
Data Inference from Encrypted Databases: A Multi-dimensional
Order-Preserving Matching Approach

Yanjun Pan
University of Arizona
Tucson, AZ, USA

yanjunpan@email.arizona.edu

Alon Efrat
University of Arizona
Tucson, AZ, USA

alon@cs.arizona.edu

Ming Li
University of Arizona
Tucson, AZ, USA

lim@email.arizona.edu

Boyang Wang
University of Cincinnati
Cincinnati, OH, USA
boyang.wang@uc.edu

Hanyu Quan
Huaqiao University
Xiamen, China

quanhanyu@hqu.edu.cn

Joseph Mitchell
Stony Brook University
Stony Brook, NY, USA

joseph.mitchell@stonybrook.edu

Jie Gao
Stony Brook University
Stony Brook, NY, USA
jgao@cs.sunysb.edu

Esther Arkin
Stony Brook University
Stony Brook, NY, USA

estie@ams.stonybrook.edu

ABSTRACT

Due to increasing concerns of data privacy, databases are being

encrypted before they are stored on an untrusted server. To en-

able search operations on the encrypted data, searchable encryp-

tion techniques have been proposed. Representative schemes use

order-preserving encryption (OPE) for supporting efficient Boolean

queries on encrypted databases. Yet, recent works showed the pos-

sibility of inferring plaintext data from OPE-encrypted databases,

merely using the order-preserving constraints, or combined with an

auxiliary plaintext dataset with similar frequency distribution. So

far, the effectiveness of such attacks is limited to single-dimensional

dense data (most values from the domain are encrypted), but it re-

mains challenging to achieve it on high-dimensional datasets (e.g.,

spatial data), which are often sparse in nature. In this paper, for the

first time, we study data inference attacks on multi-dimensional

encrypted databases (with 2-D as a special case). We formulate

it as a 2-D order-preserving matching problem and explore both

unweighted and weighted cases, where the former maximizes the

number of points matched using only order information and the lat-

ter further considers points with similar frequencies. We prove that

the problem is NP-hard, and then propose a greedy algorithm, along

with a polynomial-time algorithm with approximation guarantees.

Experimental results on synthetic and real-world datasets show

that the data recovery rate is significantly enhanced compared with

the previous 1-D matching algorithm.

CCS CONCEPTS

• Security and privacy → Cryptanalysis and other attacks;

Database and storage security; • Theory of computation → De-

sign and analysis of algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Mobihoc ’20, October 11ś14, 2020, Boston, MA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8015-7/20/10. . . $15.00
https://doi.org/10.1145/3397166.3409135

KEYWORDS

Data inference, encrypted database, order-preserving encryption,

multi-dimensional matching

ACM Reference Format:

Yanjun Pan, Alon Efrat, Ming Li, Boyang Wang, Hanyu Quan, Joseph

Mitchell, Jie Gao, and Esther Arkin. 2020. Data Inference from Encrypted

Databases: A Multi-dimensional Order-Preserving Matching Approach. In

International Symposium on Theory, Algorithmic Foundations, and Proto-

col Design for Mobile Networks and Mobile Computing (Mobihoc ’20), Oc-

tober 11ś14, 2020, Boston, MA, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3397166.3409135

1 INTRODUCTION

Data outsourcing has become popular in recent years. Small busi-

nesses or individual users choose to delegate their data storage

to public cloud servers (such as Amazon EC2 or Google Cloud)

to save operational costs. Meanwhile, data breaches happen at an

increasing rate, which compromises users’ privacy. For instance,

the Yahoo! data breaches reported in 2016 affected 3 billion user

accounts [31]. This is exacerbated by recent scandals of data mis-

use (such as the Facebook-Cambridge Analytica case [30]), which

increases the level of distrust from users. To address this issue,

end-to-end encryption is commonly adopted to encrypt the data

before it is uploaded and stored on an untrusted server. In order to

enable efficient utilization over encrypted data (such as answering

queries), many cryptographic techniques called searchable encryp-

tion (SE) [4, 12, 28] have been proposed. The main challenge for

SE is to simultaneously provide flexible search functionality, high

security assurance, and efficiency. Among existing SE schemes,

Order-Preserving Encryption (OPE) [7, 8, 21, 26] has gained wide

attention in the literature due to its high efficiency and functionality.

In particular, OPE uses symmetric key cryptography and preserves

the numeric order of plaintext after encryption, which supports

most Boolean queries such as range query. Well-known systems

for encrypted database search using OPE include: CryptDB [27],

Google Encrypted Bigquery Client [17], and Microsoft Always En-

crypted Database [23].

Unfortunately, many early OPE schemes were shown to leak

more information beyond what is necessary (i.e., the order between

plaintexts). Therefore, schemes that satisfy ideal security guaran-

tees (that only the order is leaked) have been proposed [21, 26].

However, recent research [19, 24] showed that it is possible to

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Yanjun Pan, et al.

infer/recover a significant portion of plaintexts from their OPE

ciphertext, using only the ciphertext order relationships, as well

as some auxiliary dataset with data frequencies similar to a target

dataset. For example, Naveed et al. [24] attacked an encrypted medi-

cal database where users’ age column is encrypted using OPE. Later,

the attack was improved by Grubb et al. [19], with an additional

restriction of non-crossing property in the matching algorithm.

We note that, to date, all the successful inference attacks against

OPE are limited to one-dimensional data [19, 24]. That is, even

though a database may have multiple numeric columns/dimensions,

where each of them being encrypted by OPE, each of these columns

are treated separately when they are matched with plaintext values.

This works well for dense data, i.e., where most of the values from

the whole data domain have corresponding ciphertexts present in

the database, such as age [19]. Intuitively, the denser the data is, the

more effective the attack is, because more constraints imposed by

the ciphertext order reduces the uncertainty of their corresponding

plaintext values. However, for multi-dimensional databases, apply-

ing such 1-Dmatching algorithms on each dimension separately can

yield results far from optimal, since it neglects that for each pair of

data tuples the order-preserving constraints on all the dimensions

must be held jointly, leading to a much larger search space than the

actual one and therefore more ambiguity in matching. In addition,

for higher dimensional data (such as spatial/location data), the data

tuple tends to be increasingly sparsely distributed in the domain,

which invalidates the one-dimensional matching approach (unless

the ciphertext and known plaintext datasets are highly similar with

each other). Therefore, we wonder whether it is still feasible to

recover OPE-encrypted data tuples for multi-dimensional, sparse

databases? This turns out to be a very challenging problem.

