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Abstract—Security constraint is a key component in unit
commitment to guarantee reliable generator commitment. Large
set of security constraints are notorious for making the problem
difficult to solve. Constraint screening, i.e., filtering out non-
dominating constraints, is regarded as a powerful tool to address
this challenge. This work presents a security-constraint screening
that can effectively integrate virtual transaction and capture
changes online in real-time or look-ahead markets. The proposed
approach takes advantage of both deterministic and statistical
methods, which leverages mathematical modeling and historical
data. Effectiveness are verified using Midcontinent Independent
System Operator (MISO) data.

Index Terms—Unit Commitment, Security Constraint, Trans-
mission Congestion, Data Aided, Virtual Power

I. INTRODUCTION

ECURITY constrained unit commitment (SCUC) is dis-

cussed extensively in the literature and well implemented
in daily power system operation by independent system oper-
ators (ISO) and Regional Transmission Organizations (RTO)
[1], [2]. It is a challenging task to obtain an optimal solution
in an acceptable time due to the enormous size of the problem.
The SCUC’s objective is to maximize social welfare subject to
a variety of constraints, such as generator physical constraints,
power balance, reserve requirements, and transmission security
constraints [3].

SCUC, by nature, is a nonconvex and large scale mixed inte-
ger optimization problem. Recent improvements in modeling,
optimization solvers, and efficient algorithms enable system
operators to quickly obtain optimal or near-optimal solutions.
SCUC can be generally solved by Lagrangian Relaxation (LR)
and Mixed Integer Linear Programming (MILP), performance
comparison can be found in [3]. Midcontinent Independent
System Operator (MISO) has adopted MILP approach for
the Co-optimized Energy and Ancillary Service Market since
2009. Day-Ahead Market (DAM) is a financial market, and
the market-clearing process requires solving SCUC problems
for all planned operation periods. It is crucial to obtain a near
optimal solution while meeting the time requirement.

In DAM, security constraints are defined as power flow
transmission constraints for transmission lines considering the
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N-1 security rule according to North American Electric Reli-
ability Corporation (NERC). There are over 15000 security
constraints formulated for MISO’s DAM. Incorporating all
security constraints in the model could cause computational in-
tractability, which means optimality and solution time require-
ments cannot be guaranteed. Many research efforts have gone
into improving SCUC computational performance [3], [4].
Decomposition approaches, such as Benders decomposition
and Lagrangian decomposition, divide the original problem,
which is difficult to solve, into smaller pieces; acceleration
comes from solving the smaller problems in parallel. Heuristic
approaches, such as warm start, gives the solver a starting
node, which may help in some situations. Good quality of
warm start information can help filter out inferior nodes,
but a poor one may hurt more than they help. However, it
is not always possible to obtain high quality of warm start
information.

According to our experiences in real-world challenging
cases at MISO, security constraint is one of the primary driving
factors of slowing the SCUC computational performance.
Models with fewer security constraints can generally reach
an acceptable optimality gap with less time. Reducing non-
binding hard constraints often helps reduce solution time for
MILP problems. The goals of this research are to effectively
reduce the size of security constraints set in both offline
and online SCUC models, and to improve solution quality,
while maintaining solution integrity. Only a small fraction
of security constraints is binding in real-world systems. For
example, MISO heuristically identifies around 200 critical
security constraints each interval as “watchlist” that could be
routinely binding.

The overwhelming security constraints have attracted much
attention in literature. In general, approaches to tackling
this problem include constraint preprocessing and constraint
generation method. In constraint preprocessing approaches,
researchers bring the umbrella constraint concept to SCUC
problems [5] [6]. The umbrella constraints are dominating
constraints defined as the minimum set of constraints that
shapes the feasibility region of the original problem. Binding
constraints are a subset of umbrella constraints, which can
only be determined after solving the original MILP prob-
lem. As it involves additional Linear Programming (LP) or
MILP problems, which can be time consuming and harder
to apply to large systems. Authors in [7] propose an efficient
numerical method to eliminate redundant constraints in SCUC,
and [8], [9] further take uncertainty into consideration by
leveraging the bound of the net power injection uncertainty.



