
Evolutionary Algorithms for Vulnerability Coverage

Shuvalaxmi Dass
Computer Science Department

Texas Tech University
shuva93.dass@ttu.edu

Akbar Siami Namin
Computer Science Department

Texas Tech University
akbar.namin@ttu.edu

Abstract—We present a novel idea on adequacy testing called
“vulnerability coverage.” The introduced coverage measure ex-
amines the underlying software for the presence of certain
classes of vulnerabilities often found in the National Vulnerability
Database (NVD) website. The thoroughness of the test input
generation procedure is performed through the adaptation of
evolutionary algorithms namely Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO). The methodology utilizes
the Common Vulnerability Scoring System (CVSS), a free and
open industry standard for assessing the severity of computer
system security vulnerabilities, as a fitness measure for test inputs
generation. The outcomes of these evolutionary algorithms are
then evaluated in order to identify the vulnerabilities that match
a class of vulnerability patterns for testing purposes.

Index Terms—Software Vulnerability Testing, Vulnerability
Coverage, Genetic Algorithms, Particle Swarm Optimization

I. INTRODUCTION

The National Vulnerability Database (NVD) [3] lists over

1, 644 instances of vulnerabilities identified by their unique

CVE (Common Vulnerabilities and Exposures) numbers.

Some of these vulnerabilities exist partly due to improper

settings of configuration parameters that govern the func-

tionality of the given software. Testing software applications

against these vulnerabilities can become tedious, and as a

result, infeasible if the test has to target all the possible

settings of a configuration in order to check the vulnerability

of the software against some known attacks. This calls for

a systematic configuration testing framework and mechanism

in order to mitigate the efforts put into inspecting the given

software by identifying a narrowed down set of configuration

test inputs. However, from vulnerability perspective, it is not

easy to check whether the tests generated for testing examines

the software system against certain classes of vulnerabilities.

Hence, it makes it impractical for the administrator to exercise

the given software under test against any vulnerability reported

in NVD.

To illustrate the overall mechanism of the proposed ad-

equacy coverage, consider an example for vulnerabilities in

MySQL. The “high” severity level of the MySQL CVE-2019-

12463 vulnerability is 8.8 out of 10. There are several other

vulnerabilities reported for MySQL with similar patterns as

vulnerability vector and with similar severity scores. Then the

major testing question is whether it is essential to examine

the software under test for all the reported vulnerabilities with

certain CVE numbers. It is possible to view the problem as an

instance of general software testing problem and thus develop

a specific adequacy criterion for covering vulnerabilities and

examine the software under test (SUT) for the vulnerabilities.

This paper extends our initial idea [6] on vulnerability

coverage and thus presents the novel concept of “vulnerability
coverage,” in an analogous way to conventional adequacy

criterion in software testing. We apply evolutionary algorithms

to generate test inputs with certain patterns and use Common

Vulnerability Scoring System (CVSS) as a primary criterion

to assess the vulnerability coverage (i.r., fitness) of the SUT.

The paper makes the following key contributions:

1) We present the idea of vulnerability coverage as a test

adequacy criterion for inspecting the given software

against certain types of vulnerabilities (Section III).

2) We perform evolutionary algorithms such as genetic

algorithms (GA) and particle swarm optimisations (PSO)

to generate vulnerability vector patterns (Section IV).

3) We compare the performance of both GA and PSO in

generating such vulnerability vector patterns (Section

V). According to our results, PSO managed to generate a

more stable trend of secure vulnerability vector patterns

than that of GA in a single generation.

We provide relevant background on the Common Vulner-

ability Scoring System (CVSS) is presented in Section II.

Section III presents the idea of vulnerability coverage as an

adequacy test criterion. Section IV presents the fitness function

for the evolutionary algorithms. In Section V, we present

experimental setup and results. Section VI reviews the related

work. Section VII concludes the paper. Throughout the paper,

we will be using the words “vulnerability pattern” and “CVSS
vector pattern” interchangeably.

