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—— Abstract

Given a set P of n red and blue points in the plane, a planar bichromatic spanning tree of P is a

geometric spanning tree of P, such that each edge connects between a red and a blue point, and no
two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find
a planar bichromatic spanning tree T', such that the length of the longest edge in T is minimized.
In this paper, we show that this problem is NP-hard for points in general position. Our main
contribution is a polynomial-time (8+/2)-approximation algorithm, by showing that any bichromatic
spanning tree of bottleneck A can be converted to a planar bichromatic spanning tree of bottleneck
at most 8v/2\.

2012 ACM Subject Classification Theory of computation — Computational geometry; Theory of
computation — Design and analysis of algorithms

Keywords and phrases Approximation Algorithms, Bottleneck Spanning Tree, NP-Hardness

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.1

Funding This work was partially supported by Grant 2016116 from the United States — Israel
Binational Science Foundation. Work by J. Mitchell was partially supported by NSF (CCF-1526406,
CCF-2007275).

1 Introduction

Let P be a bi-colored set of red and blue points in the plane and let n = |P|. A bichromatic
spanning tree of P is a spanning tree of P whose edges are straight-line segments connecting
between points of different colors. A spanning tree is planar if its edges do not cross each other.
Borgelt et al. [15] studied the problem of computing a minimum-weight planar bichromatic
spanning tree, and showed that the problem is NP-hard. Moreover, for points in general
position, they gave an O(y/n)-approximation algorithm, and for points in convex position,
they gave an exact cubic-time algorithm. Biniaz et al. [11] studied the problem of computing a
maximum-weight planar bichromatic spanning tree and gave a (1/4)-approximation algorithm
for the problem.

Algorithmic problems on bichromatic geometric input have appeared in many problems,
including, e.g., trees [1, 12, 15], matchings [13, 18], and partitionings [19]. Often the
bichromatic input is referred to as “red-blue” input, e.g. in red-blue intersection [4, 23],
red-blue separation [9, 14, 17, 20], and red-blue connection problems [5, 10]. For a survey of
many geometric problems on bichromatic (red-blue) points, see Kaneko and Kano [21].
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Many of the structures studied in computational geometry are planar, including minimum
spanning trees, minimum weight matchings, Delaunay/Voronoi diagrams, etc. Therefore, the
planarity requirement is quite natural, and indeed many researchers have considered geometric
problems dealing with crossing-free configurations in the plane; see, e.g. [2, 3, 6, 7, 8].

In this paper, we study the problem of computing a bottleneck planar bichromatic
spanning tree of P, in which we seek a planar bichromatic spanning tree that minimizes the
bottleneck, i.e., the length of the longest edge. To the best of our knowledge, this problem
has not been considered before.

Our results. In Section 2, we prove that the problem of computing a bottleneck planar
bichromatic spanning tree is NP-hard. Our proof is based on a reduction from the planar
3-SAT problem, and is influenced by the proof of Borgelt et al. [15]. As a corollary we obtain
that the problem does not admit a PTAS. Next, in Section 3, we present a polynomial-time
algorithm for computing a planar bichromatic spanning tree of bottleneck at most 8y/2 times
the bottleneck OPT of an optimal such planar bichromatic spanning tree. We first compute
a bottleneck bichromatic spanning tree having bottleneck A that may have crossings (so A is
a lower bound on OPT). Then, we use the length A to define a partition of the plane into
convex cells, and to partition P into subsets according to these cells. Next, we construct
planar bichromatic trees for each subset, and we connect these trees to obtain a planar
bichromatic spanning tree of P. We show that this tree has a bottleneck at most 8v/2)\.

2 Hardness Proof

In this section, we prove the NP-hardness (Theorem 1) of computing a bottleneck planar
bichromatic spanning tree; our proof also shows (Corollary 2, below) that there is no
approximation factor less than /2, unless P = NP.

» Theorem 1. Let P be a set of n red and blue points in the plane. Computing a bottleneck
planar bichromatic spanning tree of P is NP-hard.

Proof. We adapt the proof of Borgelt et al. [15], making modifications necessary to address
the bottleneck version. For completeness, we explain the ingredients required for the proof.

The proof is based on a reduction from the planar 3-SAT problem. Given a 3-CNF
formula F' with n variables X = {x1,22,...,2,} and m clauses Y = {C1,Cs,...,Cp }, let
Gr = (V,E) be the graph of F, ie., V =X UY and E = {(z;,C}) : z; or ; appears in C;}.
If GF is planar, then F' is called a planar 3-CNF formula. The planar 3-SAT problem
is to determine whether a given planar 3-CNF formula F' is satisfiable; the problem is
NP-complete [22].