In this paper, we study data inference attacks against multi-

dimensional encrypted databases by jointly considering all the

dimensions and leveraging only the ciphertext tuples’ order and fre-

quency information, with the help of an auxiliary plaintext dataset

with similar frequencies (the same assumption is adopted by many

previous works). We formulate the order-preserving matching prob-

lem first in 2-D but later extend it to 3-D and higher dimensions.

In the unweighted case, given an OPE-encrypted database and

an auxiliary plaintext dataset, each containing a set of points in

2-D, we maximize the number of points in a matching from the

ciphertext to the plaintext, where order-preserving property must

be simultaneously satisfied in both dimensions. Such a matching is

called a non-conflicting matching in which the x/y projection of

one edge in the matching cannot contain the projection of another

edge in the matching. In general we also consider point frequency

(the number of records with the same value), points matched with

a smaller frequency difference are given higher weights and we

maximize the total weights of the matching.

We show that our problem can also be formulated as an integer

programming problem (ILP), and prove its NP-hardness by reducing

it to sub-permutation pattern matching problem. Then we propose

a greedy algorithm, along with an approximation algorithm with

O(n2.5 log3 n) runtime and an approximation factor of O(
√
n). This

algorithm exploits the geometric structure of the problem, which is

based on the idea of finding jointly heaviest monotone sequences

(i.e., sequence of points with either increasing or decreasing order

on each dimension) inside the auxiliary and target datasets. The

main contributions of this paper are summarized as follows:

(1) To the best of our knowledge, we are the first to study data in-

ference attacks against multi-dimensional OPE-encrypted databases

by jointly considering all the dimensions simultaneously. We for-

mulate a 2-D order-preserving matching problem and show its

NP-hardness.

(2) We design two 2-D order-preserving matching algorithms,

including a greedy and a polynomial time algorithm with approx-

imation guarantees. We consider both unweighted and weighted

cases, with different weight functions. We further explore efficiency

enhancement using tree-based data structures. We also discuss ex-

tensions to higher dimensions. These algorithms have independent

interests beyond the applications in this paper.

(3) We evaluate the efficiency and data recovery rate of our

algorithms over both synthetic and real-world datasets for different

application scenarios, including location-based services, census

data, and medical data. Our results suggest that when the ciphertext

dataset is highly similar to a subset of the plaintext dataset, the

greedy min-conflict algorithm performs the best; but, in general,

when these two datasets have arbitrary intersections and are less

similar, our monotone matching algorithm performs better. Overall,

the recovery rate of our 2-D algorithms significantly outperforms

1-D matching algorithms when the data is sparse in each dimension.

2 BACKGROUND AND RELATED WORK

2.1 Order-Preserving Encryption

Order-Preserving Encryption (OPE) [26] is a special encryption,

where the order of ciphertexts is consistent with the order of plain-

texts. For instance, assume there are two plaintexts (m1,m2) and
their OPE are ciphertexts (Jm1K, Jm2K), where Jmi K is the encrypted
version ofmi by following the common notations in previous stud-

ies [19, 26]. Ifm1 < m2, then Jm1K < Jm2K. With such property,

comparison and sorting could be performed on encrypted data

directly, without the need to access plaintext. While some OPEs

are probabilistic and only reveal the order of data items [21], prob-

abilistic OPEs increase the ciphertext size or require client-size

storage, which scale poorly on sparse data. Most efficient OPEs are

deterministic, and thus also reveal the frequency of data items [26].

In this paper, we focus on inference attacks on deterministic OPEs.

2.2 Inference Attacks on OPE via 1-D Matching

While the security of OPEs has been proved formally under Ordered

Chosen-Plaintext Attacks [26], several studies propose inference

attacks to evaluate the privacy leakage of OPE ciphertexts. For

instance, Naveed et al. [24] proposed an inference attack, named

cumulative attack, on 1-D OPE by leveraging frequency leakage

only. The authors address the attack by running the Hungarian

algorithm. Grubbs et al. designed [19] leakage abuse attacks on 1-D

OPE ciphertexts. The authors utilize both frequency and order leak-

age, and formulate the attack as a dynamic programming problem

[19]. This leakage abuse attack performs faster than the cumulative

attack and derives a higher recovery rate. We briefly describe this

leakage abuse attack below.

Given an OPE-encrypted dataset A = {Ja1K, Ja2K, ..., JanK} and
an unencrypted dataset B = {b1,b2, ...,bm } similar toA, an attacker

Data Inference from Encrypted Databases Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

tries to infer the plaintexts ofAwithout decrypting OPE ciphertexts,

by leveraging the plaintexts of B as well as the order and frequency

information of A and B. Without loss of generality, the attack as-

sumes that A and B are sorted, where Jai K < Jaj K for any i < j,

and bk < bl for any k < l . The attacker also assumes n ≤ m. Let

FA(JaK) and FB (b) be the Cumulative Distribution Function (CDF)

of the OPE ciphertexts of dataset A and the plaintexts of dataset B

respectively. Now, construct a bipartite graph H on vertex set A,

B, in which the weight of an edge between vertex Jai K and vertex

bj is defined asw(Jai K,bj) = κ − |FA(Jai K) − FB (bj)| , where κ is a

pre-defined parameter and can be any integer greater than 1.

The attacker finds a max-weight bipartite matching in H that

is (one-dimensional) order-preserving (i.e., a vertex early in A is

mapped to an early vertex in B). Intuitively, suppose we plot the

points of A and B on two parallel lines in their order. If we draw

the edges in the matching, these edges could not cross. That is, if

Jai K and bj are matched, any vertex in Jak K with k < i cannot be

matched with vertex bℓ with ℓ > j. Therefore, such a matching is

also called a non-crossing matching. The max-weight non-crossing

matching can be found in time O(mn) via dynamic programming.

If vertex bj is matched with vertex Jai K, this attacker infers bj as
the plaintext of OPE ciphertext Jai K.