II. VULNERABILITY SCORING SYSTEM

The Common Vulnerability Scoring System (CVSS) is an

open-standard industry framework, which helps cyber-security

professionals to seek out information regarding ranking mech-

anism for the severity of vulnerabilities. CVSS captures the

principle characteristics of the vulnerability by assigning a

Base score rating ranging from 0 to 10 which is representative

of the ease of exploitation and the damaging effect of the con-

cerned vulnerability where 10.0 is the most easily exploitable

vulnerability. The numerical scores have a qualitative assess-

ment (low, medium, high, and critical) to provide organizations

with better understanding and assessment of vulnerabilities.

Some vulnerability are also given temporal and environmental

scores that may modify the base score. As a proof of concept

1795

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.00049

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The description of CVE-2019-14389 for MySQL.

in generating CVSS patterns, the GA and PSO optimization

algorithms are applied to the Base metrics. The Base metric

consists of three sub-main metrics where each metric group

comprises of a set of vector fields and the associated values

it takes:

• Exploitability Sub-Metric: It addresses how the attack

is captured. Table I lists down the vector fields.

• Impact Sub-Metric: It reflects the “characteristics” of

the impacted components as shown in Table I.

• Scope Sub-Metric: It is a vector field acting as a separate

metric which describes the change in the scope of the

attack by determining whether other components are

affected along with the original vulnerability. It accepts

only two values: Unchanged (U) and Changed (C).
Base score formula is calculated as follows [1]:

Impact Sub− Score(ISS) = 1− [(1− C) ∗ (1− I) ∗ (1− A)] (1)

Impact(IM) =

⎧⎪⎨
⎪⎩

6.42 ∗ ISS if Scope is Unchanged
7.52 ∗ (ISS − 0.029)

−3.25 ∗ (ISS − 0.02)15 if Scope is Changed
(2)

Exploitability(EX) = 8.22 ∗ AV ∗ AC ∗ PR ∗ UI (3)

Base Score =

⎧⎪⎨
⎪⎩

0 if Impact <= 0

Round(Min[(IM + EX), 10]) if Scope is Unchanged
Round(Min[1.08 ∗ (IM + EX), 10]) if Scope is changed

(4)

Every known vulnerability’s severity can be represented as

a vulnerability/CVSS vector pattern, which comprises all the

aforementioned vector fields. For instance, Figure 1 shows the

CVSS score and the vulnerability pattern vector for CVE-

2019-14389 [3]. As shown in the figure, the score for this

vulnerability is high and is quantified as 7.8 out of 10. The

generated representation of the vulnerability/CVSS vector is

[AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H]. Table

II lists the vector pattern description for this vulnerability.

III. VULNERABILITY COVERAGE AS ADEQUACY TESTING

In an analogous way to the conventional definition given

for “code coverage” in software testing, the vulnerability

coverage is a measurement of how many known and reported

vulnerabilities of the system under test (SUT) are inspected

against. Similarly, the vulnerability coverage (VC) for a soft-

ware system (S) can be measured as follows:

V CS =
(#vulnerabilities inspected)S

(Total # of vulnerabilities reported)S
∗ 100 (5)

Where (#vulnerabilities inspected)S is the num-

ber of vulnerabilities inspected for the system S, and

(Total # of vulnerabilities reported)S is the total number

of vulnerabilities reported for system S. Without loss of

generality, this paper uses vulnerability patterns provided by

CVSS score to measure the adequacy testing of vulnerabilities

give for a software system.
It is important to note that vulnerabilities of the same

pattern might be found in CVE database directly. However,

given the evolutionary search algorithms presented in this

paper, it is possible to identify vulnerabilities of different

patterns but similar CVSS score. Hence, the use of CVSS

score, as a fitness function, enables us to identify various

forms and patterns of vulnerabilities within the specific level

of CVSS score. Therefore, given the desired level of CVSS

score, the problem of adequacy testing for vulnerability testing

will be exercising the vulnerabilities with different patterns

but equal CVSS scores. In following sections, we adopt two

evolutionary algorithms that enable us search the input space

(i.e., vulnerability pattern) that achieve a certain level of CVSS

score (i.e., the fitness value).