By considering the bound when contingency occurs, author
in [10] presents how to efficiently eliminate constraints for
contingencies in SCUC. Similar applications can be found
in [11], [12], [13]. However, the eliminating rate of these
approaches may not be as high as that of optimization based
approaches. Constraint generation based method attempts to
solve a smaller model (e.g. initially ignoring some constraints).
Once a solution is obtained, security constraints will be
checked. If a violation is found, the corresponding constraints
will be added back to the model, as discussed in [14],
[15]. Many constraints that have low probability of being
binding can be skipped to avoid modeling too many redundant
constraints. However, a significant drawback is that each
iteration is time consuming and it is hard to know how many
iterations needed for convergence. Recently, intelligent system
based heuristic approaches are applied to remove potentially
non-binding constraints in [16], [17], [18], which addresses
the conservatism. The warm start and setting proper lazy
constraints may improve the SCUC solution performance [19].

There are two open questions, although many efforts are
put in security constraint screening. The first one is how
to effectively handle virtual transactions that often account
for up to 45% market capacity in real-world systems. The
virtual offer or bid has a large range and poses a challenge in
modeling a tight power injection interval, which is a key to
conduct screening. The second open question is to find an ef-
fective screening approach for real-time or look-ahead market.
A precise N-1 security screening has significant overhead in
real-world systems. The system’s real-time conditions, such as
load level, renewable generation, and topology, are constantly
changing and could be significantly different from DAM. The
DAM screening may not apply to real time directly. Due to
the timeliness requirement, it is difficult to conduct thorough
screening in real-time or look-ahead market. Some ISOs, such
as MISO, rely on after-the-fact state estimation instead of
enforcing security constraints in advance.

To address these challenges, we present a two-step screening
approach, an extension to [20]. Furthermore, we propose
an online approach that could find a tight upper bound of
power flow when more information is revealed in real-time
or look-ahead market. By utilizing dual variables from the
offline component, the online counterpart uses a closed-form
formulation to quickly determine whether a security constraint
is violated. A data-aided approach is employed to attain
the confidence interval of virtual power that can be cleared
in DAM. The price signal interval is integrated to reduce
net power injection range, which results in fewer security
constraints. Lazy constraint in optimization solver is employed
as an effective last resort to avoid any violation. A lazy
constraint resembles a call back function that checks constraint
violations once a feasible solution is found.

The contributions of this paper are summarized as below.

1) We propose an offline-online approach based on a two-

step security constraint screening. The offline part iden-
tifies dominating security constraints in the case of max-
imum net power injection with conservative forecasted
system information. The online component, which can
be utilized in real time, captures latest changes, and

provide fast yet accurate screening of security constraints.
The online approach clears the computational barrier of
guaranteeing N-1 security, which is not enforced in real-
time market in MISO.

2) We develop an effective approach to managing virtual
transactions in screening. Although virtual supply and
demand account for a large portion of load or generation
in DAM, there is few literatures reporting how to handle
virtuals in security constraint screening. A challenge
stemming from virtual transactions is that its interval is
often very large, which could hurt the effectiveness of
existing approaches. The approach proposed in this paper
integrate the market-clearing price and lazy constraint
so that we could effectively narrow the range of virtual
power injections and reduce the size of the dominating
constraints set.

3) The proposed techniques are examined in a real-world
system, i.e., MISO system. Extensive numerical testing
results are presented in this work. Authors argue that
these world-world testing results provides some insights
for other systems.

It is shown in the real-world MISO case study that the
proposed method is able to eliminate 99.97% security con-
straints in real time. With proper offline preparation, online
screening only takes 12 seconds. Incorporation the propose
method, security constraint pool size has been reduced by half.
DAM SCUC solution time has decreased by up to 50%.

The paper is organized as following. In section II, the
deterministic two-step screening method with offline-online
approach is presented. Section III introduces an approach
to handle the virtual transactions. In section IV, we present
the numerical testing results for MISO systems. Section V
concludes the paper.

II. OFFLINE AND ONLINE SECURITY SCREENING

It is challenging to deal with large number of security
constraints in real world systems. Some ISOs/RTOs develop
special procedures to identify creditable security constraints
and only include those constraints in the DAM SCUC model.
Iterative approaches are often employed, such as standard
operation procedure among DAM SCUC, Security Constraint
Economic Dispatch (SCED) and Simultaneous Feasibility Test
(SFT) [14]. SCUC determines generator commitments, and
SCED takes finer piecewise generator bids to determine the
most economical dispatch. The SFT checks for security vi-
olation, commitment, and reserve sufficiency. Any violated
security constraint can be iteratively added to the model. For
instance, MISO evaluates outages and other relevant informa-
tion to build the watchlist, which is a much smaller subset of
the full set of security constraints, and then iteratively add any
violated constraint to the model. However, the system operator
may still confront situations where optimization engine cannot
find an acceptable solution within the time limit. There is an
emerging and practical need to find acceleration techniques to
improve the optimization performance.