2.3 Other Attacks on Encrypted Databases

In addition to cumulative attacks and leakage abuse attacks, some

other attacks have also been proposed against OPE. Durak et al. [14]

proposed sort attacks on 2-D data encrypted by OPE. This attack

performs a non-crossing matching on each dimension separately,

and then improve the recovery results by evaluating inter-column

correlation. Bindschaedler et al. [6] proposed an inference attack

against property-preserving encryption on multi-dimensional data.

This attack operates column by column. Specifically, it first recov-

ers the column encrypted with the weakest encryption primitive,

and then infers the next column encrypted by a stronger primitive

by considering correlation. The attack is formulated as a Bayesian

inference problem. It also leverages record linkage and machine

learning to infer columns that are strongly encrypted. In compari-

son, our proposed matching algorithms aim at optimally recover

data tuples containing two or more dimensions as a whole. We

utilize the order and frequencies of the 2-D tuples, instead of single-

dimension order and frequency in previous works. In addition, we

do not need explicit prior knowledge about the data correlations

across dimensions within an encrypted dataset.

Finally, reconstruction attacks [16, 22] recover plaintexts on any

searchable encryption that supports range queries. Unlike inference

attacks, a reconstruction attack does not require a similar dataset

as a reference but recover data based on access pattern leakage

from a large number of range queries. However, reconstruction

attacks often assume range queries are uniformly distributed, except

[18], which is based on statistical learning theory. These works are

orthogonal to this work.

In this paper, we design two 2-D order-preserving matching algo-

rithms that jointly consider the data ordering on 2D. We also extend

the 1-D matching algorithm in [19] to 2-D data for comparison. It

turns out all the algorithms have advantages and limitations, as we

describe in the evaluation and conclusion sections.

3 MODELS AND OBJECTIVES

SystemModel. In the system model, there are two entities, a client

and a server, where a client has a dataset (e.g., a location dataset)

and needs to store it on the server. Due to privacy concerns, this

client will encrypt the dataset before outsourcing it to the server.

We assume that the client encrypts the data using deterministic

OPE, such that the server will be able to perform search operations

(e.g., range queries) over encrypted data without decryption. We

assume that each dimension of the data is encrypted separately

with OPE, such that search can be enabled for each dimension. The

client’s dataset is denoted as Q and its encrypted version as JQK.
Threat Model. We assume that the server is an honest-but-

curious attacker, who is interested in revealing the client’s data

but does not maliciously add, modify, or remove the client’s data.

In addition, we assume that the server is able to possess a similar

dataset P (in plaintext) as the client’s dataset. In addition, we as-

sume that P and Q have significant common data points. For those

points inQ that are also contained in P , they have similar frequency

distributions. For example, Q can be the location data from Uber

users, and P can be a USGS spatial database (Q can be considered

to be randomly sampled from P). Or P and Q can be two location

check-in datasets from two different social networking apps with

partially overlapping locations.

Objectives. The attacker’s goal is to perform inference attacks

to maximally infer/recover the plaintext of encrypted database

JQK without decryption, using only JQK and P with the cipher-

text/plaintext order, either with or without frequency of points in

both datasets. He aims at recovering the database points exactly.

We define the recovery rate as the primary metric to measure the

privacy leakage of the inference attack.

Recovery rate: If an attacker infers n points,m′ of which are

correct inference (the same as their true plaintext points), then the

recovery rate ism′/n. In addition, we consider both the unweighted

version of the above metrics, where each unique point/location

is counted once, or the weighted version where the frequency is

considered as well (number of ‘copies’ of the same point, e.g. the

number of customers in a restaurant). The former can be regarded

as łpoint-levelž and the latter is łrecord-levelž. Intuitively, to maxi-

mize the weighted recovery rate, the points with larger frequencies

should be correctly matched with high priority.

4 2-D ORDER-PRESERVING MATCHING

We formulate an order-preserving matching problem in two di-

mensions. Let P and Q be two finite sets of points in the plane.

P = {p1,p2, · · · ,pn } and Q = {q1,q2, · · · ,qm }. If p ∈ P is matched

to q ∈ Q , we denote it as an edge (p,q) and sometimes also de-

noted as p↔q. We say that a matchingM between P andQ is order

preserving if there exist two monotone functionsψ ,ϕ such that if

(p,q) ∈ M (for p ∈ P ,q ∈ Q) then q.x = ψ (p.x), q.y = ϕ(p.y).
There is an alternative, equivalent way to define order preserving,

in terms of łconflictsž. We say that two edges (p,q) ∈ M and

(p′,q′) ∈ M are in x-conflict with each other if the x-projection

(interval) of one edge contains the x-projection (interval) of the

other edge; the notion of being in y-conflict is defined similarly. We

say that a matching M is a non-conflicting matching of P and Q if

it does not contain any x-conflicting or y-conflicting pair of edges.

Data Inference from Encrypted Databases Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

6 ALGORITHMS

6.1 Greedy Minimum-Conflict Matching

In this heuristic, we create an order preserving matching M ⊆
P × Q in a greedy manner. We start with M empty, and at each

iteration we add to M the edge that has the minimum number

of conflicted edges among all potential future edges that could

be selected. This heuristic is reminiscent of the minimum-degree

heuristic of Halldórsson and Radhakrishnan [20] which shows that

similar heuristics provide a (∆ + 2)/3 approximation for finding a

maximum independent set in graphs having maximum degree ∆;

however, in our setting, ∆ might be Ω(|P | |Q |), making this bound

uninteresting.

Formally, define for p ∈ P ,q ∈ Q

s(p,q) =
∑

{w(p′,q′) | (p′,q′) conflicts with (p,q) but
not with edges currently inM}

and greedily select (p∗,q∗) to minimize s(p,q). A straightforward

algorithm computes s(p,q) directly (in time O(n2)) for each of the

O(n2) candidate edges (p,q), in order to select each edge to be

greedily added to M. Overall, this is O(n4).

