attacks.

Post and Sinz [8] bridged the gap between configuration in-

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Vector | Values | [2.0] 20,301 | (20,401 | (20,501 |
Field [GA _[PSO |[GA [PSO | GA [PSO | GA | PSO |
P 59.22 | 29.29 | 49.31 | 23.74 | 47.85 | 23.19 | 45.43 | 22.25
AV L 14.02 | 2222 | 21.40 | 2675 | 21.90 | 2698 | 2232 | 2695
A 13.76 | 26.26 | 1867 | 26.15 | 1841 | 2525 | 19.11 | 25.33
N 12.98 | 22.22 | 1060 | 2334 | 11.83 | 2456 | 13.13 | 2545
L [32.98 | 44.44 | 4863 | 50.90 | 50.83 | 50.17 | 51.85 | 51.56 |
[H | 67.01 | 55.55 | 51.36 | 49.00 | 49.16 | 49.82 | 48.14 | 484 |
U 60.25 | 4848 | 47.87 | 4839 | 47.15 | 4896 | 46.50 | 48.56
s
c | 39.74 | 5151 | 5212 | 51.60 | 52.84 | 51.03 | 53.49 | 5143 |
ur LN [3324 [4343] 4851 [50.0 | 4930 | 5040 | 49.79 | 50.70 |
R | 66.75 | 56.56 | 51.48 | 50.0 | 50.69 | 49.59 | 50.20 | 49.29 |
N 62.85 | 25.25 | 61.84 | 31.46 | 54.77 | 29.16 | 53.36 | 28.88
c L 37.14 | 37.37 | 38.05 | 35.67 | 45.19 | 36.73 | 45.82 | 3491
H 0.0 | 3737 | 00 | 32.86 | 002 | 34.09 | 0.80 | 36.20
N 67.27 | 39.39 | 64.09 | 3046 | 5598 | 2721 | 54.54 | 25.84
1 L 3272 | 34.34 | 3590 | 3847 | 4382 | 37.88 | 4437 | 35.12
H 00 | 2626 | 0.0 | 31.06 | 0.I8 | 3490 | 1.07 | 3842
N 69.87 | 26.26 | 66.70 | 28.05 | 5896 | 2795 | 57.95 | 27.17
A L 30.12 | 4747 | 3329 | 37.17 | 4098 | 3495 | 41.55 | 3401
H 0.0 | 2626 | 00 | 34.76 | 0.05 | 37.08 | 0.49 | 3881
N 40.25 | 26.26 | 29.75 | 28.05 | 30.81 | 27.95 | 30.58 | 27.17
PR L 0.0 | 47.47 | 29.83 | 37.17 | 3113 | 3495 | 31.70 | 3401
H 59.74 | 26.26 | 40.40 | 34.76 | 38.05 | 37.08 | 37.71 | 3881

TABLE III: % of contribution of each permissible value in all the score ranges across

formation and verification process by introducing a new tech-
nique named Configuration Lifting. The technique converts all
the variants over which a software is verified into a meta-
program thereby making the application of configuration-
aware verification techniques like static analysis, and model
checking more efficient.Dai et al. [5] introduced the concept of
configuration fuzzing in order to check the vulnerabilities that
appear only at certain conditions by randomly modifying the
configuration of the running application at specific execution
points. During the deployment phase, this technique cease-
lessly fuzzes the configuration and looks for a vulnerability
that rises due to the violation of of security invariants.

VII. CONCLUSION

We introduced the novel idea of “vulnerability coverage,”
a methodology to examine software under test against certain
classes of vulnerabilities as reported by National Vulnerability
Database (NVD) adequately. The introduced idea makes use of
an open industry standard tool called Common Vulnerability
Scoring System (CVSS) as a metric to measure fitness in order
to generate a pool of vulnerability vector patterns that attains a
secure level of CVSS score. For adequacy testing of the under-
lying software, the software under test is then inspected against
all those filtered representative sets of vulnerabilities with
similar vulnerability vector pattern that were selected from the
generated pool. The paper compared two evolutionary-based
algorithms namely Genetic and Participle Swarm Optimization
algorithms on the basis of their performance in generating a
pool of vulnerability patterns and the results indicated a similar
performance achieved by both algorithms.

The concept of adequacy criterion is a new approach and
hence has a larger scope of improvement. An adequacy cri-
terion based on vulnerability coverage is a novel technique
in the best of our knowledge. This approach can be further

1801

100 runs of GA and PSO.

improved by taking into consideration several other metrics
including temporal and environmental ones present in CVSS
and National Vulnerability Database (NVD). We also built our
experiments based on the range of 2.0 and 5.5. Additional
experimentation would be needed to further study the effect
of such range. Moreover, the concept needs tool support
and further empirical studies which can aid in thorough and
systematic searching for vulnerabilities reported in the NVD
database based on the matching property for the goal of
security testing and then investigate the effectiveness of such
adequacy criterion.

ACKNOWLEDGMENT
This work is supported in part by funding from National
Science Foundation under grants no: 1516636 and 1821560.
REFERENCES
[
[2]

[3]
[4]

Common vulnerability scoring system v3.0: Specification document.
https://www.first.org/cvss/v3.0/specification-document, Access 2019.
CVSS 3.0. https://pypi.org/project/cvss/, Accessed 2019.

National vulnerability database. https://nvd.nist.gov/, Accessed 2019.
M. Crouse and E. W. Fulp. A moving target environment for computer
configurations using genetic algorithms. In Symposium on Configuration
Analytic and Automation (SAFECONFIG), 2011.

H. Dai, C. Murphy, and G. Kaiser. Configuration fuzzing for software
vulnerability detection. In 2010 International Conference on Availability,
Reliability and Security, pages 525-530, 2010.

Shuvalaxmi Dass and Akbar Siami Namin. Vulnerability coverage
for adequacy security testing. In SAC '20: The 35th ACM/SIGAPP
Symposium on Applied Computing, pages 540-543, 2020.

Mei-Ping Song and Guo-Chang Gu. Research on particle swarm opti-
mization: a review. In International Conference on Machine Learning
and Cybernetics, 2004.

H. Post and C. Sinz. Configuration lifting: Verification meets software
configuration. In IEEE/ACM International Conference on Automated
Software Engineering, pages 347-350, 2008.

Kumara Sastry, David Goldberg, and Graham Kendall.
rithms. Springer, Boston, MA, 2005.

[5]

[6

—

[7]

[8

—

[9] Genetic Algo-

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