It is even more challenging in real-time or look-ahead
markets due to higher timeliness requirement. Instead of
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Fig. 2: Offline-online Approach Timeline. SCED: Security
Constraint Economic Dispatch, SFT: Simultaneous Feasibility
Test.

modeling the security constraint, ISOs use modules such as
Real-Time Contingency Analysis (RTCA) to check the N-1
security. RTCA relies on state estimation and is just an after-
the-fact verification tool. This may cause both economic and
security issues. The proposed offline-online method provides
a more robust and accurate yet fast approach. Fig. 1 shows the
idea of offline-online approach, where the offline part provides
a basis and the online part integrates the latest information.
The closed-form equation for online screening is able to meet
the timeliness requirement.

In this section, two-step security constraint screening is
presented to reduce the size of security constraint set watchlist.
Step-1 is a numerical method that employs necessary condi-
tions to filter out redundant security constraints considering
the uncertainty [9]. For the remaining constraints filtered by
step-1, step-2 solves multiple LP problems to check constraint
redundancy. Let 77 be the remaining security constraint set
after step-1. Step-2 solves | 71| LP problems (C) [20], to
identify the dominating security constraint set, J5. In the
meantime, dual variables, A, of LP constraints are saved for
the use of online method. When more information is revealed,
we present a closed-form equation to attain the upper bound
of the power flow. Implementation timeline is shown in Fig.2.

A. Offline Screening

The DC power flow on line [ is modeled as f; =
> Dim P, where T, is the power transfer distribution

factor (PTDF) for line [, bus m, and P,if:j is the net power
injection at bus m. An LP to find the largest possible power
flow for line [ is formulated as problem (C) below
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where (2) is the power balance constraint, and M is the set
of bus indices, and (3) includes all security constraints except
the one that is being tested. If optimal value of problem (C)
[P is greater than the line rating Fj, security constraint [
is dominating in the positive direction. Dominating security
constraints set determined by offline method (C) is [J». We are
able to identify the security constraint dominance as long as
the network topology and upper and lower bounds of net power
injection are available. This feature enables a wide range of
applications. Theorem 3 in [8] is also based on the net power
injection model, although identification rate might not be as
high as problem (C).

Denote G, Vin, Nom, and F,,, as sets of generator, virtual,
fixed demand, and price-sensitive demand, respectively. Let
i,k,n and f be indices for generator, virtual, fixed demand,
and price-sensitive demand, respectively. The net power injec-
tion Py, can be expressed as
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where P; is output from generator i, Py is virtual bid/offer,
D,, is the fixed demand, D?ex is the price-sensitive demand.
As a side note, one could improve the solution time by
converting the optimization problem (C) into a feasibility
checking problem. More specifically, we can replace equation
(1) with 0 and add constraint

> TimPii > F 6)

in problem (C).

B. Online Screening

The online identification is performed based on closed form
equations without solving optimization problem, and the of-
fline part includes tasks of solving LP problems. At the offline
optimization stage, load/net power injection information is
assumed not precise. In contrast, more information will be
available at the online calculation stage in real time. In the
following section, we present online screening methods cap-
turing both net power interval change and network topology
update.

1) Updated Net Power Injection Interval: In the real-time
market, many uncertainties are materialized. The load forecast
for next hours is more accurate than that in DAM. The
predication of renewable generation is also with smaller errors.
Furthermore, ON/OFF status for many generators are already



known for next hours. This information can be utilized to
narrow the net power injection. More specifically, P and
P " in equation (4) will be updated to capture the materialized
1nf0rmat10n.

Instead of solving another LP problem with updated con-
straint, we present a computationally efficient way to find
the new largest power flow. Offline method requires solving
problem (C) for each security constraint, which gives the
maximized power flow f , optimal net power injection Pp; *
and, dual variables, i.e., A}, aj, 3,.%, B;h*. In fact, most mod-
ern optimization solver Will provide dual values after solving
problem (C). To show how to utilize dual values, we formulate
dual problem (D) of (C) below and denote its optimal value
as fL(P™, P").
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where P, P" are lower and upper bound vectors for all net
power injections. It is noticed that f (Blnj7f]nj) is a function
of P™ and P".
It is observed that optimal dual values of (C),
Foag, B, BLr are always feasible in (D) no matter what

upper and lower bounds of net power injectlons are. Denote the
A ll'l

updated upper and lower bounds as E and P

We define f" as
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holds. Therefore, fl"“ is an upper bound of power flow on
line [. In other words, we can determine the upper bound of
the maximal power flow using the closed-form equation (7).
According to our experience, this upper bound is tight enough
to remove the majority of industrious constraints in real-world
systems.