Let F be a planar 3-SAT formula. We construct, in polynomial time, a set P of red
and blue points in the plane, such that F' is satisfiable if and only if there exists a planar
bichromatic spanning tree of P of bottleneck 1. Consider the graph Gp. It is well known
that Gp can be embedded in the plane in polynomial time, using polynomial area, i.e., with
the n + m nodes of Gr placed at grid points of a regular square grid of size O(n + m)-by-
O(n+m) [16].

The construction is based on chains of pairs of red and blue points. We call the pairs
in the chain sites. The distance between the two points comprising each site is less than 1,
and the distance between two points of different colors in consecutive (along the chain) sites
is exactly 1; see Figure 1(a). Now, for every two consecutive sites, there are two possible
edges to connect them using edges of length at most 1: we either connect (with an edge
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of length exactly 1) the blue point of the first site with the red point of the second site, or
the other way around. Moreover, the chain is constructed in such a way that if we connect
the blue point in the leftmost site to the red point in the next site, this forces the choice of
connections in one direction along the chain; see Figure 1(b).
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Figure 1 A chain of red-blue sites.

Variables. Each variable z; € X is represented by a circular chain of O(m) sites, a special
red point r;, and a red-blue path; see Figure 2. The addition of the red-blue path to the
variable gadget of [15] is required, since without it the special red point r; can be connected
to both sides of the chain without increasing the bottleneck, which is not the case in the
minimum weight version. The red-blue path forces r; to be connected exactly to one side.

Figure 2 The trees corresponding to the true and the false assignments of x;.

The sites on the circular chain are located on two circles, an inner circle and an outer
circle. We locate the points in such a way that the (bichromatic) distances are 1 between
consecutive sites on the circular chain, the distance is 1 between r; and the blue points
of its neighboring sites in the chain, and the distance is 1 between the endpoints of the
red-blue path and the corresponding points of the chain. Moreover, the points are located
such that there are only two possible optimal trees (i.e., planar bichromatic spanning trees
of bottleneck 1) of the points, depending on the connection of r; to the chain. In each of
the two trees, r; is connected to exactly one site of the chain. We associate (arbitrarily)
one possibility with the assignment x; = T, and the other with the assignment z; = F
see Figure 2. Thus, the value of x; will determine the tree of these points, and vice virsa.
Moreover, if x; = T (resp., x; = F), then the red points on the right (resp., left) of the inner
circle are free to be connected to points outside the gadget, and the red points on the left
(resp., right) of the inner circle cannot be connected to points outside the gadget without
crossing, and vice versa.
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Clauses. Each clause C is represented by a single red point r; and three chains that are
connected to the respective variables of Cj; see Figure 3(a). The distance between r; and
each chain is 1. In any optimal tree, r; will be connected to at least one of the three chains.
However, it cannot be connected to any chain if all the chains are connected to variables
that are in the wrong state; see Figure 3(b).
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Figure 3 The gadget corresponding to the clause Cj.

We connect between the variables and the clauses such that, in any optimal tree, one of
the three chains of the clause has to be connected to a red point on the inner circle of the
corresponding variable. Assume that z; appears unnegated in a clause C; and negated in a
clause Cy, ie., Cj = (z; V-V ) and Cx = (z; V- V). We connect the chain of C; that is
respective to x; to a site on the right of the inner circle of the gadget z;, and we connect the
chain of C}, that is respective to z; to a site on the left of the inner circle of the gadget z;;
see Figure 4. This connection ensures that, if z; is assigned T', then the red point on the
right of the inner circle of z; is free to be connected to the chain of C}, and this connection
can produce a path through the chain that ends at r;. On the other hand, if z; is assigned
T, then the red point on the left of the inner circle of z; cannot be connected to the chain of
C%, which does not allow a connection between the chain and 7. The same argument holds
when z; is assigned F'.

Figure 4 The connection between the variable z; and the clauses C; and Cj.
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Finally we need to connect all variables to each other by some fixed part of the tree,
because the whole construction needs to be a tree and not a forest. These connections can
easily be made using red-blue chains having distance at most 1 between every two consecutive
points in the path. Also, we need to make sure that the distance between different parts of
the construction is large enough to avoid shortcuts.