IV. FITNESS FUNCTION: CVSS SCORE

This section explains the genetic and optimization algo-

rithms developed in which CVSS scores are used as fitness

functions. For the ease of naming convention and under-

standing, we considered each CVSS pattern as a separate

configuration in these algorithms.

A. Genetic Algorithm (GA)
Genetic Algorithms are based on the biological process of

evolution. The idea is that over time, a pool of chromosomes

will evolve to be even better (i.e., better fitness value) than

the previous generation. A new generation (equal to the pool

size) of chromosomes (i.e., configurations) is created with any

iteration of the algorithm. This is achieved by the processes of

selection, crossover, and mutation [9]. A fitness score metric

is adopted as a measure to select the two fittest chromosomes

from the pool that are called parent chromosomes. Then

crossover takes place between the parents to produce a new

child chromosome, which will have the best traits from both

the parents followed by mutating of some of the characteristics

of the child to introduce new traits. This process is repeated

until an entirely new generation gets created.

B. GA implementation for secure configuration pool
We implemented the algorithm in Python. We first created

a CVSS vector pool with the fitness score of 2.0 (i.e., the

best and more secure fitness score). We refer to vector as

a “string” in our implementation. We set the number of

iteration/generation as 50. The entire algorithm (Algorithm

1) is divided into five parts: 1) configuration generation ,

2) fitness score, 3) breeder’s Selection, 4) crossover, and 5)

mutation. These parts are explained below in-depth.
1) Initial Configuration Generation: As shown on lines

1 – 9 of Algorithm 1, we created a pool of 100 possible

CVSS vector strings by randomly choosing corresponding

permissible values from the ‘val’ list to produce the initial

pool of vector strings.

1796

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Sub-Metric Fields Description Values Score
Exploitability Network(N) 0.85

Adjacent(A) 0.62
Local (L) 0.55

Attack Vector (AV)
Reflects the proximity of the attacker to attack
the vulnerable component.

Physical (P) 0.2
Low(L) 0.77

Attack Complexity (AC)
Reflects the resources and conditions required to
conduct the exploit on the vulnerable component. High(H) 0.44

Low(L)
0.62
(or 0.68 if Scope is Changed)

High(H)
0.27
(or 0.5 if Scope is Changed)

Privileges Required (PR)
Represents the level of privileges required by an
attacker to successfully launch an exploit.

None(N) 0.85
None(N) 0.85

User Interaction (UI)
Reflects whether the participation of the user is
required for launching a successful attack. Required (R) 0.62

Impact Availability Impact (A) Measures the severity of the attack on the availability
of the impacted component.

Low(L) 0.00

Integrity Impact (I) Measures the severity of the attack on the integrity
of the impacted component.

High(H) 0.22

Confidentiality Impact (C) Measures the severity of the attack on the confiden-
tiality of the impacted component.

None(N) 0.56

TABLE I: Sub-Metrics.

Parameter Description
AV: L Denotes the vulnerability is exploited by the attacker through

accessing the target system locally (L).

AC: L Represents that the vulnerability has a Low (L) complexity of
being attacked.

PR: L Shows that a Low (L) number of Privileges are required for
successfully exploiting this vulnerability.

UI: N Denotes that no (N) User Interaction and involvement is required
to launch a successful attack.

S: U Shows the Scope (S) of the attack is Unchanged (U).

C: H Total loss (High) of confidentiality.

I: H Total loss (high) of integrity, or a complete loss of protection.

A: H Total loss (High) of availability, full access denial to resources in
the impacted component.

TABLE II: CVSS vector pattern description.

2) Fitness Score: As shown on lines 11 – 20 of Algorithm

1, the fitness score of the initial population of the vector strings

is evaluated. We imported the cvss [2] python library and

thus utilized the base metric score method CVSS3. The CVSS

scores were considered as the fitness scores. The scores were

valid if they were in the range of [2.0, 5.5]. Anything outside

of that range was assigned the score as 100. We chose score

5.5 to be the upper limit since it is roughly the average score

a configuration can take to be deemed reasonably secure.