2) Updated Network Topology: The method aforemen-
tioned works when there is no topology change. In this
part, our goal is to quickly determine whether post line
contingency power flow will cause congestion. Line outage
distribution factor LODF,,;_,,; can be quickly calculated as
shown in [21], where ml — ol represents monitored lines to
outage lines. Pre/post contingency power flow, fb‘“e\ Ctg , must
respect branch flow limits, F},,;. They are typically modeled

as
base
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where f*%¢ =T, P is obtained from the base case.

The traditional approach calculates post-contingency power
flow from pre-contingency power flow. The proposed approach
verifies congestion potential of monitored lines over an in-
jection range, APy, Denote the pre-contingency net power
injection as PN*  APMN* can be calculated around PV by
factoring in topology change, load forecasting error, generator
ramping rates and participation below

> Ri+d<APS <P 4+ N Ri+d, (9)
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where R; is ramping rate. Consider post-contingency power
flow change due to APy

A fi=(Tny + LODF 1, T ) AP (10)

where I',; is outage lines’ shift factors extracted from base
case. The new power flow is

o8+ Afm (11)
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we can directly apply the proposed two-step screening to
determine potential dominating security constraints in post
contingency situation.

III. MODELING VIRTUAL TRANSACTIONS

Experience with MISO DAM data shows that virtual power
accounts for 35-45% of market capacity in DAM. These
virtual transactions make it difficult to find tight net power
injection in the security constraint screening. A loose net
power injection could significantly decrease the screening
performance. Observing only about half of virtual transactions
are cleared in reality, we propose to tighten the range of virtual
offer and bid based on historical market-clearing prices.

A. Virtual Transaction Aggregation and Predication

From equation (5), we observe that the net power injection
at bus m can be decomposed into non-virtual component
(P;, D, D]ﬂeex) and virtual component (). Due to its large
volume, virtual component heavily affects the net power
injection interval. In this subsection, a statistical approach is
proposed to narrow down the power injection intervals caused
by virtual transactions. screening is thus able to produce a
tighter dominating security constraint set.

At any given bus m, multiple virtual bid/offer Price Quantity
Pairs (PQP) can exist. Bid/offer quantities are cleared under
Locational Marginal Price (LMP), say m,,. Virtual supply
and demand help bridge the gap between DAM and Real-
time Market (RTM). Generation non-convexity due to minimal
output limit is mitigated by the available virtual bids. The
price signal of highest virtual bid cleared at a node can be a
better representation of marginal unit than the most expensive
generation cleared. The cleared quantity of virtual transaction
is a function of LMP. We approximate it as

Py =P, — P, = C(Tn) ~ Clx,,), (12)
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where 7 and 7 represents the 95% virtual price confidence
interval (VPCI) estimated from quantiles of historical LMPs.
Fig. 3 illustrates the general idea. As shown in Fig. 3, 7 cuts
off the most expensive bids, and 7 cuts off the lowest offers.

B. Integration with Lazy Constraint

Denote all security constraints supporting the optimal point
as Js. When predication of virtual transactions is involved, we
cannot guarantee complete inclusion of Js. This issue can be
addressed by employing lazy constraint, which is designed in
optimization solver to incorporate user confidence to improve
solution quality. Constraints that believed to be less probable to
violated at the optimal point can be marked as lazy. The model
is initially optimized without any lazy constraints. Once a
solution is found, lazy constraints are checked with the current
solution. If any lazy constraints are violated, they will be added
back to the model. Optimization process continues till an
optimal point is found without any lazy constraint violations.
The key is to exercise best judgment regarding lazy constraints,
as they are intended to shrink constraints set and optimize a
smaller and easier model. However, if set inappropriately, it
may result in more iterations to put back the lazy constraints
and solution time may suffer.

