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ABSTRACT

Due to increasing concerns of data privacy, databases are being
encrypted before they are stored on an untrusted server. To en-
able search operations on the encrypted data, searchable encryp-
tion techniques have been proposed. Representative schemes use
order-preserving encryption (OPE) for supporting efficient Boolean
queries on encrypted databases. Yet, recent works showed the pos-
sibility of inferring plaintext data from OPE-encrypted databases,
merely using the order-preserving constraints, or combined with an
auxiliary plaintext dataset with similar frequency distribution. So
far, the effectiveness of such attacks is limited to single-dimensional
dense data (most values from the domain are encrypted), but it re-
mains challenging to achieve it on high-dimensional datasets (e.g.,
spatial data), which are often sparse in nature. In this paper, for the
first time, we study data inference attacks on multi-dimensional
encrypted databases (with 2-D as a special case). We formulate
it as a 2-D order-preserving matching problem and explore both
unweighted and weighted cases, where the former maximizes the
number of points matched using only order information and the lat-
ter further considers points with similar frequencies. We prove that
the problem is NP-hard, and then propose a greedy algorithm, along
with a polynomial-time algorithm with approximation guarantees.
Experimental results on synthetic and real-world datasets show
that the data recovery rate is significantly enhanced compared with
the previous 1-D matching algorithm.
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1 INTRODUCTION

Data outsourcing has become popular in recent years. Small busi-
nesses or individual users choose to delegate their data storage
to public cloud servers (such as Amazon EC2 or Google Cloud)
to save operational costs. Meanwhile, data breaches happen at an
increasing rate, which compromises users’ privacy. For instance,
the Yahoo! data breaches reported in 2016 affected 3 billion user
accounts [31]. This is exacerbated by recent scandals of data mis-
use (such as the Facebook-Cambridge Analytica case [30]), which
increases the level of distrust from users. To address this issue,
end-to-end encryption is commonly adopted to encrypt the data
before it is uploaded and stored on an untrusted server. In order to
enable efficient utilization over encrypted data (such as answering
queries), many cryptographic techniques called searchable encryp-
tion (SE) [4, 12, 28] have been proposed. The main challenge for
SE is to simultaneously provide flexible search functionality, high
security assurance, and efficiency. Among existing SE schemes,
Order-Preserving Encryption (OPE) [7, 8, 21, 26] has gained wide
attention in the literature due to its high efficiency and functionality.
In particular, OPE uses symmetric key cryptography and preserves
the numeric order of plaintext after encryption, which supports
most Boolean queries such as range query. Well-known systems
for encrypted database search using OPE include: CryptDB [27],
Google Encrypted Bigquery Client [17], and Microsoft Always En-
crypted Database [23].

Unfortunately, many early OPE schemes were shown to leak
more information beyond what is necessary (i.e., the order between
plaintexts). Therefore, schemes that satisfy ideal security guaran-
tees (that only the order is leaked) have been proposed [21, 26].
However, recent research [19, 24] showed that it is possible to
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infer/recover a significant portion of plaintexts from their OPE
ciphertext, using only the ciphertext order relationships, as well
as some auxiliary dataset with data frequencies similar to a target
dataset. For example, Naveed et al. [24] attacked an encrypted medi-
cal database where users’ age column is encrypted using OPE. Later,
the attack was improved by Grubb et al. [19], with an additional
restriction of non-crossing property in the matching algorithm.

We note that, to date, all the successful inference attacks against
OPE are limited to one-dimensional data [19, 24]. That is, even
though a database may have multiple numeric columns/dimensions,
where each of them being encrypted by OPE, each of these columns
are treated separately when they are matched with plaintext values.
This works well for dense data, i.e., where most of the values from
the whole data domain have corresponding ciphertexts present in
the database, such as age [19]. Intuitively, the denser the data is, the
more effective the attack is, because more constraints imposed by
the ciphertext order reduces the uncertainty of their corresponding
plaintext values. However, for multi-dimensional databases, apply-
ing such 1-D matching algorithms on each dimension separately can
yield results far from optimal, since it neglects that for each pair of
data tuples the order-preserving constraints on all the dimensions
must be held jointly, leading to a much larger search space than the
actual one and therefore more ambiguity in matching. In addition,
for higher dimensional data (such as spatial/location data), the data
tuple tends to be increasingly sparsely distributed in the domain,
which invalidates the one-dimensional matching approach (unless
the ciphertext and known plaintext datasets are highly similar with
each other). Therefore, we wonder whether it is still feasible to
recover OPE-encrypted data tuples for multi-dimensional, sparse
databases? This turns out to be a very challenging problem.

In this paper, we study data inference attacks against multi-
dimensional encrypted databases by jointly considering all the
dimensions and leveraging only the ciphertext tuples’ order and fre-
quency information, with the help of an auxiliary plaintext dataset
with similar frequencies (the same assumption is adopted by many
previous works). We formulate the order-preserving matching prob-
lem first in 2-D but later extend it to 3-D and higher dimensions.
In the unweighted case, given an OPE-encrypted database and
an auxiliary plaintext dataset, each containing a set of points in
2-D, we maximize the number of points in a matching from the
ciphertext to the plaintext, where order-preserving property must
be simultaneously satisfied in both dimensions. Such a matching is
called a non-conflicting matching in which the x/y projection of
one edge in the matching cannot contain the projection of another
edge in the matching. In general we also consider point frequency
(the number of records with the same value), points matched with
a smaller frequency difference are given higher weights and we
maximize the total weights of the matching.

We show that our problem can also be formulated as an integer
programming problem (ILP), and prove its NP-hardness by reducing
it to sub-permutation pattern matching problem. Then we propose
a greedy algorithm, along with an approximation algorithm with
O(n?-> log3 n) runtime and an approximation factor of O(+y/n). This
algorithm exploits the geometric structure of the problem, which is
based on the idea of finding jointly heaviest monotone sequences
(i.e., sequence of points with either increasing or decreasing order

Yanjun Pan, et al.

on each dimension) inside the auxiliary and target datasets. The
main contributions of this paper are summarized as follows:

(1) To the best of our knowledge, we are the first to study data in-
ference attacks against multi-dimensional OPE-encrypted databases
by jointly considering all the dimensions simultaneously. We for-
mulate a 2-D order-preserving matching problem and show its
NP-hardness.