3) Breeder’s Selection: As shown on lines 21 – 32 of Algo-

rithm 1, we then used Breeder’s selection method. This method

selects a combination of the best solutions generated by the

algorithm (i.e., vectors with the low score). Furthermore, in

order to avoid the problem of falling into local minima, the

algorithm also picks some lucky few vectors with random

vector scores.

4) Crossover: For crossover, As shown on lines 33 – 44

of Algorithm 1, we randomly swapped the values of metrics

among the two parent vectors. We used a random value

generator to select which parent vector to use for crossover.

If value < 0.5, parent 1 is chosen, otherwise parent 2 would

be the choice.

5) Mutation: As shown on lines 45 – 53 of Algorithm 1, the

algorithm performs mutation on the CVSS vector strings by

random selection of vector field whose value is also randomly

selected from its permissible set of values.

We ran the GA script 100 times. Each run of the algorithm

produced different pool of CVSS vector strings with different

number and combinations of vector of fitness score 2.0.

C. Particle Swarm Optimization (PSO) Algorithm

PSO is a widely used swarm-based optimization technique.

It draws its inspiration from bee swarm, and bird flocking

social behavior of particles. PSO and GA, both being different

forms of evolutionary computation techniques, share some

similarities. Both techniques start off with a random set of

initial population/solutions and keep updating generations until

it reaches an optimum solution space with respect to the fitness

function. In case of PSO, it is a swarm consisting of various

particles, where each particle represents a solution. Unlike GA,

PSO does not make use of crossover and mutation operators

to update the particles. Instead, these techniques are directed

towards the global optimum by their personal best position

along with the swarm’s best position in the search space. PSO

is also easier to implement than GA and has comparatively

fewer parameters to adjust [7].

D. PSO implementation for secure pool configuration

We compared the performance of GA in generating a set

of best configurations with that of PSO. We implemented

the PSO algorithm in Python 3.6. To make the comparison

meaningful and fair, the number of iterations and population

size (swarm size) were kept similar to GA, which are 50 and

100, respectively.

The PSO algorithm is described in Algorithm 2. The algo-

rithm takes two list as parameters: 1) pbest_fitness and

2) particle_vel. These lists maintain the initial pbest
fitness and velocity values associated to every particle in

a swarm. We defined swarm as a collection (list) of 100

initial particles whose implementation (line 2) is similar to the

procedure configuration in GA. The algorithm returns

a pool of particles with varied scores in each iteration and

also stores the count of particles with score = 2.0 in every

iteration in order to check how many most secure particles

(configurations) are generated by PSO. We also focus only

1797

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Genetic Alg. for generation of configurations.

1: � Generating initial pool of configuration vectors.

2: procedure CONFIGURATION

3: val = [′H ′,′ L′,′N ′,′A′,′ P ′,′ U ′,′ C ′,′N ′,′R′]
4: vector field = [′AV ′,′AC ′,′ PR′,′ UI ′,′ S′,′ C ′,′ I ′,′A ′]
5: for each vf in vector field do
6: vf = random.choice[val] � ’val’ takes

permissible set of values based on vf chosen.

7: end for
8: return vector
9: end procedure

10: � Assigning fitness score based on Best score.

11: procedure FITNESS(BestScore, vector)

12: score = CV SS3(vector).score()
13: if (score <= BestScore & score <= 5.5) then
14: fit = score
15: else
16: fit = 100
17: end if
18: Return fit
19: end procedure
20: � Breeder’s Selection: Select best vector samples.

21: procedure SELECTION(population, best sample, lucky few

)22: nextGen = []
23: sortedPop = Sorted(population) � descending

order of fitness values = low cvss score to high

24: for i in range(best sample) do
25: nextGen.append(sortedPop[i]) � first ’i’ # of

best configurations selected

26: end for
27: for i in range(lucky few) do
28: nextGen.append(random.choice(sortedPop))
29: end for
30: Return nextGen
31: end procedure
32: � Creating new vector from 2 parent vectors.