Owerall, the reduction is performed in polynomial (in n,m) time, since the planar graph
G is drawn on a regular O(n 4+ m)-by-O(n + m) grid, and each of our variable gadgets is of
size O(m), resulting in overall polynomial area and a polynomial-size construction that is
computed in polynomial (in n,m) time. <

Notice that in the reduction we proved that if the 3-SAT formula is not satisfiable, then
any planar bichromatic spanning tree of P has an edge of length greater than 1. Actually,
we can push the length of this edge to be closer to v/2. That is, we can draw the connection
between each clause and its corresponding variables, such that the distance between each
chain of the clause and the corresponding site on the inner circle of the variable is 1, and the
distance between each chain of the clause and the sites on the outer circle of the variable
is at least /2 — g, forany 0 < e < V2 — 1; see Figure 4. This implies that the bottleneck
planar bichromatic spanning tree problem cannot be approximated within a factor less than
V2, unless P = NP.

» Corollary 2. The bottleneck planar bichromatic spanning tree problem cannot be approzim-
ated within a factor less than /2, unless P = NP. In particular, there is no PTAS (unless
P=NP).

3  Approximation Algorithm

Let P be a set of red and blue points in the plane and let n = |P|. Let T be a bichromatic

spanning tree of P of minimum bottleneck (7" may have crossings and can be computed in

O(nlogn) time [12]). Let A denote the bottleneck of T, i.e., the length of the longest edge in

T. Notice that A is the lower bound for any bichromatic spanning tree of P, in particular

for any planar bottleneck bichromatic spanning tree of P. In this section, we show how to

compute a planar bichromatic spanning tree of P, such that its bottleneck is at most 8v/2\.
Our algorithm partitions the plane into disjoint cells satisfying the following properties:

1. Each cell is convex and contains points of both colors.

In each cell, the distance between any two points is at most 5v/2\.

3. The cells are connected, i.e., if we consider the graph with the cells as its vertices and
there is an edge between two cells if they are adjacent (sharing a common boundary),
then this graph is connected.

4. We can construct a planar bichromatic spanning tree of the points in each cell and we
can connect them without crossings.

N

Assume, w.l.o.g., that A = 1. Consider an axis-parallel grid, with each (square) cell of
edge length 3 and all points of P in the interior (not on the boundary) of these cells; see
Figure 5. We say that a cell C; ; is bichromatic if it contains points of both colors and we
say that C; ; is monochromatic (red or blue) if all of the points in C; ; have the same color,
otherwise, we say that C; ; is an empty cell.

Our algorithm consists of two stages. In Stage 1, we modify the grid cells to satisfy
properties (1)-(3), and, in Stage 2, we construct a planar bichromatic spanning tree of the
points in each cell and connect between these trees to obtain a planar bichromatic spanning
tree of P.
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Figure 5 The grid partitioning the points of P.

Stage 1

In this stage, we consider the monochromatic cells and we partition and merge portions of
them in order to obtain a subdivision in which all cells are convex and bichromatic. Let C; ;
be a 3 x 3 cell of the grid. Since C; ; is a 3 x 3 cell, C; ; is the union of 9 unit sub-cells, labelled
C’i’fj, for k=1,2,3,...,9, as shown in Figure 6(a). Notice that, since C; ; is a monochromatic
cell, the points of C; ; are of distance at most 1 from the boundary of C; j, and therefore, Cz5 j
is empty of points of P. The region C; ; \ C’i ; 1s the union of four trapezoids 77,3‘» PR ’Efj,
and 7;{’]-7 such that 77] (resp., T{";, T}';, and 77’3) is the trapezoid obtained by connecting
the left (resp., right, top, and bottom) corners of C; ; by diagonals to the left (resp., right,

top, and bottom) corners of C? ; see Figure 6(b).
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Figure 6 (a) The 9 unit sub-cells of cell C; ;. (b) The trapezoids ﬁ{j, T, Ti;, and 7;{’]-.

Stage 1.1

In this stage, we introduce a directed graph G in which the vertices are the monochromatic
cells and the edges are defined as follows. Let C;; be a monochromatic cell, and let
N(Ci ;) ={Cij-1, Cij+1, Ci—1j,Cit1,} be the set of cells that share a grid edge with C; ;.
Let C' € N(C; ;) be a monochromatic cell and assume, w.l.o.g., that C' = C; j41. There is a
directed edge from C; ; to C; ;41 if and only if C; ; and C; ;4 are of different colors and the
trapezoid ’77] is not empty of points of P; see Figure 7.
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Ci+1,j

Figure 7 Directed edges between monochromatic cell C; ; and its monochromatic neighbors

(Cij-1, Ci1,5, Cij+1).