(2) We design two 2-D order-preserving matching algorithms,
including a greedy and a polynomial time algorithm with approx-
imation guarantees. We consider both unweighted and weighted
cases, with different weight functions. We further explore efficiency
enhancement using tree-based data structures. We also discuss ex-
tensions to higher dimensions. These algorithms have independent
interests beyond the applications in this paper.

(3) We evaluate the efficiency and data recovery rate of our
algorithms over both synthetic and real-world datasets for different
application scenarios, including location-based services, census
data, and medical data. Our results suggest that when the ciphertext
dataset is highly similar to a subset of the plaintext dataset, the
greedy min-conflict algorithm performs the best; but, in general,
when these two datasets have arbitrary intersections and are less
similar, our monotone matching algorithm performs better. Overall,
the recovery rate of our 2-D algorithms significantly outperforms
1-D matching algorithms when the data is sparse in each dimension.

2 BACKGROUND AND RELATED WORK

2.1 Order-Preserving Encryption

Order-Preserving Encryption (OPE) [26] is a special encryption,
where the order of ciphertexts is consistent with the order of plain-
texts. For instance, assume there are two plaintexts (m1, m2) and
their OPE are ciphertexts ([m1], [m2]), where [m;] is the encrypted
version of m; by following the common notations in previous stud-
ies [19, 26]. If my < my, then [my] < [mg]. With such property,
comparison and sorting could be performed on encrypted data
directly, without the need to access plaintext. While some OPEs
are probabilistic and only reveal the order of data items [21], prob-
abilistic OPEs increase the ciphertext size or require client-size
storage, which scale poorly on sparse data. Most efficient OPEs are
deterministic, and thus also reveal the frequency of data items [26].
In this paper, we focus on inference attacks on deterministic OPEs.

2.2 Inference Attacks on OPE via 1-D Matching

While the security of OPEs has been proved formally under Ordered
Chosen-Plaintext Attacks [26], several studies propose inference
attacks to evaluate the privacy leakage of OPE ciphertexts. For
instance, Naveed et al. [24] proposed an inference attack, named
cumulative attack, on 1-D OPE by leveraging frequency leakage
only. The authors address the attack by running the Hungarian
algorithm. Grubbs et al. designed [19] leakage abuse attacks on 1-D
OPE ciphertexts. The authors utilize both frequency and order leak-
age, and formulate the attack as a dynamic programming problem
[19]. This leakage abuse attack performs faster than the cumulative
attack and derives a higher recovery rate. We briefly describe this
leakage abuse attack below.

Given an OPE-encrypted dataset A = {[a1], [az2], ..., [an]} and
an unencrypted dataset B = {b1, ba, ..., by, } similar to A, an attacker
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tries to infer the plaintexts of A without decrypting OPE ciphertexts,
by leveraging the plaintexts of B as well as the order and frequency
information of A and B. Without loss of generality, the attack as-
sumes that A and B are sorted, where [a;] < [a;] for any i < j,
and by < b; for any k < I. The attacker also assumes n < m. Let
F4([a]) and Fp(b) be the Cumulative Distribution Function (CDF)
of the OPE ciphertexts of dataset A and the plaintexts of dataset B
respectively. Now, construct a bipartite graph H on vertex set A,
B, in which the weight of an edge between vertex [a;] and vertex
b; is defined as w([[a;], bj) = k — |Fa([a;]) — Fp(b;)| , where k is a
pre-defined parameter and can be any integer greater than 1.

The attacker finds a max-weight bipartite matching in H that
is (one-dimensional) order-preserving (i.e., a vertex early in A is
mapped to an early vertex in B). Intuitively, suppose we plot the
points of A and B on two parallel lines in their order. If we draw
the edges in the matching, these edges could not cross. That is, if
[ai] and b; are matched, any vertex in [aj ]| with k < i cannot be
matched with vertex by with £ > j. Therefore, such a matching is
also called a non-crossing matching. The max-weight non-crossing
matching can be found in time O(mn) via dynamic programming.
If vertex b; is matched with vertex [a;], this attacker infers b; as
the plaintext of OPE ciphertext [a;].

2.3 Other Attacks on Encrypted Databases

In addition to cumulative attacks and leakage abuse attacks, some
other attacks have also been proposed against OPE. Durak et al. [14]
proposed sort attacks on 2-D data encrypted by OPE. This attack
performs a non-crossing matching on each dimension separately,
and then improve the recovery results by evaluating inter-column
correlation. Bindschaedler et al. [6] proposed an inference attack
against property-preserving encryption on multi-dimensional data.
This attack operates column by column. Specifically, it first recov-
ers the column encrypted with the weakest encryption primitive,
and then infers the next column encrypted by a stronger primitive
by considering correlation. The attack is formulated as a Bayesian
inference problem. It also leverages record linkage and machine
learning to infer columns that are strongly encrypted. In compari-
son, our proposed matching algorithms aim at optimally recover
data tuples containing two or more dimensions as a whole. We
utilize the order and frequencies of the 2-D tuples, instead of single-
dimension order and frequency in previous works. In addition, we
do not need explicit prior knowledge about the data correlations
across dimensions within an encrypted dataset.

Finally, reconstruction attacks [16, 22] recover plaintexts on any
searchable encryption that supports range queries. Unlike inference
attacks, a reconstruction attack does not require a similar dataset
as a reference but recover data based on access pattern leakage
from a large number of range queries. However, reconstruction
attacks often assume range queries are uniformly distributed, except
[18], which is based on statistical learning theory. These works are
orthogonal to this work.

In this paper, we design two 2-D order-preserving matching algo-
rithms that jointly consider the data ordering on 2D. We also extend
the 1-D matching algorithm in [19] to 2-D data for comparison. It
turns out all the algorithms have advantages and limitations, as we
describe in the evaluation and conclusion sections.
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3 MODELS AND OBJECTIVES

System Model. In the system model, there are two entities, a client
and a server, where a client has a dataset (e.g., a location dataset)
and needs to store it on the server. Due to privacy concerns, this
client will encrypt the dataset before outsourcing it to the server.