In contrast to lazy constraint, the constraint directly built
to the model is called industrious constraint in this work.
We separate Jo, i.e., set of remaining security constraint
after Step-2, into industrious constraint pool, 7™, and lazy
constraint pool, J lazy Tllustrated in Fig. 4, 7 ind |y glazy — 7,
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Fig. 5: Incorporating Virtual Price Confidence Interval and
Lazy Constraint Setting in DAM SCUC

and 7N 7% = (). Industrious constraints are highly likely
to bind at the optimal solution, and lazy constraints are less
likely to bind at the optimal solution. If the active pool is over-
conservative, J" ~ 7o, performance improvement would be
negligible. If the pool is over-optimistic, Jg\J™ C J'% is
large, more constraints are added back in the MILP searching
process, which may increase solution time.

We develop a procedure to separate /> into J ind 5ng Jlazy,
as shown in Fig. 5. Firstly, apply two-step screening in the
SCUC model and get dominating constraints set 7. Secondly,
relax integer variables in the SCUC model, use virtual price
confidence interval to cut off more expensive virtual injection
bands in a relaxed model (LP). Thirdly, optimize LP and get
a relaxed power flow f;*. Given power flow limit F} and
threshold -+, if

I

F
holds, security constraint for line [/ is considered as potentially
binding, it is put to the Industrious constraint set 7™, Oth-
erwise, this constraint is set as lazy, J% = J,\J™. Lastly,
optimize the SCUC model with redundant constraints removed
and lazy constraints identified.

Eel le s 13)

IV. CASE STUDY

The proposed offline-online security constraint screening is
applied to medium size system such as IEEE 118-bus system
[8] and RTS-GMLC [22], and a large size system i.e. MISO.
We also show the impact of different formulations of security
constraint on the solution performance. Experiment results are
presented in section IV-A and IV-B respectively with following
implementations,

o Offline Screening: apply offline component to the test
cases, while making conservative assumption that net
power injection intervals cover relatively wide uncertainty
bounds. Consider all creditable contingencies. Identify
dominating security constraints and extract dual variables.

e Online Screening: apply online component in real-time
or look-ahead markets. At this stage, uncertainty is (par-
tially) materialized. The uncertainty includes the load,



renewable generation, UC, and network topology change.

We determine potentially dominating security constraints

by utilizing dual variables from Offline Screening. Real-

time power injection data is simulated from uniform

distribution that is bounded by intervals used in offline.

o Verification: Verify the dominating constraints in real time

without considering the timeliness requirement.
Comparison between power flow upper bounds in Online
Screening and Verification is determined by,

Online Screening fVeriﬁCation
1 —Jl

flVeriﬁcalion ( 1 4)

Case study presents dominating security constraints detec-
tion rate, power flow upper bounds difference, computation
time and SCUC solution quality improvements with proposed
methods. Numerical simulations are carried out with MISO
HIPPO [23], using Gurobi 7.5 in Centos with Intel Xeon
E5@3.50GHz, 64 GB RAM [24].

A. RTS-GMLC and IEEE 118-Bus System

1) Test Setup: Proposed offline-online approach is applied
to the RTS-GMLC and IEEE 118-bus system to demon-
strate dominating constraint detection and algorithm effi-
ciency for N-1 contingency. In RTS-GMLC test case, 28,800
(=120%2+119*%120*2) power flow constraints are considered
per time interval. We first apply the Offline Screening to
one specific period to determine the dominating security
constraints and dual variables, 10% load side uncertainty
is considered. Secondly, use the updated real-time data (5
minutes interval, 12 data sets for the specific hour) and Online
Screening to determine the power flow upper bound and power
flow violations. Lastly, apply the Verification step to the 12 sets
of real-time data to determine the true dominating constraints
and power flow upper bounds. In IEEE 118-bus test case,
69,192 (=186*2+185*186%*2) power flow constraints are con-
sidered per time interval. Three wind farms are added to bus
36, 77, and 69. We use wind generator ratings, and 10% load
side uncertainty in Offline Screening to account for net power
injection uncertainty. Online Screening is applied to 12 sets
of simulated wind generation and load profiles. Detailed data
is available at http://poweree.github.io/1 18BusPrescreening.zip
and https://github.com/GridMod/RTS-GMLC.