Stage 1.2

In this stage, we modify the grid cells by partitioning and merging some of the monochromatic
cells with their neighbors, guided by the directed edges introduced in Stage 1.1. Before
describing how to modify the grid cells, we describe the following cell partition procedure
that we will apply in this stage to the empty and some of the monochromatic cells.

Cell partition procedure. For a monochromatic cell C; ;, partition C; ; \C’f’ ; into trapezoids

7%, 5 Ty, and ’Tif’j, and merge them with the cells C; ;1 , C; j4+1, Ci—1,5, and Cjitq 5,
respectively; see Figure 8(b).
Ci, Ci
0. o) 0 o
O e @ @ T e e e/
: [o) O
.....'E ..................... .: ....... . .
G Cij1 Cf,j : :Cijm
o ® e
o O & ]
o °
Cit1,

Figure 8 (a) din(Ci;) = 0 and dout(Cs,;) > 0. (b) Partitioning and merging C; ; with its
neighbors.

Let din(Ci j) (resp., dout(Ci 5)) denote the in-degree (resp., the out-degree) of the vertex
corresponding to the monochromatic cell C; ; in the graph G. We apply the following three
steps on the empty and monochromatic cells.

Step 1. We apply this step as long as there exists a cell C;; with d;,(C;;) = 0 and
dout(Ci5) > 0. For each such cell, we apply the cell partition procedure on C; ; and
remove the out-going edges from C; ; and from its neighbors C; ;_1, C; j4+1, Ci—1,5, and
Cit1,5; see Figure 8.

Step 2. We apply this step on the monochromatic cells C; ; with d;;,(C; ;) > 0. Consider
the grid as an arbitrary white-black chessboard. For each white cell with d;,,(C; ;) > 0,
we apply the cell partition procedure on Cj ;.

1:7
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Step 3. We apply this step on the empty and the monochromatic cells C; ; with d;,(C; ;) =0
and doy:(Cj ;) = 0 (that are not considered in the previous steps). For each such cell, we
apply the cell partition procedure on Cj ;.

We call a cell C; ; a partitioned cell if C; ; has been partitioned (using the cell partition
procedure), and we call it an extended cell otherwise. If we have two adjacent partitioned
cells C; ; and Cj j11, then we call the merged area of the two trapezoids 7,”; and 7;% 412
lune; see Figure 9.

Ci 1
vi—1,j
Ci—l,j Ci—l,jJrl ..........
Cic1j-1 Ci1jm1
.................... o8
711.
6 4 ' i—1,53
Cz:,j Cz‘.,j+1 P
................ : C”
C” Qi,j+1 ..........
Ci,j—l Ci-,j+1
Cit1j Civ1j+ C. .
s iy
(a) (b)

Figure 9 (a) vertical and (b) horizontal lunes.

At the end of this stage, we have three types of non-empty convex cells: original 3 x 3
cells, extended cells, and lunes. Clearly, each original cell is bichromatic, otherwise, it would
have been partitioned or extended in Steps 1-3. Observe that each extended cell Cj ; is
bichromatic, since d;;, (C; ;) > 0. Observe also that each non-empty lune L is monochromatic.
To see this, assume, w.l.o.g., that L was obtained by partitioning the cells C; ; and C; j41
and merging the trapezoids 7;"; and ’77] 41- Thus, L cannot be bichromatic, since otherwise,
there would be a directed edge from Cj ; to Cj j41 and vice versa, which means that one of
the cells C; ; and C; j41 (the black one in the chessboard) is extended in Step 2.

Stage 1.3

In this stage, we get rid of the lunes, by partitioning each lune into sub-pieces and merging
the sub-pieces with adjacent extended cells as follows. Let L; be a vertical lune obtained by
merging two adjacent trapezoids 7;"; and 77] +1; see Figure 9(a). (A horizontal lune will be
treated analogously.) As observed above, L is monochromatic (or empty) which means that
the subregion CiG,j u C’f’jﬂ C L, is empty of points of P.

We consider the four triangles obtained by removing C’g ; from ’77] and removing C;% 41
from 7;fj+1, and we merge them with the cells Ci_1; , Ci—1+1, Cit1,j, and Cit1 j41
according to the following cases. We describe how to merge the top triangles with C;_ ;
and C;_1 j41. (Merging the bottom triangles with Cjy1 ;, and Cj41 ;41 is done analogously.)
Let v; be the top vertex of Li; see Figure 10.

If both C;_1; and Cj_1 j+1 are extended cells, then we merge the top-left triangle with

C;_1,; and the top-right triangle with C;_1 j11; see Figure 10(a).