6.1.1 Unweighted Case. Here, to expedite the algorithm to avoid

the time O(n4) (per edge selected), we propose a weighted random

sampling approach. We could find (p∗,q∗) in amortized time O(1)
per pair (pi ,qj). This is done in two steps: We first compute for

each pi the number n −→(pi) of point p ∈ P above and to the left

of pi . Similarly we define n −→(pi), n
−→ (pi), n

−→ (pi) and m −→(qj),
m

−→ (qj),m
−→ (qj). Then the number of matching edges that are in

conflict with (pi ,qj) can be computed by evaluating the products

n□(pi) ·m□(qj), where □ is one of the 4 directions −→, −→, −→ ,
−→
.

As easily observed, the number of conflicts is

s(pi ,qj) = n −→(pi)m −→(qj) + n −→(pi)m −→(qj)

+ n
−→
(pi)m

−→ (qj) + n
−→ (pi)m

−→
(qj)

= nm −
∑

□∈ −→, −→,
−→
,−→

m□
i n□i

We pick the edge minimizing this expression. Of course, once

one edge is picked during the greedy matching algorithm, these

numbers need to be recomputed, since multiple edges are not valid

anymore.

We note that after the first iteration, when partial matching M
is not empty, the values of n□i ,m

□
j reflect only edges not violating

edges ofM . However, computing these values for every pi ,qj in

time O(n2) is straightforward.

6.1.2 Weighted case. We propose two basic methods.

Random sampling: We consider alln2 potential edges, P×Q , com-

pute the weight of each, and pick a random sample R of (expected)

size k , where the probability of picking (p,q) is

k
w(p,q)

∑

p′,q′ w(p′,q′)

Next, we greedily find a min-violation edge, with the violation

computed with respect to R only. So the expected running time for

this stage is O(n2k2) per edge added toM.

This method can be enhanced further, for weight function (1),

where the weight function is computed with respect to a random

sample of vertices picked according to their weight.

ε-approximation via scaling algorithm. For theweight function

(1) (w(pi ,qj) = min{ f (pi), f (qj)}), a faster approach is proposed.

Letwmin,wmax be the minimum weight and maximum weight.

Consider the logarithmic number of levels {wmin(1+ ε)i } for every
i such thatwmin(1 + ε)i ≤ wmax. At the i’th step, we consider only

the vertices with weight ≥ wmin(1+ε)i , find the number ζi of edges

conflicting (p,q) using the unweighted O(n2) algorithm, and sum

the (rescaled) values
∑(1 + ε)iζi as an estimation of s(p,q). It is

easy to see that an (unscaled) edge conflicting (p,q) will be counted
once, with its weight error bounded by a factor of (1 + ε).

6.2 Greedy via Monotone Sequences

Given P , we say that a sequence (p1,p2, , ,pk) is anmonotone in-

creasing sequence if pi .x ≤ pi+1.x and pi .y ≤ pi+1.y, for all i .

Then, a subset P ′ ⊆ P is said to be a monotone increasing subset if

the sequence obtained by ordering P ′ by x-coordinates is a mono-

tone increasing sequence. Analogously we define sequences and

subsets that are monotone decreasing.

In the previous section, we discussed methods to augment the

matching by a single edge greedily. One might wonder if it is pos-

sible and whether it is more efficient to add a collection of edges

at each time. For example, Dynamic Programming proved useful

in the 1-D case, and it is tempting to apply it for the 2-D case as

well. However, applying similar techniques for the 2-D case seems

very challenging. It is extremely hard to define sub-problems that

are independent of each other, in the sense that the solution of

one does not depend on the solution to another. However, with a

non-trivial hint on the approximation we obtain, we could define

such a solution for monotone sequences. Refer to Algorithm 1 for

the pseudo-code.

Essentially, if we opt to match p ∈ P to q ∈ Q , then any decisions

taken on the quadrant below and to the left of p could not (in

an order-preserving matching) affect matching in the quadrant

opposite this quadrant, consisting of points above and to the right

of p. Similar observations hold for every pair of opposite quadrants.

This observation suggests our search for monotone sequences.

Formally a sequence P ↑ = {p1 . . .pk } ∈ P is an increasingly

monotone sequence if pi ≺ pi+1, for i = 1 . . .k − 1. Decreasing se-

quences are defined analogously. Obviously if in a matching M, pi
is matched to qi ∈ Q then the sequence {q1 . . .qk } is increasingly
monotone as well. The heaviest monotone sequence is a monotone

sequence maximizing the sum of weights of its edges. Given a par-

tial matchingM, we describe in this section an algorithm that finds

monotonic sequences P ↑ ⊆ P and Q↑ ⊆ Q , a matching between

them that does not conflict with M and is of maximum weight.

We use this algorithm as follows: In iterations, we find an optimal

monotonically (increasing or decreasing) sequence with respect to

M, include the corresponding matched edges toM and continue.

Therefore we concentrate on an efficient implementation of finding

a single monotone matching. We discuss the case of monotoni-

cally increasing sequences. The case for monotonically decreasing

sequences is handled analogously.

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Yanjun Pan, et al.

Algorithm 1: Finding heaviest increasing monotone chain

1 Input: P and Q (sorted in an increasing order), and a partial matching

M ⊆ P ×Q ;

2 Init: Initialize the an orthogonal range search T for X,

3 and set c(η) = 0, ∀η ∈ T .

4 for i = 1 to |P | do
5 for j = 1 to |Q | do
6 if µ = (pi , qj) does not conflict any edge in M then

7 Set the range (rectangle)

8 R = {(−∞, pi .y) × (−∞, qi .x) × (−∞, qi .y)}
9 Perform a range query in T with the range R to obtain a

set Ξ = {η1 . . . ηk } of O (log3 n) nodes in T
/* Each ηi ∈ Ξ corresponds to a region fully

contains in R. */

10 Let µ∗ be argmax{c(η) |η ∈ Ξ}
11 Set c(µ) = w (pi , qj) + c(µ∗)
12 for each η′i ∈ T ancestor of µ do

13 Set c(η′i) =max {c(η′i), c(µ)}
14 end

15 end

16 end

17 end

Let X = P ×Q = {(pi ,qj) | pi ∈ P ,qj ∈ Q}. By abusing notation,

we also consider each (pi ,qj) as a point in R4, with coordinates

(pi .x ,pi .y,qi .x ,qi .y). We first describe the algorithm when X lies

in R4, and then show that we could orthogonally project X into R3,

and handle all querie as orthogonal three-dimensional range queries.