We assume that the client encrypts the data using deterministic
OPE, such that the server will be able to perform search operations
(e.g., range queries) over encrypted data without decryption. We
assume that each dimension of the data is encrypted separately
with OPE, such that search can be enabled for each dimension. The
client’s dataset is denoted as Q and its encrypted version as [Q].

Threat Model. We assume that the server is an honest-but-
curious attacker, who is interested in revealing the client’s data
but does not maliciously add, modify, or remove the client’s data.
In addition, we assume that the server is able to possess a similar
dataset P (in plaintext) as the client’s dataset. In addition, we as-
sume that P and Q have significant common data points. For those
points in Q that are also contained in P, they have similar frequency
distributions. For example, Q can be the location data from Uber
users, and P can be a USGS spatial database (Q can be considered
to be randomly sampled from P). Or P and Q can be two location
check-in datasets from two different social networking apps with
partially overlapping locations.

Objectives. The attacker’s goal is to perform inference attacks
to maximally infer/recover the plaintext of encrypted database
[Q] without decryption, using only [Q] and P with the cipher-
text/plaintext order, either with or without frequency of points in
both datasets. He aims at recovering the database points exactly.
We define the recovery rate as the primary metric to measure the
privacy leakage of the inference attack.

Recovery rate: If an attacker infers n points, m’ of which are
correct inference (the same as their true plaintext points), then the
recovery rate is m’ /n. In addition, we consider both the unweighted
version of the above metrics, where each unique point/location
is counted once, or the weighted version where the frequency is
considered as well (number of ‘copies’ of the same point, e.g. the
number of customers in a restaurant). The former can be regarded
as “point-level” and the latter is “record-level”. Intuitively, to maxi-
mize the weighted recovery rate, the points with larger frequencies
should be correctly matched with high priority.

4 2-D ORDER-PRESERVING MATCHING

We formulate an order-preserving matching problem in two di-
mensions. Let P and Q be two finite sets of points in the plane.
P=A{p1,p2, - .pn}tand Q = {q1,q2, - ,qm}. If p € P is matched
to g € Q, we denote it as an edge (p, q) and sometimes also de-
noted as p<>q. We say that a matching M between P and Q is order
preserving if there exist two monotone functions ¢, ¢ such that if
(p,q) € M (for p € P,q € Q) then q.x = Y(p.x), q.y = $(p.y).
There is an alternative, equivalent way to define order preserving,
in terms of “conflicts”. We say that two edges (p,q) € M and
(p'.q") € M are in x-conflict with each other if the x-projection
(interval) of one edge contains the x-projection (interval) of the
other edge; the notion of being in y-conflict is defined similarly. We
say that a matching M is a non-conflicting matching of P and Q if
it does not contain any x-conflicting or y-conflicting pair of edges.
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From the definitions, it is easy to see that a matching M is order
preserving if and only if it is a non-conflicting matching.

& a2
D / as
b /

Ds
Figure 1: In this matching M between P = {p1,p2,p3} and Q =
{q1, 92, q3}, the edge (p2, q2) is in y-conflict with edge (p1, q1) and in
x-conflict with edge (ps, g3).

Besides, we say that a point p” dominates p’’, and write p”’ < p’,
if either (i) p”".x < p’.x, or (ii) p”’.x = p’.x and p’.y < p”’.y. With
this notation, two pairs (p;, q;), (pir, qj) with pi» < p; but gj < gy
are in conflict.

4.1 Unweighted v.s. Weighted Version

In this paper, we study the problem of finding a maximum cardi-
nality, or a maximum-weight order preserving matching.

In the unweighted version, we maximize the number of edges
in a non-conflict matching between P and Q. This formulation
does not use the information on data frequencies. To incorporate
knowledge on data frequencies from P and Q, we can define the
weight of a matching and ask for the non-conflict matching with
maximum weight. The goal is to minimize the total difference of
the frequencies between each ciphertext and its matched plaintext
points. Note that this may or may not be equivalent to maximize
the recovery rate. This depends on the similarity of the two datasets
P and Q: when the frequencies of the same points are close in either
dataset, max-weight matching will likely maximize recovery rate.

There are several possible choices of weight function. Assume
f@i), f(q;) are the frequencies of points (resp. ) p; € P,q; € Q.
Then the weight of matching p; to g; could be one of the following
weight function:

(1) weight(pi<>q;) = min{f(p;), f(qi)}. The rational for this
weight function is that if we consider f(p;) and f(q;) as
indicating the normalized number of items at point p; and
qj, then min{f(p;), f(q;)} indicates the maximum number
of items could be matched.

(2) weight(p;>q;) = k= |f(pj) = f(g;)| , where k is a manually-
picked constant, usually as maximum of all f(q;) and f(q;).
This is the cost function used in [19].

4.2 Integer Programming Formulation

Given two sets of points, P and Q, we define a variable x;; that
takes value 1 if p; <>q; and 0 otherwise. Now, we can formulate our
matching problem as follows:

Maximize Z xij - w(pieq;)

ij

Subject tonij <1, Vi
J

inj <1, vj
i

xij +xpjy <1, MUDRGY

s. t. (pi,qj) is in conflict with (py, ;).
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The first two constraints imply that one point can only be matched
to one other point. The last inequality is the non-conflicting con-
straint.

4.3 Related Results on Maximum Independent
Sets

Our problem can be phrased as a (weighted) maximum independent
set (MIS) problem in the conflict graph, defined below.

Conflict Graph Geons(P X Q, Econf): the graph whose nodes are
pairs of potentially matched points, one from P and one from Q,
and whose edges represent the conflict relationship: (4, v) € Econf
if the matched point pair u € P x Q is in conflict with the matched
point pair v € P X Q.