If C;_1,; is a partitioned cell and C;_; ;41 is an extended cell, then we have another

horizontal lune Lo between C;_1 ; and C; j; see Figure 10(b). Notice that the union of

the top-left triangle of L; and the right-bottom triangle of Ly is exactly the sub-cell Cﬁ -
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Notice also that Ly is monochromatic and has the same color as Lj. Thus, the points of
P in Cf:j are of distance 1 from v;. In this case, we merge the top-right triangle of L;
and the right-top triangle of Ly with Cj_1 j11. Moreover, we merge the region of C’?’j
intersecting the disk of radius 1 centered at v; with C;_1 j1; see Figure 10(b).

If C;_1,; is an extended cell and C;_; ;41 is a partitioned cell, then this case is symmetric
to the previous case; see Figure 10(c).

If both C;_; ; and C;_1 j41 are partitioned cells, then we have four lunes incident to vy;
see Figure 10(d). Since all of the lunes are monochromatic and have the same color, the
triangles of these lunes that are incident to vy are empty of points of P and, therefore,
we remove these triangles from the division.

Ci*l.j Ci,17j+1 Ci—l,j Cifl,j+1
RN I T
e Y
’Ut e N ’Ut
PN N L2 \\/\\
7/ N N . 4 Y »
e N N 0 AN .
...... ; : RN B 2
1 1 1 1
l 1 Ll 1 | 1 Ll 1
Cz',j Ci,j+1 C’i,j Ci,j-H
(a) (b)
C’j,ij Ci j+1 Gi—l,j Ci—l-,J+1
I I
1 Ls 1
R R L R & . LT R VPR
e N ' N 7 . N
‘ N s (RN s - N
Vel S e Lo 5 N
. 7 ~7 < x L
. ’ _\// LQ 7 N L4 ’ N N LQ 7
e N ’ N 7’ A 7
2 o 7 AN 7’ N 7
..... ...l___ ___{*__..
1 I ! 1
1 L1 I 1 Ll 1
Cij Cij1 Ci; Cijn
(c) (d)

Figure 10 Merging the top triangles of Ly with the cells C;_1; and C;_1 +1. The gray and the
green regions are part of vertical and horizontal lunes, respectively, and the light blue regions are
empty of points of P.

Moreover, in each partitioned cell C; ; such that i = 1,7 =mn, j =1, or j = n, we treat
the trapezoids adjacent to the boundary of the grid as half-lunes and we merge them with
their adjacent extended cells as in the lunes case.

Notice that, at the end of this stage, we have two types of non-empty cells: original 3 x 3

cells and extended cells, and both types are convex and bichromatic cells; see Figure 11.
From now on, we refer to both types of these cells as extended cells and denote them by C.

That is, CA’M' is either an original 3 x 3 cell C; ; or an extended cell obtained by merging C; ;
with trapezoids from its neighbors.

Stage 2

In this stage, we construct a planar bichromatic spanning tree in each (extended) cell and

connect them to each other to obtain, overall, a planar bichromatic spanning tree of P.

For each cell C; ;, we denote by P;; the set of points of P lying in C; ;. If C; ; has been
partitioned, then we set P; ; = 0.

1:9
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7 e

R

Figure 11 A subdivision obtained at the end of Stage 1. The light blue regions are empty of
points of P.

Stage 2.1

In each cell CA'M, we construct a planar bichromatic spanning tree 7; ; of PL ;j as follows. We
select an arbitrary red point s € }3” as a center of the tree and connect it to each blue
point in the cell to produce a star. We extend the edges of the star to partition the cell into
convex cones, possibly except one cone; see Figure 12. If we have a non-convex cone, then we
divide it into two convex cones by adding its bisector, as shown in Figure 12(right). Then,
we connect all the red points in each cone to one of the blue points on the lines bounding
the cone.

Figure 12 Constructing a planar bichromatic spanning tree in a cell.

» Lemma 3. Let T} ; be a tree constructed in Stage 2.1 in cell C; ;. Any (red or blue) point
p in the plane can be connected to a point of opposite color of T; ; without crossing the edges
Of Ti,j~

Proof. Let s be the center of T; ; and recall that its color is red. Consider the cones produced
by the rays between s and the blue points of T; ;. Let C' be the cone containing p and let
a and b be the two blue points defining C. By the way we constructed 7 ;, all the points
in C are red and connected to exactly one of the points a and b, assume, w.l.o.g., a. We
distinguish between two cases with respect to the color of p.

Case 1: pis a blue point. If the edge (s, p) does not cross the edges of T; ;, then we connect
p to s. Otherwise, we connect p to the endpoint of the first edge (from p) crossing (s, p);
see Figure 13(a).

