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Abstract

Given a set P of n red and blue points in the plane, a planar bichromatic spanning tree of P is a

geometric spanning tree of P , such that each edge connects between a red and a blue point, and no

two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find

a planar bichromatic spanning tree T , such that the length of the longest edge in T is minimized.

In this paper, we show that this problem is NP-hard for points in general position. Our main

contribution is a polynomial-time (8
√

2)-approximation algorithm, by showing that any bichromatic

spanning tree of bottleneck λ can be converted to a planar bichromatic spanning tree of bottleneck

at most 8
√

2λ.
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1 Introduction

Let P be a bi-colored set of red and blue points in the plane and let n = |P |. A bichromatic

spanning tree of P is a spanning tree of P whose edges are straight-line segments connecting

between points of different colors. A spanning tree is planar if its edges do not cross each other.

Borgelt et al. [15] studied the problem of computing a minimum-weight planar bichromatic

spanning tree, and showed that the problem is NP-hard. Moreover, for points in general

position, they gave an O(
√

n)-approximation algorithm, and for points in convex position,

they gave an exact cubic-time algorithm. Biniaz et al. [11] studied the problem of computing a

maximum-weight planar bichromatic spanning tree and gave a (1/4)-approximation algorithm

for the problem.

Algorithmic problems on bichromatic geometric input have appeared in many problems,

including, e.g., trees [1, 12, 15], matchings [13, 18], and partitionings [19]. Often the

bichromatic input is referred to as “red-blue” input, e.g. in red-blue intersection [4, 23],

red-blue separation [9, 14, 17, 20], and red-blue connection problems [5, 10]. For a survey of

many geometric problems on bichromatic (red-blue) points, see Kaneko and Kano [21].
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Many of the structures studied in computational geometry are planar, including minimum

spanning trees, minimum weight matchings, Delaunay/Voronoi diagrams, etc. Therefore, the

planarity requirement is quite natural, and indeed many researchers have considered geometric

problems dealing with crossing-free configurations in the plane; see, e.g. [2, 3, 6, 7, 8].

In this paper, we study the problem of computing a bottleneck planar bichromatic

spanning tree of P , in which we seek a planar bichromatic spanning tree that minimizes the

bottleneck, i.e., the length of the longest edge. To the best of our knowledge, this problem

has not been considered before.

Our results. In Section 2, we prove that the problem of computing a bottleneck planar

bichromatic spanning tree is NP-hard. Our proof is based on a reduction from the planar

3-SAT problem, and is influenced by the proof of Borgelt et al. [15]. As a corollary we obtain

that the problem does not admit a PTAS. Next, in Section 3, we present a polynomial-time

algorithm for computing a planar bichromatic spanning tree of bottleneck at most 8
√

2 times

the bottleneck OPT of an optimal such planar bichromatic spanning tree. We first compute

a bottleneck bichromatic spanning tree having bottleneck λ that may have crossings (so λ is

a lower bound on OPT). Then, we use the length λ to define a partition of the plane into

convex cells, and to partition P into subsets according to these cells. Next, we construct

planar bichromatic trees for each subset, and we connect these trees to obtain a planar

bichromatic spanning tree of P . We show that this tree has a bottleneck at most 8
√

2λ.

2 Hardness Proof

In this section, we prove the NP-hardness (Theorem 1) of computing a bottleneck planar

bichromatic spanning tree; our proof also shows (Corollary 2, below) that there is no

approximation factor less than
√

2, unless P = NP .

I Theorem 1. Let P be a set of n red and blue points in the plane. Computing a bottleneck

planar bichromatic spanning tree of P is NP-hard.

Proof. We adapt the proof of Borgelt et al. [15], making modifications necessary to address

the bottleneck version. For completeness, we explain the ingredients required for the proof.

The proof is based on a reduction from the planar 3-SAT problem. Given a 3-CNF

formula F with n variables X = {x1, x2, . . . , xn} and m clauses Y = {C1, C2, . . . , Cm}, let

GF = (V, E) be the graph of F , i.e., V = X ∪ Y and E = {(xi, Cj) : xi or x̃i appears in Cj}.