2) Offline and Online Results: Table 1 shows the perfor-
mance of proposed offline-online security constraints method
on RTS-GMLC system and IEEE 118-bus system. In Offline
Screening stage, step-1 finds 20% of the security constraints
potentially binding in RTS-GMLC system and 15% in IEEE
118-bus system. The computation time is 0.18 seconds and
1.12 seconds, respectively. Step-2 solves 5,685 LPs and further
determines only 106 are dominating constraint, which accounts
for 0.37% (=106/28,800) of N-1 security constraints in RTS-
GMLC system. For IEEE 118-bus system, the dominating con-
straints rate is 0.15%. The LP calculations took 165 and 332
seconds respectively.Note that we applied the modified step 2
method, feasibility check, mentioned in II-A. On RTS-GMLC
system, the feasibility check performed on 5685 constraints is
165.12 seconds, 106 constraints have the potential of becoming

TABLE I: RTS-GMLC/IEEE 118-bus System Security Con-
straint Screening Results

Dominating Constraint Detection Time (Seconds)

Test Case RTS-GMLC IEEE118 RTS-GMLC  IEEE118
Originall 28,800 69,492 - -
Step-12 5,685 9,643 0.18 1.12
Step-23 106 101 165 332
Online* 99 69 0.0025 0.0024
Verification’ 91 53 147 326

1'N-1 security constraints modeled

2 Apply step-1 to the test system

3 Apply step-2 offline screening including uncertainty

4 Apply step-2 online screening with real-time data

5 Verify the results by applying step-2 offline method with real-time data

dominating, perform LP calculation 106 times takes 0.338
seconds. However, if we solve the LP directly 5685 times,
it will take 1035.03 seconds. It is observed that the significant
computation burden of step-2, even for a relatively small size
system, calls for a more efficient method real-time security
constraint monitoring.

Online Screening is then applied with real-time net power
injection. Online method is based on the closed-form equa-
tion (7). It takes 2.5ms and 2.4 ms to finish the calculation on
RTS-GMLC system and IEEE 118-bus system, respectively.
Compared with 165 and 332 seconds for offline screening,
the online version shows significant advantage in processing
time. When the uncertainty is materialized, the online screen-
ing finds 99 out of 106 security constraints are potentially
dominating in RTS-GMLC, and 69 out of 101 in IEEE 118-
bus system. Apply Verification to same data set used in Online
Screening, 91 out of 99 constraints are truly dominating in
RTS-GMLC system, and 53 out of 69 in IEEE 118-bus system.
It shows that the online component has relatively accurate
predication of the dominating constraints. The comparison
between the two medium size test system shows that the pro-
posed method is consistent in terms of dominating constraint
detection and computational performance.

3) Power Flow Upper Bound Comparison: Power flow
upper bounds determined in Online Screening and Verification
are compared as (14). For RTS-GMLC test case, it is normally
distributed with mean of 0.002, variance 0.00008, 95% of the
data points resides between -0.7% and 2.4%. For IEEE 118-
bus test case, it is normally distributed with mean of 0.0032,
variance 0.0028, 95% of the data points resides between -
15.6% and 16.2%.

B. MISO Systems

1) screening for Watchlist: ITn MISO, “watchlist” is heuris-
tically selected from N-1 security constraints. It is noted that
the amount of “watchlist” is significantly smaller than that
of N-1 security constraints. On average, there are 216 (=
7,782/36) security constraints per time interval (MISO uses
36 planned periods for DAM cases). System topology varies
in each time interval, usually around 3,000 buses are present
in the topology, it can be aggregated into 1,000 buses after
inspecting the PTDF matrix. The objective of this part is to
model the least amount of security constraints in DAM SCUC



TABLE II: Watchlist Security Constraint Screening Result

Case#  Watchlist! Step-1>  Step-2®> Timel* Time2> Time®
2 6,732 3,653 3231 288 8.83  11.72

13 6,910 4,040 2,418 5.8 1098  16.78
26 5,902 3,506 3,162 145 8.24 9.68
41 7,974 4551 4,047 333 1041  13.75
62 11,618 6203 2,722 354 2020 23.74
Average’ 7,782 4,103 3492 286 1017  13.03

! Watchlist security constraints modeled

2 Number of potentially dominating constraints detected by step-1
3 Number of dominating constraints detected by step-2

4 Step-1 time, in seconds

5 Step-2 time, in seconds

6 Offline screening total time, in seconds

7 Average over 78 MISO cases
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Fig. 6: Screening Performance on MISO Case 11

model that is necessary to maintain solution integrity. Two-step
security constraint screening helps achieve that. Apply Offline
Screening, dominating constraint detection rate and processing
time are shown in Table II. On average, 45% (=3,492/7,782) of
watchlist constraints are identified as dominating, processing
time is 13.03 seconds by feasibility checking in step-2. It
means that we could eliminate half of watchlist in MISO’s
current SCUC engine.