Unfortunately, this graph in our settings is enormous, and its
node set has a cardinality quadratic in the size of the input. Thus,
pursuing our problem as a maximum independent set problem is
likely impractical. In general, MIS has no polynomial-time constant
factor approximation algorithm (unless P = NP), and is Poly-APX-
complete, meaning it is as hard as any problem that cannot be
approximated within a polynomial factor [3]. However, there are
efficient approximation algorithms for restricted classes of graphs.
In bounded degree graphs, effective approximation algorithms are
known with approximation ratios that are constant for a fixed value
of the maximum degree; for instance, a greedy algorithm that forms
a maximal independent set by, at each step, choosing a minimum-
degree vertex in the graph and removing its neighbors, achieves
an approximation ratio of (A + 2)/3 on graphs with maximum
degree A [20]; hardness of approximation for such instances is
also known [5], and MIS on 3-regular 3-edge-colorable graphs is
APX-complete [2].

5 NP-HARDNESS

The problem of finding a maximum-cardinality order preserving
matching (i.e., the unweighted case) is NP-hard. Therefore, the
weighted setting is also NP-hard.

We establish this by using a reduction from the problem PATTERN
MATCHING PROBLEM FOR PERMUTATIONS (PMPP) [9], which asks the

following: Given a permutation T = (t1, t2, . . ., ) of the sequence
(1,2,...,n) and a permutation S = (sg, s2, . . ., Sg) of the sequence
(1,2,...,k), for k < n, determine if there exists a subsequence,

T" = (ti, tiy, .- ., ti, ), of T of length k (with i1 < iz < -+ < ig)
such that the elements of T’ are ordered according to the permuta-
tion S, ie., suchthatt;; < tj, ifand onlyif's; < s;. We map a PMPP
input pair of permutations, (T, S), to a pair of points, (P, Q), in the
plane: Specifically, P is the set {(i,t;) : 1 < i < n} of n points corre-
sponding to the permutation T, and Q is the set {(i,s;) : 1 < i < k}
of k points corresponding to the permutation S. It now follows from
the definition of an order preserving matching, and the specification
of the PMPP, that there exists an order preserving matching of size
k between P and Q if and only if there is a subsequence T’ of T of
length k such that the elements of T’ are ordered according to the
permutation S. It follows that our (unweighted) order preserving
matching problem is NP-hard.

THEOREM 5.1. Given two point sets P, Q C R, it is NP-complete to
decide if there exists an order preserving matching M of cardinality
min{|P|, |Q|} between P and Q.
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6 ALGORITHMS
6.1 Greedy Minimum-Conflict Matching

In this heuristic, we create an order preserving matching M C
P X Q in a greedy manner. We start with M empty, and at each
iteration we add to M the edge that has the minimum number
of conflicted edges among all potential future edges that could
be selected. This heuristic is reminiscent of the minimum-degree
heuristic of Halldérsson and Radhakrishnan [20] which shows that
similar heuristics provide a (A + 2)/3 approximation for finding a
maximum independent set in graphs having maximum degree A;
however, in our setting, A might be Q(|P||Q|), making this bound
uninteresting.
Formally, define for p € P,q € Q

s(p,q) = Z{w(p’, q") | (¢’,q’) conflicts with (p, q) but

not with edges currently in M}

and greedily select (p*, ¢*) to minimize s(p, q). A straightforward
algorithm computes s(p, ) directly (in time O(n?)) for each of the
O(n?) candidate edges (p, ), in order to select each edge to be
greedily added to M. Overall, this is O(n%).

6.1.1 Unweighted Case. Here, to expedite the algorithm to avoid
the time O(n*) (per edge selected), we propose a weighted random
sampling approach. We could find (p*, ¢*) in amortized time O(1)
per pair (p;, gj). This is done in two steps: We first compute for
each p; the number n™(p;) of point p € P above and to the left
of p;. Similarly we define n” (p;), n™>(p;), n>(p;) and m” (gj),
m> (gj) m> (gj)- Then the number of matching edges that are in
conflict with (p;, ¢;) can be computed by evaluating the products
nD(pi) . mD(qj), where [ is one of the 4 directions », K, \, v .
As easily observed, the number of conflicts is

s(pi. qj) = n™(pi)m” (g;) + n” (pi)m™(g;)

+nY (p)m™(gqj) +n™>(pi)m* (gj)
0,0

=nm-— Z m; n;

Oex, /0N

We pick the edge minimizing this expression. Of course, once
one edge is picked during the greedy matching algorithm, these
numbers need to be recomputed, since multiple edges are not valid
anymore.

We note that after the first iteration, when partial matching M
is not empty, the values of n‘l.:’, mjEI reflect only edges not violating
edges of M. However, computing these values for every p;, g; in
time O(n?) is straightforward.

6.1.2  Weighted case. We propose two basic methods.

Random sampling: We consider all n? potential edges, PxQ, com-
pute the weight of each, and pick a random sample R of (expected)
size k, where the probability of picking (p, q) is

w(p. q)
Sy W)
Next, we greedily find a min-violation edge, with the violation

computed with respect to R only. So the expected running time for
this stage is O(n?k?) per edge added to M.
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This method can be enhanced further, for weight function (1),
where the weight function is computed with respect to a random
sample of vertices picked according to their weight.
e-approximation via scaling algorithm. For the weight function
(1) (w(pi, qj) = min{f(p;), f(q;)}), a faster approach is proposed.

Let Winin, Wmax be the minimum weight and maximum weight.
Consider the logarithmic number of levels {wpin(1 + €)'} for every
i such that wiin(1 + €)* < Wmpay. At the i’th step, we consider only
the vertices with weight > wyin(1+¢)?, find the number ¢; of edges
conflicting (p, q) using the unweighted O(n?) algorithm, and sum
the (rescaled) values Y (1 + €)'{; as an estimation of s(p, ¢). It is
easy to see that an (unscaled) edge conflicting (p, q) will be counted
once, with its weight error bounded by a factor of (1 + ¢).

6.2 Greedy via Monotone Sequences

Given P, we say that a sequence (p1, p2,,,pPx) is an monotone in-
creasing sequence if p;.x < p;y1.x and p;.y < pis1.y, for all i.
Then, a subset P’ C P is said to be a monotone increasing subset if
the sequence obtained by ordering P’ by x-coordinates is a mono-
tone increasing sequence. Analogously we define sequences and
subsets that are monotone decreasing.