Case 2: pis a red point. In this case, we connect p to a; see Figure 13(b). <
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(a) (b)

Figure 13 (a) p and s are of different colors. (b) p and s are of the same color.

Stage 2.2

In this stage, we connect between the trees that are constructed in Stage 2.1 to obtain a
planar bichromatic spanning tree of P. Let C‘U and ék,l be two (extended) cells. We say
that CA';M is a side adjacent (or s-adjacent for short) cell of CA'M, if one of the following holds:
k=i+1landl=j,or
k=iandl=j+1,
and we say that ék,l is a diagonal adjacent (or d-adjacent for short) cell of C’i,j, if one of the
following holds:
k=i—1,1=37+1, and C;_; ; and C; ;11 have been partitioned, or
k=i—-1,1l=3—1,and C;;_; and C;_; ; have been partitioned.

We construct a bichromatic spanning tree 7”7 of P by traversing the cells starting from an
arbitrary (non-empty) cell (in breadth first search (BFS) manner). That is, we first initiate
a tree T” by an arbitrary tree T} ; that is constructed in a cell CA‘” Then, we connect T” to
all the trees constructed in the cells adjacent to CA'M, and proceed from these trees. More
precisely, in each step, we consider a tree T; ;, which is already connected to 7”7, and we
connect 1" to all of the trees constructed in the cells adjacent to CA’M via T; ; (if they are
not connected yet to T7”). In the following, we describe how to connect 7" to all the trees
constructed in the cells adjacent to ézy

Let C be a cell adjacent to CA’i’j, such that the tree T constructed in C is not connected
yet to T. Let vy, vy, vy, and vy be the top-right, top-left, bottom-right, and bottom-left
vertices of the grid incident to Cj ;, respectively; see Figure 14. We distinguish between
two cases.

Case 1: C is a d-adjacent cell of CA’Z-J-. Assume, w.lo.g., that C = CA’i_l’jH. Then, the

boundaries of éz] and éi—l,j+1 share a common (diagonal) edge ab; see Figure 14.

Moreover, the convex hull of CA'm- U CA’Z-,L]-H does not contain any point of P\ (]5” U
ISi_LJ-H) (this can be seen clearly in Figure 11). Let p € ]5” be the closest point to the
line passing through ab, such that no edge of T” crosses the triangle Apab. By Claim 4,
such a point p exists. Then, any edge connecting p to any point of 7;_; ;41 does not cross
any non-empty cell except C’i,j and CA'Z»,LjH. Therefore, by Lemma 3, we can connect p
to Tj_1 ;41 without crossing any other edge of T".

Case 2: C is an s-adjacent cell of CA’M. Assume, w.l.o.g., that C' = CA’i,jH. Let p be the

rightmost point in 131 j» such that no edge of T" crosses the triangle Apuvp,vy,; see Figure 15.

By Claim 4, such a point p exists. Let H be the convex hull of 151-’]4_1 U {p}. We consider
two sub-cases.

Case 2.1: HN(P\ (P,; UP; ;1)) =0 (i.e., H does not contain any point of P that is not
in 15” U pi,j-i—l); see Figure 15. Therefore, by Lemma 3, we can connect T; ;11 to T; ; via
p, without crossing any other edge of T".
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Figure 14 Illustration of Case 1. We connect T;_1 j+1 to T, ; via p.
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Figure 15 The convex hull H of P; ;11 U {p} (consisting of green segments) does not contain any
point of P that is not in PZ G U PZ j+1. We connect T} ;11 to T; ; via p.

Case 2.2: HN(P\(P;jUP; ;1)) # 0 (i.e., H contains a point of P that is not in P; ;UP; j1).
In this case, H contains a point in PZ 1,; U Pz 1,j+1 OT in PH_lJ U PH-1 j+1. Assume,
w.l.o.g., that H contains a point in B 1,; U Pz 1,j+1; see Figure 16. Notice that exactly
one of the sets P,_; jor b, Jj+1 is an empty set, since, in this case, exactly one of the
cells C;_1; or C;_1 j4+1 has been partitioned. We further distinguish between two cases.
1. HnN Pi,l’j # 0; see Figure 16(a). In this case we first connect T; j11 to Tj_1; as

follows. Let ¢q € Pi,l,j be the closest point to the line passing through the boundary
edge between CA’i_l’j and CA’i)jH. Then, the convex hull of Pm-ﬂ U{q} does not contain
any point of P that is not in Pmurl U{q}. Therefore, by Lemma 3, we can connect
T; j+1 to T;_1 ; via g, without crossing any other edge of 7".