If GF is planar, then F is called a planar 3-CNF formula. The planar 3-SAT problem

is to determine whether a given planar 3-CNF formula F is satisfiable; the problem is

NP-complete [22].

Let F be a planar 3-SAT formula. We construct, in polynomial time, a set P of red

and blue points in the plane, such that F is satisfiable if and only if there exists a planar

bichromatic spanning tree of P of bottleneck 1. Consider the graph GF . It is well known

that GF can be embedded in the plane in polynomial time, using polynomial area, i.e., with

the n + m nodes of GF placed at grid points of a regular square grid of size O(n + m)-by-

O(n + m) [16].

The construction is based on chains of pairs of red and blue points. We call the pairs

in the chain sites. The distance between the two points comprising each site is less than 1,

and the distance between two points of different colors in consecutive (along the chain) sites

is exactly 1; see Figure 1(a). Now, for every two consecutive sites, there are two possible

edges to connect them using edges of length at most 1: we either connect (with an edge
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of length exactly 1) the blue point of the first site with the red point of the second site, or

the other way around. Moreover, the chain is constructed in such a way that if we connect

the blue point in the leftmost site to the red point in the next site, this forces the choice of

connections in one direction along the chain; see Figure 1(b).

(a) (b)

Figure 1 A chain of red-blue sites.

Variables. Each variable xi ∈ X is represented by a circular chain of O(m) sites, a special

red point ri, and a red-blue path; see Figure 2. The addition of the red-blue path to the

variable gadget of [15] is required, since without it the special red point ri can be connected

to both sides of the chain without increasing the bottleneck, which is not the case in the

minimum weight version. The red-blue path forces ri to be connected exactly to one side.

xi = T xi = F

ri ri

Figure 2 The trees corresponding to the true and the false assignments of xi.

The sites on the circular chain are located on two circles, an inner circle and an outer

circle. We locate the points in such a way that the (bichromatic) distances are 1 between

consecutive sites on the circular chain, the distance is 1 between ri and the blue points

of its neighboring sites in the chain, and the distance is 1 between the endpoints of the

red-blue path and the corresponding points of the chain. Moreover, the points are located

such that there are only two possible optimal trees (i.e., planar bichromatic spanning trees

of bottleneck 1) of the points, depending on the connection of ri to the chain. In each of

the two trees, ri is connected to exactly one site of the chain. We associate (arbitrarily)

one possibility with the assignment xi = T , and the other with the assignment xi = F ;

see Figure 2. Thus, the value of xi will determine the tree of these points, and vice virsa.

Moreover, if xi = T (resp., xi = F ), then the red points on the right (resp., left) of the inner

circle are free to be connected to points outside the gadget, and the red points on the left

(resp., right) of the inner circle cannot be connected to points outside the gadget without

crossing, and vice versa.
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Finally we need to connect all variables to each other by some fixed part of the tree,

because the whole construction needs to be a tree and not a forest. These connections can

easily be made using red-blue chains having distance at most 1 between every two consecutive

points in the path. Also, we need to make sure that the distance between different parts of

the construction is large enough to avoid shortcuts.

Overall, the reduction is performed in polynomial (in n, m) time, since the planar graph

GF is drawn on a regular O(n + m)-by-O(n + m) grid, and each of our variable gadgets is of

size O(m), resulting in overall polynomial area and a polynomial-size construction that is

computed in polynomial (in n, m) time. J

Notice that in the reduction we proved that if the 3-SAT formula is not satisfiable, then

any planar bichromatic spanning tree of P has an edge of length greater than 1. Actually,

we can push the length of this edge to be closer to
√

2. That is, we can draw the connection

between each clause and its corresponding variables, such that the distance between each

chain of the clause and the corresponding site on the inner circle of the variable is 1, and the

distance between each chain of the clause and the sites on the outer circle of the variable

is at least
√

2 − ε, for any 0 < ε <
√

2 − 1; see Figure 4. This implies that the bottleneck

planar bichromatic spanning tree problem cannot be approximated within a factor less than√
2, unless P = NP .