In the previous section, we discussed methods to augment the
matching by a single edge greedily. One might wonder if it is pos-
sible and whether it is more efficient to add a collection of edges
at each time. For example, Dynamic Programming proved useful
in the 1-D case, and it is tempting to apply it for the 2-D case as
well. However, applying similar techniques for the 2-D case seems
very challenging. It is extremely hard to define sub-problems that
are independent of each other, in the sense that the solution of
one does not depend on the solution to another. However, with a
non-trivial hint on the approximation we obtain, we could define
such a solution for monotone sequences. Refer to Algorithm 1 for
the pseudo-code.

Essentially, if we opt to match p € P to g € Q, then any decisions
taken on the quadrant below and to the left of p could not (in
an order-preserving matching) affect matching in the quadrant
opposite this quadrant, consisting of points above and to the right
of p. Similar observations hold for every pair of opposite quadrants.
This observation suggests our search for monotone sequences.

Formally a sequence pl = {p1...px} € P is an increasingly
monotone sequence if p; < pjy1,fori =1...k — 1. Decreasing se-
quences are defined analogously. Obviously if in a matching M, p;
is matched to ¢; € Q then the sequence {q; . .. qx} is increasingly
monotone as well. The heaviest monotone sequence is a monotone
sequence maximizing the sum of weights of its edges. Given a par-
tial matching M, we describe in this section an algorithm that finds
monotonic sequences Pl cPandQl c Q,a matching between
them that does not conflict with M and is of maximum weight.
We use this algorithm as follows: In iterations, we find an optimal
monotonically (increasing or decreasing) sequence with respect to
M, include the corresponding matched edges to M and continue.
Therefore we concentrate on an efficient implementation of finding
a single monotone matching. We discuss the case of monotoni-
cally increasing sequences. The case for monotonically decreasing
sequences is handled analogously.
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Algorithm 1: Finding heaviest increasing monotone chain

1 Input: P and Q (sorted in an increasing order), and a partial matching
MCPXQ;

2 Init: Initialize the an orthogonal range search 7 for X,

3 andsetc(n) =0, Vp € 7.

4 fori=1to|P|do

5 for j =1t |Q|do

6 if y = (pi, q;) does not conflict any edge in M then

7 Set the range (rectangle)

8 R = {(-e0, pi.y) X (=00, g;.%) X (=00, q;.y)}

9 Perform a range query in 7~ with the range R to obtain a
set 2= {51 ...nr} of O(log® n) nodes in 7°

/* Each n; € E corresponds to a region fully

contains in R. */
10 Let pu* be argmax{c(n)|n € E}
1 Set c(p) = w(pi, q;) + c(p”)
12 for each 1, € T ancestor of u do
13 | Set e(n}) = max {e(r)). e()}
14 end
15 end
16 end
17 end

Let X = PxQ = {(pi.qj) | pi € P,q; € Q}. By abusing notation,
we also consider each (p;, g;) as a point in R4, with coordinates
(pi-x,pi.y,qi.x, q;.y). We first describe the algorithm when X lies
in R%, and then show that we could orthogonally project X into R3,

and handle all querie as orthogonal three-dimensional range queries.

For a point p; € P we define P<p, = {p € P |p is dominated by p; }.
For (p, q), (p’,q’) € X we say that (p’, q¢") dominates (p, q), and write
(p,q) < (p'.q")iff p < p’ and q < ¢’. Similarly for y = (p, q) (for
p € P,q € Q), we write w(u) to denote the weight of the matching
edge (p,q). Fix p = (pi,qj). We define c[p] to be the maximum
sum of weights of edges in any maximum increasing monotone
matching by using only points of P<p, to points of Q«4; and ending
at p1.

To obtain a fast asymptotic running time, we will use Algorithm
1. We maintain a 4-D orthogonal range tree 7(X) [13]. Each leaf in
the tree is associated with a node in X. Each internal node n € T is
associate with

(1) A range R, which is a rectangle in R*.

(2) A subset X € X which includes all points of X inside Ry,.

(3) The point p* € Xy, which is the last point of the heaviest

monotone sequence ending at y*, for y* € Xj;.

(4) c(n) as the weight of this sequence.

The idea is to use an Orthogonal Range search data structure
for the points in X. We scan these points in topological increasing
order, so if p < p’ then we access y’ after accessing p. This will
guarantee that c(y) is fully computed at this point.

LEMMA 6.1. We could preprocess X into a data structure T~ such
that the preprocessing time and space are both O(n® log* n), given a
query axis-parallel rectangle R C R*, we could find a set of O(log* n)
nodes £ = {n1...ni} of T, each corresponds to a subset Xy, € X
that is fully contained in R, and each is associated with a value c[ ;)
which is max{c[p’] | p’ € Xy, }.
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Next, we notice that filtering points of X based on their first
coordinate is not necessary. That is, we only need to store each
point of (p, ) € X using only (p.y, q.x, q.y), since a query on other
regions yields that the result is zero, and will not affect the query
time nor the correctness.

LEMMA 6.2. So the data structure is in R3. Hence the query time
of Lemma 6.1 is improved to O(log® n). The space requirement also
drops to O(n? log? n).

Proor. Since all weights are positive, and the points of P are
accessed in increasing x order lexicographically. Once accessing
c((pi, q;)), its value is strictly positive only due to a point p” € P
such that p’.x < p;.x. Therefor there is no need to filter nodes of
7 based on their very first coordinate. O

While orthogonal range trees are almost optimal theoretically,
they suffer from several drawbacks. The space required is super-
linear, and in practical applications, they tend to be inferior to other
hierarchical spatial data structures like kD-trees. The latter could
be applied with linear memory, and faster search time on realistic
data.

LEMMA 6.3. Instead of the orthogonal range tree, if we use a 3-
dimensional kD-tree, the space requirement will be linear, while the
asymptotic running time per a query will increase to o(Xx|1-1/d)y =
0((n®)*3) = O(n*/3).

Running time and correctness . Given a partial matching M, it takes
0O(n?log® n) to find the heaviest (max-weight) monotone matching
not conflicting M. At this point these edges are added to M, and the
process repeats. Since P could be decomposed into < y/n monotone
sequences [15], the number of iterations is < +/n. The overall run-
ning time is O(n?*® log® n), and the space is O(|P||Q| log? n). Here
n = max{[P|,[Q[}.