33: procedure CREATECHILD(vector1, vector2)

34: child vector = ””
35: for i in range(len(vector1)) do
36: if random.random < 0.5 then
37: child vector = child vector + vector1[i]
38: else
39: child vector = child vector + vector2[i]
40: end if
41: end for
42: Return child vector
43: end procedure
44: � Mutating: randomly changing a value of the vector.

45: procedure MUTATION(vector)

46: vf = random.choice(vector field)
47: modify = random.choice(val)
48: index = get position(vf)
49: vector = vector[:index]+modify+vector[index+1:]

� inserting ’modify’ in the vector string

50: Return vector
51: end procedure

on the scores, which belong in the range [2.0, 5.0] in every

iteration.

In a nutshell, the algorithm searches for the best fitness and

velocity values for each particle until a threshold is reached

(lines 7 – 34). In every iteration (lines 9 – 13), the algorithm

picks the pbest_fitness (i.e., particle best) values as their

CVSS scores cvss_fit with the assumption that the fitness

would be better (i.e., lesser is better) than its current pbest
fitness value. After the For loop ends, it then picks the

global best (gbest) value of the swarm by the the best

pbest value (lines 14 – 16), in this case, the least value.

The next step in the algorithm is to calculate the velocity

(lines 17 - 31) where particle vel(particle) fetches the

velocity of the given particle. The lines 18 - 28 describe how

the velocity is evaluated for every particle. The velocity metric

measures the distance between the fitness score (pbest) and

the best score. The particle is updated whenever its current

velocity value is greater than its previous one.

The particles are updated using update_particle in a

similar manner to the configuration mutation in GA. More

specifically, any one out of the eight vector fields (i.e., AV,

AC, etc.) is constructed whose value is chosen randomly from

its corresponding set of permissible values. For example, if

‘AV’ is selected, then any value in the list of{H, L, N, A} can

be randomly selected.

The target global best value was set to 10.0, parti-

cle velocity in the range [0, 8] where 0 and 8 are the minimum

and maximum number of differences between two particles,

respectively. Since each particle (CVSS vector) constitutes of

only 8 vector fields (AV, AC, etc). The fitness range is set

between the range [2, 10] where 2.0 is deemed as the best

fitness score and 10.0 is the maximum CVSS score any particle

can get which means highly unfit.

V. EXPERIMENTATION AND RESULTS

We ran our Python scripts, developed for implementing the

GA and PSO algorithms, 100 times on the CVSS population

in order to evaluate the performance of the evolutionary algo-

rithms in generating the most secure patterns. The performance

was measured on the basis of three evaluation metrics:

1) Number of instances of vulnerability patterns with the

target score (e.g., score = (2.0, 3.0)) in each run.

2) Mean hamming distance (diversity) of the CVSS vectors.

3) Standard deviation of the scores calculated for the set

of population produced.

1) Diversity of Vulnerability Patterns: It is important to

produce a diverse set of instances of vulnerability vector pat-

terns to ensure the thoroughness of test inputs (i.e., vulnerabil-

ity pattern) generation and thus avoid generating redundant test

inputs where test input refers to an instance of vulnerability

vector pattern produced by the algorithms. We collected the

data for the three evaluation metrics for various range of target

scores including S ∈ 2.0, S ∈ (2.0, 3.0], S ∈ (2.0, 4.0] and

S ∈ (2.0, 5.0]. As a representative example, Figure 2 shows

the plots for all the aforementioned three metrics for CVSS

vector strings falling into S ∈ (2.0, 3.0] for both GA and PSO.

1798

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 PSO for generation of configuration.