For a point pi ∈ P we define P≺pi = {p ∈ P | p is dominated by pi }.
For (p,q), (p′,q′) ∈ Xwe say that (p′,q′) dominates (p,q), andwrite
(p,q) ≺ (p′,q′) iff p ≺ p′ and q ≺ q′. Similarly for µ = (p,q) (for
p ∈ P ,q ∈ Q), we writew(µ) to denote the weight of the matching

edge (p,q). Fix µ = (pi ,qj). We define c[µ] to be the maximum

sum of weights of edges in any maximum increasing monotone

matching by using only points of P≺pi to points ofQ≺qj and ending
at µ .

To obtain a fast asymptotic running time, we will use Algorithm

1. We maintain a 4-D orthogonal range tree T(X) [13]. Each leaf in

the tree is associated with a node in X. Each internal node η ∈ T is

associate with

(1) A range Rη which is a rectangle in R4.

(2) A subset Xη ⊆ X which includes all points of X inside Rη .

(3) The point µ∗ ∈ Xη , which is the last point of the heaviest

monotone sequence ending at µ∗, for µ∗ ∈ Xη .
(4) c(η) as the weight of this sequence.
The idea is to use an Orthogonal Range search data structure

for the points in X. We scan these points in topological increasing

order, so if µ ≺ µ ′ then we access µ ′ after accessing µ. This will
guarantee that c(µ) is fully computed at this point.

Lemma 6.1. We could preprocess X into a data structure T such

that the preprocessing time and space are both O(n2 log4 n), given a

query axis-parallel rectangle R ⊆ R4, we could find a set ofO(log4 n)
nodes Ξ = {η1 . . .ηk } of T , each corresponds to a subset Xηi ⊆ X
that is fully contained in R, and each is associated with a value c[µi]
which is max{c[µ ′] | µ ′ ∈ Xηi }.

Next, we notice that filtering points of X based on their first

coordinate is not necessary. That is, we only need to store each

point of (p,q) ∈ X using only (p.y,q.x ,q.y), since a query on other

regions yields that the result is zero, and will not affect the query

time nor the correctness.

Lemma 6.2. So the data structure is in R3. Hence the query time

of Lemma 6.1 is improved to O(log3 n). The space requirement also

drops to O(n2 log2 n).

Proof. Since all weights are positive, and the points of P are

accessed in increasing x order lexicographically. Once accessing

c((pi ,qj)), its value is strictly positive only due to a point p′ ∈ P

such that p′.x ≤ pi .x . Therefor there is no need to filter nodes of

T based on their very first coordinate. □

While orthogonal range trees are almost optimal theoretically,

they suffer from several drawbacks. The space required is super-

linear, and in practical applications, they tend to be inferior to other

hierarchical spatial data structures like kD-trees. The latter could

be applied with linear memory, and faster search time on realistic

data.

Lemma 6.3. Instead of the orthogonal range tree, if we use a 3-

dimensional kD-tree, the space requirement will be linear, while the

asymptotic running time per a query will increase toO(|X|(1−1/d)) =
O((n2)2/3) = O(n4/3).

Running time and correctness . Given a partial matchingM, it takes

O(n2 log3 n) to find the heaviest (max-weight) monotone matching

not conflictingM . At this point these edges are added toM , and the

process repeats. Since P could be decomposed into ≤
√
n monotone

sequences [15], the number of iterations is ≤
√
n. The overall run-

ning time is O(n2.5 log3 n), and the space is O(|P | |Q | log2 n). Here
n = max{|P |, |Q |}.

6.3 Lower bounds

It is interesting to note that improving the bound below Ω(n2) is
unlikely, given that even if the points are on a line, then our problem

is quite similar to the edit distance problem, and LCS problems, for

which recent lower bounds are proven under the SETH assumption

[1]. Hence we are only logarithmic distance away from the claimed

optimum.

6.4 Approximation guarantees

Lemma 6.4. Let opt be the maximum weight of the maximum

order-preserving matching. Then by using the monotone sequences

algorithm we obtain a matching of weight ≥ opt/
√

min{|P |, |Q |}.

Proof. Consider any partition of P into monotone sequences.

By the classical results of Paul Erdös and George Szekeres [15]

t ≤
√
n. Let M∗ be the set of all these edges, and let M∗ |

P
↑
i

be the

set of edges with one endpoint in P
↑
i (for every 1 ≤ i ≤ l). Since

the sum of all matched edges in M∗ is opt , the sum of all edges

M∗ |
P
↑
i

must be ≥ opt/l . This cost is obviously not larger than the

maximum we find along any monotone sequence. □

Data Inference from Encrypted Databases Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

6.5 Extension to Multi-Dimensional Data

Extending our matching algorithms to handle three or more di-

mensional data is well-motivated. Many databases have multiple

columns of numerical data. For example, in the census database,

there may be age, salary, zip code, etc. The data becomes increas-

ingly sparse as the number of dimensions gets larger. Matching

every single column separately will yield far from optimal results.

All our algorithms are still valid in this setting, where P and Q

are points in Rd for a constant d , d ≥ 3. However, the (worst-case)

guarantees and running time of the monotone-greedy algorithm

degrade. Since the longest monotone sequence of a set of n points

in Rd is Θ(n1/d), we are only guaranteed a matching of weight

≥ opt/n1/d , where opt is the optimum weight order-preserving

matching.

7 EVALUATION

In this section, we use both synthetic data and real-world datasets

to evaluate the performance of our matching algorithms and attack

effectiveness.

7.1 Data Sources

Synthetic Data Generation. The synthetic data is generated in

the following manner. Let R be a set of uniformly distributed points

in a 2-D area. Here R is a superset of the data. Then, for every

r ∈ R assign a point weight f ′(r), which is a uniformly distributed

pseudo-random integer on the interval [fmin , fmax]. Let P denote

the auxiliary/plaintext dataset and letQ denote the target/ciphertext

dataset. P and Q are generated as follows.