6.3 Lower bounds

It is interesting to note that improving the bound below Q(n?) is
unlikely, given that even if the points are on a line, then our problem
is quite similar to the edit distance problem, and LCS problems, for
which recent lower bounds are proven under the SETH assumption
[1]. Hence we are only logarithmic distance away from the claimed
optimum.

6.4 Approximation guarantees

LEMMA 6.4. Let opt be the maximum weight of the maximum
order-preserving matching. Then by using the monotone sequences

algorithm we obtain a matching of weight > opt /+/min{|P|,|Q|}.

Proor. Consider any partition of P into monotone sequences.
By the classical results of Paul Erdos and George Szekeres [15]
t < \/n. Let M* be the set of all these edges, and let M*|PT be the

set of edges with one endpoint in PiT (for every 1 < i < I). Since
the sum of all matched edges in M* is opt, the sum of all edges
M| ,;; must be > opt/I. This cost is obviously not larger than the

1
maximum we find along any monotone sequence. O
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6.5 Extension to Multi-Dimensional Data

Extending our matching algorithms to handle three or more di-
mensional data is well-motivated. Many databases have multiple
columns of numerical data. For example, in the census database,
there may be age, salary, zip code, etc. The data becomes increas-
ingly sparse as the number of dimensions gets larger. Matching
every single column separately will yield far from optimal results.

All our algorithms are still valid in this setting, where P and Q
are points in R¥ for a constant d, d > 3. However, the (worst-case)
guarantees and running time of the monotone-greedy algorithm
degrade. Since the longest monotone sequence of a set of n points
in R? is ©(n'/?), we are only guaranteed a matching of weight
> opt/ n/4, where opt is the optimum weight order-preserving
matching.

7 EVALUATION

In this section, we use both synthetic data and real-world datasets
to evaluate the performance of our matching algorithms and attack
effectiveness.

7.1 Data Sources

Synthetic Data Generation. The synthetic data is generated in
the following manner. Let R be a set of uniformly distributed points
in a 2-D area. Here R is a superset of the data. Then, for every
r € R assign a point weight f’(r), which is a uniformly distributed
pseudo-random integer on the interval [ fnin, frmax]- Let P denote
the auxiliary/plaintext dataset and let Q denote the target/ciphertext
dataset. P and Q are generated as follows.

For the case of Q being a subset of P: copy R into P, and then
generate Q from R with the following sampling process. For each
r € R, we randomly and independently copy it as a point ¢ € Q
with probability f € (0,1). And if r was copied to a point q €
0O, then the frequency f’(q) is assigned to be a binomial variable
with probability ppin, and expectation f’(r) - ppino- For the other
case that P intersects with Q, we sample the points of both P and
Q from R randomly and independently with probability f, and
similarly the weight of copied points are both sampled from a
binomial distribution with probability py;,,. Finally, the integer
point weights are normalized to frequency for P and Q in both

cases, e.g. f(p) = Lz,, Vp € P, and similarly for f(g).
Zp’ ep f'(p )

The rationale of point frequency following a binomial distribu-
tion is that, in the real-world, the set of people who appear in one
dataset may choose to be present or not in another dataset inde-
pendently at random, e.g., Uber users can be regarded as randomly

sampled from a USGS/census location database.

Real-world Data Sources. We use three real-world datasets to
evaluate the performance of algorithms, and we start with the loca-
tion check-in data from the social networking application Brightkite
[11]. The location coordinates are expressed in latitude and longi-
tude. We extract the records in a certain area (latitude: [37.700887,
37.826664], longitude: [-122.512317, -122.386762]), and take the data
collected from Apr. 2008 to Apr. 2009 as the auxiliary (unencrypted)
dataset while the data from Sep. 2009 to Sep. 2010 as the target (en-
crypted) dataset. We randomly choose 500 and 300 points from the
reference and target datasets as P and Q to perform the matching.
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Then we process the data in P and Q by discretizing it into location
grids whose granularity is tunable, which means we reserve a cer-
tain number of digits after the decimal point to represent that grid.
For example, if we reserve three digits (0.001 as unit grid length
which is approximately 0.1 km in the real-world), there are 399
and 247 points in auxiliary and target datasets respectively. Note
that we do not need to actually encrypt the target dataset in our
evaluation since it does not change the matching result, as we only
use the order and frequency information of the points.

We also use the city and town population totals for the US esti-
mated by the United States Census Bureau [10]. To get the location
information, we choose the 313 cities with latitude and longitude
provided by Wikipedia [29] (excluding Jurupa Valley), associating
with 2010 census data as the auxiliary dataset P. And we sample
180 cities, combining with the corresponding 2018 estimated pop-
ulation data to get the target dataset Q. Each city record has two
dimensional location data, namely x and y coordinates representing
latitude and longitude, with its population as frequency.

In addition to location datasets, we also evaluate our attacks
in the context of medical data. We leverage a patient discharge
dataset, which contains the distribution of inpatient discharges
by principal diagnosis group for each California hospital [25]. We
randomly sample the records collected in 2009 and 2014 as the
auxiliary dataset and target dataset. More specifically, we select
the numerical facility ID as the x coordinate. For the y coordinate,
we convert the categorical diagnosis result to numerical data by
assigning a specific diagnosis group to a numeric number. The
frequency of each facility-diagnose pair is the recorded number
of patients. There are overall 448 facilities in the original dataset,
we first sample 30 of them as the facilities in P, and then sample
20 out of these 30 samples as facilities in Q. Then we extract the
diagnosis and number of patients of the selected facilities to get
y coordinate and frequency. In the end, we obtain 425 records in
auxiliary dataset P and 272 records in the target dataset Q.