1: procedure PSO(pbest fitness, particle vel)

2: swarm = [particle() for i in range(swarm size)] �
Initialize 100 particles

3: iteration = 0

4: Threshold = 50

5: total count = [] � To store count of particles with

score = 2.0 in every iteration

6: best score = 2.0

7: while iteration < Threshold do
8: count = 0

9: for each particle do � Calc Fitness

10: if cvss fit(particle) <
pbest fitness(particle) then

11: pbest fitness(particle) = cvss fit(particle)

12: end if
13: end for
14: if pbest fitness(particle) < gbest(swarm)

then
15: gbest(swarm) = pbest(particle)

16: end if
17: for each particle do � Calc Velocity

18: if pbest fitness(particle)<best score then
19: continue

20: else
21: velocity=pbest(particle)-best score �

Current Velocity

22: if velocity == 0.0 then
23: count+=1 � count of particles of score

= 2.0

24: end if
25: if velocity < particle vel(particle) then
26: particle vel(particle) = velocity
27: else
28: particle = update particle(particle)

29: end if
30: end if
31: end for
32: iteration+ = 1
33: total count.append(count)
34: end while
35: return total count

36: end procedure

As expected, the number of instances of the generated

vulnerability patterns for each run is smaller for the target

score of 2.0 (i.e., most secure) and it is higher when the target

fitness score is in range (2.0, 5.0] (i.e., least secure). It implies

that when a lower level of vulnerability is targeted (i.e., more

secure with CVSS score = 2.0), there are “not” too many

alternatives for patterns. On the other hand, if the vulnerability

levels and security is relaxed (i.e., CVSS score <= 5.0 then

over 60 alternatives could be produced for pattern matching.

A combination of such varying level of CVSS scores might

be beneficial to increase the search space when implementing

a moving target defense platform.

The bar plots depicted in Figure 2.(a) and 2.(d) demonstrate

the number of occurrences of CVSS patterns (i.e., y-axis)

against the number of runs (i.e., x-axis) when the target target

CVSS scores is (2.0, 3.0) for GA and PSO, respectively. A

glance at the charts indicates that GA is able to generate more

instances of the CVSS patterns targeting the desired level of

security (i.e., (2.0, 3.0)).
The scatter plots given in Figure 2.(b)-(e) and Figure 2.(c)-

(f) denote distribution of the mean hamming distance and

standard deviation against the runs, respectively. To ease

comprehending the trend of the mean values, a regression

line is fitted into the scatter plots to capture the overall

trend. The Hamming distance addresses the “diversity” of the

vulnerability vector patterns generated by the algorithms based

on the count of corresponding unequal values of each vector

fields among strings. The smoothing lines for mean values of

Hamming distance demonstrate similar trends for each target

value for the fitness score.

The mean values of the hamming distance (y-axis) in all

the cases remain unchanged over the runs and are mostly

scattered between 3.0 and 3.7 for GA (i.e., a diversity of the

vulnerability vector pattern generated) and between 4.5 and

5.5 for PSO. As demonstrated in scatter plots shown in Figure

2.(b) and 2.(c), the instances generated by the GA algorithm

is less diverse compare to the instances generated by PSO.

The mean of the hamming distances between the instances

generated by GA and PSO are 3.45 and 4.93, respectively.

This indicates that even though the PSO algorithm generates

far fewer instances of CVSS patterns for the given fitness, it

produces more diverse instances of patterns.

To illustrate the variations of such vulnerability patterns

generated, plots 2.(c) and 2.(f) illustrate the trend of the values

of the standard deviations for Hamming distance over the runs.

There is a light reduction in standard deviations while running

GA for all cases. The observed standard deviations for all cases

is somewhere between 0.5 and 1.5. When combined together,

the mean and standard deviations of the hamming distance

can serve as an indication of the diversity of the vulnerability

vector patterns produced by the algorithms and thus helps in

measuring the thoroughness of test case generation and thus

vulnerability selections in which the generation of redundant

patterns (i.e., test inputs) is avoided.
2) The Contributions of Each Permissible Value in each

Vector Field: It is also important to investigate whether

certain settings of each vector field contributes to security

configuration differently than its counterpart. Table III shows

the frequency (i.e., in terms of percentage) of each value

permissible for each vector field, as listed in the base metrics.