For the case of Q being a subset of P : copy R into P , and then

generate Q from R with the following sampling process. For each

r ∈ R, we randomly and independently copy it as a point q ∈ Q

with probability β ∈ (0, 1). And if r was copied to a point q ∈
Q , then the frequency f ′(q) is assigned to be a binomial variable

with probability pbino and expectation f ′(r) · pbino. For the other
case that P intersects with Q , we sample the points of both P and

Q from R randomly and independently with probability β , and

similarly the weight of copied points are both sampled from a

binomial distribution with probability pbino. Finally, the integer

point weights are normalized to frequency for P and Q in both

cases, e.g. f (p) = f ′(p)
∑

p′∈P f ′(p′)
,∀p ∈ P , and similarly for f (q).

The rationale of point frequency following a binomial distribu-

tion is that, in the real-world, the set of people who appear in one

dataset may choose to be present or not in another dataset inde-

pendently at random, e.g., Uber users can be regarded as randomly

sampled from a USGS/census location database.

Real-world Data Sources. We use three real-world datasets to

evaluate the performance of algorithms, and we start with the loca-

tion check-in data from the social networking application Brightkite

[11]. The location coordinates are expressed in latitude and longi-

tude. We extract the records in a certain area (latitude: [37.700887,

37.826664], longitude: [-122.512317, -122.386762]), and take the data

collected from Apr. 2008 to Apr. 2009 as the auxiliary (unencrypted)

dataset while the data from Sep. 2009 to Sep. 2010 as the target (en-

crypted) dataset. We randomly choose 500 and 300 points from the

reference and target datasets as P and Q to perform the matching.

Then we process the data in P andQ by discretizing it into location

grids whose granularity is tunable, which means we reserve a cer-

tain number of digits after the decimal point to represent that grid.

For example, if we reserve three digits (0.001 as unit grid length

which is approximately 0.1 km in the real-world), there are 399

and 247 points in auxiliary and target datasets respectively. Note

that we do not need to actually encrypt the target dataset in our

evaluation since it does not change the matching result, as we only

use the order and frequency information of the points.

We also use the city and town population totals for the US esti-

mated by the United States Census Bureau [10]. To get the location

information, we choose the 313 cities with latitude and longitude

provided by Wikipedia [29] (excluding Jurupa Valley), associating

with 2010 census data as the auxiliary dataset P . And we sample

180 cities, combining with the corresponding 2018 estimated pop-

ulation data to get the target dataset Q . Each city record has two

dimensional location data, namely x andy coordinates representing

latitude and longitude, with its population as frequency.

In addition to location datasets, we also evaluate our attacks

in the context of medical data. We leverage a patient discharge

dataset, which contains the distribution of inpatient discharges

by principal diagnosis group for each California hospital [25]. We

randomly sample the records collected in 2009 and 2014 as the

auxiliary dataset and target dataset. More specifically, we select

the numerical facility ID as the x coordinate. For the y coordinate,

we convert the categorical diagnosis result to numerical data by

assigning a specific diagnosis group to a numeric number. The

frequency of each facility-diagnose pair is the recorded number

of patients. There are overall 448 facilities in the original dataset,

we first sample 30 of them as the facilities in P , and then sample

20 out of these 30 samples as facilities in Q . Then we extract the

diagnosis and number of patients of the selected facilities to get

y coordinate and frequency. In the end, we obtain 425 records in

auxiliary dataset P and 272 records in the target dataset Q .

7.2 Evaluation Metrics

For a given ciphertext record c = JmK with plaintextm, the attack

algorithm matches c to a corresponding plaintext as m′, which
might be different fromm. We say c is correctly matched iffm′

=m.

Note that, when P intersects with Q , for a ciphertext c = JmK ∈ Q ,

its plaintextm may or may not be in the set P . Hence we define

the record set of ciphertexts and plaintexts as Qr and Pr by: Qr =

{c ∈ Q | c = JmK,m ∈ P}, Pr = {m ∈ P | JmK ∈ Q}. Define
Ii j = 1 if point pi is correctly matched to point qj , where (pi ,qj)
is a plaintext-ciphertext pair; Ii j = 0 otherwise. We will use the

following metrics for performance evaluation:

(1) Point recovery rate:
∑j= |Q |
j=1 Ii j/|Q |.

(2) Record recovery rate (ratio of people in correctly matched

locations):
j= |Q |
∑

j=1
fj Ii j/

i= |Q |
∑

i=1
fi .

(3) Normalized objective: defined as the objective of an algo-

rithm divided by the optimal ILP solution, which is to eval-

uate how far the algorithm is from the optimal objective

function in the ILP formulation.

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Yanjun Pan, et al.

Note that there is an upper bound (the best one can do) for the

recovery ratio. In the case of Q is a subset of P , the upper bound

is 1; in the case of Q intersects with P , the upper bound is: |Qr | /
|Q | for metric (1), and

∑

i ∈Qr

fi for metric (2). To remove the impact

of the size of the intersection, we use normalized recovery rate by

dividing the recovery ratios with its upper bound in this paper.

Besides, we found that the data density and the similarity of

the frequency distributions for 1-D and 2-D data are two factors

that have significant impact on algorithm performance, hence, we

define the following metrics to quantify them:

(1) Overlap ratio: the ratio of distinct records of ciphertext in Q

to plaintext in P . For 2-D data, it is |Qr | / |P |, for 1-D data,

e.g. it is |Qrx | / |Px | on x-axis, where |Qrx | and |Px | are the
number of unique x coordinates in Qr and P respectively. If

we define the data density as the ratio of distinct points inQ

against total points in the domain of all possible plaintexts,

then the overlap ratio can be regarded as the effective data

density. When this ratio is small, the data is also sparse.

(2) Overall frequency similarity: denote the union of points in P

andQ as R. For a point r in R, its frequency on P is defined as

the frequency of the corresponding point if it appears in P ,

otherwise is 0. In this way, we get the frequency distribution

of all these points on P and Q as f (p) =
(

f (p1), · · · , f (pk)
)

and f (q) =
(

f (q1), · · · , f (qk)
)

. The overall frequency simi-

larity of P and Q defined with Hellinger distance is:

H
(

f (p), f (q)
)

=

1
√
2

√

√

√

k
∑

i=1

(

√

f (pi) −
√

f (qi)
)2

For Hellinger distance, we have 0 ≤ H
(

f (p), f (q)
)

≤ 1, and

when H
(

f (p), f (q)
)

is greater, the larger overall distance is

between two distributions, and the less the similarity is.