If we use LP problem (C) directly in step-2, then the
processing time is 53.28 seconds on average. This fact mo-
tivates us to use a slightly modified step-2 to extract dual
values for Offline Screening study. Firstly, perform feasibility
check on the remaining constraints from step-1, and then
solve problem (C) on the dominating constraints detected
previously. For example, row “Average” in Table II shows
611 (=4,103-3,492) constraints are identified as redundant, and
we would like to use feasibility check rather than solving
problem (C) to identify them. The modified step-2 reduced
solution time and memory usage tremendously, particularly
for N-1 security constraints. The disproportional relationship
of security constraints rates between the two experiments is
due to MISO watchlist is a small but creditable subset of the
security constraints, while IEEE 118-bus test case contains all
N-1 security constraints.

2) Offline-Online to all N-1 security constraints: The
offline-online simulation is conducted in this part. The system
contains 9,498 branches and 3,306 buses (can be aggregated
into 1,100 buses by inspecting the PTDF matrix) in base case
topology and 805 line outage contingencies are regarded as
creditable (i.e. not limited to N-1 contingency). There are
totally 15,291,780 security constraints per time interval. It
is emphasized that this study includes all creditable security
constraints, while watchlist is a very small subset heuristically
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Fig. 7: Screening Computation Time on MISO Case 11

determined. Experiment results are presented in Fig. 6 and
7. In this case, 20% wind generation and 10% load side
uncertainties are included during Offline Screening while
considering all creditable security constraints. Test data is gen-
erated from uniform distribution to simulate real-time power
injection, they are bounded by offline net power injection
intervals, used in Online Screening.

In Offline Screening stage, 16,100 security constraints are
identified as dominating, it is 0.1% (=16,100/15,291,780) of
the original constraints. In Online Screening stage, uncertainty
is materialized and 5,797 out of 16,100 constraints are iden-
tified as dominating. Verification shows 5,436 out of 16,100
constraints are determined to be truly dominating. Verification
constraint set is a subset of Online Screening’s. According
to Fig. 6, 94% (=5,436/5,797) security constraints discovered
in Online Screening are truly dominating constraints given
simulated real-time data.

From Fig. 7, we see that Offline Screening takes 2,355
(=2,1114244) seconds to screen all the creditable contingen-
cies. On the other hand, Online Screening only takes 11.57
seconds to attain the upper bounds of power flow for all the
potentially dominating security constraints. If we use offline
method, which is used in Verification, then the processing
takes 2,310 seconds. Power flow upper bounds determine
in Online Screening and Verification are compared in Fig.
8. The difference determined by equation (14) is normally
distributed with mean of 0.0066, variance 0.0002, 95% of the
data points reside between -2.14% and 3.46%. It shows the
online method is not just fast but also accurate enough in real
world applications. It is worth noting that by implementing
the feasibility check in step-2, memory usage and calculation
speed can be drastically improved. Offline method requires
to save dual variables from step-1. Without using feasibility
check, 85,861 sets of dual variables would need to be stored.
With feasibility check, only 16,100 sets of the dual variables
remains. Memory usage reduction is at least 81% [= (85,861-
16,100)/85,861].

3) Modeling Virtual Transactions: The termination criteria
for MISO DAM SCUC (MILP) Optimization are either MILP
gap reaches 0.1% or solving time passes 1,200 seconds. The
following techniques are applied to MISO DAM SCUC model
to help solve the MILP problem.

o Scenario 0 (S0): The MILP model is optimized directly
without any acceleration technique, and its result serves
as the baseline for benchmark.

o Scenario 1 (S1): SCUC model is optimized after remov-
ing redundant security constraints by two-step screening
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TABLE III: MISO DAM SCUC Solution Summary

Case#  Methods Time! Gap2 Jind3 Jlazy4  gPBS
SO 1,047  0.069% 6,732 - -
2 N 734 0.067% 3,231 - -
S2 207 0.072% 1,057 2,174 32
SO 481 0.050% 6,910 - -
13 S1 111 0.072% 2,418 - -
S2 86 0.096% 893 1,525 10
SO 1,204 1.214% 5,902 - -
26 S1 1,200  0.524% 3,162 - -
S2 1,201 0.404% 1,101 2,061 8
SO 1,204  0.120% 7,974 - -
41 S1 711 0.095% 4,047 - -
S2 803 0.084% 812 3,235 29
SO 1,205 0.181% 11,618 - -
62 S1 379 0.054% 2,722 - -
S2 280 0.072% 691 2,031 7