As reported in Table III:

– AV: The most contributing value is P (i.e., Physical) for

GA (ranging from 45.43 to 59.22%). The PSO algorithm

highlights two values of P and L as the most contributing

to the security level of the patterns. This observation

indicates that if the severity of the vulnerability needs

1799

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

(a) Histogram Plot (GA) (b) Mean Hamming Distance (GA) (c) Standard Deviation (GA)

(d) Histogram Plot (PSO) (e) Mean Hamming Distance (PSO) (f) Standard Deviation (PSO)

Fig. 2: Histograms, Mean Hamming Distances, Standard Deviations of CVSS vectors for S ∈ (2.0, 3.0].

to be reduced, no other values or means of attacks (i.e.,

Network (N), Adjacent (A), and somewhat Local (L) is

allowed for exploiting the vulnerability.

– AC: There is a mixed situation for attack complexity and

there is no clear winner between Low (L) and High (H)

complexity level to launch the exploitation.

– S: The dominant setting for this variable is C, except the

case for GA when the target score is 2.0.

– UI: There is a mixed situation for the level of user

involvement for exposing the vulnerability.

– C: There is also a mixed situation for confidentiality

settings among GA and PSO algorithms.

– I: A similar mixed situation for this case. However, it

is also observed that in most cases a None (N) risk to

integrity is needed to reduce the impact of exploiting the

vulnerability.

– A: Furthermore, there is a a mixed situation for availabil-

ity where there is no clear dominant setting value.

– PR: The two dominant setting values for the level privi-

leges are L and H.

We also executed the GA and PSO scripts with single run

to sense their performances. Figure 3 illustrates the results

of one run with 50 generations/iterations where y-axis is

the number of vulnerability pattern produced whose score

= 2.0; whereas, the x-axis is the generation index (i.e., 50

generations). As it is observed, GA could manage to generate

two vulnerability vector patterns with score 2.0 on its 50-th
iteration along with highly unstable trend; whereas, the PSO

algorithm demonstrated a more stable trend with four pattern

generated with score 2.0.

(a) GA

(b) PSO

Fig. 3: # CVSS patterns with score 2.0 over 50 generations.

VI. RELATED WORK

Crouse and Fulp [4] used genetic algorithms to deploy a

Moving Target Defense (MTD) platform and make computer

systems more secure through temporal/spatial diversity in

configuration parameters that govern how a system operates.

Later on, they developed an MTD by simulating 256 virtual

machines of similarly purposed computers where each com-

puter was initially configured with an extremely vulnerable

configuration making them prone to all sorts of attacks.

Post and Sinz [8] bridged the gap between configuration in-

1800

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

Vector Values [2.0] (2.0, 3.0] (2.0, 4.0] (2.0, 5.0]
Field GA PSO GA PSO GA PSO GA PSO

P 59.22 29.29 49.31 23.74 47.85 23.19 45.43 22.25
L 14.02 22.22 21.40 26.75 21.90 26.98 22.32 26.95
A 13.76 26.26 18.67 26.15 18.41 25.25 19.11 25.33

AV

N 12.98 22.22 10.60 23.34 11.83 24.56 13.13 25.45

L 32.98 44.44 48.63 50.90 50.83 50.17 51.85 51.56AC
H 67.01 55.55 51.36 49.09 49.16 49.82 48.14 48.4

U 60.25 48.48 47.87 48.39 47.15 48.96 46.50 48.56S
C 39.74 51.51 52.12 51.60 52.84 51.03 53.49 51.43
N 33.24 43.43 48.51 50.0 49.30 50.40 49.79 50.70UI
R 66.75 56.56 51.48 50.0 50.69 49.59 50.20 49.29

N 62.85 25.25 61.84 31.46 54.77 29.16 53.36 28.88
L 37.14 37.37 38.15 35.67 45.19 36.73 45.82 34.91C
H 0.0 37.37 0.0 32.86 0.02 34.09 0.80 36.20
N 67.27 39.39 64.09 30.46 55.98 27.21 54.54 25.84
L 32.72 34.34 35.90 38.47 43.82 37.88 44.37 35.72I
H 0.0 26.26 0.0 31.06 0.18 34.90 1.07 38.42
N 69.87 26.26 66.70 28.05 58.96 27.95 57.95 27.17
L 30.12 47.47 33.29 37.17 40.98 34.95 41.55 34.01A
H 0.0 26.26 0.0 34.76 0.05 37.08 0.49 38.81
N 40.25 26.26 29.75 28.05 30.81 27.95 30.58 27.17
L 0.0 47.47 29.83 37.17 31.13 34.95 31.70 34.01PR
H 59.74 26.26 40.40 34.76 38.05 37.08 37.71 38.81