Also, we would like to compare the performance with a direct

extension of the 1-D matching algorithm in [19] to 2-D data in the

following way. We separately use the 1-D matching algorithm on

each of the dimensions (x or y coordinates), with the order of x

(or y) and marginal frequency of each x (or y) coordinate. For a

point (cx , cy) in the target dataset, letmx andmy be the matched

coordinates respectively, then we let (mx ,my) as the matched point

for (cx , cy). Denote the point recovery rate of the 1-D matching on

x and y coordinates as rx and ry , then for the point recovery rate

on 2-D data r we have r ≤ min{rx , ry }.

7.3 Experimental Results for Synthetic Data

We implemented our proposed algorithms in Matlab, and all the

experiments are run on a HPC cluster with 28 cores and 168GB

memory. We first simulate with synthetic data, where we consider

two cases: Q is a subset of P , and Q intersects with P . For each

case, we generate 30 different datasets, and under each dataset, we

evaluate the algorithm performance with the two weight functions

defined in Sec. 4.1.

7.3.1 Synthetic Data, Case 1: Q is a subset of P . In this case, we

set P = R, |P | = 60, Q is obtained from P with the data generation

method described above, where β = 0.6, pbino = 0.7. Results are

shown in Fig. 2 (a)-(b), where łmixž means we find both increasing

0

50

100

150

200

250

300

350

 1-D Min-conf. Mix Inc. Dec. ILP
0

0.2

0.4

0.6

0.8

1
r
point

r
record

obj

runtime

(a) Case 1, weight function 1

0

50

100

150

200

250

300

350

 1-D Min-conf. Mix Inc. Dec. ILP
0

0.2

0.4

0.6

0.8

1
r
point

r
record

obj

runtime

(b) Case 1, weight function 2

0

200

400

600

800

1000

1200

1400

 1-D Min-conf. Mix Inc. Dec. ILP
0

0.2

0.4

0.6

0.8

1
r
point

r
record

obj

runtime

(c) Case 2, weight function 1

0

200

400

600

800

1000

1200

1400

 1-D Min-conf. Mix Inc. Dec. ILP
0

0.2

0.4

0.6

0.8

1
r
point

r
record

obj

runtime

(d) Case 2, weight function 2

Figure 2: Synthetic data: point recovery rate (rpoint), record recov-

ery rate (rrecord) and objective (bar, left y axis), and running time in

seconds (line, right y axis).

and decreasing monotonic matchings, and iteratively select the

better one. We can see that the weight function 1 and 2 result in

similar performance for all the 2-D algorithms, except that solution

to ILP is the best (but also takes much more time, as shown in the

right y axis). In this case the min-conflict algorithm outperforms

all the other monotone sequences based algorithms under both

weight functions. This is because the datasets are pretty similar. In

addition, our 2-D matching algorithms significantly outperform the

extended 1-D algorithm (about 10%) since our algorithms take into

account the order of x and y axis simultaneously.

7.3.2 Synthetic Data, Case 2: P intersects with Q . In this case, we

set |R | = 100, and both P and Q are obtained from R with the data

generation method above, where β and pbino are same as case 1.

Besides, about 60% of points in P and Q are common. The aver-

age normalized recovery rates (point or record) of each algorithm

among 30 runs are shown in Fig. 2 (c)-(d). Still, both weight func-

tions have similar performance. And also, the monotone sequence

based algorithm and the min-conflict algorithm have comparable

performance. In addition, the normalized objectives are still close

to that of the ILP solution (> 60%). Compared with case 1, the

normalized recovery rates are slightly lower for all the algorithms

in case 2, since the two datasets are less similar and are noisier.

7.4 Experimental Results on Real-world

Datasets

Wealso evaluate ourmatching algorithms on the real-world datasets

described at the beginning of this section. As the results in Sec. 7.3

show that the two weight functions have comparable performance,

we only apply the weight function (2) on real-world datasets. For

the monotone based greedy algorithms, we use either increasing

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Yanjun Pan, et al.

comparable to theO(n2) 1-D algorithm. A simpler greedy algorithm

is also provided. Experimental results on synthetic and real-world

datasets show that our algorithms perform better than the extended

1-D algorithm when the data is sparse. In addition, the performance

gain depends on data density and similarity of frequency distribu-

tions, but 2-D matching is more robust to noise (or dissimilarities

between the frequency distributions). Our algorithms shed more

light on the security evaluation of OPE encrypted databases.

Extensions and Future Directions: Our experiments indicate

that the 1-D matching algorithm is likely to cluster the data into

meaningful regions, and match region in an order-preserving way,

using the aggregated data in each region. We think clustering could

average/smooth the impact of noise, downsize the size of the prob-

lem, and circumvent issues when the datasets use a different scale

of coordinates, hence we would like to combine clustering with

monotone matching algorithms. Clustering the plaintext P could be

obtained based on geographic/geometric vicinity straightforwardly,

thus we assume it is given in the rest for simplicity. However, find-

ing corresponding regions in the ciphertext Q is not obvious, as

distances are distorted. Furthermore, finding these clusters cannot

be decoupled from the matching process. We have obtained some

preliminary results and we briefly describe them here. For any two

rectangles R1,R2 the cost of matching the point of P inside R1 to

points of Q inside R2 depends on the difference between their cor-

responding sum of frequencies in each rectangle. Our optimization

function is to simultaneously obtain a clustering ofQ and an one-to-

one order-preserving matching to P ’s cluster. The 1-D problem can

easily be solved in time O(n2), using dynamic programming. This

leads to anO(n5) algorithm for the 2-D problem for matching mono-

tonic set of points in P to a weakly-monotonic set of rectangles in

Q . We omit details due to lack of space. Testing the effectiveness of

these approaches is left for future work.

9 ACKNOWLEDGEMENTS

Work on this paper by M. Li has been partially supported by the

National Science Foundation (CNS-1731164). B. Wang is partially

supported by National Science Foundation (CNS-1947913). H. Quan

is partially supported by the Scientific Research Funds of Huaqiao

University (605-50Y19028). E. Arkin and J. Mitchell are partially

supported by the National Science Foundation (CCF-2007275, CCF-

1526406). J. Mitchell acknowledges support from the US-Israel Bina-

tional Science Foundation (project 2016116), Sandia National Labs,

and DARPA (Lagrange). J. Gao acknowledges supports from NSF

CNS-1618391, DMS-1737812, OAC-1939459.