Moreover, if T;_ ; is not connected yet to T”, then we apply Case 2 on CA'Z»,L]- to
connect T; 1 ; to 15 ;.

2. Hﬂpi_17j+1 #0. If T;,_1 j+1 is not connected yet to 7”7, then we first connect T;_1 j+1
to T; ; as follows. Let ¢ € P;; be the closest point to the line passing through the
boundary edge between éu and éi_17j+1; see Figure 16(b). Then, the convex hull of
Pi_1j41U{q} does not contain any point of P that is not in P;_; ;41 U{q}. Therefore,
by Lemma 3, we can connect T;_; ;41 to T; ; via g, without crossing any other edge
of T".

Moreover, we connect T j11 to T;_1 ;41 as follows. Let a be the bottom-right corner
of Ci_1,j4+1. Thus, Apvan 151'_17]41 # () and Apvg.a N ([f’” \ {p}) = 0. Let z be the
bottommost point in Apvy.a N ]524_17]-4_1, such that no edge of T” crosses the triangle
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Figure 16 (a) H contains points from P;_; ;. We connect T} ;11 to Tj_1 ; via ¢q. (b) H contains
a point z from P;—1 j4+1. We connect T;—1,j+1 to T;,; via ¢ and we connect T j4+1 to Ti—1,j41 via z.

Azvgea; see Figure 16(b). By Claim 4, such a point z exists. Then, the convex hull of
P j+1U {2} does not contain any point of P that is not in P; ;1 U {z}. Therefore, by
Lemma 3, we can connect T; j 41 to T;_1 j41 via 2, without crossing any other edge of
T’. (Notice that the two edges added in this case do not cross each other.)

Correctness Proof

Recall that T is a bichromatic spanning tree of P of minimum bottleneck A. In this section,
we prove that 77 is a planar bichromatic spanning tree of P of bottleneck at most 8v/2\.
Notice that every point p € P is contained in a bichromatic cell C', ; and hence, it is connected
to T; ;, the tree constructed in Stage 2.1 in éu Therefore, to show that 7" is a bichromatic
spanning tree of P, it is sufficient to show that each tree T; ; is connected to 1.

> Claim 4. Let 7" be the tree constructed at some step during Stage 2.2 and assume that
T" is planar. Let T} ; be a tree constructed in C‘Z j and assume that T} ; is already connected
to T". Let C be an adjacent cell of éu that shares an edge ab with C'Z] and let T¢ be the
tree constructed in C, and assume that T is not connected yet to T”. Then, there exists a
point p in C'i’j, such that no edge of T” crosses the triangle Apab.

Proof. Assume, w.l.o.g., that C= CA'i’jH, a = vy, and b = vy,; see Figure 17. The following
procedure shows the existence of such a point p. We sweep leftwards in C; ; with a vertical
line [, starting from 7,0y, until we meet a point, or an edge of T”. If we first meet a point,

then this point satisfies the claim. Otherwise, we first meet an edge (p’, ¢') of T”; see Figure 17.

This could only be when exactly one of the endpoints p’ or ¢’ is outside C’iyj. Let C; and C,
be the two sub-cells obtained by partitioning C’i’j with the line that goes through the points
p’ and ¢’. Let C, be the sub-cell containing vy, and vp,.. We keep sweeping leftwards only
inside C,.. As before, if we first meet a point, then this point satisfies the claim. Otherwise,
we meet an edge (p”,q"”") of T” before we meet a point. Then, one of the endpoints p” or ¢”
is outside CA’” Let C,; and C,.. be the two sub-cells obtained by partitioning C, with the

line that goes through the points p”’ and ¢”. Let C,, be the sub-cell containing v, and vy,

We keep sweeping leftwards only inside C).., until we meet a point, and this point satisfies
the claim. Notice that, in the last sweep we meet a point before we meet an edge of T”. This
follows from the planarity of T”. <
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Figure 17 Illustration of the proof of Claim 4.

» Lemma 5. Let T;; be a tree constructed in éw in Stage 2.1 and assume that T; ; is
already connected to T'. Then, at the end of Stage 2.2, all the trees that are constructed in
the cells adjacent to C; j are connected to T' as well.

Proof. Let C be an adjacent cell of ézy We distinguish between two cases.

Case 1: C is a d-adjacent cell of C’” Assume, w.l.o.g., that C = Ai_17j+1. Then, in
Stage 2.2, Case 1, we connect between T; ; and Tj_1 j11.