I Corollary 2. The bottleneck planar bichromatic spanning tree problem cannot be approxim-

ated within a factor less than
√

2, unless P = NP . In particular, there is no PTAS (unless

P = NP ).

3 Approximation Algorithm

Let P be a set of red and blue points in the plane and let n = |P |. Let T be a bichromatic

spanning tree of P of minimum bottleneck (T may have crossings and can be computed in

O(n log n) time [12]). Let λ denote the bottleneck of T , i.e., the length of the longest edge in

T . Notice that λ is the lower bound for any bichromatic spanning tree of P , in particular

for any planar bottleneck bichromatic spanning tree of P . In this section, we show how to

compute a planar bichromatic spanning tree of P , such that its bottleneck is at most 8
√

2λ.

Our algorithm partitions the plane into disjoint cells satisfying the following properties:

1. Each cell is convex and contains points of both colors.

2. In each cell, the distance between any two points is at most 5
√

2λ.

3. The cells are connected, i.e., if we consider the graph with the cells as its vertices and

there is an edge between two cells if they are adjacent (sharing a common boundary),

then this graph is connected.

4. We can construct a planar bichromatic spanning tree of the points in each cell and we

can connect them without crossings.

Assume, w.l.o.g., that λ = 1. Consider an axis-parallel grid, with each (square) cell of

edge length 3 and all points of P in the interior (not on the boundary) of these cells; see

Figure 5. We say that a cell Ci,j is bichromatic if it contains points of both colors and we

say that Ci,j is monochromatic (red or blue) if all of the points in Ci,j have the same color,

otherwise, we say that Ci,j is an empty cell.

Our algorithm consists of two stages. In Stage 1, we modify the grid cells to satisfy

properties (1)-(3), and, in Stage 2, we construct a planar bichromatic spanning tree of the

points in each cell and connect between these trees to obtain a planar bichromatic spanning

tree of P .
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to T ′, such a point p exists. Let q be the point between p and b on Π that is connected to

p. By the selection of p, q does not belong to T ′. Since the bottleneck of T is λ, we have

|pq| ≤ λ. Therefore, by Lemma 6, p and q are connected in T ′, which contradicts that q does

not belong to T ′. J

I Lemma 8. T ′ is planar.

Proof. Each Ti,j is planar. We start with T ′ = Ti,j , where Ti,j is an arbitrary tree constructed

in Ĉi,j , and in each step, we extend T ′ by connecting it to the trees corresponding to the

cells adjacent to the current cell. We connect T ′ to a “new” tree Ti,j by picking a point p in

T ′, such that the convex hull H of {p} ∪ P̂i,j is empty of any other points and no edge of

T ′ crosses H. In Claim 4, we showed that such a point p always exists. Thus, connecting p

to any point of Ti,j will not cross any other edge of T ′ nor of any other tree. Moreover, in

Lemma 3, we show that we can always connect p to Ti,j without crossing any of the edges of

Ti,j . Therefore, connecting T ′ to Ti,j does not produce any crossing. J

I Lemma 9. The bottleneck of T ′ is at most 8
√

2λ.

Proof. Consider Figure 11. After Stage 1, each extended cell is contained in a square of size

5λ × 5λ, and hence the bottleneck of each tree constructed in Stage 2.1 is at most 5
√

2λ.

Moreover, every two d-adjacent cells are contained in a square of size 8λ × 8λ and every two

s-adjacent cells are contained in a square of size 8λ × 5λ. Thus, each edge added in Stage 2.2

is of length at most 8
√

2λ. Therefore, each edge in T ′ is of length at most 8
√

2λ. J

The algorithm consists of two main stages, and each one of them can be implemented

in polynomial time. Therefore, the total running time of the algorithm is polynomial. The

following theorem summarizes the result of this section.

I Theorem 10. Let P be a set of n red and blue points in the plane. One can compute in

polynomial time a planar bichromatic spanning tree of P of bottleneck at most 8
√

2 times the

bottleneck of an optimal bichromatic spanning tree of P .
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