TABLE III: % of contribution of each permissible value in all the score ranges across 100 runs of GA and PSO.

formation and verification process by introducing a new tech-

nique named Configuration Lifting. The technique converts all

the variants over which a software is verified into a meta-

program thereby making the application of configuration-

aware verification techniques like static analysis, and model

checking more efficient.Dai et al. [5] introduced the concept of

configuration fuzzing in order to check the vulnerabilities that

appear only at certain conditions by randomly modifying the

configuration of the running application at specific execution

points. During the deployment phase, this technique cease-

lessly fuzzes the configuration and looks for a vulnerability

that rises due to the violation of of security invariants.

VII. CONCLUSION

We introduced the novel idea of “vulnerability coverage,”

a methodology to examine software under test against certain

classes of vulnerabilities as reported by National Vulnerability

Database (NVD) adequately. The introduced idea makes use of

an open industry standard tool called Common Vulnerability

Scoring System (CVSS) as a metric to measure fitness in order

to generate a pool of vulnerability vector patterns that attains a

secure level of CVSS score. For adequacy testing of the under-

lying software, the software under test is then inspected against

all those filtered representative sets of vulnerabilities with

similar vulnerability vector pattern that were selected from the

generated pool. The paper compared two evolutionary-based

algorithms namely Genetic and Participle Swarm Optimization

algorithms on the basis of their performance in generating a

pool of vulnerability patterns and the results indicated a similar

performance achieved by both algorithms.

The concept of adequacy criterion is a new approach and

hence has a larger scope of improvement. An adequacy cri-

terion based on vulnerability coverage is a novel technique

in the best of our knowledge. This approach can be further

improved by taking into consideration several other metrics

including temporal and environmental ones present in CVSS

and National Vulnerability Database (NVD). We also built our

experiments based on the range of 2.0 and 5.5. Additional

experimentation would be needed to further study the effect

of such range. Moreover, the concept needs tool support

and further empirical studies which can aid in thorough and

systematic searching for vulnerabilities reported in the NVD

database based on the matching property for the goal of

security testing and then investigate the effectiveness of such

adequacy criterion.

ACKNOWLEDGMENT

This work is supported in part by funding from National

Science Foundation under grants no: 1516636 and 1821560.

REFERENCES

[1] Common vulnerability scoring system v3.0: Specification document.
https://www.first.org/cvss/v3.0/specification-document, Access 2019.

[2] CVSS 3.0. https://pypi.org/project/cvss/, Accessed 2019.
[3] National vulnerability database. https://nvd.nist.gov/, Accessed 2019.
[4] M. Crouse and E. W. Fulp. A moving target environment for computer

configurations using genetic algorithms. In Symposium on Configuration
Analytic and Automation (SAFECONFIG), 2011.

[5] H. Dai, C. Murphy, and G. Kaiser. Configuration fuzzing for software
vulnerability detection. In 2010 International Conference on Availability,
Reliability and Security, pages 525–530, 2010.

[6] Shuvalaxmi Dass and Akbar Siami Namin. Vulnerability coverage
for adequacy security testing. In SAC ’20: The 35th ACM/SIGAPP
Symposium on Applied Computing, pages 540–543, 2020.

[7] Mei-Ping Song and Guo-Chang Gu. Research on particle swarm opti-
mization: a review. In International Conference on Machine Learning
and Cybernetics, 2004.

[8] H. Post and C. Sinz. Configuration lifting: Verification meets software
configuration. In IEEE/ACM International Conference on Automated
Software Engineering, pages 347–350, 2008.

[9] Kumara Sastry, David Goldberg, and Graham Kendall. Genetic Algo-
rithms. Springer, Boston, MA, 2005.

1801

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.