Case 2: C is an s- adjacent cell of C’l j- Assume, w.l.o.g., that C=C¢; j+1- As described in
Stage 2.2, we select a point p € C; ; and compute the convex hull H of {p} UPZ j+1- Then,
we consider two cases. In Case 2.1, when H does not contain any point of P\ (P; ; UPB;, Gi41)s
we connect TZ j directly to T; j41 (via p). And, in Case 2.2, when H contains a point of
P\ (P; ;U H j+1), we connect T; j4q to T; ; via the tree T;_1 j41, in case that H contains
a point of R 1,541 (or via the tree EH ji+1, in case that H contains a point of Pz+1 1)
In the case that H contains a point of P;_; j (symmetrically, H contains a point of PH_l i)
we connect T j11 to T; ; via the tree T;_; ;. If T;_q ; is already connected to T; ;, then
we are done. Otherwise, since Ci4 j is an s-adjacent cell of C’z j» we will try to connect
T;_1,; to T; ; in the next iteration in Stage 2.2 (by applying Case 2 once again). In the
next iteration, either we connect T;_; ; to T; ; in one of the cases described above or we
end up by connecting T j_1 to T;_1 ;. In the latter case, if T; j_; is already connected to
T; j, then we are done. otherwise, T;y; ; is already connected to T; ;. In this case, we
connect T; ;_1 to T; ; either directly or via T4, ;, and we are done. |

» Lemma 6. Let p and q be two points of P, such that p and q are of different colors,
Ipg| < X and p belongs to T'. Then, q also belongs to T'.

Proof. Since |pg| < A, either p and ¢ are in the same cell or they are in adjacent cells. If
they are in the same cell C'i’j, then, after Stage 2.1, they are connected in T; ;, and the
lemma holds. Otherwise, assume, w.l.o.g., that p € CA'” and g € C, where Cis adjacent to
C’i)j. Then, after Stage 2.1, p belongs to T; ; and g belongs to T¢, the tree constructed in C.
Since T; ; is part of 7" and Cis adjacent to CA'M, by Lemma 5, T; ; is connected to Tz and
therefore ¢ belongs to T". <

> Lemma 7. Let T; ; be a tree constructed in CA'” Then, T; ; is connected to T'.

Proof. Assume by contradiction that 7; ; is not connected to 7”. Let a be a point from 7”
and let b be a point from 7} ;. Since 7' is a bottleneck bichromatic spanning tree of P, there
is a path IT between a and b in T. Let p be the last point (from a) on II that belongs to 77,
i.e., no point of 7" appears on the sub-path of IT between p and b. Since b does not belong
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to T”, such a point p exists. Let ¢ be the point between p and b on II that is connected to
p. By the selection of p, ¢ does not belong to T”. Since the bottleneck of T' is A, we have
Ipg| < A. Therefore, by Lemma 6, p and ¢ are connected in 7", which contradicts that ¢ does
not belong to T". <

» Lemma 8. T is planar.

Proof. Each T ; is planar. We start with T” = T; ;, where T} ; is an arbitrary tree constructed
in CA’Z-J-, and in each step, we extend T’ by connecting it to the trees corresponding to the
cells adjacent to the current cell. We connect T” to a “new” tree T; ; by picking a point p in
T’, such that the convex hull H of {p} U ]5” is empty of any other points and no edge of
T’ crosses H. In Claim 4, we showed that such a point p always exists. Thus, connecting p
to any point of T; ; will not cross any other edge of 7" nor of any other tree. Moreover, in
Lemma 3, we show that we can always connect p to T; ; without crossing any of the edges of
T;,j. Therefore, connecting 7" to T; ; does not produce any crossing. |

» Lemma 9. The bottleneck of T' is at most 8v/2)\.

Proof. Consider Figure 11. After Stage 1, each extended cell is contained in a square of size
5\ x 5\, and hence the bottleneck of each tree constructed in Stage 2.1 is at most 5v/2\.
Moreover, every two d-adjacent cells are contained in a square of size 8\ x 8\ and every two
s-adjacent cells are contained in a square of size 8\ x 5A. Thus, each edge added in Stage 2.2
is of length at most 8y/2\. Therefore, each edge in T” is of length at most 8v/2. <

The algorithm consists of two main stages, and each one of them can be implemented
in polynomial time. Therefore, the total running time of the algorithm is polynomial. The
following theorem summarizes the result of this section.

» Theorem 10. Let P be a set of n red and blue points in the plane. One can compute in
polynomial time a planar bichromatic spanning tree of P of bottleneck at most 8v/2 times the
bottleneck of an optimal bichromatic spanning tree of P.
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