1 SCUC optimization time, in seconds

2 MIP gap of SCUC when optimization has completed, in percent

3 Active security constraints present in the current model

4 Lazy security constraints set in the current model

5 Lazy security constraints that deems to be active after optimization
(put back to the Industrious constraint pool)

offline method.

e Scenario 2 (S2): It uses methods presented in Section
III-B, i.e. integrating lazy constraints into the two-step
screening. -y is set to 0.8.

Table III presents detailed in formation for five typical cases,
including optimization time, MILP gap, constraint reduction,
and lazy constraint counts. For easy cases, i.e., case 2 and case
13, we are mainly interested in solution time improvements
by aforementioned approaches. In case 2, S1 improves SCUC
solution time by 313 (=1,047 - 734) seconds with 52% security
constraint reduction. S2 has the least optimization time, it finds
2,174 out of 3,231 constraints are lazy constraints, and at the
end of optimization, 32 constraints are deemed to be active
and put back to the MILP model. The overall time saving is
840 seconds. Similarly, overall SCUC solution time is reduced
by 2 in case 13.

In the meantime, Table III shows the details for three hard
cases, i.e. Case 26, 41, and 62. In case 26, none of them is

able to get a solution with gap smaller than 0.1%. However,
S2 provides smallest MILP gap, i.e., 0.404%, while SO and S1
finds gap of 1.214% and 0.524%, respectively. As shown in
Table III, S2 helps reach the targeted MILP gap in case 41 and
62. In case 41, the original approach, i.e., SO, get a MILP gap
of 0.12% after 1,200 seconds. S2 is able to reduce the MILP
gap to 0.084% in 803 seconds. Case 64 shows even more
promising results. S2 gets a solution with MILP gap of 0.072%
in 280 seconds. It is noted that S1 performs slightly better than
S2 in Case 41. That is partly because some lazy constraints
are put as industrious ones. According to our experiments on
MISO cases, S2 outperforms S1 most of the time. However,
we also see S1 outperforms S2 in some cases. In real-world
production systems, we suggest use multiple servers to solve
the SCUC problem using various screening techniques.

Fig. 9 illustrates the SCUC optimization time comparison
for 43 cases where the solution time is over 300 seconds by
S0 among 78 cases. The red bars are the solution time of the
current MISO SCUC engine and the blue bars illustrate that
of S2. It is observed that the proposed approach outperforms
the original approach for all cases except Case 44. The
improvement is either from solution time or solution quality.
The first 11 cases are hard cases, which SO cannot reach 0.1%
MILP gap in 1,200 seconds. As shown in Fig. 9, S2 is able to
reach the desired gap for nine of 11 cases. The difference of
the objective value of SCUC is as large as $70,000 for hard
cases. For the remaining two cases, i.e., Case 26 and 64, the
proposed approach is not able to reach the desired gap neither.
However, S2 is able to improve the solution quality, i.e. get a
smaller MILP gap. The proposed approach typically removes
over 50% of the watchlist constraints selected by MISO. It
generally reduces solution time by 50% in easy cases.

In real-world systems, operators have to heuristically select
credit security constraints, meeting timeliness requirement.
In the MISO case studies, it is about 150-200 per time
interval. The proposed offline approach can screen 600 con-
straints every second. Considering up to 50% constraints are
redundant, constraint screening helps systematically include
security constraints when building the model. The accuracy of
power flow upper bounds determined by the two-step approach
depends on the upper/lower bounds of the net power injection
interval. Typically, ISOs run multiply DAM models to estimate
the discrepancy between DAM and RTM. We can apply the
offline approach to all these cases, i.e. save dual variables
(~200 MB per case). To check real-time system security, we
can apply the online approach by re-using dual variables from
the case that is closest to the real-time situation. From our
experience, S1 (without setting lazy constraint) can serve as a
bottom line, and it generally offers a satisfiable solution within
time limit.

V. CONCLUSION

In this paper, we propose a security constraint screening
method that effectively integrates the virtual transactions and
captures system changes in real time. Virtual supply and
demand often account for a large portion of market. In the
meantime, the system is constantly changing in real time.
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