7.2 Evaluation Metrics

For a given ciphertext record ¢ = [m] with plaintext m, the attack
algorithm matches ¢ to a corresponding plaintext as m’, which
might be different from m. We say c is correctly matched iff m” = m.
Note that, when P intersects with Q, for a ciphertext ¢ = [m] € Q,
its plaintext m may or may not be in the set P. Hence we define
the record set of ciphertexts and plaintexts as Q, and P, by: Q, =
{c€eQlc=1[m]meP},P ={me P|[m] € Q}) Define
I;j = 1if point p; is correctly matched to point q;, where (p;, q;)
is a plaintext-ciphertext pair; I;; = 0 otherwise. We will use the
following metrics for performance evaluation:
(1) Point recovery rate: Z;leQl I;j /10l
(2) Record recovery rate (ratio of people in correctly matched
J=10l i=|Q|
locations): 3. filij/ % fi.
j=1 i=1
(3) Normalized objective: defined as the objective of an algo-
rithm divided by the optimal ILP solution, which is to eval-
uate how far the algorithm is from the optimal objective
function in the ILP formulation.
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Note that there is an upper bound (the best one can do) for the
recovery ratio. In the case of Q is a subset of P, the upper bound
is 1; in the case of Q intersects with P, the upper bound is: |Qy| /
|Q| for metric (1), and }; f;i for metric (2). To remove the impact
i€Q,
of the size of the intersegtion, we use normalized recovery rate by
dividing the recovery ratios with its upper bound in this paper.
Besides, we found that the data density and the similarity of
the frequency distributions for 1-D and 2-D data are two factors
that have significant impact on algorithm performance, hence, we
define the following metrics to quantify them:

(1) Overlap ratio: the ratio of distinct records of ciphertext in Q
to plaintext in P. For 2-D data, it is |Q| / |P|, for 1-D data,
e.g.itis |Qr |/ |Px| on x-axis, where |Q,_| and |Px| are the
number of unique x coordinates in Q, and P respectively. If
we define the data density as the ratio of distinct points in Q
against total points in the domain of all possible plaintexts,
then the overlap ratio can be regarded as the effective data
density. When this ratio is small, the data is also sparse.

(2) Overall frequency similarity: denote the union of points in P
and Q as R. For a point r in R, its frequency on P is defined as
the frequency of the corresponding point if it appears in P,
otherwise is 0. In this way, we get the frequency distribution
of all these points on P and Q as f(p) = (f(p1).- - » f(pr))

and f(q) = (f(q1)," - . f(qx)). The overall frequency simi-
larity of P and Q defined with Hellinger distance is:

k
H(F ) £(@) = <2 35 (VP - VFlan)
i=1

For Hellinger distance, we have 0 < H(f(p), f(g)) < 1, and
when H(f(p), f(q)) is greater, the larger overall distance is
between two distributions, and the less the similarity is.

Also, we would like to compare the performance with a direct
extension of the 1-D matching algorithm in [19] to 2-D data in the
following way. We separately use the 1-D matching algorithm on
each of the dimensions (x or y coordinates), with the order of x
(or y) and marginal frequency of each x (or y) coordinate. For a
point (cx, ¢y) in the target dataset, let my and my be the matched
coordinates respectively, then we let (my, my) as the matched point
for (cx, ¢y). Denote the point recovery rate of the 1-D matching on
x and y coordinates as rx and ry, then for the point recovery rate
on 2-D data r we have r < min{ry,ry}.

7.3 Experimental Results for Synthetic Data

We implemented our proposed algorithms in Matlab, and all the
experiments are run on a HPC cluster with 28 cores and 168GB
memory. We first simulate with synthetic data, where we consider
two cases: Q is a subset of P, and Q intersects with P. For each
case, we generate 30 different datasets, and under each dataset, we
evaluate the algorithm performance with the two weight functions
defined in Sec. 4.1.

7.3.1 Synthetic Data, Case 1: Q is a subset of P. In this case, we
set P = R, |P| = 60, Q is obtained from P with the data generation
method described above, where f§ = 0.6, ppin, = 0.7. Results are
shown in Fig. 2 (a)-(b), where “mix” means we find both increasing
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Figure 2: Synthetic data: point recovery rate (rpoint), record recov-
ery rate (Frecorq) and objective (bar, left y axis), and running time in
seconds (line, right y axis).

and decreasing monotonic matchings, and iteratively select the
better one. We can see that the weight function 1 and 2 result in
similar performance for all the 2-D algorithms, except that solution
to ILP is the best (but also takes much more time, as shown in the
right y axis). In this case the min-conflict algorithm outperforms
all the other monotone sequences based algorithms under both
weight functions. This is because the datasets are pretty similar. In
addition, our 2-D matching algorithms significantly outperform the
extended 1-D algorithm (about 10%) since our algorithms take into
account the order of x and y axis simultaneously.

7.3.2  Synthetic Data, Case 2: P intersects with Q. In this case, we
set |R| = 100, and both P and Q are obtained from R with the data
generation method above, where f and py;,, are same as case 1.
Besides, about 60% of points in P and Q are common. The aver-
age normalized recovery rates (point or record) of each algorithm
among 30 runs are shown in Fig. 2 (c)-(d). Still, both weight func-
tions have similar performance. And also, the monotone sequence
based algorithm and the min-conflict algorithm have comparable
performance. In addition, the normalized objectives are still close
to that of the ILP solution (> 60%). Compared with case 1, the
normalized recovery rates are slightly lower for all the algorithms
in case 2, since the two datasets are less similar and are noisier.

7.4 Experimental Results on Real-world
Datasets

We also evaluate our matching algorithms on the real-world datasets
described at the beginning of this section. As the results in Sec. 7.3
show that the two weight functions have comparable performance,
we only apply the weight function (2) on real-world datasets. For
the monotone based greedy algorithms, we use either increasing
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Figure 3: Brightkite: (a) point and record recovery rate; (b) distribu-
tion of locations when reserve 4 digits

or decreasing order, but only show the best results and refer it as
the monotone solution.