REFERENCES
[1] Arturs Backurs and Piotr Indyk. 2015. Edit distance cannot be computed in

strongly subquadratic time (unless SETH is false). In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. ACM, 51ś58.

[2] Cristina Bazgan, Bruno Escoffier, and Vangelis Th Paschos. 2005. Completeness
in standard and differential approximation classes: Poly-(D) APX-and (D) PTAS-
completeness. Theoretical Computer Science 339, 2-3 (2005), 272ś292.

[3] Cristina Bazgan, Bruno Escoffier, and Vangelis Th. Paschos. 2005. Completeness
in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-
completeness. Theor. Comput. Sci. 339, 2-3 (2005), 272ś292.

[4] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic and
efficiently searchable encryption. In Annual International Cryptology Conference.
Springer, 535ś552.

[5] Piotr Berman and Marek Karpinski. 1999. On some tighter inapproximability
results. In International Colloquium on Automata, Languages, and Programming.
Springer, 200ś209.

[6] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shamtikov. 2018. The
Tao of Inference in Privacy-Protected Databases. In Proc. of VLDB’18.

[7] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’neill. 2009.
Order-preserving symmetric encryption. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 224ś241.

[8] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-
preserving encryption revisited: Improved security analysis and alternative solu-
tions. In Annual Cryptology Conference. Springer, 578ś595.

[9] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. 1998. Pattern Matching for
Permutations. Inf. Process. Lett. 65, 5 (1998), 277ś283. https://doi.org/10.1016/
S0020-0190(97)00209-3

[10] United States Census Bureau. 2019. City and Town Population Totals: 2010-2018.
(2019). https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.
xhtml?src=bkmk

[11] E Cho, SA Myers, and J Leskovec. 2011. Friendship and mobility: Friendship and
mobility: User movement in location-based social networks. Proc. ACM SIGKDD
(2011).

[12] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable
symmetric encryption: improved definitions and efficient constructions. Journal
of Computer Security 19, 5 (2011), 895ś934.

[13] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
1997. Computational geometry. In Computational geometry. Springer, 1ś17.

[14] F Betul Durak, Thomas M. DuBuisson, and David Cash. 2016. What Else is
Revealed by Order-Revealing Encryption. In Proc. of ACM CCS’16.

[15] Paul Erdös and George Szekeres. 1935. A combinatorial problem in geometry.
Compositio mathematica 2 (1935), 463ś470.

[16] Georgios Kellaris and George Kollios and Kobbi Nissim and Adam O’Neil. 2016.
Generic Attacks on Secure Outsourced Databases. In Proc. of ACM CCS’16.

[17] Google. 2018. Google Encrypted Bigquery Client. (2018). https://github.com/
google/encrypted-bigquery-client

[18] P. Grubbs, M. Lacharite, B. Minaud, and K. G. Paterson. 2019. Learning to
Reconstruct: Statistical Learning Theory and Encrypted Databse Attacks. In Proc.
of IEEE S&P’19.

[19] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and
Thomas Ristenpart. 2017. Leakage-Abuse Attacks against Order-Revealing En-
cryption. In Proc. of IEEE S&P’17.

[20] Magnús M Halldórsson and Jaikumar Radhakrishnan. 1997. Greed is good: Ap-
proximating independent sets in sparse and bounded-degree graphs. Algorithmica
18, 1 (1997), 145ś163.

[21] Florian Kerschbaum and Axel Schroepfer. 2014. Optimal average-complexity
ideal-security order-preserving encryption. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 275ś286.

[22] Mari-Sarah Lacharite, Brice Minaud, and Kenneth G. Paterson. 2018. Improved
Reconstruction Attacks on Encrypted Data Using Range Query Leakage. In Proc.
of IEEE S&P’18.

[23] Microsoft. 2019. Microsoft Always Encrypted (Database Engine). (2019).
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/
always-encrypted-database-engine?view=sql-server-2017

[24] M. Naveed, S. Kamara, and C. V. Wright. 2015. Inference Attacks on Property-
Preserving Encrypted Databases. In Proc. of ACM CCS’15.

[25] State of California. [n. d.]. Patient Discharge Data by Principal Diagnosis. ([n.
d.]). https://healthdata.gov/dataset/patient-discharge-data-principal-diagnosis

[26] Raluca Ada Popa, Frank H Li, and Nickolai Zeldovich. 2013. An ideal-security
protocol for order-preserving encoding. In 2013 IEEE Symposium on Security and
Privacy. IEEE, 463ś477.

[27] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
2011. CryptDB: protecting confidentiality with encrypted query processing. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.
ACM, 85ś100.

[28] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical tech-
niques for searches on encrypted data. In Proceeding 2000 IEEE Symposium on
Security and Privacy. S&P 2000. IEEE, 44ś55.

[29] Wikipedia. 2019. List of United States cities by population. https://en.wikipedia.
org/wiki/List_of_United_States_cities_by_population

[30] Wikipeida. 2019. FacebookśCambridge Analytica data scandal. (2019). https:
//en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal

[31] Wikipeida. 2019. Yahoo! Data Breaches. (2019). https://en.wikipedia.org/wiki/
Yahoo!_data_breaches

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Order-Preserving Encryption
	2.2 Inference Attacks on OPE via 1-D Matching
	2.3 Other Attacks on Encrypted Databases

	3 Models and Objectives
	4 2-D Order-Preserving Matching
	4.1 Unweighted v.s. Weighted Version
	4.2 Integer Programming Formulation
	4.3 Related Results on Maximum Independent Sets

	5 NP-Hardness
	6 Algorithms
	6.1 Greedy Minimum-Conflict Matching
	6.2 Greedy via Monotone Sequences
	6.3 Lower bounds
	6.4 Approximation guarantees
	6.5 Extension to Multi-Dimensional Data

	7 Evaluation
	7.1 Data Sources
	7.2 Evaluation Metrics
	7.3 Experimental Results for Synthetic Data
	7.4 Experimental Results on Real-world Datasets

	8 Conclusion and Future Work
	9 Acknowledgements
	References