7.4.1 Location-based Brightkite Check-ins. The recovery rate of
point and record with different matching algorithms are shown in
Fig. 3 (a), we can see that the finer the granularity is, the lower the
recovery rate we get. And when we have a coarse granularity, e.g.,
when 3 digits reserved, the points on 1-D are much denser, and also
the frequency distributions are more similar (as shown in Table
1), so the extended 1-D algorithm outperforms our 2-D algorithms.
However, as the granularity becomes finer, the points are sparser
and the frequencies are less similar, then the monotone matching
algorithm performs the best. Note the lower recovery rate for finer
granularity, this is because the algorithm relies on the frequency dif-
ference between two points, and both the ciphertext and plaintext’s
frequency distributions become more homogeneous under higher
granularity, which increases the ambiguity in weighted matching
(inclined to be unweighted). The solution to ILP should give us the
actual optimal result, but unfortunately, since there are too many
constraints in ILP, we cannot get its solution in time.

Table 1: Effective data density and Hellinger distance for
Brightkite

. Effective data density Hellinger distance
Reserved digits
ey | x y | ey | x y
3 0.2807 | 0.8125 | 0.7283 | 0.5885 | 0.1786 | 0.2228
4 0.1869 | 0.4595 | 0.4053 | 0.6393 | 0.6837 | 0.4773
5 0.1740 | 0.2120 0.2 0.6493 | 0.6214 | 0.6340

7.4.2  City and Town Population. The matching results are given
in Table 2, where the monotone matching yields a slightly lower
recovery rate than the min-conflict algorithm, but better perfor-
mance than the extended 1-D algorithm. Similarly, we compute the
Hellinger distance (frequency similarity) and effective data density.
It turns out that these two values on 2-D and 1-D data are the same,
which are 0.5241 and 0.5751 respectively. This is because all the
x and y coordinates are unique, so as to the (x, y) data. Hence, in
this case for the extended 1-D algorithm and 2-D algorithms, the
effects of the data density and frequency distribution are the same,
the recovery rate here is decided by the advantage of the algorithm
itself. The 2-D algorithms outperform the extended 1-D algorithm
on inference against 2-D OPE databases because we jointly consider
the data orders on x and y coordinates. And we use an extreme
case in Fig. 4 to show the benefits of considering data orders in 2D.
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Table 2: Results for city and town population dataset

Recovery rate
Point | Record
1-D 0 0 11.8830
Min-conf. | 0.3778 | 0.3653 264.0576
Monotone 0.25 0.2631 309.6281

Algorithm Runtime (s)
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Figure 4: 1D-matching of [19] vs. 2D-matching. Most points in P
have frequency = 0, or do not appear in Q. These elements are repre-
sented by dots. Each block in P is associated with a unique permuta-
tion of (1, 2,3). In Q, only one of these 6 blocks appear. Obviously the
2-D data uniquely indicates which blocks of P is isomorphic to Q, and
(if only blocks are considered), this block is revealed as the unique op-
timal solution to the order-preserving matching. On the other hand,
the sum of each row and column are identical, so no meaningful 1-D
matching is possible. By replacing 3 by an arbitrary d, we indicate
that no less than d! false matching are possible.

7.4.3  Patient Discharge Data by Principal Diagnosis. We show the
results of patient discharge data in Table 3, where the monotone
matching yields very high recovery rates. Surprisingly, the min-
conflict algorithm yields zero recovery rates, even worse than the
extended 1-D algorithm. First, we observe that for the adopted
dataset, the set of y coordinates of the auxiliary and target datasets
are the same, which correspond to 19 principal diagnosis groups
(hence the data density on y-axis is 1 in Table 4), and this results in
an exact matching on y-axis for all the algorithms. The recovery rate
is decided by the matching on x-axis, which means the 2-D order
cannot benefit 2-D algorithms much. Hence in this case the noisy
data frequency has a more significant impact on the min-conflict
algorithm, which leads to poor performance.

Table 3: Matching results for patient discharge data

Recovery rate
Point | Record
1-D 0.0684 | 0.0290 0.249
Min-conf. 0 0 517.9117
Monotone 0.8441 | 0.8995 196.3670

Reserved digits Runtime (s)

Table 4: Effective data density and Hellinger distance for pa-
tient discharge data

Effective data density Hellinger distance

(x,y) x y | (xy) x y
0.6188 | 0.6667 1 0.3798 | 0.1665 | 0.0960

8 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of inferring data from OPE-
encrypted databases by jointly considering the multi-dimensional
order and frequency of data tuples. We formulate it as a multi-
dimensional matching problem, prove the NP-hardness, and pro-
pose efficient algorithms to solve it. Our algorithms exploit the
geometric structure of the problem. We show that the monotone
matching could be obtained in asymptotic time O(n?-® log® n) that is
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comparable to the O(n?) 1-D algorithm. A simpler greedy algorithm
is also provided. Experimental results on synthetic and real-world
datasets show that our algorithms perform better than the extended
1-D algorithm when the data is sparse. In addition, the performance
gain depends on data density and similarity of frequency distribu-
tions, but 2-D matching is more robust to noise (or dissimilarities
between the frequency distributions). Our algorithms shed more
light on the security evaluation of OPE encrypted databases.

Extensions and Future Directions: Our experiments indicate
that the 1-D matching algorithm is likely to cluster the data into
meaningful regions, and match region in an order-preserving way,
using the aggregated data in each region. We think clustering could
average/smooth the impact of noise, downsize the size of the prob-
lem, and circumvent issues when the datasets use a different scale
of coordinates, hence we would like to combine clustering with
monotone matching algorithms. Clustering the plaintext P could be
obtained based on geographic/geometric vicinity straightforwardly,
thus we assume it is given in the rest for simplicity. However, find-
ing corresponding regions in the ciphertext Q is not obvious, as
distances are distorted. Furthermore, finding these clusters cannot
be decoupled from the matching process. We have obtained some
preliminary results and we briefly describe them here. For any two
rectangles Ry, Ry the cost of matching the point of P inside R; to
points of Q inside Ry depends on the difference between their cor-
responding sum of frequencies in each rectangle. Our optimization
function is to simultaneously obtain a clustering of Q and an one-to-
one order-preserving matching to P’s cluster. The 1-D problem can
easily be solved in time O(n?), using dynamic programming. This
leads to an O(n®) algorithm for the 2-D problem for matching mono-
tonic set of points in P to a weakly-monotonic set of rectangles in
Q. We omit details due to lack of space. Testing the effectiveness of
these approaches is left for future work.
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